A Catallactic Market for Data Mining Services

L. Joita?, Omer F. Rana?, Felix Freitag®, Isaac Chao®, Pablo Chacin®, Leandro Navarro® and Oscar
Ardaiz®*

aSchool of Computer Science, Cardiff University, UK

bComputer Architecture Department, Technical University of Catalonia Jordi Girona 1-3, Campus
Nord D6 Barcelona, Spain

“Department of Mathematics and Informatics, Public University of Navarra, Campus de Arrosadia,
Pamplona, Spain

We describe a Grid market for exchanging data mining services based on the Catallactic market mechanism
proposed by von Hayek. This market mechanism allows selection between multiple instances of services based
on operations required in a data mining task (such as data migration, data pre-processing and subsequently
data analysis). Catallaxy is a decentralized approach, based on a “free market” mechanism, and particularly
useful when the number of market participants is large, or conditions within the market change often. It is
therefore particularly suitable in Grid and Peer-2-Peer systems. The approach assumes that the service provider
and user are not co-located, and require multiple message exchanges to carry out a data mining task. A market
of J48-based decision tree algorithm instances, each implemented as a Web Service, is used to demonstrate our
approach. We have validated the feasibility of building catallactic data mining grid applications, and implemented

a proof-of-concept application (Cat-COVITE) mapped to a Catallactic Grid Middleware.

1. Introduction

In a service rich environment where multiple
instances of a given service are available, iden-
tifying how a selection can be made has been a
topic of significant research — especially in Grid
computing [15]. Generally, such a discovery is
supported by the availability of specialist registry
services, which allow metadata about a partic-
ular service to be recorded. As an alternative,
economic models allow the selection of Web/Grid
Services based on a market mechanism (such as
auctions), and become useful as a greater num-
ber of such services become available [3]. Most
existing approaches generally rely on a central-
ized broker that coordinates resource access in a
market [18]. We propose an approach based on
the Catallaxy mechanism of von Hayek [6], which
is decentralized and therefore does not require a

*This work has been supported in part by the European
Union under Contract CATNETS EU IST-FP6-003769,
and the Spanish Government under Contract TIC2002-
04258-C03-01

centralized broker.

The Catallaxy approach is a coordina-
tion mechanism for systems consisting of
autonomous decentralized service users and
providers (agents), and based on negotiation and
price signalling between such agents [4]. Catal-
laxy makes use of a “free market” approach, al-
lowing prices for services to be altered based on
demand. The use of Catallaxy therefore leads
to the development of self-organizing individuals
(agents) that are highly dynamic, thereby leading
to systems which behave in a Peer-2-Peer fashion.
Such an approach is particularly suited to “Open
Systems”, where detailed knowledge about par-
ticular agents may not be known apriori.

We propose the use of such a Catallactic market
for exchanging data mining services, previously
described in [16]. These services counstitute algo-
rithms that are part of the WEKA toolkit [14],
and which we have converted to Web Services.
Approximately 75 different algorithms (primar-
ily classifiers, clustering algorithms and associa-
tion rules) are provided. Additional capability to

support attribute search and selection within a
numeric data set is also provided, with 20 differ-
ent approaches to achieve this (such as the use
of a genetic search operator). We describe how
a market for data mining service may be estab-
lished, by the use of a Catallactic middleware that
can interact with computational resources hosting
these services. Existing Grid users can therefore
utilize our approach without significant modifica-
tions to their existing applications, through the
use of a market access point — described further
in section 4. As a key contribution in this work,
we map the market concept to operations sup-
ported in data mining, and demonstrate the fea-
sibility of building a Catallactic data mining mar-
ket. Subsequently, a proof-of-concept application
(Cat-COVITE), mapped to a Catallactic Grid
Middleware, is used to demonstrate our ideas.

2. Data Mining Grid Markets

We consider a Grid environment to consist of
a “resource” and a “service” market. In a re-
source market, providers sell processor capacity,
storage, or bandwidth. Such a market involves
physical resources which can host one/more ser-
vices. Conversely, in a service market providers
sell application services. A collection of such ser-
vices composed together may constitute an ap-
plication. A given service may be hosted on dif-
ferent resources, and each service instance would
have a different price (for instance, a service exe-
cuted on a single processor machine may cost less
than one hosted on a parallel machine). If a large
number of service sellers and buyers exist, market
mechanisms may be used to chose between them.
Moreover, service providers can buy resources at
the Grid resource market to provide services in
the Grid service market. Both markets are there-
fore dependant on each other, but can operate au-
tonomously applying Catallactic mechanisms as
has been shown by simulations in [2].

The basic problem addressed by the data min-
ing process is one of mapping low-level data
(which are typically too voluminous to under-
stand) into other forms that might be more com-
pact (for example, a short report), more ab-
stract (for example, a descriptive approximation

or model of the process that generated the data),
or more useful (for example, a predictive model
for estimating the value of future cases). At the
core of the process is the application of specific
data-mining methods for pattern discovery and
extraction. This process is often structured into
a discovery pipeline/workflow, involving access,
integration and analysis of data from disparate
sources, and to use data patterns and models gen-
erated through intermediate stages. A particular
use of Grid computing in this context would be to
combine services that implement specific phases
in the discovery pipeline, which includes:

e Selection of a data set. The data set may
be in a variety of different formats (such as
Comma Separated Values, Attribute Rela-
tion File Format, etc), and often converters
may be necessary. Let T.(ds) represent the
time to achieve this conversion and any pre-
processing required on the data — such as
support for selection of attributes that are
part of the data set. This time is a function
of the size of the data set (represented by
variable ds). This task may be undertaken
at the client or at the service provider.

e Selection of a data mining algorithm. This
selection depends on the nature of the data
and knowledge to be extracted from the
data set. The selection process could be
automated through the use of pre-defined
rules, or based on the past experience of
a user. This stage may be skipped if the
user already knows which algorithm is re-
quired. Making this choice is often a dif-
ficult decision to make, and generally little
support is provided in existing tools — a user
is often presented with available algorithms,
and has to make a choice manually. Let
T.s(n) represent the time to find a suitable
algorithm from n possible algorithms.

e The third stage involves the selection of the
resources on which the data mining algo-
rithm needs to be executed. The choice may
be automated by the underlying resource
management system, if multiple instances
of the same algorithm can be found, or the

user needs to manually request access to a
particular algorithm on a specific resource.
Let T).s(m) represent the time to find a suit-
able resource from m possible resources or
resource bundles.

e The data mining algorithm is now executed
- by checking security constraints on the re-
mote resource, and often the data set may
need to be migrated to the remote resource.
Let T ;(ds) represent the time for data mi-
gration, T, represent the time to configure
the service instance on a particular resource
(such as checking of security credentials),
and T, represent the time to execute the
algorithm.

e The generated model from the data min-
ing algorithm is now presented textually or
graphically to the user. The model may now
be verified through the use of a test set. Let
Tpp(ds) represent the time to achieve this
post processing on the data, and T? ,(ds)
the time to migrate the data back to the
client.

Hence, the total time required to undertake a par-
ticular data mining task is:

7 =Te(ds) + Tas(n) + Trs(m) + Tﬁld(ds) (1)
+ T + T + Tpp(ds) + TP 4 (ds)

assuming T.(ds) =~ T,,(ds), T%,(ds) =~
T? ,(ds) = Tpa(ds), and T, < T,, then (T, +
T.) = T. — hence we can simplify 7 to:

T = 2To(ds)+ Tma(ds))+Tas (n) +Trs (M) + T2 (2)

The use of the Catallactic market is primarily in-
tended to associate a cost with T.(ds), Tina(ds)
and T,. A service provider that has a high band-
width is able to provide a fast pre- and post- pro-
cessing service. Similarly, having a low execution
time for the analysis algorithm would have the
highest cost in the market. The times T,s(n)
and T,s(m) are associated with the service and
resource markets respectively. The Catallactic

middleware is intended to mimic the behaviour
of a Catallactic market, and needs to be efficient
enough to be able to reduce these times compared
to other market mechanisms.

We have assumed that pre- and post-processing
of data is undertaken by the client or service
provider, although it is also possible for such
processing to be undertaken by a different ser-
vice. Assuming that there are k services in a
pipeline, with each stage being undertaken by dif-
ferent service and resource providers (represent-
ing data pre-processing and transformation, anal-
ysis, post-processing and visualization) we can
represent, as an upper bound, a time of (k% 7) to
represent the total time for the data mining task.
It would now be necessary to engage the Catal-
lactic middleware & times to find suitable service
instances in the market.

3. Cat-COVITE Prototype

To demonstrate our ideas, an existing applica-
tion called the Catallaxy COllaborative VIrtual
TEams (Cat-COVITE) [9] has been extended.
Cat-COVITE is based on a Service-Oriented ar-
chitecture, and consists of three main elements:
(i) one or more user services; (ii) a “Master Grid
Service” (MGS) — responsible for interacting with
a Catallactic middleware to find an end point
reference for a service instance, and (iii) one or
more service instances that are being hosted on
a particular resource. Cat-COVITE currently
supports searching through distributed product
catalogues (each being a database wrapped as
a Web Service), achieved by launching multiple
concurrent searches. This database search has
been extended with data analysis services which
may operate on data sent by a client service, or
data already available where the analysis service
is hosted.

Previous work has involved translating data
mining algorithms supported in the WEKA
toolkit into Web Services — a number of classi-
fication and clustering algorithms have been con-
verted [16]. The Catallaxy COllaborative VIrtual
TEams (Cat-COVITE) prototype makes use of
classifier services that implement a J48 decision
tree classifier, based on the C4.5 algorithm [5].

The J48 service has two options: classify, and
classify_graph. The classify option is used to ap-
ply the J48 algorithm to a data set specified by
the user. The data set must be in the ARFF for-
mat, which essentially involves a description of a
list of data instances sharing a set of attributes.
The result of invoking the classify operation is a
textual output specifying the classification deci-
sion tree. The classify_graph option is similar to
the classify option, but the result is a graphical
representation of the decision tree created by the
J48 service. We therefore have a market of J48
services, each being hosted on different resources.

3.1. Use of WS-Agreement

Web Service Agreement (WS-Agreement) by
the Grid Resource Allocation and Agreement
Protocol Working Group (GRAAP WG) provides
a protocol for specifying an agreement between a
resource/service provider and a consumer [12]. Tt
is generally aimed to be a one-shot interaction,
and does not support negotiation. However, it
can form a useful basis for describing an agree-
ment once negotiation has been conducted using
other approaches (negotiation support is also cur-
rently being investigated as an extension).

WS-Agreement is used in Cat-COVITE, and
forms the basis for choosing between multiple ser-
vice and resource providers. The service provider
acts as the agreement provider, while the service
consumer as the agreement initiator. When us-
ing WS-Agreement in our prototype, several parts
need to be specified [12]: agreement name, the
agreement context — parties to the agreement, ref-
erence to the service(s) provided in support of
the agreement, and the lifetime of the agreement.
Agreement terms, which describe the agreement
itself, can contain: the service description terms,
which provide information needed to instantiate
or otherwise identify a service to which this agree-
ment pertains. Finally, guarantee terms which
specify the service levels that the parties are
agreeing to. An example of an Agreement and
Offer template used by Cat-COVITE is provided
in the appendix.

4. Catallactic Grid Middleware

The implementation of Catallaxy in real world
Grids requires the design of Catallactic middle-
ware which offers a set of generic negotiation
mechanisms, allowing specialized strategies and
policies to be dynamically added as plugins. It
is intended that the middleware offers a set of
high level abstractions and mechanisms to lo-
cate and manage resources, locate other trading
agents, engage agents in negotiations, and adapt
to changing conditions. A detailed description
of middleware design process, including require-
ments analysis, layered architecture and imple-
mentation details can be found in [17].

At the middleware layer, a set of agents provide
the capabilities to negotiate for services and the
resources needed to execute them. We differenti-
ate between a “Complex” service and a “Basic”
service — to determine how the resulting market
should be structured. A Complex service is essen-
tially composed of other services, and may not be
available on a computational resource. A user
application is an example of a Complex service
— which may involve services directly owned by
the user, and those that may be acquired from
elsewhere. A Basic service may be hosted on a
particular resource, and is made available on the
Catallactic market. A Basic service is therefore
the key element that is traded on the Catallactic
market — although a Basic service can have vari-
ous instances when hosted on different resources.
A Complex Service agent acting on behalf of the
application initiates the negotiation. Basic Ser-
vice and Resource agents manage the negotiation
for services and resources, respectively

4.1. Data Mining Cat-COVITE Services
and Catallactic Grid Markets

Figure 1 shows the prototype components and
related Catallactic agents as buyers and seller in
the Grid service market and Grid resource mar-
ket. The prototype is composed of three main
components, the MasterGridService (MGS) —as
a type of Complex Service, the Data Mining Ser-
vices — as types of Basic Services, and job execu-
tion resources - as computational resources. The
MGS Complex Service is the buyer entity in the

b']h::éel ‘ Converter
T Service B

]

Mining
=i

ervice A

Migrate Convert Instance

f

Data-Mining IHstaroa Resuits

e source

7| Alacation
’

Execute Qutput

Com!e er
serdez A

v
Negotiation
messages

Mining

semvice G
i

MNegotiation
messages

| Service Market

‘ | Resource Market ‘

Figure 1. Logical Components in the Cat-COVITE market for Data Mining services

service market, and the Basic Service is the seller
entity in the service market. A MGS forms the
key element in the Cat-COVITE prototype, and
undertakes the following activities:

e Translates a request to a Basic Service — in
this instance such a service is a data mining
service.

e Starts multiple sessions with a number of
agents that are responsible for finding Ba-
sic Services. Each session involves a negoti-
ation to find a suitable Basic Service.

e Passes an end point reference of the Basic
Service to the client for invocation.

The Basic Service involves data mining job ex-
ecution and consists of a data mining Job Exe-
cution Environment, which offers the deployment
of multiple “slaves” able to execute the data min-
ing task. Within the Cat-COVITE prototype, the
data mining Basic Service needs to be able to pro-
vide a response time as an important character-
istic — this is equivalent to a sum of parameters

T.(ds) + Tma(ds) + T, from equation 1 in Sec-
tion 2. With this goal the data mining Basic Ser-
vice buys resources in the resource market. Re-
source seller entities are able to provide a set of re-
sources via the Local Resource Manager (LRM).
The Resource Agents act on behalf of these Lo-
cal Resource Managers (LRMs), and provide an
interface to the physical resources they manage.
The data mining Basic Service is the buyer en-
tity in the resource market, and the Resource Lo-
cal Managers are the seller entity on the resource
market. The main functionalities of Basic Service
agent at the resource market are: (i) co-allocation
of resources (resource bundles) by parallel nego-
tiation with different resource providers (local re-
source manager entities); (ii) informing the Com-
plex Service about the outcome of resource nego-
tiation.

The Cat-COVITE data mining scenario in-
volves an MGS which needs to run a data min-
ing job. The MGS sends an AgreementOffer
(AD), based on the AgreementTemplate (AT)
downloaded from the CatallacticAccessPoint

(CAP), to the CAP to find a data mining ser-
vice. The CAP is a Web Service located on a ma-
chine providing a catallactic market access point,
acts as a WS-Agreement provider for the applica-
tion and as a factory for Complex Service Agents
which will start the negotiation process. The CAP
therefore provides an entry point into the mar-
ket, and can allow existing Grid applications to
make requests directly to it. The Complex Ser-
vice Agent, acting on behalf of the MGS (as a com-
plex service) chosen by the CAP, negotiates with
the Basic Service Agents (in the Cat-COVITE
markets environment) for data mining services.
The AT specifies the service properties that are
necessary to create an instance of a service using
a factory service. The AT and AO are provided
in the Appendix. The DecisionMaker, which is
part of the CAP, takes the decision of accepting
or rejecting the agreement offer sent by the MGS.
There are multiple factors involved in this deci-
sion, such as: the parameters in the agreement
offer that are part of the agreement template, and
the possibility of finding the available Basic Ser-
vice(s) within the Catallactic market at the bud-
get specified by the MGS as service requestor.

4.2. Implementation

Figure 2 shows the placement of logical com-
ponents along the three layers: the application
layer, the Catallactic middleware layer and the
base platform layer. At the application layer, an
interface must be provided to issue the requests
for services to the middleware, and use the ref-
erences to service instances provided in response.
At the middleware layer, a set of agents provide
the capability to negotiate for services and re-
sources. The Complex Service agent acts on be-
half of the application and initiates the negoti-
ation. Basic Service and Resource agents man-
age the negotiation for services and resources re-
spectively. A Service Factory is provided to in-
stantiate the service on the hosting platform se-
lected during the negotiation process. Finally, at
the Base Platform layer, a Resource is created to
manage the allocation of resources to the service.
This resource represents the “state” of the service
from the perspective of the middleware (however
this does not mean the service is stateful from

the perspective of the application). The flow of
information among the logical components can be
summarized as follows: a Client issues a request
to the application (1), which builds a data mining
job and requests the execution of this job to the
MGS (2). The MGS contacts a CAP asking for a WS-
Agreement template for such a service. The MGS
fills in the template and sends back an A0 (3). The
Complex Service Agent initiates the Catallactic
mechanism to find appropriate Basic Services and
Resources. The Complex Service Agent uses the
discovery mechanisms implemented in the mid-
dleware to locate Basic Service Agents providing
the J48 Service. When a number of Basic Ser-
vice Agents are discovered, it starts negotiations
with one of them (4). In turn such Basic Service
Agent must discover and negotiate with a Re-
source Agent for resources(5). Negotiations are
implemented by the Economic Framework Layer,
where different protocols can be used depending
on the agent’s strategy. When an agreement with
a Basic Service Agent is reached, the Resource
Agent instantiate a Resource to keep track of the
allocated resources and returns to the Basic Ser-
vice Agent a handle for this resource (6). Conse-
quently Basic Service Agents use the service Fac-
tory to instantiate the J48 service on the selected
GT4 container (7). Basic Service Agent returns
to the Complex Service Agent the End Point Ref-
erence (EPR) to this J48 service instance (8), for-
warded to the MSG (9), which uses it to invoke the
service (10). The CAP therefore provides an inter-
face between an application wishing to discover
suitable services, and the underlying resources
that host those services.

4.3. Physical Deployment on GT4 contain-
ers

The logical architecture from the previous sec-
tion can be implemented in different ways de-
pending on the base platform used. We describe
a specific implementation using Globus Toolkit 4
(GT4). We assume the services are previously
deployed on a set of GT4 containers. The only
resource properties considered in the negotiation
are the access rights to execute the service on
a specific container. Finally, the service can be
instantiated on a container using a generic fac-

i)

(GT4/Javaws)

| Client Job Buicer |
2 12
MasterGridService |
Application | w

10
Q BasicServicelnstance

1 i

Catallactic
Access Point

CATNETS Middleware

ResourceAgent

7
--1 BasicServiceFactory
-- (GT4lJavaws)

(eJT =

Base Platform

Resource Data Mining
(GT4lJavaws) Repositary

Figure 2. Interaction between application, Catallactic middleware and computational resources

tory. The user application resides in a host (or
series of hosts), which also provide the MGC and
the Complex Service Agent, which represents the
application in the negotiation process. On each
Grid Container (GT4) where the Data Mining
Job Execution Service is deployed, resides the
corresponding Basic Service Agent, which negoti-
ates with the Complex Service Agent for access to
the Data Mining Job Execution Service. In this
container also resides the Resource Agent, which
negotiates with the Basic Service Agent for the
rights to execute the Data Mining Job Execution
Service in this container. Finally, a Resource is
created as result of the negotiation process, which
represents the rights to execute the service in this
container.

5. Evaluation

Our experimental testbed consists of a WinXP
machine at Cardiff and Linux RedHat 7.3 at
UPC (Barcelona) and Pamplona. Each site
also provide a GT4.0 installation and an Apache
Axis 1.2/Tomcat 5.0.28 installation at UPC
(Barcelona). Each of these machines also host
a GT4.0 container. The application prototype
settings are as follow: there are 10, 20 and 30

instances of a Cat-COVITE application, each of
which requires access to a data mining service
(a J48 Web Service) and one CAP. The Master
Grid Service is hosted in Cardiff, and the CAP in
Barcelona. J48 service instances are made avail-
able in Cardiff, Barcelona and Pamplona — via
GT4.0 containers. We assume in this case that
the user knows that they want to make use of the
J48 service, but multiple instances of this service
exist. There is a simulation agent environment
acting on behalf of services and resources.

Figures 3 and 4 illustrate the time distribution
for exchanging the agreements between the in-
stance applications (via MGS) and CAP (labelled
TEA in the figures), the time for job execution
(labelled as TJE in the figures), as well as the
time for executing the user application (labelled
as TAE in the figures) — all of these are measured
at the application level. It may also be useful
to note that: TJE is represented by the time be-
tween events (10) and (11), TEA by time between
events (3) and (9), and TAE by time between
events (2) and (12) in figure 2.

In figure 3, the time to discover a service
(equivalent to Tys(n) + Trs(n) — in Section 2) is
represented by TEA-20/*. This experiment in-

Milliseconds

(3%

=

3
L
[|
Tl
L~
=
—|
|

——TEA-20/1 |750| 78 | 78 | 140|141 | 62 | 62 | 172|156 |125| 78 |250| 94 | 94 |108| 78 | 78 | 94 | 47 | 110
—®-TJE-20/1 | 484|297 [313 | 453 |2547| 266 | 485 | 281 | 547 | 281|328 | 672 | 297 | 203 |3391| 250 | 656 |2594| 343 | 500

TAE-20/1 |1234] 375 | 391 | 609 |2588| 328 | 547 | 453 | 703 | 406 | 406 | 922 | 391 | 297 |3500| 328 | 734 |2688| 390 | 610

TEA-20/10 | 813 | 78 | 94 |2053| 78 | 78 | 62 | 234 | 109|219 | 62 |125(63 |203| 62 | 94 | 62 | 78 | 110 63
—*—TJE-20/10 | 594 | 281 | 297 | 265 | 469 | 297 | 407 | 266 | 297 | 281 | 250 | 266 | 343 | 204 | 234 | 360 |2266| 484 | 265 | 250
—&—TAE-20/10 [1407] 359 [391 |3218| 547 | 375 | 468 | 500 | 406 | 500 | 312 | 391 | 406 | 407 | 296 | 454 |2328| 562 | 375 | 313
——TEA-20/20 | 735|141 (141 | 125| 62 | 63 | 62 | 187 | 110 | 141|156 |125| 94 | 156 | 47 | 609|188 | 78 |203 | 141
——TJE-20/20 | 546 | 453 [359 | 485 | 328 | 453 | 438 | 250 | 515 | 297 | 313 | 218 | 203 | 688 | 422 | 453 | 250 | 328 | 531 | 234

-TAE-20/20 (1281 594 [500 | 6103901516 [500 | 437 [626 1438 [469 | 343 | 207 | 844 [469 [1062] 438 | 406 [734 [375
Number of application instances

Figure 3. TEA, TJE and TAE (see text) with 1, 10 and 20 second delay between requests to the CAP —
with 20 clients making requests

12000

10000

8000

6000

Milliseconds

4000

2000 m /R

0

112|3[4|5|6|7(8]9](10(11|12|1314(15(16|17[18|19(20|21 222324?;2627282930
——TEA-30/1 [81[78]17]|14|14[62|78|12|17|12]|63]15|63]10|94|10|30|63|11|78/10|79|12|14|62|14|78|78|63 |94
—=—TJE-30/1 |57[31[29|29|36|23|21(37(43|28|43/34|23|29|21|37|25|26|35|23|18/45|29|26|21|23|21/32|34|29

TAE-30/1 [13[39]46|43|50({29|29|50|61)|40|50/50(29|40)31|48|33[32|46|31|29|53|42|40)|28|37[29/40|40|39

TEA-30/10|78[94 (18| 2832|1830 |78(17|78|78|62(63|15|14/10/32[11]47|78|93|11[12|93|12|91|14 /25|14 |32
——TJE-30/10 [87[29]30|29|28(26|46 | 18|34 |21|61|25|54|25|40|34|63|21|51|31|25|59|28|31|72|34|51|29|46 |42
—e—TAE-30/10[16[39]31]|31|34|45|35|26|51|29|68|31|60|40|54|45|96|32|56|39|34|70|40|40|73|95|65|54 |60 |75
——TEA-30/20 (10| 78| 15| 11|93|63 |62 |14|10]11|78|17|10|14|46|63|47|14|10[10|12|25[14|78|94|12|63|47 |94 |62
—TJE-30/20 [92|36]|23|20|28(25|23|78|40|26|32|23|28|35|23|28|26|50|32|50|37|32|31|25|32|60(23|90|23 |42

TAE-30/20|20({43|39)31]39[31/29(92|51|37|40/40({39|50|71|34/31[64|43|60|50/29|45|32|42|73|29|95|32|48
Number of application instances

Figure 4. TEA, TJE and TAE (see text) with 1, 10 and 20 second delay between requests to the CAP —
with 30 clients making requests

volved a data set obtained from the UCI machine
learning repository [19], and as the data was al-
ready converted into the right format, the conver-
sion time T.(ds) is zero. We can see that for all
requests made to the CAP, this time is less than
the time required to execute the service, equiva-
lent to 27,,4(ds)+T. in Section 2 — represented by
TJE-20/* in the figure. This time represents an
invocation made via the GT4.0 container to the
J48 Web Service. Our results indicate the advan-
tage of using the market mechanism for discov-
ering suitable services, even with moderate sized
data sets. Figure 4 demonstrates the execution
with 30 clients — here we can see that our ap-
proach is scalable as the number of clients are in-
creased. The peaks in the graph occur due to the
workload (arising from execution of other Web
Services) on the machines on which the J48 ser-
vice is being hosted.

6. Conclusions

A Grid market for exchanging data mining
services has been described. The market offers
Catallactic (“free-market”) market mechanisms
for trading of basic services and resources. The
data mining tasks are considered to be Complex
services, which may have varying resource re-
quirements during their execution. To identify
Basic service and resource requirements, a data
mining task was divided into specific phases. A
key assumption in this work is the existence of
a service rich environment — i.e. there will be
a large number of service providers able to offer
services for use by others. This is already be-
ginning to happen, with the availability of public
domain registry services — such as xmethods.net.
The adoption of the “service-oriented” approach
by the Grid community also indicates that this
assumption is more widely shared.

To demonstrate the approach, an implemen-
tation of a Grid Catallactic market has been
achieved, which consists of three layers: The Cat-
COVITE application, the Catallactic middleware
layer for the negotiation of services and resources,
and the base platform using GT4. The descrip-
tions of the service and resource requirements are
achieved through the use of WS-Agreement. Ac-

cess to the market is provided through an access
point (implemented as a Web Service), to prevent
significant modifications to an existing applica-
tion making use of the market.

Our approach integrates several properties im-
portant for “Open Systems”, such as being able
to work with partial knowledge and support for
decentralization. The approach presented here is
therefore general in scope, and may be applied
in a number of different scenarios. The distinc-
tion between a Complex and Basic service also al-
lows the existence of Complex Service providers
(essentially, intermediaries who do not own any
computational resources or services themselves,
but primarily aggregate services provided by oth-
ers). Such provides may dynamically modify Ba-
sic service instances based on price fluctuations
in the market — thereby maintaining the price of-
fered to some external user. This aspect of the
work needs further investigation.

REFERENCES

1. O. Ardaiz, P. Chacn, I. Chao, F. Freitag,
L. Navarro, “An Architecture for Incorporat-
ing Decentralized Economic Models in Applica-
tion Layer Networks”, Smart Grids Technologies
Workshop, Utrecht, Holland, 2005.

2. O. Ardaiz, P. Artigas, T. Eymann, F. Freitag, L.
Navarro, M. Reinicke, “The Catallaxy Approach
for Decentralized Economic-based Allocation in
Grid Resource and Service Markets”, Special Is-
sue on Agent-based Grid Computing, Interna-
tional Journal of Applied Intelligence, accepted.

3. R. Buyya, D. Abramson, J. Giddy, H. Stockinger,
“Economic Models for Resource Management and
Scheduling in Grid Computing”, The Journal of
Concurrency and Computation: Practice and Ex-
perience (CCPE), Wiley Press, May 2002.

4. CATNET Project deliverables, D3: Catallaxy
Evaluation Report, March, 2003. Available at:

http://research.ac.upc.es/catnet/pubs/D3.pdf.

5. R. Quinlan, “C4.5: Programs for Machine Learn-
ing”, Morgan Kaufmann Publishers, San Mateo,
CA, 1993

6. F.A. Hayek, W. Bartley, P. Klein, B. Caldwell,
“The Collected Works of F. A. Hayek”, University
of Chicago Press, 1989.

7. Global Grid Forum (as on December 2005). Avail-
able at: http://www.ggf.org/.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Globus Toolkit version 4.0 (as on Decem-
ber 2005). Available at: http://www.globus.org
L. Joita, J.S. Pahwa, P. Burnap, A. Gray, O.F.
Rana, J. Miles, “Supporting Collaborative Vir-
tual Organisations in the Construction Industry
via the Grid”, Proceedings of the UK e-Science
All Hands Meeting 2004, 31st Aug.-3rd Sept.
2004, Nottingham, UK, 2004.

J. Joseph, M. Ernest, C. Fellenstein, “Evolution
of Grid Computing Architecture and Grid Adop-
tion Models”, IBM Systems Journal, Volume 43,
Issue 4, January 2004.

Traversat, Abdelaziz, and Pouyoul, Project
JXTA: “Loosely-Consistent DHT Ren-
dezvous Walker”, Sun Microsystems, Inc.,

http://www. jxta.org/project/www/docs/jxtadht.

Web Services Agreement Specification (WS-
Agreement), 28 June 2005. Available via:
https://forge.gridforum.org/.

WS-Resource Framework (as on December 2005),
http://www.globus.org/wsrf/.

The WEKA Toolkit, University of
Waikato, New Zealand. Available at:
http://wuw.cs.waikato.ac.nz/ml/weka/.

Last viewed: December 2005.

C. Zhu, Z. Liu, W. Zhang, W. Xiao, Z. Xu and
D. Yang, “Decentralized Grid Resource Discov-
ery Based on Resource Information Community”,
Journal of Grid Computing, (2), pp 261-277, 2004
A.S. Ali, O.F. Rana, I.J. Taylor, “Web Ser-
vices Composition for Distributed Data Mining”,
ICPP 2005 Workshops, International Conference
on Parallel Processing, 14-17 June 2005, pp. 11—
18

Liviu Joita, Omer Rana, Pablo Chacin, Oscar Ar-
daiz, Isaac Chao, Felix Freitag, Leandro Navarro,
” Application Deployment Using the Catallactic
Grid Middleware”, Middleware for Grid Com-
puting at ACM/USENIX/IFIP Middleware 2005,
Grenoble, France, November 2005

C. S. Yeo and R. Buyya, “A Taxonomy of Market-
based Resource Management Systems for Utility-
driven Cluster Computing”, Technical Report,
GRIDS-TR-2004-12, University of Melbourne,
Australia, December 8, 2004

UCI Machine Learning Repository. Available at:

http://www.ics.uci.edu/ "mlearn/MLRepository.html.

Last viewed: December 2005.

Appendix: Agreement Template and Offer

Note: The wsag: prefix has been removed from the
tags in these descriptions.

<AgreementTemplateLite>
<Name>DataMiningComplexService</Name>
<Context>
<AgreementInitiator>Cardiff-A
</AgreementInitiator>
<StartingTime>2005-12-12T13:00:00
</StartingTime>
<TerminationTime>2005-12-12T14:00:00
</TerminationTime>
</Context>
<Terms>
<BasicServiceType>DataMiningService
</BasicServiceType>
<NumberOfBasicServiceNodes>1 to 10
</NumberOfBasicServiceNodes>
<BasicServiceConstraints>
<ResponseTimePerRequest>10
</ResponseTimePerRequest>
</BasicServiceConstraints>
<PayForService>
</PayForService>
</Terms>
</AgreementTemplateLite>

Agreement Template
The AQ is initiated by the agreement initiator (the
MGS) in this case. An AO is as follows:

<AgreementOfferLite>

<Name>DataMiningComplexService</Name>

<Context>
<AgreementInitiator>Cardiff-A
</AgreementInitiator>
<StartingTime>2005-12-12T13:00:00
</StartingTime>
<TerminationTime>2005-12-12T15:00:00
</TerminationTime>

</Context>

<Terms>
<BasicServiceType>DataMiningService
</BasicServiceType>
<NumberOfBasicServiceNodes>1
</NumberOfBasicServiceNodes>
<BasicServiceConstraints>

<ResponseTimePerRequest>10
</ResponseTimePerRequest>

</BasicServiceConstraints>
<PayForService>100
</PayForService>

</Terms>

</AgreementOfferLite>

Agreement Offer

