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Abstract. Despite its name, automatic differentiation (AD) is often far
from an automatic process. Often one must specify independent and de-
pendent variables, indicate the derivative quantities to be computed, and
perhaps even provide information about the structure of the Jacobians
or Hessians being computed. However, when AD is used in conjunction
with a toolkit with well-defined interfaces, many of these issues do not
arise. We describe recent research into coupling the ADIC automatic dif-
ferentiation tool with PETSc, a toolkit for the parallel numerical solution
of PDEs. This research leverages the interfaces and objects of PETSc to
make the AD process very nearly transparent.

1 Introduction

Many varieties of scientific computation, including the numerical solution of
nonlinear partial differential equations (PDEs), require derivatives. For compli-
cated functions, it can be a difficult task to implement derivative computations
by hand. In contrast, finite difference approximations are simple to implement,
but they suffer from both roundoff and truncation error. Furthermore, finding
a stepsize that balances these sources of error (thus minimizing the total error)
can be difficult. Automatic differentiation (AD) [13, 16] offers an alternative that
minimizes human effort and eliminates truncation error. For this reason, auto-
matic differentiation has become a popular tool for scientific computing (see, for
example [4, 8]).

One obstacle to widespread adoption of automatic differentiation is that the
process is often far from automatic. To achieve acceptable levels of performance,
the user may need to specify independent and dependent variables, indicate
the derivatives to be computed, and provide information about the structure of
the Jacobians or Hessians being computed. Previous work [10,11,15], however,
has demonstrated that when AD is used in conjunction with a toolkit with
well-defined interfaces, many of these issues do not arise. This paper describes
research into coupling the ADIC [7] automatic differentiation tool with PETSc,
a toolkit for the parallel numerical solution of PDEs [3]. This research extends
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earlier results by directly exploiting the sparsity structure of the Jacobians to
be computed. It also provides a strategy for computing Jacobians in parallel,
without requiring an AD capability for MPI. Most important, unlike previous
work done in coupling AD with numerical toolkits, the use of ADIC within the
PETSc environment is fully automated. Thus, application developers can take
full advantage of the increased accuracy and potentially better performance of
AD-generated derivatives with no extra effort.

The organization of this paper is as follows. Sections 2 and 3 provide brief
introductions to ADIC and PETSc, respectively. Section 4 describes how the
two tools have been coupled to provide an automatic differentiation process
that is nearly transparent to PETSc users. Section 5 illustrates the potential
for increased performance and robustness provided by automatic differentiation.
Section 6 summarizes our results and describes opportunities for future work.

2 ADIC

ADIC 1is a tool for the automatic differentiation of ANSI C. Given a set of
functions that compute a mathematical function F'; ADIC generates a new set
of functions that compute F and its Jacobian, J = F’. ADIC differentiates
statements by using the so-called reverse mode of automatic differentiation and
propagates these partial derivatives from independent to dependent variables
by using the so-called forward mode. See [7] for more details on ADIC and its
implementation.

The behavior of ADIC can be configured with a large number of user-specified
options via one or more control files. A control file contains a set of bindings,
expressed as key-value pairs, organized in several sections. Some aspects of the
coupling of PETSc and ADIC were handled in control scripts, for example, spec-
ifying inactive variables and types, and generating different prefixes for multiple
versions of the differentiated code that coexist in the final executable.

A number of enhancements to ADIC were inspired by the need to make the
AD process fully automated within PETSc. Some of these include the ability to
process multiple control scripts, options for renaming generated header files, a
facility for deactivating entire structures, and specialized run-time libraries for
scalar-valued gradient accumulations (which arise in the matrix-free case).

3 PETSc

PETSc is an object-oriented toolkit for the parallel numerical solution of PDEs.
PETSc provides implementations of basic objects, such as matrices and vectors,
facilities for managing data associated with both structured and unstructured
meshes (distributed arrays and index sets), linear solvers (primarily Krylov meth-
ods with a variety of preconditioners), and nonlinear solvers (primarily Newton-
type methods).
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3.1 Nonlinear Solvers

PETSc provides a collection of Newton-based nonlinear solvers (SNES). These
solvers require a nonlinear function (the discretized PDE) whose input and out-
put are a vector. The prototype for this function is

int FormFunction(SNES snes,Vec X,Vec F,void *ptr);

The solvers also require a Jacobian, or at least the action of the Jacobian on a
vector, but PETSc is able to automatically compute an approximation to the
Jacobian (or its action) using finite differences. In cases where the inaccuracy of
finite differences leads to a degradation in convergence (see, for example, [14]), it
1s desirable to use analytic derivatives. In such instances, the user can provide a
routine for computing the Jacobian or, using the approach described in Section 4,
PETSc and ADIC can generate code for computing the Jacobian automatically.

3.2 Distributed Arrays and Multigrid Algorithms

PETSc provides several objects to assist in the management of data associated
with structured and unstructured meshes. One such object is the distributed
array (DA), which provides facilities for managing the field data associated
with a single structured grid. The DMMG object manages a hierarchical col-
lection of such objects for use in multigrid algorithms. PETSc provides func-
tions (methods) for exchanging data associated with ghost vertices (generalized
gather-scatter operations) and for obtaining a coloring suitable for computing a
Jacobian using either finite difference approximations or automatic differentia-
tion.

The coloring provided by PETSc is of the Curtis-Powell-Reed (CPR) va-
riety [9]-two columns of the same color contain no row in which both have a
nonzero. Thus, the Jacobian can be approximated by perturbing all columns
of the same color simultaneously. Alternatively, the seed matrix for automatic
differentiation can be initialized by applying the coloring to an identity matrix;
all columns (unit vectors) of the same color are combined into a single column
of the seed matrix (see [6] for more details). We note that obtaining an optimal
or nearly optimal CPR coloring for Jacobians arising from structured grids is
simple [12] while efficient parallel algorithms for coloring Jacobians from un-
structured meshes remains an open research topic.

4 Coupling PETSc and ADIC

To produce a routine for computing a Jacobian, one might be inclined to ap-
ply ADIC directly to the user’s FormFunction routine (see Section 3.1). A
similar strategy has been effective in other contexts [10,15]. In the context of
PETSc, however, this approach is less appealing. One reason is that the user’s
FormFunction routine usually contains a number of calls to PETSc utilities,
such as the generalized gather-scatter routines for ghost data communication
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described in Section 3.2. Thus, applying ADIC to FormFunction would lead to
automatic differentiation of these utility methods. However, because many of
these utilities deal with problem setup and data movement and often use MPI,
applying ADIC directly would likely lead to unnecessary work plus the added
complication of differentiating MPT (and including the appropriate runtime sup-
port library). For these reasons, we have followed the example of previous semi-
automated approaches to coupling ADIC and PETSc [1,17] and provide an
automated solution based on a domain decomposition approach.

4.1 A Domain Decomposition-Based Strategy

Figure 1 provides an example of a simple nonlinear function.! This example
illustrates a structure common to most nonlinear functions that use PETSc’s DA
or DMMG objects. A setup and communication phase precedes a computation
phase in which the function is evaluated over the local subdomain. A final phase
assigns local values to parallel objects. The first and final phase are essentially
problem independent and depend only on the structure of the DA or DMMG
grid object being used. Therefore, it is possible to i1solate the local computation
in a separate routine and have PETSc manage the rest of the nonlinear function
evaluation. This approach reduces the amount of user code and simplifies the
automatic differentiation process. The user provides a function adhering to the
following prototype, an example of which appears in Figure 2.

int FormFunctionLocal(DALocallInfo *info,Field **x,
Field #*f,void *ptr);

4.2 The User’s Experience

As intended, the user interface to the AD-enabled PETSc functionality is vir-
tually the same as the interface used for computing derivatives by means of
finite differences. In both cases, the user must provide the nonlinear subdomain
function evaluation and initialize the nonlinear solver context. If the user’s ap-
plications uses DMMG objects, the changes are all minor. To use a nonlinear
subdomain function, the user replaces a call such as

ierr = DMMGSetSNES(dmmg,FormFunction,0);
with a call such as

ierr = DMMGSetSNESLocal (dmmg,FormFunctionLocal,O,
ad_FormFunctionLocal, admf_FormFunctionLocal);

To indicate that FormFunctionLocal should be differentiated using ADIC, the
user adds a comment of the form

! This function comes from PETSc SNES example 5, a solid fuel ignition problem
derived from the Bratu problem in the MINPACK-2 test problem collection [2].
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int FormFunction(SNES snes,Vec X,Vec F,void *ptr)
{
AppCtx *user = (AppCtx*)ptr;
int err,i,j,Mx,My,xs,ys,xm,ym;
PetscReal two = 2.0,lambda,hx,hy,hxdhy,hydhx,sc;
PetscScalar u,uxx,uyy,**x,**f;
Vec localX;

PetscFunctionBegin;
err = DAGetLocalVector (user->da,&localX) ;CHKERRQ(err);
err = DAGetInfo(user->da,PETSC_IGNORE,&Mx,&My, ... );

hx 1.0/ (PetscReal) (Mx-1); hy 1.0/ (PetscReal) (My-1);
lambda = user->param; sc hx*hy*lambda;
hxdhy = hx/hy; hydhx = hy/hx;

/* Scatter ghost points to local vector, using a 2-step process */
err = DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX) ;
CHKERRQ (err) ;

err = DAGlobalTolLocalEnd(user->da,X,INSERT_VALUES,localX);

CHKERRQ (err) ;

/* Get pointers to vector data */

err = DAVecGetArray(user->da,localX, (void**)&x) ; CHKERRQ(err) ;

err = DAVecGetArray(user->da,F, (void**)&f) ; CHKERRQ (err) ;

/* Get local grid boundaries */

err = DAGetCorners (user->da,&xs,%ys,0,%xm,&ym,0) ; CHKERRQ (err) ;

/* Compute function over the locally owned part of the grid */
for (j=ys; j<ys+ym; j++) {
for (i=xs; i<xs+xm; i++) {
if (i==01l j==0111=="Mx-11]] j==My-1) {
£f[3101] = x[31[i];
} else {
u

x[j1[iT;

uxx (twoxu - x[jI1[i-1] - x[j]1[i+1]) #hydhx;
uyy = (two¥u - x[j-11[i] - x[j+1]1[i]) *hxdhy;
f[j1[i] = uxx + uyy - sc*PetscExpScalar(u);

¥

¥
¥
/* Restore vectors */
err = DAVecRestoreArray(user->da,localX, (void#**)&x) ; CHKERRQ (err) ;
err = DAVecRestoreArray(user->da,F, (void#**)&f) ; CHKERRQ (err) ;
err = DARestorelocalVector (user->da,&localX) ;CHKERRQ (err) ;
err = PetscLogFlops (11*ym*xm) ; CHKERRQ (err) ;
PetscFunctionReturn(0);

Fig. 1. Example of a nonlinear function.
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int FormFunctionLocal (DALocalIlnfo *info, PetscScalar **x,
PetscScalar **f,AppCtx *user)

{
int ierr,i,j;
PetscReal two = 2.0,lambda,hx,hy,hxdhy,hydhx,sc;
PetscScalar u,uxx,uyy;
PetscFunctionBegin;
lambda = user->param;
hx = 1.0/ (PetscReal) (info->mx-1) ;
hy = 1.0/ (PetscReal) (info->my-1);
sc = hx*hy*lambda;
hxdhy = hx/hy;
hydhx = hy/hx;
/* Compute function over the locally owned part of the grid */
for (j=info->ys; j<info->ys+info->ym; j++) {
for (i=info->xs; i<info->xs+info->xm; i++) {
if (A1 ==0 1| j==01| 1 ==1info->mx-1 || j == info->my-1) {
£[310i1 = x[31[i];
} else {
u = x[31[i];
uxx = (twoxu - x[jI1[i-1] - x[j]1[i+1])*hydhx;
uyy = (twoxu - x[j-1]1[i] - x[j+1][i]) *hxdhy;
f[j1[i] = uxx + uyy - sc*PetscExpScalar(u);
}
}
}
ierr = PetscLogFlops (11*info->ym#info->xm) ; CHKERRQ (ierr) ;
PetscFunctionReturn(0);
}

Fig. 2. Example of a nonlinear subdomain function.
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/* Process adiC: FormFunctionLocal */

With these changes in place, the user can switch between using AD and finite dif-
ferences using a single runtime option, for example ~dmmg_jacobian mf _ad_operator
versus —~dmmg_jacobian mf fd_operator. When DA objects are used, the inter-
face for initializing the SNES context in the user’s driver routine contains a few
minor differences for the AD case, mainly in the methods used for obtaining
the coloring for the Jacobian. These differences will eventually disappear as the
interfaces continue to evolve.

4.3 Behind the Scenes

While the user’s experience is largely unchanged with the new subdomain in-
terface and automatic differentiation capability, several additions to PETSc and
ADIC were necessary to make nearly total automation possible.

PETSc was augmented to automatically allocate storage for several derivative
objects, principally those associated with the input and output vectors (arrays
at the subdomain level). PETSc was also modified to initialize the derivatives
associated with the input vector, or so-called seed matrix. The initialization uses
the CPR coloring discussed in Section 3.2. The cost of computing the resulting
“compressed” Jacobian is proportional to the number of colors. For a structured
grid, this is usually the product of the stencil size and the number of data fields
at each grid point.

Once the compressed Jacobian has been computed, the values must be as-
sembled into a PETSc sparse matrix object. Support for extracting a row of the
compressed Jacobian was added to ADIC, and PETSc was enhanced to be able
to assemble the sparse matrix directly from these compressed rows.

To further simplify the task of using automatic differentiation with PETSc,
we extended the PETSc build process to include processing of source files with
a python script. This script searches for the phrase “Process adiC,” extracts
the indicated functions into a separate file, processes them with ADIC using
the control scripts described in Section 2, and compiles and links the resulting
derivative code to provide Jacobian computations in a manner that is virtually
transparent to the user.

5 Experimental Results

The potential benefits of using automatic differentiation for derivative compu-
tations are illustrated in a simple example from the PETSc distribution, a two-
dimensional driven cavity problem using a velocity-vorticity formulation (see
ex19.c in the SNES tutorials examples directory for more details). We solved
a b0 x 50 version of this problem with derivatives computed using either auto-
matic differentiation or finite difference approximations, the default nonlinear
solver, the default finite-difference noise estimate, ILU preconditioning, and sev-

eral linear solvers (GMRES-k, TFQMR, and BiCGStab). The choice between
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automatic differentiation and finite differences was made with the runtime op-
tions —~dmmg_jacobian mf_ad operator and -dmmg_jacobian.mf fd_operator.
For example, to solve using BiCGStab and automatic differentiation derivatives,
we used the following command.

ex19 -da_grid_x 50 -da_grid_y 50 -ksp_type bcgs -pc_type ilu \
-ksp_max_it 500 -dmmg_jacobian_mf_ad_operator

Figure 3 illustrates the convergence speed by plotting the nonlinear residual
norm at each iteration. The X-axis represents the cumulative elapsed time. The
increased accuracy of automatic differentiation results in increased robustness
(TFQMR with finite differences fails to converge) and faster convergence.
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Fig. 3. Performance of AD versus fin for various linear solvers.

6 Conclusions and Future Work

We have presented an integration of automatic differentiation into PETSc, using
high-level interfaces to automate fully the use of ADIC to generate the code for
computing the Jacobian of a local subdomain function. We described some of the
implementation details of this coupling, and we presented a simple application
that takes advantage of it. Our experimental results show that frequently the
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superior accuracy of AD-generated code leads to convergence in fewer nonlinear
and linear iterations than with finite differences.

Future tasks include extending this work to the optimization regime, pro-
viding the capability to compute Hessians and gradients of partially separable
functions using automatic differentiation. In addition, basic block reverse mode
and cross-country preaccumulation strategies could significantly reduce the cost
of typical Jacobian computations. The work must also be extended to the case
of unstructured meshes. In the case of finite element computations, applying
automatic differentiation at the level of element function, and then assembling
the full Jacobian from the small, dense element Jacobians may be an effective
strategy.

Types, variables, or entire functions that have been specified as inactive in
a control file are not augmented with derivative computations. Inactive objects
are designated by name, however. In the case of PETSc applications, the user-
defined nonlinear function name is not known at the time the ADIC control
scripts are created. As shown in Section 4, the user specifies the name of the
nonlinear function in a special comment. By extending ADIC to allow active
functions to be designated via a prototype, and generating derivatives only for
those functions (and any other objects designated as active), we could eliminate
the need for special pre- and postprocessing of the application and differentiated
code.
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