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Abstract

The success of grid computing in open environments like the Internet is highly dependent on the adoption of mechanisms to detect failures
and malicious sabotage attempts. It is also required to maintain a trust management system that permits one to distinguish the trustable from the
non-trustable participants in a global computation. Without these mechanisms, users with data-critical applications will never rely on desktop
grids, and will rather prefer to support higher costs to run their computations in closed and secure computing systems.

This paper discusses the topics of sabotage-tolerance and trust management. After reviewing the state-of-the-art, we present two novel
techniques: a mechanism for sabotage detection and a protocol for distributed trust management. The proposed techniques are targeted at the
paradigm of volunteer-based computing commonly used on desktop grids.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the past years, several initiatives of desktop grid com-
puting have shown the potential opportunity for exploiting the
idle CPU cycles that can be found in millions of Internet com-
puters. Sound examples include SETI@home, Climatepredic-
tion.net, Einstein@home, among several others [1]. To support
such global computations, there have been some notable ad-
vances in desktop grid middleware, with the emergence of open
source platforms such as BOINC [2] and XtremWeb [3].

The verification of results is an important issue that needs to
be addressed in any volunteer computation. Indeed, hardware
and software mishaps as well as malicious volunteers can
falsify the outcome of computations, rendering the results
useless. Thus, a major concern of middleware tools supporting
volunteer computation is to provide results validation and
sabotage tolerance mechanisms. Since computations are run in
open and non-trustable environments, it is necessary to protect
the integrity of data and to validate the computation results.
Without a sabotage detection mechanism, a malicious user
∗ Corresponding author.
E-mail addresses: patricio@estg.ipleiria.pt (P. Domingues),

bmsousa@dei.uc.pt (B. Sousa), luis@dei.uc.pt (L. Moura Silva).

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.12.001
can potentially undermine a computation that may have been
executing for weeks or even months. Therefore, it is no surprise
that users with computationally demanding applications do not
easily trust open environments, rather preferring to have their
applications executed over more controlled clusters which offer
some reliability and trustability. This means that sabotage-
tolerance is a mandatory issue in desktop grids in order to
make them trustable and dependable. In this paper, we discuss
the existing contributions and we present initial ideas for a
new sabotage-tolerance mechanism targeted at real desktop grid
initiatives.

Along with sabotage-tolerance techniques, it is crucial to
devise protocols for trust management in desktop grids. For
this purpose, low-level techniques are employed to gather
valuable information for the creation and maintenance of local
reputation lists. On top of that, higher level protocols are
needed for globally sharing and maintaining an updated view
of the participants’ reputation. Some trust management systems
have already been proposed in the area of Grid, like the
Grid EigenTrust framework [4] and the EigenTrust system for
P2P networks [5], among some other proposals [6]. However,
these trust management systems do not properly exploit
the computational paradigm of volunteer-based computing.
In this paper, we propose an invitation-based protocol
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for trust management targeted at volunteer desktop grids.
The protocol establishes and updates the reputation of the
participants according to their relationship in the volunteer-
chain, using underlying sabotage-tolerance mechanisms to
detect sabotage attempts to undermine the computations, or
simply, computation errors due to faulty hardware.

The rest of this paper is organized as follows: Section 2
describes the state-of-the-art for sabotage-tolerance. Section 3
presents a novel mechanism to detect sabotage attempts, based
on checkpoint comparison. Section 4 describes the state-of-
the-art of trust management in distributed and P2P systems,
while Section 5 outlines our protocol for a reputation system
in desktop grids and explains some of its novelties. Finally,
Section 6 concludes the paper and presents some insights about
future work.

2. Sabotage-tolerance techniques

The master–worker model is the common paradigm for
computing over desktop grids. Under this model, an application
is broken into a large set of individual tasks, with tasks being
distributed for computation by the master (also referred to as
the supervisor) to request workers. After having processed a
task, a worker sends the computed results to the supervisor. In
an open environment like the Internet, it is necessary to assess
the integrity and correctness of the results, since any host can
run a worker.

The taxonomy of the sabotage-tolerance techniques can be
classified in three distinct groups: (a) replication and voting;
(b) sampling; and (c) checkpoint-based techniques. Next, we
review each of these groups.

2.1. Replication and voting

The replication technique is also known as double-check
[7] or as majority voting [8]. It was first deployed on a
wide-scale by the SETI@home project to cope with erroneous
results provoked by faulty hardware and malicious users
eager to claim credits for work not performed [2]. The
technique is based on the replication of individual tasks to
different and preferably non-related workers. When completed,
the results of the N replicas are compared and a majority
voting is applied. The results that do not agree with the
majority are marked as erroneous. If no majority can be
determined (e.g. all results disagree), results are classified
as erroneous and the task needs to be re-executed. N
corresponds to the replication factor, and should be at least
equal to two. The error rate of the replication method is
determined by the replication factor N and by the percentage
of erroneous/malicious volunteers. High levels of redundancy
augment the resiliency at the cost of higher impact in the
overall performance. For instance, the Einstein@home [9]
project diminished its replication factor from 3 to 2 when it
switched to a more computational demanding stage (S5), an
evidence that replication can significantly consume computing
resources. The main benefits of the replication approach are
its support for generic computation and its simplicity, which
eases its implementation — the technique is supported by the
main desktop grid middlewares, and employed by all major
public computing projects. On the contrary, a major weakness
lies in the wasting of resources, since to complete a task, at
least N instances need to be effectively computed. Furthermore,
in computations that produce results sensible to hardware and
software specificities, some further restrictions might be needed
to support replication. For instance, some applications are
extremely susceptible to floating-point implementations, and
the same task run over different machines can yield different
numerical results. A viable workaround is homogeneous
redundancy, upon which replicas of a task are only assigned to
homogeneous systems [11]. Regarding sabotage, the replication
technique can be bypassed by smart colluding saboteurs as long
as they manage to control a majority of replicas of a task. A
more subtle limitation of replication-based validation for public
computing environments is the potentially long interval that
might elapse between the completion of the first result and
the existence of enough results for majority voting. This is
relevant in credit-based projects, where the effort of volunteers
is rewarded through virtual credits. Indeed, credit assignment
for a given task is only performed after the result has been
validated, that is, after a majority of results matched and a
so called canonical result exists. This means that the worker
of the first result might wait a significant amount of time for
receiving its due credits. Although this might be perceived
as an irrelevant issue, credits and the associated tops, where
users are ranked according to their earned credits, are major
motivation factors for volunteers to participate in projects and
thus everything related to credits should be treated carefully to
avoid disgruntled volunteers [23].

2.2. Sampling techniques

Sampling techniques were developed to overcome the
limitations of replication, namely its inefficient usage of
resources. Sampling techniques are proposed under four
different approaches: (a) naı̈ve; (b) quizzes; (c) spot checks with
black lists; and (d) ringers.

(a) Naı̈ve. The naı̈ve sample is a simple technique which uses
probes to test the trustworthiness of participants [7]. Basically,
the supervisor sends some test samples to the participants
and then checks the results sent back by the assessed
workers. However, the technique can be easily compromised by
malicious workers if they are able to distinguish test samples
from real application tasks. Indeed, a malicious worker can
compute correctly the test samples, only faking application
tasks, with its dual behavior possibly going unnoticed. The fact
that test samples are computationally less demanding than real
tasks makes the identification of test samples relatively easy
and thus seriously compromises the usefulness of the technique.
Furthermore, if the test samples are sent separately from the
batch of real tasks, the detection of samples is even easier and
the technique becomes almost useless in a hostile environment,
as occurred in early versions of SETI@home [2].

Du et al. [7] extend the naı̈ve sample technique by proposing
the commitment-based sampling (CBS) approach for strictly
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one-way functions f (x). Their goal is to hide the test samples,
making them indistinguishable from real application tasks. CBS
requires that a host, which computes f (x) in the domain of D,
saves all the intermediate results of its computation and builds a
Merkle tree to prove that it effectively computed every input x .
A Merkle tree is a hash-indexed binary tree, where data is kept
on leafs and sibling nodes are built through a hash function. The
CBS method involves the following four steps: (1) a participant
computes its assigned tasks, locally building a Merkle tree
which holds the intermediate results of the computation; (2) the
supervisor sends a set of selected samples to the participant;
(3) the participant proves its honesty by returning, along with
the computed results, the Merkle tree’s path up to the leaf
node; (4) the supervisor verifies the results to check whether the
participant is cheating or not. For that purpose, the supervisor
reconstructs the Merkle tree. If the hash root node differs from
the one reported by the participant, the participant is labeled as
a cheater.

The main drawbacks of the CBS method are its limited
applicability to one-way functions and the requirement that
every worker builds and holds a possibly huge Merkle tree.
Additionally, it induces a severe computational overhead on the
supervisor due to the reconstruction of the Merkle tree.

(b) Quizzes. Shanyu and Lo [6] further extend the naı̈ve
sample method by hardening the detection of samples (labeled
as quizzes by the authors). For that purpose, quizzes are
mixed along with tasks. When a batch of tasks is finished,
the supervisor checks the results related to the quizzes, only
accepting the results if all quizzes are correct. Otherwise, the
results are discarded and the tasks rescheduled for another
execution. This method is resilient to collusion and presents the
advantage that the outcome of samples can be verified before
the end of a task [12]. However, no efficient method exists for
generating quizzes in an automatic way, therefore preventing
the use of this technique in wide-scale projects.

(c) Spot checks with blacklists. Spot-checking was proposed
by Sarmenta [8]. This technique works similarly to quizzes.
The main novelty is the tight integration of the technique with
blacklists, which helps to filter out malicious users over time.
When a participant is caught cheating, all her contributions until
then are invalidated, and the participant is blacklisted and will
be left out of any further computations. The implementation
of spot-checking with blacklists faces some subtle problems,
mainly the requirement of uniquely identifying participants
over time. In fact, identification through email addresses, as it is
commonly used by most volunteer projects is unreliable, since
a malicious participant can easily and quickly obtain new email
addresses.

(d) Ringers. Ringers were introduced by Golle and Mironov
[13] to protect against coalitions of lazy cheaters assuming
that all computational tasks involve the inversion of a strictly
one-way function, f (x), for a given value y. An example of
the applicability of one-way functions is the attempt to break
cryptographic functions through a brute-force approach, as is
undertaken by the Distributed.net project [14]. Under the ringer
approach, the supervisor creates individual tasks, each one
involving a part Di of the whole domain D. Before assigning a
task, the supervisor adds to Di a set of test samples (ringers) yi ,
which are inverted values of D, computed through yi = f (xi ).
Each task is then assigned to a worker wi , which computes
f (x) for all x in its sub-domain Di . A ringer yi yields xi ,
since f ( f (xi )) = xi . Thus, to check the integrity of results, the
supervisor just have to assess the xi , which should correspond
to the sent ringers yi .

Two ringer-based versions have been proposed: basic and
bogus. In the basic approach, when the supervisor assigns work
to the participants, it includes a list of input values, for which it
already knows the outcome, to be computed along with ringers.
Each participant must then return the results yielded by the
computation of input values and ringers, receiving credit only
if all the ringers are effectively committed to the supervisor. A
feebleness of this method is that the number of ringers is known
by the participant. Therefore, a malicious participant can halt
computation and return faked results as soon as all ringers of a
task have been found. The bogus ringer version surmounts the
limitations of the basic version by concealing the real number
of ringers from the worker. For this purpose, a randomly chosen
number of ringers whose results are of no interest (“bogus”) are
inserted in the computation set.

Szajda and Owen [15] tried to extend the ringers technique
to generic computations, overcoming the one-way function
limitation. In their approach, the supervisor plants ringers
on the domain of values to be checked, with participants
computing the values in the domain and the inserted ringers.
However, the proposed approach is hardly feasible due to the
huge difficulty of generating a method to automatically create
the indistinguishable ringers.

2.3. Checkpoint-based verification

Monrose et al. [16] and Antonelli et al. [17], respectively,
propose the (a) basic checkpoint verification and the (b) dis-
tributed checkpoint verification. Both schemes are checkpoint-
based techniques for sabotage-tolerance and address sequential
computations that can be broken into multiple temporal seg-
ments (St1 , . . . , Sti , . . . , Stn ). At the end of each segment, a
checkpoint C(Sti ) of the task can be committed to stable stor-
age. Next, we briefly review both techniques.

(a) Basic checkpoint verification. Under this technique, each
worker periodically saves the state of its task in a checkpoint,
computes its hash code and submits it to the supervisor.
The supervisor randomly chooses a checkpoint-time Sti and
requests the corresponding checkpoint C(Sti ) from the worker.
Then, the supervisor computes the partial execution of the task,
from Sti up to the next checkpoint C(Sti+1). Finally, the hash
code of C(Sti+1), that is, H(C(Sti+1)), is compared with the
corresponding hash code sent by the worker.

The error rate of the basic checkpoint method depends on
the number of checkpoints verified by the supervisor: a high
percentage of verified checkpoints yields a low error rate at
the cost of increased computation (for the partial computation
of the task) and bandwidth (for having the checkpoint Sti
transfered from the worker to the supervisor). Since, all of this
overhead (computation and bandwidth) needs to be supported
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by the supervisor, this technique might induce an unbearable
overhead to the supervisor, especially in wide-scale systems.

(b) Distributed checkpoint verification. Antonelli et al. [17]
extended the basic verification technique by distributing the
partial computation over workers. Their approach is comprised
of six steps. Firstly, (1) the supervisor sends a task to the
participant. (2) The worker then computes the results along
with a list of the partial checkpoint hashes, sending both to
the supervisor. (3) The supervisor stores the received hash list
and selects a worker (henceforth the verifier) to verify it. The
supervisor identifies the partial execution to be computed by
the verifier and sends to the verifier the necessary data, namely
how to contact the worker being scrutinized, so that it can obtain
the checkpoint to load for the partial execution. (4) The verifier
requests the initial checkpoint from the original participant, and
then it (5) computes the partial task up to the next checkpoint,
taking a hash code of this new checkpoint. Finally, (6) this hash
code is sent to the supervisor which compares it with the one it
received from the worker under assessment.

The distributed checkpoint verification method allows
the verifications without overloading the supervisor. The
intermediate steps can also be checked, allowing for the
detection of a malicious worker before the completion of a
task. The price for this technique is the redundancy required
for checkpoint comparison, the cost of communications and
the capability of participants to communicate directly with
each other, a requirement that can be difficult to achieve when
connectivity of hosts is restricted by firewalls and network
address translation (NAT) schemes. Even if both machines
can contact with each other, promoting direct contact between
worker and verifier might create opportunities for collusion.

3. Validation through comparison of checkpoints

In this section, we combine replication with checkpoint-
based comparison to promote early detection and finer
localization of errors in volunteer computations. Specifically,
we propose the compare replicated checkpoint hashes
technique, and complement it with trickle messaging to permit
early detection of divergent computations. We target public
computing projects, assuming that a N -level replication is used
for results validation.

3.1. Comparing replicated checkpoint hashes

Under the compare replicated checkpoint hashes (CRCH)
approach, a worker is requested to return, along with the
results of its task, a selected set of hashes of the checkpoints
saved along the computation. The list of checkpoints whose
hashes are requested is defined at task creation time, so
that redundant instances of a task share the same set of
requested checkpoint hashes. When a majority of replicated
executions are completed, and thus the supervisor holds enough
results for meaningful comparisons, the hashes from equivalent
checkpoints are compared to each other. If a divergence occurs,
the execution point where the differences were detected is
marked as suspicious. Comparatively to the result comparisons
and partial executions, the CRCH technique allows for a finer
detection level, since an erroneous computation can be detected
right after the first divergent checkpoint. For deterministic
errors this might speed up the debugging process, since the
temporal location of the fault is known with some precision,
permitting a faster reproduction of the error.

Relatively to the basic checkpoint and to the distributed
checkpoint techniques, CRCH requires no extra communica-
tions since the lightweight hashes can be sent to the supervisor
along with the results. Additionally, the traditional communi-
cation model is not disrupted, since no contact is required be-
tween workers, contrary to the distributed checkpoint verifica-
tion technique. Selective checkpoint hashing is also much less
demanding for the supervisor, since no task computation (par-
tial or complete) needs to be performed by the supervisor.

Although the CRCH strategy allows for result verification
with practically no overhead at the server-side, and permits
a more precise location of error occurrence, it does not
speed up the detection of incorrect computations, since error
detection can only occur after, at least, two replicas of the task
have terminated. A more proactive variant is to have workers
returning available checkpoint hashes during the computation.
Ideally, from a detection point-of-view, the worker should send
to the supervisor a hash immediately after its computation.
However, such an attitude would increase the number of
messages and consequently stress the supervisor network,
possibly disturbing the whole system performance. A more
realistic approach is to use the so-called trickle messages [25]
to send checkpoint digests to the supervisor. A trickle message
is sent by a worker to the supervisor and provides some
status information about the worker. The trickle notification
mechanism is used by projects like climateprediction.net [10]
which have lengthy tasks (weeks or months long). It permits
workers to update their progression status and to claim
pending credits. Although the trickle designation covers a
BOINC specific characteristic, the importance of this feedback
mechanism for projects with long running tasks renders it
mandatory for any serious desktop grid middleware. Thus, an
improvement to the CRCH basic technique is to take advantage
of the trickle messages which are already sent by workers to
report status, for sending the hashes of the selected checkpoints
without additional communication costs. This way, an error can
be spotted by the supervisor as soon as a majority of checkpoint
digests is available for the considered execution point. Thus,
upon detection of a divergent computation, corrective measures
can immediately be triggered by the supervisor. For instance,
an additional instance of the task can be scheduled to replace
the faulty task. Additionally, the thought-to-be faulty worker
can be marked as suspect and further probed to assess its
computational honesty, or, if repeating a faulty behavior, can
be backlisted altogether [24].

4. Reputation systems

The auction site eBay [18] is a live example of the
importance of reputation systems to promote transactions
among individuals that do not know each other [19].
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Indeed, reputation systems are important because they collect,
distribute and aggregate feedback about participant’s behavior
and help to decide whom to trust, implicitly encouraging
trustworthy behaviors. Next, we summarily review reputation
systems for peer-to-peer and grids.

4.1. Reputation systems on P2P networks

Different reputation systems have been proposed for P2P
networks: (a) debit-credit reputation computation; (b) credit-
only reputation computation; (c) TrustMe; and (d) EigenTrust.

Minaxi et al. [20] devised the concept of debit-credit
reputation computation (DCRC) and credit-only reputation
computation (CORC) systems. Both systems give credits to
users that serve others. DCRC also debits users who act as
clients. In a P2P file-sharing context, both DCRC and CORC
apply credit for file uploads, while DCRC also applies debits for
file downloads. Under DCRC, collusion is not compensatory,
since the user is debited when downloading, but using multiple
identities – one for uploads and another for downloads – can
be rewarding. On the contrary, CORC is resilient to multiple
identities but is vulnerable to collusion, since colluded users can
promote multiple downloads from each other only to receive
undue credits.

Aameek et al. [21] proposed TrustMe, a secure and
anonymous underlying protocol for trust management in P2P.
TrustMe builds reputation in a user-based approach, in which
a peer gives a reputation rating to another peer based on all its
interactions with that peer. Therefore, the trust value of a peer
A comes from the aggregation of all ratings that other peers
have about A. To preserve anonymity, TrustMe keeps the trust
rating of each peer in a random peer Y , called the Trust Holding
Agent (THA). THA replies to all queries involving trust values
it holds. TrustMe works as follows: when a peer A wants to
know the trust value of peer B, it broadcasts a trust query. THA
replies with the sought trust value and then, peer A decides
whether or not to interact with B. If peer A resolves to interact
with peer B, it will report to THA its own perceived trust level
of B at the end of the iteration.

Kamvar et al. [5] suggested EigenTrust for P2P networks
in order to build the global reputation of a peer A. EigenTrust
is based on the aggregation of the local trust values that each
peer holds about peer A. The algorithm operates on different
steps: firstly, it normalizes the local trust values which must lie
between 0 and 1; secondly, it aggregates the local trust values,
collecting the opinions of different peers; finally, it makes a
probabilistic interpretation of the results in order to search for
reputable peers. Only the local trust value of peers that are not
trying to mislead the system will be taken into account. The
time and computational effort required to aggregate all the trust
values are serious drawbacks of the system.

4.2. Reputation systems for grid computing

Alunkal et al. [4] proposed the Grid EigenTrust algorithm
based on EigenTrust for P2P networks. The grid version
works as follows: firstly, the algorithm establishes, within an
Fig. 1. The Grid EigenTrust reputation system.

institution, the trust value for each entity, based on various
contexts. Then, it refers to reliability, which represents the trust
of each institution. The global trust of an entity is derived
from the institutions’ trust reliability and the trust level of the
entity as perceived within the institution. Fig. 1 illustrates how
Grid EigenTrust organizes the entities (participants) inside an
institution, where several institutions may belong to a virtual
organization (VOs).

The reputation services are responsible for evaluating the
reputation of resources, services and users inside an institution
and this evaluation is performed using the EigenTrust
algorithm. The architecture of a reputation service is comprised
of the following elements: collection manager (collects data
from entities); calculation manager (computes reputation
values based on a context); data collection manager (stores
values to maintain a global and historical view) and the reporter
(reports reputation values when queried). The Grid EigenTrust
technique induces some overhead in communication and
computation but it is suited for generic contexts, since it is not
coupled to a specific application. It adapts dynamically to new
participants/identities that join to a project inside an institution.

In their work, Shanyu and Lo [6] suggested a global
reputation system where all participants share a trust list and an
optional blacklist. The aggregation of the trust values reported
by individual participants is made using simple functions. This
technique does not incur computational overhead as does Grid
EigenTrust, and adds the possibility to incorporate blacklists.
Nevertheless, the study does not clearly explain how the
simple functions can aggregate the trust values. Although some
differences exist between the global reputation system and Grid
EigenTrust, both share the same conceptual architecture.

5. Reputation through invitation

In this section, we propose the volunteer invitation-based
system (VIS). This system aims at building trustable networks
of volunteers resorting to invitations. Before presenting the
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volunteer invitation-based system, we discuss the problems
related to uniquely identifying volunteer participants.

5.1. The identification problem

Uniquely identifying a volunteer participant is a serious
challenge faced by trust management systems for volunteer
desktop grid computing. Indeed, commonly used attributes like
email addresses and host’s IP addresses offer no guarantees
of trustability and persistency. For instance, a malicious user
can easily create an email account, in one of the many free
email providers, for the sole purpose of engaging in a volunteer
computing project in an anonymous way. If the malicious user
behavior is caught by the sabotage tolerance system and the
corresponding email address is blacklisted, the user can quickly
create a new email account, and rejoin the project under a
new and unsuspected identity. Likewise, IP addresses are not
suited for unique and persistent identification of users, since
most hosts are not directly connected to the Internet, instead
being kept behind ISP or corporate firewalls and possibly
with a masqueraded, private and dynamic IP address, that can
vary periodically. Therefore, under such dynamic conditions,
the IP address is meaningless for identification purposes.
Furthermore, mobile computing devices like laptops allow their
owners to easily connect from any geographical place they
might be, further hardening a trustable identification through
IP address.

Ironically, unique and reliable identification of users, if
at all possible, also raises major privacy issues as the
Pentium III’s unique identifier number flaw demonstrated
some years ago [22]. Moreover, unique identification schemes
might discourage honest volunteers, not only from the burden
identification schemes would probably require, but also for
the loss of privacy they might represent to volunteers. After
all, participants are volunteering their resources, and thus their
effort in joining a project should be kept minimal, otherwise
most potential volunteers will never participate. Therefore, in
order to be usable, reputation systems should not depend on
unique identification of users.

5.2. The volunteer invitation system

To circumvent the need for a unique and unforgeable identity
system, we propose a novel approach, named the Volunteer
Invitation-based System (VIS). VIS relies on human social
relationships and on credit motivation to create a trustable
and dedicated community of volunteers, where users invite
other users to volunteer resources, vouching for their guests’
trustability. In VIS, a user can only enroll as a volunteer
in a desktop grid project through an invitation sent by a
volunteer who is already contributing to the project. To insure
that invitations are made in a conscious manner, inviters are
rewarded or penalized according to the behavior of their
guests. The goal is to make the inviters, up to a certain level,
responsible for the behavior of the participants that have joined
through their invitations. Under VIS, a volunteer participant
who has proved her honesty and worthiness to the public-
computing project, is granted a certain number of invitation
Fig. 2. Workflow of an invitation.

cards. These invitation cards can be distributed to known users
who want to join the volunteering network.

In VIS, the contribution of a participant is evaluated through
the amount of donated work to the project (measured in
credits), while honesty is assessed through sabotage tolerance
measures. To motivate volunteers to recruit participants via
their invitation cards, inviters receive a bonus given by a
profit function W (x, n), where x is related to the computing
contribution achieved by participants that have enrolled through
their invitations (n corresponds to the link depth between inviter
and invitee, and is explained later on). Reciprocally, when an
invitee is caught behaving in a dishonest manner, the inviter is
penalized by the withdrawal of L(x, n) amount of credits. The
goal of the reward/penalty mechanism is to motivate volunteers
to carefully choose the users they invite to join the volunteering
network: a good invitation yields credits, while a badly chosen
invitee provokes loss of credits. A basic outline of a new worker
joining the volunteer project through an invitation is given in
Fig. 2. Specifically, (1) the invitee receives the invitation, and
(2) requests its activation to the project supervisor. Then, (3)
the supervisor registers the new worker. Next, (4) a regular
work cycle follows, with the worker requesting a task, (5)
receiving it, (6) processing it, and (7) sending the results back
to the supervisor. After having properly processed some tasks,
the worker might receive some invitation cards, while the
original inviter is awarded with W (x, 1) bonus credits, with
x corresponding to the credits directly earned by the invitee
node.

Although the reliance of VIS on credit rewards and
penalizations for motivating responsible behaviors might seem
fragile, the importance of credit-based rewarding systems for
public computing cannot be understated. In fact, although
credits are merely virtual, and do not translate into any tangible
asset, a significant number of volunteers donate their resources
primarily for the thrill of earning credits and to move up on the
project’s rankings, regardless of the interest they might have for
the problem(s) tackled by the public computing project [23].
In fact, to attest the importance of credits in the motivation of
volunteers, it is rather common to have participants vigorously
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complaining about credit related issues in the user forums
linked to the public projects.

Although existing public computing projects, which have an
open enrollment policy (only a workable email address suffices
for a volunteer to participate), can perform verification of
results in accordance to a workers’ reputation (with newcomer
workers’ results more frequently and thoroughly checked than
long-time and supposedly honest volunteers), no mechanism
exists in such projects to promote the recruitment of volunteers
by current participants. On the contrary, by rewarding inviters
with credits proportional to their invitees’ performance, VIS
stimulates active recruitment, and preferentially of good
performers. Moreover, by penalizing inviters for ill-behaved
invitees, VIS further fosters invitations of quality volunteers.

When a volunteer project is launched from scratch, the
first invitations need to be sent by the project coordinators
to credible users. Thereafter, a list of inviters will emerge,
as a way to reward the most dedicated participants for their
effort and commitment to the volunteer project. Over time, the
chain of volunteers evolves, with participants that were once
invited, receiving invitation cards to distribute and so on. An
interesting open issue relates to the link strength, if any, that
should exist between first generation inviters and non-directly
invited descendants. As the name implies, a non-directly invited
descendant is a participant that has received a invitation card
through a former invitee of an inviter, and thus was not directly
invited by the first generation participant. Formalizing, a nth-
generation descendant is a user that was invited by a participant
that was herself invited by a (n − 1)th generation descendant
and so forth. When n is one, we have a first generation
descendant. Specifically, the open issue asks what should be
the link between a participant and her descendants. That is, how
much liability, if any, should an ascendant be held responsible
for the acts of a nth generation descendant? Moreover, if held
liable, how should this liability be accounted for? A possible
solution would be to use a decay generation factor, upon which
the impact of a descendant on the bonus and penalization
credits, would be inversely proportional to generation distance
between ascendant and descendant, possibly dropping to zero
after a given number of generations. We plan to assess these
issues in future work. Fig. 3 illustrates an inviter–invitee tree
relationship, with F(x, n) representing the credit payment
yielded by a n-level invitee (due to space limitation not all
inviter–invitee links are shown). Note that F(x, n) corresponds
to the artimethical sum of rewards (W (x, n)) and penalizations
(L(x, n)).

An interesting feature of VIS for systems that resort to
replication for error detection is the possibility to distribute
redundant instances of tasks in a more informed manner. In
fact, based on the inner knowledge of relationships between
inviters and invitees, and to diminish the feasibility of collusion,
the supervisor should distribute replicated instances of a task
only to non-related workers. This way, the project avoids having
related participants on the same voting group.

A possible misusage of the system would be for a participant
who holds several machines to invite herself under a new
identifier, trying to benefit from the credits that are given
Fig. 3. Example of an invitation system relationship tree.

to inviters of well-behaved participants. For example, a user
with three machines can in a first instance only register a
machine, and when granted invitation cards, use them to
enroll the other two machines under a newly created identifier.
However, even if the sum of credits achieved by the multiple
identifiers of the same user are superior to the credit granted
to a single identifier with multiple machines, these credits
are spread across multiple identifiers and might not be very
fruitful in terms of ranking, except if identifiers are allowed
to group as teams. Furthermore, self-invitation of a multiple-
machine volunteer could be further discouraged by rewarding
the volunteering of multiple machines in such a way that self-
invitation would not yield additional earnings.

A potential limitation of the VIS system lies in the overhead
that it might induce on the volunteer project supervisor. Indeed,
inviter–invitee relationships need to be kept by the supervisor,
and the relationship-tree might, especially in a wide-scale
project, become unmanageable. Furthermore, dependent on
the number of relationship generations kept and used for
credit accounting, updating participants’ credits might require
expensive resources from the project server-side. However,
relationship records can be limited to a certain generation-level
and thus the induced overhead over the servers’ project can be
controlled at the cost of losing relationship related information.

5.3. Reputation across volunteer projects

The invitation-based system can be extended so that it
supports recommendations of participants across multiple
volunteer projects. The basic goal is to permit a volunteer who
is already participating in a public project (or has participated
in the past), to apply for an invitation in another project (from
which the volunteer does not know anyone to ask directly
for an invitation), presenting as references a virtual certificate
provided by the project(s) she is currently participating in or
has participated in in the past. This virtual certificate would
include the worker performance and trustability metrics, such
as the ratio of successful tasks completed, earned credits, and
errors. Note that a certificate-based scheme could attenuate the
possibly slow growth endured by a VIS-based system in its
early stage, when the number of volunteers with invitation cards
is still small.
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The participation of a volunteer in multiple projects is
not a novelty, and is actually promoted by the BOINC
platform, which permits that a volunteer donates resources
to several projects, specifying the CPU time distribution to
be allocated to each project. The rationale for promoting
multiple projects, which from the individual point of view of
a project might seem counterproductive since the project loses
exclusivity of resources, lies in the fact that many projects
have downtime (for hardware and software maintenance and
reparation of the server infrastructure), and shortage of tasks
(for instance, when transitioning from one stage to another).
Thus, participation in multiple projects helps to cope with a
particular project downtime, besides permitting the volunteers
to donate resources for several causes they might find worthy.

In terms of implementation, the virtual recommendation
certificate could be a URL, unique to the participant/project
pair, hosted by the project from which the participant is
requesting references. The virtual certificate would be sent,
on request, to the volunteer’s registered email, and would
have a limited time validity. Thus, when applying for an
invitation to another project, the volunteer participant could
attach its reference certificate(s) (the volunteer might already be
participating in more than one project). Then, the project from
which the volunteer is seeking an invitation could consult the
reference certificate(s), analyze the metrics provided there, and
decide accordingly whether it should or not deliver an invitation
to the requesting volunteer.

The project-based reference certificate has the advantage of
being simple, since it only requires a project to setup a secure
web service capable of providing the participation metrics of
a given participant. In fact, the BOINC framework already
permits free web access to the work records of volunteer
computers, which means that reference certificates should be
straightforward to implement. A further benefit of the reference
certificate would be to promote a volunteer using the same
identification (email address) across all projects in which it
already participates (or has participated in the past). To further
stimulate adoption of unique identification across projects, a
credit boost (or any other form of reward) could be assigned
to a volunteer signing up with the same identification across
projects.

6. Conclusion

This paper discussed two important topics in the area of grid
computing: sabotage tolerance and trust management systems.
We presented, to the best of our knowledge, new techniques
which aim to exploit the specificities of a volunteer-based
computing paradigm. Our work is still on-going and the next
step will be the validation and enhancement of our techniques
using a simulation framework, and then in a real system.
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