
Future Generation Computer Systems 22 (2006) 657–664
www.elsevier.com/locate/fgcs
BioSimGrid: Grid-enabled biomolecular simulation data storage
and analysis

Muan Hong Nga,∗, Steven Johnstona, Bing Wuc, Stuart E. Murdockb, Kaihsu Taid, Hans Fangohra,
Simon J. Coxa, Jonathan W. Essexb, Mark S.P. Sansomd, Paul Jeffreysc

a Southampton e-Science Centre, SO17 1BJ Southampton, UK
b School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK

c Oxford e-Science Centre, OX2 6NN Oxford, UK
d Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK

Received 15 August 2005; received in revised form 20 October 2005; accepted 21 October 2005
Available online 2 February 2006

Abstract

In computational biomolecular research, large amounts of simulation data are generated to capture the motion of proteins. These massive
simulation data can be analysed in a number of ways to reveal the biochemical properties of the proteins. However, the legacy way of storing
these data (usually in the laboratory where the simulations have been run) often hinders a wider sharing and easier cross-comparison of simulation
results. The data is commonly encoded in a way specific to the simulation package that produced the data and can only be analysed with tools
developed specifically for that simulation package. The BioSimGrid platform seeks to provide a solution to these challenges by exploiting the
potential of the Grid in facilitating data sharing. By using BioSimGrid either in a scripting or web environment, users can deposit their data
and reuse it for analysis. BioSimGrid tools manage the multiple storage locations transparently to the users and provide a set of retrieval and
analysis tools for processing the data in a convenient and efficient manner. This paper details the usage and implementation of BioSimGrid using
a combination of commercial databases, the Storage Resource Broker and Python scripts, gluing the building blocks together. It introduces a case
study of how BioSimGrid can be used for better storage, retrieval and analysis of biomolecular simulation data.
c© 2005 Elsevier B.V. All rights reserved.

Keywords: Biomolecular simulation; Database; Grid computing; Storage resource broker; Python
1. Introduction

In the field of biomolecular simulation, massive amounts
of data, often tens of gigabytes per simulation, are generated
to capture the motion of molecules at different time steps.
These simulation results are suitable for reuse in many different
analysis studies. One application of such simulation and post-
simulation analysis is predictive modeling in drug discovery,
where motions of proteins [1] are important.

For many years in the biochemical research community,
protein simulation data have been stored locally where they
were generated; this severely limits data sharing within the
biochemical community. Even if these data are transferable

∗ Corresponding address: Southampton e-Science Centre, School of
Engineering Sciences, Building 25 Highfield University of Southampton, SO17
1BJ Southampton, Hants, UK. Tel.: +44 2380598520.

E-mail address: muanhong@soton.ac.uk (M.H. Ng).

0167-739X/$ - see front matter c© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2005.10.005
across labs, they cannot easily be compared with pre-existing
analysis scripts due to the variety of data formats. These
analysis scripts are normally written to process a single data
format, thus causing great inconvenience in the comparison
between simulation data of dissimilar formats. The constraints
of sharing and comparing different simulation data can be a
major hindrance to the discovery of new science within the
biochemistry community.

The solution to this problem is within the concept of
grid computing [2] as the Grid promotes the sharing of
computational and storage resources within the scientific
research world. In the concept of the data Grid [3], scientists
are allowed access to geographically remote storage resources
across a network in a uniform and efficient manner. With this
data sharing capacity, biochemists are able to perform cross-
simulation comparison to explore fully the functional dynamics
of biomolecular simulations.

http://www.elsevier.com/locate/fgcs
mailto:muanhong@soton.ac.uk
http://dx.doi.org/10.1016/j.future.2005.10.005


658 M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664
BioSimGrid [4] is a project that seeks to exploit the potential
of the Grid on biomolecular simulation data and tries to
solve some of the problems that hamper comparative analysis.
It provides a platform for the biochemists for conveniently
storing, retrieving and analysing biomolecular simulation data.

The next section provides a general overview of BioSim-
Grid, Section 3 gives details on the architectural implementa-
tion and Section 4 touches on the security and data authorisa-
tion issues. We explain the functionalities of BioSimGrid from
the user perspective in Section 5 and provide an application
example in Section 6. Finally Section 7 discusses various issues
involved in the development stage and Section 8 concludes this
paper with future work and potential extensibility.

2. BioSimGrid

BioSimGrid currently has multiple data resources spread
across six different university research labs in the UK. It deals
with simulation data that exists in the form of trajectories (sets
of coordinates corresponding to the positions of atoms for a
series of time steps) which can go up to the size of 10 GB per
trajectory. Each trajectory has its corresponding metadata that
describes the topology of its atoms, the parameter set for the
simulation and also user defined metadata. All these metadata
are essential and form parts of the querying clause in data
retrieval.

BioSimGrid is still at its prototype stage with over 20 users.
It currently has over 200 trajectories contributing to 450 MB
of metadata and approximately 1 TB of flat files. The current
system has storage space for 24 TB of data distributed over six
sites. The available storage space can be increased by adding
further machines.

Users of BioSimGrid are able to deposit their simulation
data, which exists in multiple data formats, into this repository.
These data can then be made available to the whole community.
The BioSimGrid data retrieval component enables a user to
retrieve data transparently without knowledge of the database
mechanisms behind the scenes. The flexibility of the retrieval
tools allows users to access different slices of a trajectory
seamlessly. BioSimGrid also provides a set of custom-built
analysis tools which can be used to study the functional
dynamics of a simulation, e.g. root mean square deviations,
volume and average structure, interatomic distance and surface
area. Alternatively, users can write their own analysis tools by
utilising the retrieval components to access different slices of a
trajectory as their analysis requires.

The deposition, retrieval and analysis components are
implemented in Python [5]. Users can use BioSimGrid in
a Python scripting environment. Alternatively, there is a
web based interface to BioSimGrid with limited analysis
capabilities and without the functionality of data deposition.
The rationale behind choosing Python is pragmatic since
several analysis dependent post-processing tools (such as
PyMOL [6] and MMTK [7]) were written in Python and
the simulation community is moving towards Python as the
preferred environment for post-simulation analysis.

In summary, BioSimGrid seeks to fulfil the following
requirements in its implementation:
• to provide a transparency of data location to the users, where
the knowledge of the actual physical location of the data is
not essential to the process of data retrieval,

• to maximise data transfer rate, in terms of the speed of
delivering data to the computation element, in this case the
analysis toolkit,

• to provide an abstraction of the data layer, where scientists
are freed from the complication of using and understanding
data querying languages and the data storage structure in
their scientific research,

• to provide a general purpose analysis toolkit for operating
on this data structure.

3. Architectural implementation

At each site BioSimGrid is running a dual processor AMD
2600 with 4 GB of RAM and 4 TB of RAID 5 storage.
As depicted in Fig. 1, BioSimGrid is implemented on a
three tier architecture. The first layer is the data layer which
consists of relational databases and flat file storage. The
trajectory coordinates, which are the larger part of the data,
are stored as flat files whilst the metadata is stored in the
relational databases. The middle-tier layer is a combination
of BioSimGrid purpose-built Python modules and a grid
middleware called Storage Resource Broker (SRB) [8,9]. The
former manages geographically distributed data deposition and
retrieval while the later maintains the distributed flat files. The
user application layer comprises a selection of analysis tools,
Python scripts for deposition and a web portal that caters for
administration purposes as well as graphical user front-ends.
The set-up is such that the master site hosts a master Oracle 10g
[10] and an MCAT (Metadata Catalogue) enabled SRB server
3.3. All other sites are configured as slaves with a SRB server
and a replicated Oracle database installed.

3.1. Data deposition and retrieval

BioSimGrid aims to provide a data abstraction layer for the
user where scientists can concentrate on research without the
concerns of ‘how’ and ‘where’ their data is stored. One of the
challenges is dealing with the simulation data which comes in
varying formats, e.g. AMBER [11], Gromacs [12], NAMD [13]
and Charmm [14]. These data need preprocessing before they
can be stored as one generic format in BioSimGrid. A solution
is offered in the BioSimGrid deposition modules as depicted
in Fig. 2. The modular approach means a parser component is
built for each data format which is extensible to support new
data formats. A trajectory is first parsed into a generic input
object before it is validated for their data types and finally
imported into the storage as one generic format. With this, the
underlying complexity of format conversion, data validation
and data import are completely hidden from the users.

Once the trajectory is stored, users can access different parts
of the trajectory in a uniform manner regardless of the original
format of the simulation data. The BioSimGrid retrieval module
provides a conceptual way of retrieving a full and partial
trajectory through ‘frame collection’ and ‘frame’ objects.



M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664 659
Fig. 1. The three tier architectural diagram of BioSimGrid depicting the data layer, middle-tier layer and application layer.
Fig. 2. The modular approach of the BioSimGrid deposition modules comprises simulation data parsers, a data validator and a data importer. New parsers can easily
be added to support new data formats. (Source: Phil. Trans. R. Soc. A.)

Fig. 3. A retrieval scenario: a frame collection is used to specify which frame from which trajectory is to be accessed; the frame object is used to access its
coordinates or metadata.
As shown in Fig. 3 a frame collection is an interface for
accessing trajectories. Once the user has specified which frames
of the trajectories are to be accessed, the frame collection acts
as a temporary buffer space for the collection of frames to be
used during an analysis. The frame object, in turn, gives users a
series of access options for getting different pieces of data, e.g.
coordinates, temperature, atom names and atom masses. The
underlying retrieval stages include:



660 M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664
Fig. 4. This illustrates the federated BioSimGrid in operation during a data
deposition routine.

• the initialisation of the BioSimGrid retrieval module with
the relational database to retrieve metadata or coordinate
indexes for flat file access,

• the coordinate indexes are used by the BioSimGrid retrieval
module to interact with the SRB flat file storage via the SRB
python interface to retrieve coordinates.

A frame collection is an abstract layer which stores a
series of frame objects, each frame object contains data about
a specific frame. Apart from the frame metadata which is
stored in the relational database, the frame data which is the
coordinates are stored in SRB flat files. To reduce the volume
of data that is transmitted across the network a frame object
is only populated with a partial or full frame of the data as it
is required. This is possible using the Python SRB interface
which enables the underlying code to open and seek specific
locations in an SRB file. Thus there is no need to retrieve
the whole SRB file. The frame object is also responsible for
caching pre-fetched data to speed up repeat requests. The end
result is an abstraction layer which efficiently retrieves data
from different locations to produce objects which the user can
manipulate without knowledge of the underlying distributed
SRB infrastructure.

3.2. Data federation and replication

As illustrated in the previous section, users have no
knowledge of the actual physical location of the data. The
data layer is completely transparent to the user and it is
managed by the SRB and BioSimGrid middle-tier layer. Each
participating site has a copy of metadata stored in a relational
database (RDB) and an SRB storage vault designated for the
flat files. All Oracle databases are set-up in a single-master-
replication (SMR) mode. The master Oracle database has both
read and write permissions whilst the slaves’ Oracle databases
are configured in read-only mode. Each site has an SRB server
that handles read and write request to/from a local or remote flat
file resource vault. As illustrated in Fig. 4 the following events
take place when a trajectory is deposited at host A:

(1) The metadata part of the trajectory is first written into a
master RDB (using Oracle Database) at host B.
Fig. 5. This illustrates the federated BioSimGrid in operation during an
analysis where data is retrieved.

(2) This metadata is then replicated to all other hosts using
the built-in replication technology of Oracle 10g Database
Server.

(3) The SRB master forks out an SRB agent to handle the
communication channel established between the SRB and
the user application.

(4) Through this channel, the user application writes the
coordinates into the flat files on host A.

The replication of the flat files is performed by the daily
cronjob at each host. The replication script will pick a random
target host and use the SRB in-built replication mechanism to
replicate a copy of the flat files on host A to one other host. (It
is also possible to pick the replica site which has the most disk
space available.)

To perform analysis computation, the deposited data needs
to be retrieved. For a data retrieval operation in a federated
BioSimGrid scenario, both coordinates and the metadata part of
the simulation data are fetched from the storage. Fig. 5 shows
an example of an analysis running on host A:

(1) The metadata is retrieved directly from the RDB on host A.
(2) In retrieving the coordinates, the SRB agent on host A

issues a request for the flat files.
(3) In this case the flat files are located remotely on host B,

the SRB agent on host A forwards the request to the SRB
Master on host B.

(4) A file handler is returned to the agent on host A.
(5) The application on host A now has access to the flat files on

host B through this file handler.

The federation plan of BioSimGrid includes storing a replica
for each simulation data set at a different site for redundancy.
The metadata is replicated across all participating sites and
the coordinates are duplicated to one other site, instead of
all sites, to save storage requirements. The replication is an
important measure for a data intensive application such as
that of BioSimGrid since re-running a simulation can be both
computational intensive and time-consuming. The replica is
also used in load balancing as the closest replica is always
selected during a data query.



M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664 661
Fig. 6. An example of a Python deposition routine implemented by user ‘Bob’ to deposit a NAMD trajectory into BioSimGrid. The underlying complexity of
parsing, validating and importing the simulation data is hidden from the user.
4. Security and data authorisation

BioSimGrid has adopted the Linux style username–password
security measures for authenticating a potential user into the
system within the scripting environment. A Linux user account
is created for a new user and they are also registered into
the BioSimGrid database before they can start depositing tra-
jectories. Hence unauthorised users are prevented from writ-
ing into the database. Each trajectory has an owner and only
the owner has the permission to publish their trajectory to
the public. Each user is allowed to write to the storage. After
the first write is completed users can flag their own trajectory
for deletion. Only the system administrator has the permission
to delete a trajectory. This is a preventive measure to avoid
users accidentally deleting their valuable sets of data. All users
are granted read permission to trajectories published by their
owners. The web interface accepts both digital certificate and
username–password authentication. Various permission levels
can be set for different user groups for authorising them into
different transactions. Only users with administration privilege
are allowed to add new users into the system via the web
interface.

5. User perspective

BioSimGrid offers two user front-ends: a Python scripting
environment and a web interface [15]. The scripting
environment is suitable for those who would like to use
BioSimGrid in a programatic manner, for example, the
advanced users who wish to deposit data and have the intention
to write their own analysis tools. Fig. 6 shows an example of
a Python deposition routine written by the user to deposit an
AMBER trajectory into BioSimGrid. The first and second lines
import the required packages. The fifth to seventh lines specify
the input files, the ninth line defines the user (the owner of the
trajectory) in the user settings, and the last line creates a NAMD
deposit object to initiate the trajectory deposition process.

A global id is used to uniquely identify a trajectory in
BioSimGrid. It has the form of ‘BioSimGrid GB-X Y’ where
X is the ISO 3166-2 code [16] for the administrative subdivision
in which the site is located (e.g. ‘GB-OXF’ for Oxford) and Y is
a positive integer number. A trajectory global id is returned to
the user (printed on the logged output file) upon the successful
completion of a deposition. It is then used to query the
trajectory for analysis.

Fig. 7 shows how the global id is used to refer to a
particular trajectory in a data query. Lines 1 and 2 import
the required packages, line 5 instantiates a user setting, line
8 specifies frames 1, 2 and 3 to be fetched from trajectory
‘BioSimGrid GB-STH 1’ and line 11 instantiates a frame
collection object to act as a cache for the required frames. At
this point, the user can utilise the frame object to access the data
or metadata required in their analysis as shown in line 14. Line
16 returns the frame’s coordinates in Python Numeric array [17]
format and line 18 returns the frame’s temperature.

Alternatively, a user can use BioSimGrid analysis tools
instead of writing their own. Fig. 8 shows a script for analysing
the average structure of a molecule. The first five lines import
the relevant packages and create the user settings. Lines 7, 8
and 9 specify the trajectory, frames and residues to be used in
the analysis. Line 10 creates an instance of the average structure
analysis tool, and lines 11 and 12 specify the calculation result
to be generated as a text file called ‘av.txt’.

The web front-end caters for two groups of users: (a)
administrators, who wish to perform administration tasks on
the system (e.g. adding a new user) and (b) users, who
prefer a graphical user interface as opposed to the scripting
environment. The web front-end offers restricted BioSimGrid
functionalities and it is not possible to deposit trajectories
through the web interface. However, it is a convenient tool for
performing certain standard analyses with a few mouse clicks.

6. BioSimGrid application example

This section gives an application example which demon-
strates BioSimGrid as a technology for analysing multiple
trajectories in biomolecular research. Here is a comparative
analysis of Molecular Dynamics (MD) simulations for four
biomolecules (Fig. 9): acetylcholinesterase (AChE, a key en-
zyme of the nervous system), outer-membrane phospholipase A
(OMPLA, a bacterial enzyme involved in pathogenesis), outer-
membrane protease T (OmpT, belonging to the category of pep-
tide hydrolases) and PagP (an enzyme that promotes transfer of
a chemical group from one molecule to another). The patterns
of catalytic side chain dynamics in these four superficially un-
related enzymes are studied to investigate the relationship be-
tween side chain motions. A set of metrics, namely distance



662 M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664
Fig. 7. An example of a Python retrieval routine for getting frames 1, 2, 3 from trajectory ‘BioSimGrid GB-STH 1’ in lines 1–11. Lines 13–18 illustrate how the
frame object is used to access the actual data.

Fig. 8. A Python analysis script that calculates the average structure of a molecule. This shows how an existing analysis tool (BioSim.Analysis.AverageStructure)
can be used in a BioSimGrid script.
Fig. 9. The four enzymes: OMPLA, AChE, OmpT and PagP used in a comparative analysis of molecular dynamics simulations.
measurements for the intactness of the active site, is applied
across four enzymes of similar function. BioSimGrid has al-
lowed these four enzymes from distinct origins to be compared
seamlessly in a uniform fashion over 17 trajectories. This com-
parative analysis would otherwise be complicated to the extent
where it is virtually impossible with conventional lab resources.
This cross-trajectory analysis has enabled us to explore func-
tional patterns of conformational dynamics showing the simi-
larities and differences of the dynamics of these four unrelated
enzymes [18].



M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664 663
7. Discussion

BioSimGrid deals with two different types of data storage
for its metadata and data. It has multiple homogeneous
relational databases (Oracle databases) at different sites storing
identical metadata. Grid middleware such as OGSA-DAI [19] is
not used because the functionalities of distributed data querying
(joint table querying) and integration of heterogeneous data
sources are not immediately required. In order to maximise
data delivery speed, BioSimGrid opted to deliver slices of
trajectory on demand. It seeks to achieve a finer granularity
of data access through the concept of frame collection (see
Section 3.1) as compared to moving a complete trajectory to the
processing element. This is why BioSimGrid develops its own
retrieval components instead of using a grid component such as
GridFTP [20] which is more suited for file-based transferring.
Hence, for its specific purposes, BioSimGrid deposition and
the retrieval tools are built on a combination of the Oracle in-
built replication mechanism and the SRB replication functions
to federate and replicate its data and metadata as described in
Section 3.2. Another advantage of using SRB is that it facilitates
a finer granularity of data access. The SRB interface allows
an opening of a file remotely with on-demand data streamed
across the network to mimic a local file access. It comes with
a Python SRB Interface which conveniently integrates into the
frame collection retrieval modules.

The replication of the metadata to each site and the
duplication of the flat files is used to protect the system
against hardware failure and data corruption. For example if
one site fails, SRB will automatically switch to a secondary
site to retrieve the replicated copy of the flat file. The use of
RAID 5 storage for the flat files offers additional protection
as we are able to recover from a hard disk drive failure
without interruption to the service. In addition each file has an
associated checksum which is validated between each of the
replicated copies to ensure data integrity.

The heart of the SRB system, which is the MCAT database,
is backed up at frequent intervals throughout the day, to an
offsite machine. In the event of a Oracle master failure, any
data deposition will be suspended but data retrieval can still be
performed using the replicated slaves’ Oracle databases. Once
the Oracle master is brought back on line deposition can be
performed again.

8. Conclusions and future work

BioSimGrid has enabled a more efficient sharing and
post-processing of biomolecular simulation data within the
research community. It allows access to geographically remote
trajectories in a coordinated way and provides a set of uniform
analysis tools for facilitating comparative analysis on different
simulation data types. Future work on this project will focus
on extending the current architectural design to allow users
to use BioSimGrid from their desktops instead of logging
into the host machines. We envisage a greater transparency
in terms of data access from the repository by exposing the
current services as web services to the users. This will in turn
provide a platform and language independent way of accessing
data in BioSimGrid. There is also the potential of extending
BioSimGrid to utilise the UK National Grid Service (NGS)
[21] which offers over 2000 processors and 36 TB of data
storage capacity. This will imply a significant speed up in
data simulation and promise a better handling of larger data
sets to contribute to new science discoveries in biomolecular
simulation research.

Acknowledgements

This work is supported by BBSRC and DTI. We thank
our collaborators in the BioSimGrid Consortium: Charles
Laughton, Adrian Mulholland, Leo Caves, David Moss, Oliver
Smart, Marc Baaden and Katherine Cox.

References

[1] C.F. Wong, J.A. McCammon, Protein simulation and drug design, Adv.
Protein Chem. 66 (2003) 87–121.

[2] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the Grid: Enabling
scalable virtual organizations. Int. J. Supercomput. Appl. (2001).

[3] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

[4] K. Tai, S. Murdock, B. Wu, M.H. Ng, S. Johnston, H. Fangohr, S.J. Cox,
P. Jeffreys, J.W. Essex, M.S.P. Sansom, BioSimGrid: towards a worldwide
repository for biomolecular simulations, Org. Biomol. Chem. 2 (2004)
3219–3221.

[5] Python, http://www.python.org, 1995.
[6] PyMOL, http://www.pymol.org, 2002.
[7] The Molecular Modeling Toolkit, http://starship.python.net/crew/hinsen/

MMTK, 1997.
[8] C. Baru, R. Moore, A. Rajasekar, M. Wan, The SDSC storage resource

broker, in: Proceedings of CASCON Conference, Toronto, Canada, 1998.
[9] SDSC Storage Resource Broker, http://www.sdsc.edu/srb/, 2005.

[10] Oracle Database 10g, http://www.oracle.com/technology/products/
database/oracle10g/index.html, 2005.

[11] P.K. Weiner, P.A. Kollman, AMBER: Assisted model building with
energy refinement. A general program for modeling molecules and their
interactions, J. Comput. Chem. 2 (1981) 287–303.

[12] H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A
message-passing parallel molecular dynamics implementation, Comp.
Phys. Comm. 91 (1995) 43–56.

[13] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kal, R.D. Skeel,
K. Schulten, NAMD — A parallel, object-oriented molecular dynamics
program, Int. J. Supercomput. Appl. High Perform. Comput. 10 (1996)
257–268.

[14] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan,
M. Karplus, CHARMM: A program for macromolecular energy,
minimization, and dynamics calculations, J. Comput. Chem. 4 (1983)
187–217.

[15] B. Wu, M. Dovey, M.H. Ng, K. Tai, S. Murdock, H. Fangohr, S.
Johnston, P. Jeffreys, S. Cox, J. Essex, M.S.P. Sansom, A Web/Grid portal
implementation of BioSimGrid: A biomolecular simulation database
(abstract), J. Digit. Inf. Manag. 2 (2) (2004) 74–78.

[16] International Organization for Standardization Codes for the represen-
tation of names of countries and their subdivisions — Part 2: Country
subdivision code, http://www.iso.org/iso/en/prods-services/iso3166ma/
04background-on-iso-3166/iso3166-2.html, 1998.

[17] An Open Source Project Numerical Python, http://numeric.scipy.org/
numpy.pdf, 2001.

[18] K. Tai, M. Baaden, S. Murdock, B. Wu, M.H. Ng, S. Johnston, S.
Cox, J.W. Essex, M.S.P. Sansom, Active-site dynamics of hydrolases:
comparative analysis of molecular-dynamics simulations via the
BioSimGrid database, Biochemistry (2006) (in preparation).

[19] The OGSA-DAI Project, http://www.ogsadai.org.uk, 2003.

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.pymol.org
http://www.pymol.org
http://www.pymol.org
http://www.pymol.org
http://starship.python.net/crew/hinsen/MMTK
http://starship.python.net/crew/hinsen/MMTK
http://starship.python.net/crew/hinsen/MMTK
http://starship.python.net/crew/hinsen/MMTK
http://starship.python.net/crew/hinsen/MMTK
http://starship.python.net/crew/hinsen/MMTK
http://starship.python.net/crew/hinsen/MMTK
http://www.sdsc.edu/srb/
http://www.sdsc.edu/srb/
http://www.sdsc.edu/srb/
http://www.sdsc.edu/srb/
http://www.sdsc.edu/srb/
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.oracle.com/technology/products/database/oracle10g/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://www.iso.org/iso/en/prods-services/iso3166ma/04background-on-iso-3166/iso3166-2.html
http://numeric.scipy.org/numpy.pdf
http://numeric.scipy.org/numpy.pdf
http://numeric.scipy.org/numpy.pdf
http://numeric.scipy.org/numpy.pdf
http://numeric.scipy.org/numpy.pdf
http://numeric.scipy.org/numpy.pdf
http://www.ogsadai.org.uk
http://www.ogsadai.org.uk
http://www.ogsadai.org.uk
http://www.ogsadai.org.uk
http://www.ogsadai.org.uk


664 M.H. Ng et al. / Future Generation Computer Systems 22 (2006) 657–664
[20] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu, I. Foster, The globus striped GridFTP framework and Server,
in: Proceedings of Super Computing (SC05), Seattle, 2005.

[21] National Grid Service, http://www.ngs.ac.uk/, 2005.

M.H. Ng is a research fellow at the Southampton
Regional e-Science Centre. She received her B.Eng.
degree in computer engineering from the University
of Southampton in 1999 and doctorate in electronics
and computer science at the same university in
2003. Currently, her interest is in interdisciplinary
e-science research focusing on developing the Grid
database for biomolecular simulation data. Her role
is in the software design and implementation of the
BioSimGrid project.

S. Johnston is currently finishing his Ph.D. at the
Southampton Regional e-Science Centre. He received
an M.Eng. degree in software engineering from the
Department of Electronics and Computer Science
(ECS) at the University of Southampton. His research
interests include the management and organisation of
large volumes of data enabling Data Grid functionality
to non-technical users. He works on the design and
implementation of the BioSimGrid project, assisting
with the management of large simulation data sets.

B. Wu is a research associate in the Department
of Biochemistry and the e-Science Centre at the
University of Oxford. He received his first class
B.Sc. in mathematics from the University of Zhejiang
and M.Sc. in software engineering from the Beijing
University of Technology in China. He obtained a
Ph.D. in computing from the School of Informatics
at the University of Bradford. His interests are large
bioinformatic systems, Grid computing, distributed
computing and formal software engineering. He
has been architecting and developing the distributed

BioSimGrid system since March 2003 and designed and implemented the
BioSimGrid Web Portal.

S.E. Murdock is a research fellow in the Department
of Chemistry in the University of Southampton.
He received a B.Sc. in theoretical physics (1998)
and a Ph.D. in computational chemistry (2001)
from Queen’s University Belfast. His main research
interests are in the fields of biomolecular modelling
and software development. He is heavily involved in
developing the analysis toolkit of BioSimGrid.

K. Tai is a Research Associate in the Department
of Biochemistry, University of Oxford. He developed
the deposit module in BioSimGrid and has been in
charge of the scientific design of the database. He
received a B.Sc. (Hon) from California Institute of
Technology (1998) and Ph.D. in chemistry from the
University of California, San Diego (2002) with Prof.
J. Andrew McCammon. His research interests include
simulations of biomolecular systems. He is a member
of the Royal Society of Chemistry and an advisory
member of the Green Economics Institute.
H. Fangohr is a computational physicist and lecturer
in computational methods at the University of
Southampton in the United Kingdom. He obtained
his undergraduate degree in physics at the University
of Hamburg (Germany) before he pursued his
Ph.D. in the Computer Science Department at the
University of Southampton. His interests range from
high-performance computer simulations of condensed
matter systems to improvements of numerical methods
and algorithms.

S. Cox is a Professor of Computational Methods in the
Computational Engineering Design Research Group
within the School of Engineering Sciences at the Uni-
versity of Southampton. He is also the Technical Di-
rector of the Southampton Regional e-Science Centre.
He received his doctorate in electronics and computer
science, and a degree in mathematics and physics. His
research interests include computational algorithms,
commercial distributed computing, engineering infor-
matics and the Grid.

J.W. Essex is a Reader in the School of Chemistry
at the University of Southampton. He received his
undergraduate degree in chemistry from the University
of Oxford in 1989, and his doctorate from the same
institution in 1992. He then worked at Yale University
from 1992 to 1994 as a NATO/SERC Postdoctoral
Fellow, before coming to Southampton as a Royal
Society University Research Fellow. His research
interests involve the development and application
of computer simulation methods for problems of
biological relevance.

M.S.P. Sansom is in the Department of Biochemistry
at the University of Oxford, where he is head
of the recently formed Structural Bioinformatics
and Computational Biochemistry (SBCB) unit. He
received his degree from Oxford in 1983, and worked
for seven years in the University of Nottingham,
before returning to Oxford. He has interests in many
aspects of computational studies of membrane proteins
(website: http://sansom.biop.ox.ac.uk) with special
interest in ion channels, bacterial outer-membrane
proteins, and the development of e-science and high-

end computing for simulation and modelling of complex membrane systems.

P. Jeffrey is a Professorial Fellow at Keble, Director of
the Oxford University Computing Services, Director
of the Oxford University e-Science Centre and Co-
Director of the e-Horizons Institute. Previously, his
research interests were in the broad field of particle
physics research, but they are now focused in e-
science, http://e-science.ox.ac.uk/. Paul established
the Oxford e-Science Centre and recently the Oxford
Interdisciplinary e-Research Centre which will expand
on the work of the e-Science Centre. His current
research is in the area of creating a University-wide

infrastructure to support new initiatives made possible by a new computing
paradigm, the ‘Grid’. He is also a primary investigator in a number of e-science
projects across the University and acts as a consultant for the Department of
Trade and Industry.

http://www.ngs.ac.uk/
http://www.ngs.ac.uk/
http://www.ngs.ac.uk/
http://www.ngs.ac.uk/
http://www.ngs.ac.uk/
http://sansom.biop.ox.ac.uk
http://sansom.biop.ox.ac.uk
http://sansom.biop.ox.ac.uk
http://sansom.biop.ox.ac.uk
http://sansom.biop.ox.ac.uk
http://sansom.biop.ox.ac.uk
http://e-science.ox.ac.uk/
http://e-science.ox.ac.uk/
http://e-science.ox.ac.uk/
http://e-science.ox.ac.uk/
http://e-science.ox.ac.uk/

	BioSimGrid: Grid-enabled biomolecular simulation data storage and analysis
	Introduction
	BioSimGrid
	Architectural implementation
	Data deposition and retrieval
	Data federation and replication

	Security and data authorisation
	User perspective
	BioSimGrid application example
	Discussion
	Conclusions and future work
	Acknowledgements
	References


