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Abstract

A stabilized finite element scheme for infinite Prandtl number Boussinesq
equations with temperature-dependent coefficients is analyzed. The domain is
a spherical shell and the Pl-element is employed for every unknown function.
The finite element solution is proved to converge to the exact one in the first
order of the time increment and the mesh size. The scheme is applied to
Earth’s mantle convection problems with viscosities strongly dependent on
the temperature and some numerical results are shown.

1 Introduction

In the numerical simulation of the Earth’s mantle convection phenomenon the
Boussinesq equations with infinite Prandtl number are used as the fundamental
mathematical model. See for instance [1],[15] and the references therein. This phe-
nomenon has different characters in comparison with many other convection prob-
lems described by the Rayleigh-Bénard equations. As was pointed out by Ratcliff et
al. [8] the rheology and the geometry are two important factors of the phenomenon.
The former means that the viscosity of the mantle is strongly dependent on the tem-
perature, and the latter means that the domain of the problem is a three-dimensional
spherical shell. The corresponding mathematical model becomes a nonlinear sys-
tem consisting of Stokes equations and a convection-diffusion equation in a spherical
shell, coupled with the viscosity, the buoyancy and the convection. In [14] we have
proved the existence of the solution of the system, and presented an efficient finite
element scheme. In this paper we extend the result to the system having the tem-
perature dependence not only in the viscosity but also in the other coefficients, and
give a complete proof of the error estimate.
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We solve problems in a spherical shell domain, that is, a three-dimensional curved
domain. While it is convenient to use the finite element method for the curved
domain, it should be cheap from the computational point of view especially for the
three-dimensional problem. We, therefore, employ the P1l-finite element for every
unknown function, which leads us to use a stabilized scheme. In the isoviscosity case
we used a stabilized method of least square type [13], [11]. Here we use a stabilized
method of penalty type [2] for the Stokes equations as it leads to a simpler scheme
for the variable viscosity case.

The contents of this paper are as follows. In Section 2 we describe a system
of infinite Prnadtl Boussinesq equations with temperature-dependent coefficients.
In Section 3 we show a finite element scheme for the system, and present error
estimates for the finite element solution. The proof is given in Section 4. In Section
5 we present some numerical results, which show a clear effect on the change of
the ratio of temperature-dependent viscosity. We give some concluding remarks in
Section 6.

Throughout this paper we denote by ¢ a generic positive constant, which may
be different at each occurrence. We denote by ¢, a generic positive constant, which
may be dependent on the exact solution. The symbol (-, ) is used for the L*(Q)3-
or L*(2)- inner product, and (-,-) is for the dual product between a Banach space
and the dual space. The abbreviation || - ||, means the norm || - |[gm(q).

2 Infinite Prandtl number Boussinesq equations

Let T'(> 0) be a time and €2 be a spherical domain
Q:={r € R R, < |7| < Ry},

where |z| is the Euclidian norm of = = (1, x5, 3), and Ry and R, are positive con-
stants. We consider a finite element analysis of infinite Prantdl number Boussinesq
equations with temperature-dependent coefficients described by the following.

=V - 2u(0)D(u)] + Vp + 5(0)0 = [, (1)
V-u=0, (2)
%—FU-VG—V-(K(H)VH) — g, (3)

where the velocity u, the pressure p, and the temperature 6,
(u,p,0): Q2 x (0,7) - R* xR xR
are unknown functions, f and g
(f,9):Qx(0,T) - R* xR
are given functions, u, x, and

(1,5, 8): Q2 x (0,7) x R — Ry x Ry x R?
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are continuously differentiable functions in (z,t¢,0), D(u) is the velocity rate tensor

defined by
1 [(0u; Ou,
D;i(u) == = : 7).
i (1) 2(3%'+a%>

Let I'y and 'y be inner and outer boundaries and I" be the whole boundary. The
slip boundary conditions for v and Dirichlet boundary conditions for #

u-n =0, (4)
D(u)n x n =0, (5)
0 = by (6)

are imposed on I', where n is the exterior unit normal and fr : ' x (0,7) — R is a
given function. Initial condition for # at ¢t =0,

0 =0° (7)

completes our problem, where #° : Q@ — IR is a given function.

Example 1 We consider a non-dimensional Earth’s mantle convection problem
with a variable viscosity dependent on the temperature. Fixing the origin at the
center of the Earth, we take

11 20
R1_§7 R2_§7
=L e = (0-)togb), Bla) = -~ (8)
K=oy ) =exp Plosb ), He)=—r0,
f=0, g=0,

9F21 OHFl, 9p:0 OHFQ,

where Ra is the Rayleigh number, b is a positive number describing the contrast
of viscosity, that is, p is independent of x and ¢, normalized at § = 1/2, and the
ratio of the maximum and minimum viscosity is equal to b. [ is equal to the unit
vector with the direction opposite to the radial vector, which describes that the
gravity direction is the center of the Earth. An initial temperature §° is given. Ra
is defined by
Ra = pogﬁon?’,
Kolo

where ¢ is the gravity acceleration, d is the depth of mantle, Af is the difference
of temperatures on the core and the surface, kg is the thermal diffusivity, 3, is the
thermal expansion coefficient, py and pg are representative density and viscosity,
respectively.

In Section 5 we give some numerical results on Example 1. As for the derivation
of the equations from the Rayleigh-Bénard equations we refer to [14]. The system
of equations (1)-(3) is a generalization of Example 1. The functions p and f are
considered to be normalized, but £ may become very small as k corresponds to 1/Ra
and Ra becomes very large, for example, in the geophysical problem.



We now prepare three function spaces. Since (4) is an essential boundary condi-
tion, it is natural to introduce the space

W:={ve H(Q)?* v-n=0onT}.

However, as was discussed in [13], the velocity is not determined uniquely in W
for the Stokes equations, to which (1) and (2) are reduced when p is constant and
B = 0. There are three freedoms of rigid body movements

v® = x z for i =1,2,3,

where e is the unit vector to the z;-direction. Eliminating the freedoms, we seek
the velocity in

Vi={veW; (v,v'")=0 (i=1,2,3)},
and the pressure in
Q= {q € L*(Q); (¢,1) =0}.
We have the following result on the whole problem (1)—(7).
Proposition 1 Suppose that
feL0.T; HH(Q)), g € L=(0,T5 L>(Q)),
Or € H'(0,T; H/2(I")) N L*°(0, T; L(T)), 6° € L®(Q).

Then, there exist a solution (u,p, ) of (1)—(7),

we L*0,T;V), pe L*(0,T;Q),
0 € L?(0,T; H'(2)) N L™(0,T; L>(52)).

Furthermore, if
u € L2(0,T; Whe(Q)?*), 6¢e L*0,T; W-=(Q)),

the solution is unique.

Proposition 1 can be proved in a similar way to Theorem 1 of [14].

3 A Finite Element Scheme

We present a finite element approximation to the problem (1)—(7). Paying attention
to three-dimensional computation, we employ the cheapest element combination
P1/P1/P1, that is, the velocity, the pressure, and the temperature are all approx-
imated by the piecewise linear element. Since the combination of P1/P1 element
does not work for the Stokes problem, we are required to use a stabilization method.
Considering the cost of computation, we employ the stabilization of penalty type [2].
Since k is small in our problem, (3) is convection-dominant. To solve the equation
stably, we use the stream upwind Petrov/Galerkin method [6], [4].
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Let Q, be a polyhedral approximation to Q and 7, be a partition of Q, by
tetrahedra, where h is the maximum diameter of the tetrahedral elements. The
boundary of {2, is denoted by I';. We consider a regular family of subdivisions {7},
h ] 0, satisfying the inverse assumption [3]. Let S, (C H' () N C%(2,)) be the P1
finite element space whose degrees of freedom are on the vertices of tetrahedra. We
introduce finite element spaces W), V},, Q, and ¥y, corresponding to W, V| (), and
U := H; (), respectively,

Wy = {vn € S; 5 (vp-na)(P) =0 (VP) },

Vii={vn € Wy 5 (v, o), =0 (1=1,2,3)},

Qn:=1{qn € Su; (qn,1)n =0},

Uy, i= {tn € Sp ; Yn(P) =0 (VP) },
where P stands for nodal point on I'j,, ng is the unit outer normal to I'. Since we
use the P1 element, every nodal point P on 'y, is on I'. We employ H'(€;)?-norm
for W), and Vj,, L*(Q,)-norm for @Q, and H'()-norm for ¥, respectively. We
define an affine space ¥, (fr) by

U (Or) == {tn € Sh 5 Yn(P) =0r(P) (VP) },

where P stands again for the nodal point on I', and fr is supposed to be continuous.
We prepare the following bilinear and trilinear forms for u, v € H'(Q)3?, ¢ €
L*(2), and 0, v € H'(Q),

a(iu,v) = Q/QMD(u) . D(v) da,
b(v, q) ::—/qu-vdx,
o, 0, 1)) ::/QHVH-V@Z)dx,
1 (1, 0,10) = % {/Q(U-VH)@Z)dx—/Q(u-Vd))de}.

Remark 1

(i) In the finite element method every integral over (2 is replaced by that over .
In this paper we use the same notation for these two integrals, for example, a is used
for the trilinear form over 2 as well as over €2,. Errors caused by this difference of
the domains can be proved to be less than approximation errors by finite element
spaces. For the details we refer to [12].

(i) In S3, the rigid body rotation v® § =1,2,3, can be reproduced. Especially,
v belongs to Wj.

Let At be a time increment and set the total time step number Ny := [T/At].
We denote by v}’ the value of v, at t = nAt for an integer n € [0, Np|. Let X be a
Banach space. We define £4(X)-norm for a sequence v, = {v}}2%, C X by

N L/q
[[onlea(x) = {Atz ||v2||§(} :
n=0
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where ¢ (> 1) is a real number and extended naturally to oo.

We approximate the time derivative 00/0t at t = (n + 1)At by the difference
D™ = (0" —0™)/At. A stabilized finite element approximation to (1)—(7) is to
find (u}, p}, 077) € Vi, x Qp x W (00T) , n =0, -+, Ny, satisfying

a(uh(gi?)v UZ, Uh) + b(”hapg) = —(5h(92)927 Uh) + (f}?a Uh)v (9)
b(up, qn) — 8 Y hi (VDR Van)x =0, (10)
KeTy,

(-DAtH;,,La ¢h) + CO(Kh(GZ)v 92+17 ¢h) + ¢ (’LLZ’, 92—1—17 ¢h)

+ Z TR (Dady + ulf - VO ul - V) i
KeT,

= (g7 wn) + Y (g uh - Vi) (11)

KeTy

for any (vn, qn, ¥n) € Vi X Qn X ¥y, and n € [0, Ny — 1] with an initial condition 6.
Here (-,-) represents the (L?)?- or L?- inner product on element K, and 6} is an
approximation to #°. A positive constant ¢ is a stability parameter for the Stokes

equations and 7% is also a stability parameter for the convection-diffusion equation
defined by

A 2
L S } (12)

Tre = T {7’ 1262 2U%
where hp is the diameter of element K , k7 = |k(07(Gk))| , UE = |u}(Gk)| and
G is the barycenter of K. f and g;'*' are linear interpolations of f(-,nAt) and
g(+, (n+ 1)At), while kp,, i, and ), are piecewise constant functions defined by, for

example, 1,(0)) = p(07(Gr)) on K.

Remark 2 The GLS type stabilized method [7] includes the term V- [p(0}) Vu}].
The replacement of p by gy, leads to the penalty type stabilization (10), which
reduces the computation cost. The convergence rates remain same for these two
methods as we use the P1 element.

(9) and (10) are linear in u? and p}, and so is (11) in #*'. We can show that
those equations are uniquely solvable. Once 0} is given, (u},p}) is obtained from
(9) and (10). Substituting 67 and u} to (11), 7" is solved. Hence, starting from
the initial value 69, we can obtain the finite element solution (uy, pp, 05)-

Suppose the conditions in Proposition 1 are satisfied. From Proposition 1 we
know that 6 is bounded. The a priori bound

O ]| L= ()
< t gl oo, (2)) + max{]|0p | (0,500 (1)) + |10°]] Lo () }

is obtained from the maximum principle to (3). Modifying u, £ and (3 outside the
bound, we can take positive constants i1, p2, K1, k2 and 5 such that

H1 S /,L(l',t, g) S H2, K1 S K)(l‘,t, g) S K2, |ﬁ(1‘7t7 §)| S 52



for (z,t,£) € Q x [0,T] x IR. Furthermore we can take a positive constant M such

that 9
K
|a—§(]),t,§)| SMKL(]I,t,g) (13)
for (z,t,€) € Qx [0, T] x R. Under such a modification and supplemental regularity
assumptions on data

fec(o,T)(HNQNCQ)Y), g€C(0,T;H(Q)NC(Q)
or € C([0,T];C(I"))
we can show that the finite element solution converges to the exact one.
Theorem 1 Let (u,p,0) be a solution of (1)—(7) such that
u €C([0,TT; (H*(Q) N WH(Q))°) N HY(0, T H' (2)%),
p €C([0,T]; H'(2)),
0 €C([0,T]; H*(Q) nWh(Q)) N H*(0,T; H(Q)) N H*(0,T; L*(Q)).
Suppose that the initial value 0Y) satisfies
165 = 60°1lo < chl|6°]]: - (14)

Then, there exist positive constants ¢, = ¢.(T;u,p,0), hy and Aty such that for any
At € (0, Ato] and h € (0, ho]

0h = Olleer2y s [IVER YV (Or — Ole2cr2y s IvVThun - V(0 — O)le2r2y
[VTh (Dat +up - V) (0h — 0)||e2z2) < e. (At + h),
un — wlleoarry,  |Ipn = plle=(z2) < e (At + D),
where ¢, = /i, Vb, means @) = \/kn(07)VYT, and ¢y, = (Dag + up - V),

means ¢} = Daplt +ul - Vit and

1/2
[/Th Onlle = {ZTKH%H%?(K)} :
K

4 Proof of Theorem 1

In this section we prove Theorem 1. Throughout this section we assume the hy-
potheses in Theorem 1. Let (u,p,#) be a solution of (1)-(7) stated in Theorem 1
and (up, pp, 0,) be the corresponding finite element solution. Let (a}, pr) € Vi, X Qy,
be a Stokes projection of (u™,p™) defined by

a(uh(92)7 a27 Uh) + b(vhaﬁZ) = a(/l’h(gg)a una Uh) + b(vhapn)
bliiy, qn) — 6 Y hic (ViR Van) i =0

KeTy,



for any (vn, qn) € Vi x Q. Let é;; be a linear interpolation of #". We set

~

(ens€n, Cp) i= (uy, —ap, py — Py, 0y — O05) € Vi X Qp X Uy,

Lemma 1 There exist positive constants hy and ¢, = ¢, (ho, 6, u, 3, f,u,0) such
that for any h € (0,ho] andn =0,--- | Np

lleglls +[lekllo < e (h+1IGR1lo) -

Proof. (e}, €}) satisfies

a(pen(O7); ers vn) + blvn, €) = (B, vn)

b, an) =6 Y hi(Ver, Van)x =0
KeTy,

for any (vs, qn) € Vi X @y, where
no={8(0")0" — B0y, + {a(p(0™),u", ) — alpn(6y), u", )} + {fy — "}
=R, + Ry, + Rps.

Since a is coercive on Vj and b satisfies the weak inf-sup condition on V,, x @
(Lemma 8 [13]), we have from the theory of the stability finite element method [5]

llenlls + llerllo < c(ho, &, )| Ry |lv;.-

Each term of R, can be estimated as

Ry [lo < (B, 110"]]1) (b + 1|k ]o)
[ Rallve < c(ps [|[u”|[wiee, [[07]]1) (B + [ICh o)
[ Rhsllo < ellf"|]1h,

which complete the proof.

We now prove Theorem 1. {(]'} satisfies the following variational form for n =
0,--- ,NT—l and wh E\I/h,

(DAl n) + co(kn(07), G wn) + e (uf, G on)
5

+ Y T(Da VG un V) e = Y (R ), (15)

KeTh i=1



where

n 00 e n
R1+1 = a) — Dby,
Rg+1 = Cl(un+1 9n+17 ) - Cl(u27 é}?+17 ')7
Ry = co(r(07F1), 074, 2) — colmn(67), 63,
3
Ryt =) Ry
j=1
<Rn+1 %} — Z o % n+1 B DAtén u - Vb
41 > K 875 h» h )
KeTy, K
<RZQ+1, wh> — Z Tln( <Un+1 vt — UZ . Vézﬂ, UZ . th> ,
KeTh K
(R o) o= — Z ™ (V i (H(Qnﬂ)vgnﬂ) LUl th)K
KeTy,

(BE* ) o= (g™ = g™ )+ 3 7ic (97 = 0™ i Vo)

KeTy
We substitute (™" into vy, in (15). Using the inequalities
1

1
(b+a)b= b — =
2" 2

and (12), we estimate the left-hand side as

1
a’® + §(bj: a)?

1 'rL n
s (GG + SUDaGIR + catn (09,67, G
+ ey (up, ¢ ,’;“) + Z TR (DaCl +uf -V ul -Vt g
KeTh

1 At n —
> Das (SGHIR) + S IDGIE + VRV G I

1 n n
+t3 E TR (||UZ VG e + 1Dy + upy - vCthlH%?(K)) :
KeT,

The estimates of terms R?"' and RS,

|<Rn+1 n+1>|

ho 00 .
< dvan 2||L2tn twin522) 2= o 2 gy ¢ 1GE o,
ot VAL ot

(RS GO < e {Ilulleqr + 1Ipllear + 10]loa }

ou " "
« {\/AtHaHL?(tn,th -+ 1l + Nl G
au n n+1
< VBN Z s + 1 el G o

(16)



are same as Theorem 11 in [13]. We estimate the term R as

<Rn+1 n+1>

= co (R(O"1) = K(0), 0", ) o ((07), 0741 — O3+, )
o (R(07) = kn (0, 05, G ) + o (n(0) — ka8, B, i)
CR9

_f{mtn neeqeay + B [+ 11GE o) MIIE™ [l + Bl ]}

< IVEV G o
< c{At+h+ I HIVEEV G o

The term R, is evaluated as

(RG]

h 00
<c {\/ Tmax ( \% || o012 ||L2 (tn st ;L2) EHEHLZ(%,%.H ;H1)

; (||eh||o+h||u I +¢At||§||mn,tn+l;m) 10" v + Il ||Loo>

+ b/ (M 10" [y + ||9”“||z)}||\/ﬂ?UZ VG o

0
< e {VBI G 0 sy + 1

au n n n
VB G+ el | I/ - 96 o

where we have used (12). Finally the term RIT! is estimated as

(R GO < ehllgllean (16 lo + v/Tmaxl [/ us - VG o)
< ch (116 Mo + Hl/muh - VG o) -

We can replace |le}||; , i = 0,1, by h + [|(}'||o in the above estimates in virtue of
Lemma 1. These estimates and (16) leads to

L, At n 1 —
s (SIGH1E) + SDaGHIB + S /TG R

1 n n n
N ol —Wh (a9

hZ
(Atu im0 s ity + A2

B2 IIGHIR) + 1GH3
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Applying Gronwall’s inequality with (14), we obtain

[Chlleser2ys  [IVERV Chllezcrzy,  [IV/Thun - VGlle w2y,
[[VTh(Dar + up - V)Gl 2y < e (At + h),

which implies from Lemma 1
lenl ey, [lenlle=r2y < c. (At + h).
Triangle inequalities
100411 < 110 —=0ul|+ 111, Nlu—unll < |lu—anl|+lenll, lp=pall < [lp—pnll+|lenl]

lead to the desired result.

5 Numerical Results

We present numerical results of (1)—(7) in the case of Example 1 described in Section
2. The boundary temperature fr is normalized. The choice of the viscosity function
in the temperature

1
pu0) = exp[—(0 — 5) log ]
is based on a linearized Arrhenius law [8]. We take the initial temperature 6°

R, —
0°(x) = 0"(r) + esinm (T )¥ (0, 0). (17)

Ry — Ry
where (r,¢, ) is the spherical coordinate of x, 6*(r) is the conductive solution

defined by
= R }EIR (& - 1)7
2 1T
Y™ is the normalized spherical harmonic function of degree n and order m, and
e = 0.1. This initial condition was used in [8]. We set Ra = 7, 000.

We performed a numerical simulation for this problem by the stabilized finite
element scheme (9)—(11) with 6 = 0.005. Figure 1 shows the mesh and Table 1 shows
the data for the computation. We consider five cases of b = 1, 10, 10%, 103, and 10*.
Starting from the initial temperature (17), we got a numerically stationary solution
(th, pn, On) for each case. In Figs.2—4 we show the isothermal surfaces of 6,=0.2, 0.5,
and 0.8. In the left of Figure 2 the isothermal surfaces of the initial temperature
(17) are shown. As the viscosity ratio b increases from 1 to 10?, the viscosity near
the surface of the Earth, where the temperature is low, increases. The plume heads,
therefore, flatten much more as the viscosity ratio increases as observed clearly in
Figs. 2-4. In the case of b = 10* the number of plumes increases to 12, while the
numbers of plumes remain four for b = 1, 10, 102, and 103.

0" (r)
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RN

Figure 1: Mesh

Table 1: Discretization parameters

# of nodes # of elements h At

117,540 664,320 0.2 3.0

12



3 I
° h °‘

Figure 2: Ra = 7,000,¢ = 0(left), b = 1(right) [9]

F ;
o o

Figure 3: Ra = 7,000,b = 10(left), b = 10%(right) [9]

Figure 4: Ra = 7,000,b = 103(left), b = 10*(right) [9]
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6 Concluding Remarks

We have analyzed a 3D stabilized finite element scheme for infinite Prandtl number
Boussinesq equations with temperature dependent coefficients. Our finite elements
are Pl-elements for all unknown functions. The convergence rate has been proved
to be of order At + A for the unsteady problems. We have performed numerical
experiments and found that the plume number increases from 4 to 12 when the
viscosity ratio increases from 10® to 10* under some condition. The detail of the
numerical results will be presented in a forthcoming paper [9].
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