
Grid-enabling data mining applications with

DataMiningGrid:

An architectural perspective

Vlado Stankovski a, Martin Swain b,∗, Valentin Kravtsov c,

Thomas Niessen d, Dennis Wegener d, Jörg Kindermann d,

Werner Dubitzky b

aUniversity of Ljubljana, Jamova cesta 002, SI-1000 Ljubljana, Slovenia

bUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland

cTechnion - Israel Institute of Technology, Technion City, 32000 Haifa, Israel

dFraunhofer Institute for Intelligent Analysis and Information Systems IAIS,

D-53754 Sankt Augustin, Germany

Abstract

The DataMiningGrid system has been designed to meet the requirements of modern

and distributed data mining scenarios. Based on the Globus Toolkit and other open

technology and standards, the DataMiningGrid system provides tools and services

facilitating the grid-enabling of data mining applications without any intervention

on the application side. Critical features of the system include flexibility, extensi-

bility, scalability, efficiency, conceptual simplicity and ease of use. The system has

been developed and evaluated on the basis of a diverse set of use cases from different

sectors in science and technology. The DataMiningGrid software is freely available

under the Apache License 2.0.

Preprint submitted to Elsevier 23 May 2007

Key words: Data mining, distributed systems, service-oriented architecture, grid

1 Introduction

Due to the increased computerization of many industrial, scientific, and pub-

lic sectors, the amount of available digital electronic data is growing at an

unprecedented rate. The effective and efficient management and use of these

data, and in particular their transformation into information and knowledge,

is considered a key requirement for success in such knowledge-driven sectors.

Data mining [7,17,25] (also known as knowledge discovery in databases) is

the de-facto technology addressing this information need. Data mining is an

inductive, iterative process that extracts information or knowledge patterns

from volumes of data [36].

The rise of distributed computing environments has profound implications in

terms of how distributed data are analyzed and interpreted [48,32]. Future

data mining applications will need to operate on massive data sets and the

programs for processing, analyzing, evaluating, and visualizing the data will

increasingly reside at geographically distributed sites on heterogeneous com-

puting platforms. Distributed data mining and in particular grid-enabled data

mining has become an active area of research and development in recent years

[6,38].

Grid computing can be viewed as a virtual computing architecture that pro-

vides the ability to perform higher throughput computing by taking advantage

∗ Corresponding author:

Email address: mt.swain@ulster.ac.uk (Martin Swain).

2

of many computers connected by a network (usually local and wide area net-

works) [20,19].

Grid technology evolves rapidly and this often poses challenges, such as inter-

operability problems, when building applications on open source technology

as the available functionality frequently changes. In the past years, grid stan-

dardisation efforts have concentrated on achieving the goal to define an open

framework for modeling and accessing stateful resources by using Web ser-

vices. The actual OASIS standard named Web Services Resource Framework

(WSRF) v. 1.2 was approved only recently in April 2006. This paper describes

a large-scale effort aimed at developing a system that brings WSRF-compliant

grid computing technology to users and developers of data mining applications.

The resulting system is the output of the DataMiningGrid project, which was

largely funded by the European Commission [16].

A challenge undertaken by the DataMiningGrid was to develop an environ-

ment suitable for executing data analysis and knowledge discovery tasks in

a wide range of different application sectors, including the automotive, bio-

logical and medical, environmental and ICT sectors. By analysing the diverse

requirements of these applications the DataMiningGrid has developed generic

technology for grid-based data mining. While existing grid technology already

provides a diverse set of generic tools, its emphasis on generality means that

the available functionality may lack the sophistication needed to specifically

support advanced data mining use-cases. Therefore the DataMiningGrid de-

veloped enhancements to open source grid middleware in order to provide the

specialised data mining functionality required by our use-cases. This includes

functionality for tasks such as data manipulation, resource brokering, applica-

tion searching according to different data mining tasks and methodologies, and

3

supporting different types of functionality for parameter sweeps. The result

is a grid with all the generic functionality of its component middleware, but

with additional features that ease the development and execution of complex

data mining tasks. Some key aims in the development of the DataMiningGrid

system included the following:

(1) Grid transparency: Domain-oriented end users should be able to carry out

the data mining tasks without needing to understand detailed aspects of

the underlying grid technology.

(2) Application development support: Developers of data mining solutions

should be able to grid-enable existing data mining applications, tech-

niques and resources (e.g., database management systems) with little or

no intervention in existing application code.

(3) Service-orientated architecture and interoperability: The system should

adhere to existing and emerging grid and grid-related standards such as

WSRF, and be based on widely used open source technology.

To enable a detailed assessment of the benefits and shortcomings of the

DataMiningGrid technology in light of related developments, this presenta-

tion is deliberately intended to be comprehensive and as much as possible

self-contained. The remainder of the paper is organized as follows. Section 2

presents the results obtained from an extensive requirements analysis phase.

Sections 3, 4 and 5 present a detailed description of the system and its compo-

nents. Section 6 describes an evaluation of the system based on two selected

use cases, and Section 7 discusses the results in the context of related work.

Finally, Section 8 provides a short summary and some concluding remarks.

4

2 Requirements of grid-based data mining

The main function of a grid-based data mining system is to facilitate the shar-

ing of data, data mining application programs, processing units and storage

devices in order to improve existing, and enable novel, data mining appli-

cations. Such a system should take into account the unique constraints and

requirements of data mining applications with respect to the data management

and data mining software tools, and the users of these tools. These high-level

goals lead to a natural breakdown of the requirements for a grid-based data

mining system – we distinguish user, application and system requirements.

The user requirements are dictated by the need of end users to define and

execute data mining tasks, and by developers and administrators who need to

evolve and maintain the system. Application program requirements are driven

by technical factors such as resource type and location, software and hardware

architectures, system interfaces, standards, and so on. The DataMiningGrid

project’s main aim is to identify the requirements for a grid-based data min-

ing system and to design, implement and evaluate a system that meets these

requirements.

To determine and specify the detailed requirements of the DataMiningGrid

system, the project analyzed a representative set of use cases. The use cases are

based on real-world data mining applications in the following areas: medicine,

biology, bioinformatics, customer relationship management and car repair log

diagnostics in the automotive industry, monitoring of network-based computer

systems and civil engineering (ecological modeling). Some selected use cases

are listed below. Section 6 provides additional information on the implemen-

tation and evaluation of two of these use cases.

5

Use Case 1: Evolutionary algorithms for reverse-engineering gene

regulatory networks: This is a compute-intensive data mining application

which derives the interaction topology as well as interaction logic (i.e., the

functional description how one gene expression influences another) from gene

expression data [39].

Use Case 2: Analysis of molecular dynamics protein unfolding sim-

ulation data: Computer simulations based on molecular dynamics generate

large volumes of data (> 100 MB per simulation) [9]. To facilitate analysis

of such large data sets, this use case investigates the shipping of data mining

applications to an execution machine near (i.e., with a very fast data transfer

connection) the data source.

Use Case 3: Data mining of distributed medical databases: This ap-

plication involves medical databases residing in several geographic regions in

Slovenia. Privacy and security considerations are essential for this application.

In addition, it is important that the application scales well as more and larger

databases become part of this analysis.

Use Cases 4-6: Text mining: These use cases include fast distributed text

classification (Section 6.3) and ontology learning for quality and customer

relationship management in the automotive industry. Another text mining

use case is concerned with information retrieval in digital libraries. A critical

aspect of this is the distribution of the source documents.

Use Case 7: Ecological modeling: This application is concerned with the

task of building mathematical models of ecosystems, in particular population

dynamics in aquatic ecosystems [42]. Data mining is used to discover equations

that reflect the dynamics of the ecosystem (Section 6.2).

6

Use Case 8: Grid monitoring scenarios: Traditional monitoring services

in distributed applications are based on gathering local logs. Experts browse

these logs manually or by using software. The aims of this data mining appli-

cation are to provide more powerful monitoring functionality, to allow ongoing

analysis of the system’s condition, and to provide critical diagnostic informa-

tion [30].

The main requirements arising from the analysis of the use cases are described

in the following subsections.

2.1 User requirements

The typical end user is mainly driven by concepts, issues, tasks and require-

ments arising from his or her application domain. It is not uncommon that

such end users have only limited knowledge of the technical details of the

underlying data mining and grid technology. A biologist, for example, may

want to classify scientific texts in terms of a given set of cancer classes in

order to identify relationships between cancer mechanisms and genes. Of key

importance to this type of user are the data reflecting domain concepts and

particular type of data mining analysis that needs to be performed. Besides

efficiency and effectiveness, the main concerns of such a user include ease-

of-use, responsiveness, interactivity, flexibility and conceptual simplicity of a

grid-enabled data mining application.

At the other end of the spectrum are end users who possess considerable

knowledge of data mining and grid technology or both. Such users may want

to make specific choices in terms of defining and configuring a data mining pro-

7

cess (selecting algorithms, setting parameters, defining workflows, and speci-

fying preferences for grid resources used to execute a particular data mining

application). An analyst, for example, may want to define a detailed workflow

designed to pre-process and subsequently cluster data in a specific way with

particular algorithms. Such a user is concerned with openness and flexibility

in configuring and executing data mining applications. Clearly, efficiency and

effectiveness is of great importance to this type of user.

Other categories of users are application and system developers, and system

administrators. While rarely performing actual analyses, such users are con-

cerned with requirements such as extensibility, maintainability, user manage-

ment, system integration, and so on.

From the above considerations, and the use case scenarios analyzed in the

DataMiningGrid project, the following key user requirements of the DataMin-

ingGrid system have been identified:

(1) Effectiveness, efficiency, novel use. (1) A grid-enabled version of an ex-

isting data mining application should offer one or more of the following

benefits to the end user: (a) be more effective, (b) be more efficient (higher

throughput, which relates to speed-up), or (c) provide a novel feature or a

novel way of using the application in comparison to the non-grid version.

(2) The DataMiningGrid system should be scalable, i.e., it should allow

seamless adding of grid resources to accommodate increasing numbers of

users and user demands without performance loss.

(2) Scope of application domain and task. (1) The system should be capable

of accommodating a widely differing set of existing end user application

domains, and data mining tasks and scenarios (e.g., text mining, rela-

8

tional mining, pre-processing, clustering, network induction, and so on).

(2) Furthermore, it should be flexible enough to permit entirely novel

data mining applications that are impractical or impossible outside a

grid environment.

(3) Ease and flexibility of use. (1) Application-oriented end users should be

able to use the system without needing to know technological details,

in particular those relating to the underlying grid computing technol-

ogy. (2) Technology-aware end users should be able to define, configure

and parameterize details of the data mining application, the data mining

process, and various grid aspects. (3) Users should be able to search for

available data mining applications based on various criteria.

(4) Monitoring. Users should be able to monitor the progress of their appli-

cations and be able to respond with the appropriate action (e.g., abort a

running application based on exceptions or intermediate results).

(5) Extensibility. (1) Application developers should be able to grid-enable

existing data mining applications with little or no modification to the

original data mining application program. (2) System developers should

be able to extend the features of the core system without major modifi-

cations to the main system components.

(6) Maintenance and integration. (1) Application developers, system devel-

opers, and administrators should be able to easily integrate new applica-

tions and core system components with other technology (networks, Web

services, grid components, user interfaces, etc). (2) Maintenance (e.g.,

upgrades, user management) of the core system and the already grid-

enabled applications should be simple, seamless and non-interruptive.

9

2.2 Application and system requirements

To meet the user requirements presented in Section 2.1, the DataMiningGrid

system needs to fulfill a number of additional technical requirements relating

to data mining application software (data, programs) and the underlying grid

components. We call these requirements data mining application and (data

mining grid) systems requirements. The following is a list of the most impor-

tant requirements in this category:

(1) Resource sharing and interoperation. The system is required to facilitate

the seamless interoperation and sharing of critical data mining resources,

in particular, data mining application programs, data resources, storage

devices and processing units.

(2) Applications. (1) The DataMiningGrid system should be able to run a

wide range of data mining application programs. (2) To facilitate ease of

use and flexibility in defining data mining tasks and processes, the system

needs to provide a flexible workflow component with a graphical user in-

terface. (3) In order to execute data mining applications within the Data-

MiningGrid system, the system needs to understand the requirements,

constraints, and user-defined settings associated with an application. For

this purpose, each application needs to provide an application description

(see Section 4.1).

(3) Resource brokering and job scheduling. Like any grid system, the Data-

MiningGrid system needs to (1) match available resources to job requests

(resource broker), (2) schedule the execution of the jobs on matched re-

sources (scheduler), and (3) manage and monitor the execution of jobs

(job execution and monitoring) [26]. Unique requirements for resource

10

brokering and job scheduling of a data mining grid system include data-

oriented scheduling, parameter sweep support, and consideration of: (a)

the type of data mining task (e.g., classification, clustering), (b) the data

mining technique (artificial neural network, decision tree), and (c) the

data mining method (e.g., C4.5, C5.0).

(4) Standardization. To facilitate interoperation and evolution of the Data-

MiningGrid system, the design and implementation should be based on

existing and emerging grid and grid-related standards and open technol-

ogy.

3 DataMiningGrid system architecture

The DataMiningGrid architecture is depicted in the diagram of Figure 1. Gen-

erally, components in higher layers make use of components organized in lower

layers. The bottom layer labeled Resources shows grid software (data, data

mining applications) and hardware resources (storage devices, processing el-

ements and computer networks). The main grid middleware layer (large box

labeled Globus Toolkit 4) provides the core grid middleware functionality to

the DataMiningGrid system. High-level DataMiningGrid Services are orga-

nized in the layer above the middleware layer (box labeled DMG High-Level

Services). Finally, the top layer depicts the client side components of Data-

MiningGrid applications (large box labeled DMG Client Applications). Below

we will describe the different layers and their relationships in detail, in partic-

ular those components developed by the DataMiningGrid project (highlighted

in red in Fig. 1).

11

Resource
Broker

Information
Services

Data
Sevices

DMG High-Level Services

Application
Explorer

Monitor
Data

Manipulator

A
p

p
li
c
a
ti

o
n

E
n

a
b

le
r

Application
Enabler

Application
Control

Execution
Manager

Provenance
Manager

Custom
Units

Triana Workflow Editor and Manager Web-based Client

DMG Application Clients

CPUs

Files and Directories

Data Mining Applications (systems, tools, algorithms)

Data (records, objects, databases)

Networks
Computer
Clusters Storage

Local
Scheduler

Hardware and Software Resources

Hardware

Software

Security

G
ri

d
F

T
P

R
F

T

Data Management

Information
Services
(MDS4)

Data Mining
Activities

Execution Management

Common
Runtime

OGSA-DAI

Globus Toolkit 4

Enhanced
Condor
Adaptor

Enhanced
Fork Adaptor

Software resource: Data and DMG applications

Middleware: GT4, local scheduler, etc.

Components and services
developed by DataMiningGrid (DMG) Hardware resource: Primary/secondary storage

Hardware resource: Processing elements, networks, etc.

Interfacing between components, services and layers

Legend:

Credentials
Generator

Web
Application

Fig. 1. DataMiningGrid system architecture

3.1 Resources

The box labeled Hardware and Software Resources at the bottom of the di-

agram in Fig. 1 illustrates the grid resources layer in the DataMiningGrid

system architecture. The main purpose of the DataMiningGrid system is to

facilitate sharing and interoperation of such resources in the context of data

mining.

Typical basic hardware resources include processing units (CPUs) and primary

and secondary storage devices (e.g., RAM, magnetic disks). These are crucial

for processing and storing large quantities of data.

12

Clusters (or cluster computers), nowadays common in many organizations, are

a special kind of resource consisting of collections of loosely coupled computers.

In the diagram, the label Local Scheduler represents a typical distributed batch

or scheduler system (a grid middleware) used to facilitate convenient access to

computers within a cluster while preserving the owner rights of the machines

in the cluster. Common batch systems or local schedulers of this kind include

Condor [29] Platform’s Load Sharing Facility (LSF) [47] Sun Grid Engine [21],

etc. In the current DataMiningGrid test bed we make extensive use of Condor.

Ultimately data is the main ‘substrate’ of all data mining applications. Typ-

ically, electronic data is provided in files, spreadsheet applications, database

management systems and other IT systems. Grid mechanisms facilitating the

management of data resources are of critical importance to the DataMining-

Grid system.

Finally, data mining applications are a fundamental type of software resource

in the DataMiningGrid system. We define a data mining application as an

executable software program, or a collection of such programs, that performs

one or more data mining tasks. Data mining applications include executable

data mining algorithms, data mining tools, components, libraries, and so on.

Enabling this type of resource for operation in grid computing environments

facilitates the development of flexible, scalable and distributed data mining

applications.

13

3.2 Globus Toolkit 4

The middleware layer of the DataMiningGrid architecture is concerned with

core grid functionality, such as virtual organization management, resource

management (discovery, registration, allocation, scheduling), job and execu-

tion management, data management, monitoring, security, and so on. In the

DataMiningGrid system, these core capabilities, functions and services are

provided mainly by the Globus Toolkit 4 software [37]. The Globus Toolkit 4

meets the requirements of OGSA and it implements middleware services ad-

equate for grid applications and the WSRF. Some of the elements of Globus

Toolkit 4 that are relevant to the DataMiningGrid system are described below.

3.2.1 Monitoring and Discovery System 4

Globus Toolkit 4’s Information Services: Monitoring and Discovery System

4 (MDS4) provides information about the available grid resources and their

status. It is used to monitor (e.g., to track usage) and discover (e.g., to assign

computing jobs and other tasks) the services and resources in a grid system. To

facilitate monitoring and discovery MDS4 has the ability to collect and store

information from multiple, distributed information sources. The DataMining-

Grid high-level services (in particular the Resource Broker and Information

Services) are using MDS4 to implement their functionality.

3.2.2 Data management

The data management components from Globus Toolkit 4, used by the Data-

MiningGrid architecture, are GridFTP, the Reliable File Transfer (RFT), and

14

the data services provided by OGSA-DAI [18,5]. In addition, we use the Java

CoG Kit [44] for file manipulation on application client machines that do not

have a Globus Toolkit 4 installation. GridFTP is a basic platform on which

a variety of higher-level functions can be built. The RFT facilitates reliable

management of multiple GridFTP transfers. The Globus Toolkit 4 data access

and integration tools (OGSA-DAI component) provide grid-enabled access to

files, relational databases, and XML databases. None of Globus Toolkit 4’s

data replication services are used in the data DataMiningGrid, as the data

sets to be data mined are either exposed to the grid as OGSA-DAI data

resources, or they are uploaded to the grid via the Triana workflow editor.

In the DataMiningGrid system, GridFTP servers are used to receive any data

that is introduced to the grid via Triana. Data transfers between grid nodes are

orchestrated by the DataMiningGrid Resource Broker service (Section 3.3.1)

and are performed using the GridFTP and RFT components (see also Fig. 3).

OGSA-DAI is used to provide access to various distributed data resources, in

particular to relational databases. The data services it provides can be used to

query, update, transform and manipulate data from these resources in various

ways. OGSA-DAI provides these functions as activities. Activities are the

operations that data service resources can perform on behalf of a client. They

expose capabilities of the underlying data resource and are generally used to

carry out data resource manipulations or data delivery operations, such as

executing SQL or XPath statements, performing XSL-T transformations, and

data delivery using GridFTP. The DataMiningGrid activities are extensions

to OGSA-DAI. They can be used by DataMiningGrid services to provide basic

data preparation and transformation operations relevant to data mining, such

as data aggregation, data discretization, computation of derived data, and

15

cross-validation.

Using the APIs provided by OGSA-DAI, with the DataMiningGrid extensions,

specialized clients can be constructed to perform data access and transforma-

tion, and these clients can be integrated into the Triana workflow editor. Such

clients are able to access data from distributed databases and files, integrate

these data into a single data set, filter and transform them (e.g., into training

and test data sets), and then convert them into the format required by a par-

ticular data mining algorithm, such as the attributed-relationship file format

(ARFF) of Weka [46].

3.2.3 Addressing and security

The information contained in a service’s endpoint reference reveals how it

can be contacted by messages. The endpoint reference contains an address

property (URL) and reference properties and parameters. A binding directive

(binding in short) constitutes how this information is copied to the message

and protocol fields that are to be sent to this service. The WS-Addressing

specification defines the SOAP binding as the default binding mechanism for

WSRF-compliant Web services.

The Grid Security Infrastructure (GSI) was developed by the Globus Al-

liance for the Globus Toolkit. It enforces security by using a Public-Key-

Infrastructure (PKI) implemented in X.509 compliant certificates for autho-

rization [22]. For communication with a grid system built on the Globus

Toolkit, so-called ‘proxy certificates’ are used. These are only valid for fixed

periods of time, and are created for a user using the Globus client-side se-

curity API. When the client contacts the service, it has to authenticate the

16

user by first passing the proxy. This is implemented inside the Globus API,

which is used by the DataMiningGrid clients. GSI supports two levels of se-

curity, message-level and transport-level security [45], which differ in concept,

performance, and standards conformity. By default, the DataMiningGrid uses

transport-level security, the Globus Toolkit 4 default security setting, as this

gives the best performance.

3.2.4 Execution management

Globus Toolkit 4’s execution management tools handle the initiation, mon-

itoring, management, scheduling, and coordination of remote computations.

Globus Toolkit 4 provides the Grid Resource Allocation and Management

(GRAM) interface as a basic mechanism for these purposes. A Web services

version of the GRAM (the WS-GRAM) supports a suite of Web services with

which clients can interact to submit, monitor, and cancel jobs on local or

remote computing resources. The DataMiningGrid Services are interacting

with services provided by the WS-GRAM to achieve their functionality (Sec-

tion 3.3).

Enhanced Condor Adapter. The original Globus Toolkit 4 Condor Adapter

is designed to submit relatively simple batch programs to Condor pools. It

lacks two critical functions that are needed in the DataMiningGrid system

for submitting a wide range of programs to Condor pools. First, the current

Condor implementation and the Globus Toolkit 4 Condor Adaptor restrict

data movement to simple copying of files. Second, despite the sophisticated

Java submission environment provided by Condor, it is not possible with the

Globus Toolkit 4 Condor Adaptor to submit arbitrary Java jobs to Condor

17

pools. In the DataMiningGrid project we developed two mechanisms to ad-

dress these shortcomings in the Globus Toolkit 4 Condor Adaptor: to cope

with the data movement restrictions, we enabled it to compress recursive di-

rectory structures into a single archive file, move the file to the execution

machine and extract the archive’s content before the actual job execution; to

facilitate flexible Java job submission, we made it capable of handling JVM

parameters, class path information, and so on.

Enhanced Fork Adapter. Similar to the Globus Toolkit 4 Condor Adaptor,

the Globus Toolkit 4 Fork Adaptor does not support flexible execution of

Java jobs. The Globus Toolkit 4 Fork Adaptor was modified to handle JVM

parameters, class path information, and so on.

3.3 High-level services

The three high-level services of the DataMiningGrid system are represented by

the DataMiningGrid Resource Broker, Information Services and Data Services.

3.3.1 Resource Broker

A (grid) job could be anything that needs a (grid) resource, e.g., a request

for bandwidth or disk space, an application or a set of application programs

[31]. In the DataMiningGrid system, jobs consist mainly of one or more Data-

MiningGrid-enabled data mining applications which need data and processor

resources in order to be executed. Based on a grid scheduler component, a

grid resource broker must make resource selection decisions involving resources

spanning over multiple administrative domains (hosts, routers and networks

18

managed by a single administrative authority). In such a distributed envi-

ronment, a resource broker has no control over the local resources and the

information about the resources is often limited or obsolete.

Specifically, a grid resource broker addresses the following tasks [31]:

(1) Resource discovery. The resource broker determines the list of available,

grid-enabled resources.

(2) Resource selection. Based on the description of one or more jobs and their

requirements, the resource broker selects those resources that best match

the requirements in the job description. To do this, the resource broker

matches the job requirements against the resource descriptions provided

by an information service (Section 3.3.2 describes the DataMiningGrid

Information Services).

(3) Job preparation and submission. Before the resource broker submits a job

or a collection of jobs to the selected resources, it has to make sure that

the resources have all they need to run. In particular, this may involve

certain setup activities and data staging or provision.

(4) Job monitoring and clean-up tasks. The resource broker needs to inform

the user about the progress of the job(s), make sure that the results are

available to the user, and initiate possible clean-up operations after the

jobs have been completed.

In particular with applications involving multiple resources, users, jobs and

sites, resource brokering becomes very complex. Grid resource broker technol-

ogy is an area of active research [31].

Based on the requirement of the DataMiningGrid system, the specific require-

ments of the DataMiningGrid Resource Broker [27], are as follows: The Broker

19

needs to (a) facilitate the discovery of data mining applications, (b) accommo-

date complex workflows (pre-defined or user-defined), (c) identify and select

suitable grid resources to execute such workflows, (d) execute such workflows,

(e) provide execution monitoring and result retrieval, (f), operate in such a

way that the underlying grid details are transparent to the user, (g) should

adhere to grid standards (mainly WSRF), and (h) should be able to evolve

without requiring users having to install each new version. Critical challenges

in this scenario include intelligently matching user and application requests

and requirements with available computation and data resources, and per-

forming the automated staging of data.

After careful investigation of several resource brokers (Community Schedul-

ing Framework, GridWay, GridLab Resource Management System, Nimrod/G

and GridBus Resource Broker) we found that none satisfied the requirements.

However, we found that with some additional development, the GridBus Re-

source Broker could be made to meet the requirements.

GridBus has the advantage of being able to submit jobs to the Globus Toolkit

4 execution subsystem, it is clearly structured and well designed, and, because

it does not require any specific information or security subsystem, it can be

easily integrated with other systems.

Currently the GridBus is not service-based, and so it cannot be used for

a global grid application as it needs to be installed on every client ma-

chine. To address this, a wrapper was developed which exposes its main

functions through a pre-defined WSRF-compliant service interface. GridBus

also lacked automated resource compilation and MDS4 querying mechanisms.

These mechanisms are implemented via the DataMiningGrid Information Ser-

20

vices (Section 3.3.2). An illustration of how the different services interact when

a DataMiningGrid application is launched, including the job submission steps,

is provided in Section 4.4 below.

3.3.2 Information Services

Any comprehensive grid system needs information services to discover, char-

acterize and monitor resources, services and computation [15]. Typically, a

grid information service feeds into other grid components and services, includ-

ing services for discovery, replication, scheduling, troubleshooting, application

adaptation, and so on. The DataMiningGrid Information Services include the

InformationIntegrator Service, which is responsible for creating the applica-

tion registry from DataMiningGrid Application Description Schema, and grid

information services provided by Globus Toolkit 4. In particular, they provide

information on (a) all resources available in a DataMiningGrid grid system,

(b) the properties of these resources in terms of storage and CPU capacity,

operating system, and so on, and (c) the current load of these resources. The

DataMiningGrid Resource Broker requires this information to plan, allocate,

carry out, and monitor job execution. The Information Services component

automatically queries the MDS4 and compiles a list of the resource entries

maintained there. This approach has the following advantages.

First, no user interaction is required for discovering available resources as

this is done automatically via MDS4 queries. As a result, the overall system

becomes more user-friendly.

Second, the original design of the resource broker facilitates the inclusion of

different kinds of schedulers (e.g., based on a cost, round-robin or any other

21

policy). However, in some scenarios requirements may arise with constraints

for which the actual scheduler cannot cater, for example, certain confidential

data may only be processed on machines belonging to certain organizations.

For this purpose it is reasonable to exclude all resources not belonging to the

required organizations from the applied scheduler. As the scheduler must select

resources from a list automatically compiled by the Information Services, the

resource broker can perform a preliminary step of filtering this list before the

actual scheduler is called.

3.3.3 Data Services

The DataMiningGrid’s data services are OGSA-DAI data services that utilize

DataMiningGrid activities for performing data operations on data sets exposed

to the grid as data resources. For the use-cases investigated so far, these data

sets usually reside in distributed relational databases (Section 3.2.2). Typically

the result of these operations will be one or more URIs to pre-processed data

sets residing in a file, or a set of files, which the DataMiningGrid Resource

Broker then schedules for processing with a data mining algorithm.

3.4 Application clients

In its current version, the DataMiningGrid architecture comprises two different

DataMiningGrid application clients: A workflow editor and manager, and a

Web client. Both clients are able to handle multi-component data mining

applications. The workflow editor and manager client are designed to facilitate

detailed user control of the individual data mining application components,

including workflow composition, parameter settings, input and output setting,

22

etc. The DataMiningGrid workflow editor and manager are based on Triana

[40]. The Web client is intended for end users (e.g., biologists, medics, customer

relationship manager, etc.) with a domain-oriented view of the data mining

application. This client is useful for end users with limited knowledge of the

underlying data mining and grid technologies.

Both types of clients have an Application Enabler component which is nor-

mally operated by a data mining application developer and not the user.

The Application Enabler client components are discussed in Section 4, Grid-

enabling data mining applications.

3.4.1 Triana workflow editor and manager client

The workflow editor and manager used to design complex DataMiningGrid ap-

plication workflows is based on Triana [40]. Triana is an open source problem-

solving environment developed at Cardiff University, UK, as part of the Grid-

Lab and GridOneD projects. The Triana tool is structured into two major

parts: (1) a graphical workflow editor to help users compose workflows from

a set of building-blocks that are dragged into a work-space window and con-

nected using a mouse, and (2) a workflow manager or engine to execute work-

flows.

The diagram in Fig. 2 illustrates a DataMiningGrid application and its pre-

sentation via the Triana workflow user interface. Here, the output of the Load

Description unit is used to instantiate the Application Control unit with the

application description for a data mining application. In this case the applica-

tion is an evolutionary algorithm and for simplicity, the input data is already

located at a URI on the grid. The Application Control unit is used to define

23

Fig. 2. A DataMiningGrid application composed with the Triana workflow

editor user interface

the options or parameters for the evolutionary algorithm, to map data inputs

from the GridURI units to the algorithm’s inputs, and finally to define certain

execution requirements, such as the operating system and minimum amount

of memory required. In this case, the evolutionary algorithm defines 100 jobs,

each job representing an independent evolutionary population. The 100 jobs

are distributed for execution on different grid nodes, based in Slovenia, Ger-

many and Northern Ireland. The Execution unit shows the execution status

of these jobs. The final two units in the workflow, the Provenance Manager

and Grid Explorer units, are used (a) to display a record of all information

concerning the execution of this evolutionary algorithm application, and (b)

to view and download the resulting output data files.

Triana is capable of discovering and binding to Web services and WSRF-

compatible services. To develop a user-friendly DataMiningGrid interface,

24

it was necessary to implement the WSRF binding for most DataMining-

Grid units. Additionally, all DataMiningGrid units contain bindings for WS-

Security and WS-SecureConversation [45]. This permits the passing of the end

user proxy credentials to the contacted WSRF service and facilitates secure

conversations between the units and the corresponding WSRF services.

Credentials Generator. Security plays an important role in grid computing.

As each user requires a proxy certificate, which is a copy of the user’s original

X.509 [22] certificate with limited lifetime, the workflow editor has to provide

an easy-to-use means to create and manage such proxies. The Credentials

Generator unit will generate a new proxy certificate. If users possess several

certificates (e.g., from different authorities) they can choose which one to use.

Furthermore, they can select a suitable private key and specify the lifetime

of the proxy (12h, 24h, 1 week, 1 month). Interaction with this unit is only

required once per workflow.

Application Explorer. The Application Explorer is a client to the MDS4

service (Section 3.2.1). It is used to search the grid-wide application registry for

data mining applications. Search criteria include application ID, application

name, group, data mining technique or method, functional area (data mining

task such as classification, clustering, etc.), CRISP-DM phase [36], and so

on. The parameters are translated into an XPath query which is passed to

MDS4. The query results are displayed in a table from which the application

developer may select a suitable data mining application. Once the data mining

application is selected, MDS4 is contacted again to obtain the full description

of this grid-enabled data mining application (Steps 3-8 in Fig. 3). The obtained

application description is passed to the next unit in the workflow, which is

usually the Application Control unit.

25

Data Manipulator. The DataMiningGrid Data Manipulator component

consists of a collection of units that is divided into three groups. These groups

are units that manipulate file systems, relational databases, and a fairly large

number of units for expert users that provide direct access to the functionality

provided by OGSA-DAI.

The file manipulation units have two main functions. First, they transfer data

between the client applications and the grid infrastructure, most importantly

this includes uploading data sets from the user’s own machine to the grid for

data mining, and downloading the data mining results to the user’s machine.

Second, the units are used to browse file systems and view files on remote

machines hosting a GridFTP server. These units are implemented using the

Java CoG Kit.

The relational database units are specialized OGSA-DAI clients, providing

many functions that are hidden from the user. For example, a user simply

enters an SQL query - on execution of the workflow the data is accessed from

distributed databases, filtered and transformed, and then delivered to a set of

files which are formatted for cross-validation by a particular algorithm.

The output from a Data Manipulator unit will always be a data set (files or

directories of files), and one or more URIs pointing to the data. The URIs

are subsequently mapped onto application parameters using the Application

Control unit.

Application Control. The Application Control unit is a central point of

control when developing a workflow for a DataMiningGrid application. In this

unit, the end user specifies all application parameters and assigns input data

as well as application parameters. The unit takes as input (1) a description of a

26

previously selected grid-enabled data mining application, and (2) any number

of data URIs, which may be used as input to the data mining application.

The graphical user interface is created dynamically, based on the description

of the selected data mining application.

The unit displays general information about the data mining application, a

description of the necessary input data (e.g., a file in coded ARFF), and the

default settings of the application parameters. Application parameters (also

referred to as options) can be of different types, such as strings and integers, as

defined by the DataMiningGrid Application Description Schema (Section 4.1).

For each application parameter, an input field is presented to the end user.

The input field depends on the data type of the application parameter. For

example, the value of a decision tree learning parameter A is a real number,

with the default value of Adef = 0.43. In order to execute the application

in a distributed way, the end user can also carry out a sweep of values of

parameter A for a specified interval, iA, and step-size, sA. For example, the

interval iA = [0.40, 0.45] and step-size, sA = 0.01 will result in exactly six job

execution requests. Similarly, if the data mining application uses a parameter

B, which specifies the class in a decision tree training data file (e.g., iodine)

and it belongs to a string data type, the end user can also specify a whole list

of strings prompting the system to generate and distribute and execute one

job per class in the list.

The input data is denoted by a URI, which may point to either a remote di-

rectory containing sub-directories and files (e.g., text documents for ontology-

learning) or a single file, which may be a data file (e.g., a data file coded

in ARFF) or a file containing some additional parameter settings (e.g., dif-

ferential equations for an equation discovery learning algorithm). In case of

27

a directory URI, the Application Control unit always allows the end user to

specify that a sweep is to be performed over all files in the directory, meaning

that there will be as many jobs produced as there are files contained in the

directory. For example, the directory may contain a set of task files making it

possible that the different tasks can be executed in a distributed fashion, one

job per task. The file sweep can only be performed if the application input is

of type file. If it is of type directory, a subdirectory sweep is performed.

The end user can also customize the execution requirements for a particular

application. For example, the user may decide to specify the minimum memory

(or any other resource capacity) needed for execution. Furthermore, the end

user is allowed to specify an exact WS-GRAM service on which all jobs are

to be executed. This is especially important when the application has to be

moved to a location where the data resides.

The output of the Application Control unit is a fully specified instance of the

Application Description Schema (Section 4.1), which represents a multi-job

description. This description is passed on to the Execution Manager unit for

further processing (starting from Step 9 in Fig. 3; see also Section 3.4.1).

Execution Manager. The Execution Manager provides a Triana user inter-

face client to the WSRF-compliant DataMiningGrid Resource Broker service.

This client was built so as to hide the grid complexity from the user. The

main Execution Manager provides the user with mechanisms facilitating the

(a) submission of jobs, (b) monitoring of jobs, and (c) propagation of the re-

sult URIs. The execution of the unit commences when a fully specified data

mining application description is received from the Application Control unit.

This description is then passed as input to the Resource Broker service for

28

execution of the jobs. After the job execution has been initiated, end users

can monitor the execution status of the jobs until all jobs are completed (ei-

ther successfully or not). Upon completion of all jobs, the unit propagates to

the next units in the workflow a URI of the results location and provenance

information.

Provenance Manager. The Provenance Manager unit displays all the rele-

vant provenance and metadata and permits these data to be saved for later use

on a (local) computer specified by the user. It represents the final operation in

a simple DataMiningGrid Triana workflow. The information presented by the

Provenance Manager is part of the DataMiningGrid Application Description

Schema. This schema includes the following information:

(1) Complete description of the data mining application.

(2) Timestamp recording when the application was submitted to the Data-

MiningGrid Resource Broker and when it was completed.

(3) Status of the application, in particular whether it completed successfully

or failed.

(4) URI specifying the location of the results obtained from a successful ex-

ecution of the application.

(5) Information about the execution of each individual job of the data mining

application. For each job, the following information is available: (a) job

ID; (b) job status (success/failure); (c) submission to WS-GRAM time

and completion time; (d) failure description (exception code indicating

the nature of the failure); and (e) application parameters with which a

job started.

Saving the provenance information enables users to search and discover algo-

29

rithms, training data, and prediction models including scores indicating how

these fared. It also permits users to reconstruct the process that has led to a

particular result.

Monitor. The Monitor unit provides general grid monitoring capabilities. It

displays, in intuitive graphical form, the current status of the grid and its

components. For each WS-GRAM in the system the unit presents the WS-

GRAM’s status: the number of busy CPUs, number of available CPUs and the

total number of CPUs. This unit is intended as stand-alone unit and may not

be connected with other units in the workflow. The Monitor unit’s information

is periodically updated to reflect changes in the WS-GRAMS available in the

grid environment.

Custom units. Custom units can be used to develop specific data operations,

result visualization and other custom functions. These functions can then be

added to the data mining process in the usual manner.

Triana Application Enabler. Before a data mining application can be used

within the DataMiningGrid, a description of the application needs to be pro-

vided. Since this task is concerned with grid-enabling data mining applications,

it is described in more detail in Section 4.2.

3.4.2 Web-based client

Similar to the Triana client, the Web client provides a developer and an end

user component for grid-enabling and running data mining applications on the

DataMiningGrid.

Web Application user client. The Web Application client of the DataMin-

30

ingGrid system is intended for users who do not want to concern themselves

with developing detailed data mining workflows. Instead, the Web Applica-

tion client permits the running of complex DataMiningGrid applications while

hiding many of the underlying complexities of the both the data mining ap-

plication and the grid from the user. Thus, the user can concentrate on con-

trolling important parameters of the application without needing to know the

low-level ‘wiring’ of the application and the grid.

We have investigated several ways of building Web-based clients for execut-

ing DataMiningGrid applications in a grid environment. Generally speaking,

Web-based clients are less flexible when compared to a workflow editor like

Triana, but can offer a greater degree of user-friendliness for those users who

do not require detailed technological control. A user has to specify application

information via the Web Application client, and this includes information on

the following (see Section 4.3): (1) general information about the application;

(2) general execution details; (3) input data requirements; (4) where to store

output data; and (5) specific execution requirements.

While it is relatively straightforward to realize a very simple Web-based Data-

MiningGrid application, the developer effort needed to provide a Web-based

user interface for complex, multi-step data mining applications can be con-

siderable. In this respect the Triana solution provides more modularity and

greater flexibility.

Web Application enabler client. Before a Web client can be used within

a grid environment, a description of the associated data mining application

needs to be provided. The Web Application Enabler is a DataMiningGrid tool

that allows developers to carry out this task through a Web browser. Since

31

this task is concerned with grid-enabling of data mining applications, it is

described in more detail in Section 4.3.

4 Grid-enabling data mining applications

In the DataMiningGrid, grid-enabling existing data mining programs is

achieved through the use of metadata and the associated Information and

Resource Broker Services. This is a generic approach and may be extended to

make use of Semantic Grid technologies.

Grid-enabling data mining applications for the DataMiningGrid requires two

elements. First, the data mining application and its properties and require-

ments need to be described in a uniform way and be made known to the

system. This description of data mining applications could be viewed as a

data mining application resource abstraction. Second, the data mining appli-

cation’s software resources need to be registered and stored in the grid. This

section and its subsections describe the basic tasks, components, processes

and tools involved.

4.1 Application Description Schema

The DataMiningGrid Application Description Schema (ADS) is a central fea-

ture of the DataMiningGrid system. It is the basis for registering an applica-

tion in the grid and providing flexible application search mechanisms, dynamic

configuration of GUIs, resource brokering, and so on. The ADS, whose in-

stances are realized as XML documents, describes various aspects about data

mining applications that are enabled to run on the DataMiningGrid system.

32

The ADS is divided into two parts: the first part describes aspects that are

common to all applications enabled to run on the system; the second part de-

scribes information that specifically relates to data mining applications. Below

we summarize the structure and content of the ADS.

The common part of the ADS captures application-relevant information that

falls into three major categories: general, execution and application.

The general part specifies different ‘general’ aspects of the application which

will be useful for different purposes (searching for applications, provenance,

administration, and so on). The information contains elements like a global

unique identifier and a time stamp (both created by the system), a textual

description of application, vendor and version information, etc.

The execution part contains information relevant to the execution of the appli-

cation program, such as the underlying programming environment (e.g., Bash

Shell or Windows operating system), programming language (e.g., C, Python,

Java), executable file(s) and required libraries, commands and arguments used

at start-up, directory information, and so on.

The application part is by far the most comprehensive one. It provides con-

figuration information of the application such as

• Options or parameters used when the data mining algorithm implemented

by the executable is executed. All options or parameters are typed and can

be optional (a default may or may not exist and may be overwritten by the

user) and hidden (an option is transparent to the user).

• Parameter lists and loops define parameter lists and information for exe-

cuting iterations over loop counters, files or directories. The Application

33

Control unit uses this part of the ADS (Section 3.4.1). The list element fa-

cilitates a ‘sweep’ over a list of numeric or symbolic values. Such a list may

either be provided explicitly by the user, or generated automatically by the

system if a repeated execution with a list of different values is required. The

loop element is used for ‘sweeps’ or iterations over a user-defined interval

with a fixed step size.

• Data input and output slots are used to describe the application’s input and

output data, i.e., data types (file or directory), transfer protocols permissible

for particular data, physical location of data, other descriptors (e.g., whether

data input is optional or mandatory), etc.

• The requirements slot of the ADS captures the application’s system re-

quirements. This information is processed by the DataMiningGrid Resource

Broker and used to match applications to resources (Section 3.3.1). Typical

entries include requirements for memory, disk space, the type of WS-GRAM

job manager (Fork or Condor), optional user-defined IP addresses of execu-

tion machines, operating systems and processor architectures (e.g., Motorola

PowerPC, Intel i386 and higher).

• Environment variables that need to be set at the execution machine before

execution of the application.

The data mining part of the ADS describes application information that is

specific to the data mining aspect of the application. The content structure

of the ADS is mainly based on CRISP-DM [36] and to a lesser extent on the

Data Mining Ontology for Grid Programming [10]. This information is used

to facilitate fast discovery of data mining applications and data-mining-aware

resource brokering. Among other things, this information includes the:

(1) Description (free text) of the data mining application and the domain-

34

specific problem it is used to address.

(2) CRISP-DM phase the application is used for.

(3) Data mining task to which the application applies.

(4) Data mining method or methodology the application employs.

(5) Data mining algorithm used by the application.

(6) Particular software implementation of the algorithm.

(7) Software suite the application is part of (e.g., Weka, Clementine).

4.2 Application development with the Triana user client

Triana-based application development with the DataMiningGrid system has

two aspects: application deployment and use. Deployment is concerned with

the grid-enabling of data mining applications for the DataMiningGrid system,

and use refers to employing applications that have already been grid-enabled

for the DataMiningGrid system to solve an actual problem. This approach of

deploying and using data mining applications in a grid offers the following

advantages. Firstly, all applications are handled by the system in a uniform

manner. This ensures that the system can be easily extended and accommo-

date new applications. Secondly, end users need concern themselves only with

information required to find, parameterize and launch applications. Domain-

oriented users who do not want to delve too deep into the grid technicalities

will find this feature especially appealing.

Deploying a data mining application requires that an initial instance of the

ADS is created for this particular application. This ADS instance defines all

aspects of the application including default options for certain parameters

that the user may override later. A DataMiningGrid developer usually per-

35

forms this task. The developer specifies all required information needed to

instantiate the ADS for the particular application. The Application Enabler

generates the corresponding initial ADS instance, registers the application de-

tails in the MDS4 registry, and uploads and stores all application files (e.g.,

executables, libraries) in the MDS4 database. A developer (as opposed to the

end user) is normally concerned with operating the Application Enabler, and

this is reflected in Fig. 1 by the dashed outline of the boxes representing the

Application Enablers in both the Triana and Web client case.

To use an already grid-enabled DataMiningGrid application, the user typi-

cally identifies the application he or she needs and then specifies the input

data, output data location, application options and parameters, and other in-

formation required to launch and execute the application in the DataMining-

Grid environment. They usually perform these tasks by using the Application

Explorer, Application Control, Execution Manager, and Data Manipulator

(Section 3.4.1) Triana units.

DataMiningGrid Generic Job Template (GJT) has been developed to support

the use of any data mining application enabled for the DataMiningGrid sys-

tem. This is similar to the work flow shown at the top of Fig. 2. The GJT

consists of different Triana units for (a) selecting a data mining application,

(b) selecting input data, (c) specifying application options, parameters, and

mapping data inputs to the application, and (d) remote execution of the job

on the grid.

To locate and select a data mining application registered in a grid, the user

employs either the Load Description or the Application Explorer units. These

units load the application’s ADS description either from the MDS4 or from a

36

local file.

The user has many ways to specify what data the application is to mine, e.g.,

by uploading a local data file, by executing an application-specific OGSA-DAI

client, by selecting a file on the grid, etc. The Grid Explorer and Grid URI

units and the Data Manipulator units provide a means to carry out this task,

and all ultimately communicate at least one URI to the Application Control

unit.

The Application Control unit is used to specify parameters of the application.

The output of this unit is a fully specified ADS instance containing all infor-

mation needed to execute the application. If a parameter sweep or a file sweep

is set, then the ADS instance describes the execution of multiple jobs rather

than a single execution.

The Execution Manager unit receives the ADS instance and initiates the exe-

cution of the application by communicating the ADS instance to the Resource

Broker. Finally, the execution results are passed on to a storage server and

details about the execution process are passed on to the Provenance Manager.

The Provenance Manager and Grid Explorer units are used to view the results

of the application execution and details about the execution process. The user

may also chose to store the metadata contained in the Provenance Manager

for further use.

37

4.3 Application development with the Web user client

The basic purpose of the Web-based Application Enabler is the same as the

Application Enabler Triana unit. The Web Application Enabler is a Web-based

tool used by the developer to define a initial DataMiningGrid ADS instance,

register the application in the grid-wide application registry (MDS4), and

store the application resources in the system. This facilitates easy discovery

and use by both users and developers. The Web version of the Application

Enabler consists of several form-based Web pages. These guide the developer

through the entire process of creating a DataMiningGrid ADS instance, and

uploading and registering the application in the grid. The steps include filling

in forms for General Information, Execution Information, Input Data, Output

Data, Requirements and Upload, and once these are completed the user may

initiate the application’s execution with the Start page.

4.4 Application run-time

Once an application is grid-enabled to operate in the DataMiningGrid envi-

ronment, the system architecture (Fig. 1) comes to ‘life’ by:

(1) Collecting the necessary information of the data to be processed, the data

application to be used, and the available resources.

(2) Matching the application requirements to suitable resources.

(3) Executing the distributed data mining application.

A more detailed account of this process is provided in the diagram of Fig. 3

and the accompanying description.

38

Resource
Broker

RFT
GridFTP

RFT
GridFTP

RFT
GridFTP

Information
Integrator

Information
Services (MDS4)

Workflow
Manager

Local
Scheduler

Local
Scheduler

Workflow
Editor

Job
Execution

Job
Execution

Job
Execution

Org A Org B

Org D

3

13a

8
14b

11

16

15a

12

4
1

2

9

10

15b

Software resource: Data and data mining applications

Middleware: GT4, local scheduler, etc.

Components/services developed by DataMiningGrid

Organization with own adminstrative domain Hardware resource: Primary/secondary storage devices

Hardware resource: Processing elements, networks, etc.

13b

Command and information flow

Data and data mining application software flow

5

7

6

14a

Org C (client)

To Data/Storage in Org A Grid

Legend:

Data Mining
Activities

OGSA-DAI

Data

Application

Application

Data

2

Local
Scheduler

Fig. 3. Process view of the DataMiningGrid system

Fig. 3 depicts a scenario involving four different organizations (labeled Org A

to Org D) from a virtual organization which are part of a grid. In the sce-

nario, data from Org A and an application from Org D are staged by the

system on resources at Org B and then executed there. This somewhat sim-

plistic scenario is chosen for reasons of diagrammatic clarity. Clearly, the sys-

tem supports more complex scenarios involving multiple processes running

simultaneously at many different sites involving multiple data and application

program resources. The numbers in the diagram denote the different steps

involved in this process:

Steps 1-2: Selection, query, extraction and pre-processing of data from Org A.

This involves the workflow component Data Manipulator (Section 3.4.1).

Steps 3-8: Querying information on available data mining applications. This

process extracts the information about the data mining applications as de-

39

scribed in the corresponding DataMiningGrid Application Description Schema

instance (Section 4.1) and produces the corresponding job descriptions.

Steps 9-10: The Resource Broker queries MDS4’s Information Services di-

rectly to retrieve up-to-date information on the grid, including available ma-

chines, workload statistics, and so on.

Step 11: Passing job descriptions to Globus Toolkit 4’s Job Execution Ser-

vices running on the selected execution machine(s) at Org B. In the depicted

scenario this is performed only at a single organization. In a different sce-

nario, Globus Toolkit 4 Job Execution Services in several organizations may

be called simultaneously. After Step 11, processing splits into two parallel

streams denoted by a and b respectively.

Steps 12-15: The Job Execution machine calls RFT/GridFTP components

to initiate the transfer of data (prepared by Step 2) from Org A, and the

files related to the application from Org D, to the storage component in

Org B. The steps labeled 13a, 14a and 15a relate to the transfer of data and

the steps 13b, 14b and 15b describe the transfer of application files such as

executables, libraries and other files. The optimization of the stage-in process

is based on the assumption that data movement is an expensive operation. To

minimize data movement, the stage-in process is performed once per GRAM

(as opposed once per job) and each job is provided with the complete URL of

the local data storage location. Usually, the GRAM is responsible for at least

one cluster of machines. The per-GRAM approach has the advantage that the

stage-in operation is performed far less than would be necessary in a per-job

approach. After successful stage-in of all the executables, data and libraries,

the executable is launched, and the execution is monitored until completion.

40

Step 16: Finally, this step describes the execution request, in which the job

description is passed from Globus Toolkit 4’s Job Execution Services to the

Local Scheduler in organization Org B.

5 Summary of main features

This section summarized the main features of the DataMiningGrid system.

Some of these features partially overlap or are interdependent to some degree.

Scope of application. The DataMiningGrid system is able to accommo-

date data mining applications from a wide range of platforms, technologies,

application domains and sectors.

Service-oriented architecture. The DataMiningGrid system is designed

around SOA principles. The system implements many independent services,

each capable of carrying out a set of predefined tasks. The integration of all

these services into one system with a variety of general and designated clients,

results in a highly modular, reusable, interoperable, scalable and maintainable

system.

User interfaces. The DataMiningGrid system provides two types of flexible

user interfaces based on a sophisticated workflow technology (Triana [40]) and

a Web client. The workflow client facilitates the composition and execution

of complex data mining processes by users with comprehensive data mining

expertise. The Web client is designed for domain-oriented end users who do not

require detailed knowledge of the underlying data mining and grid technology.

Dynamic configuration of graphical user interfaces. The metadata

41

included DataMiningGrid Data Mining Application Description Schema in-

stances allows data miners to operate data mining applications through a

dynamically configured graphical user interface, providing slots for specify-

ing public options, algorithm parameters, data inputs, and so on. This frees

the developer from the need to develop such interfaces for each and every

application.

Searchable applications. The DataMiningGrid’s repository of searchable

applications, which contains meta-data about each application available at

that particular time, provides data miners with a mechanism to search for

data mining applications available on the grid. The search can be performed

based on different criteria such as general attributes (application name, ven-

dor, version, etc.) or data mining specific attributes (CRISP-DM [36] phase,

functional area or data mining task, data mining technique or method). Ad-

ditionally, users may also specify custom queries using XQuery.

Shipping of applications. The DataMiningGrid system facilitates the ‘ship-

ping’ of data mining applications to targeted machines on the grid (as deter-

mined by either the user manually, or by the DataMiningGrid Resource Broker

automatically). This feature has two main advantages: (a) there is no need for

pre-installation of applications (this supports a dynamic grid infrastructure),

and (b) shipping of algorithms to data (this is useful if data cannot be trans-

ferred because of large data volumes, privacy issues, etc.). See also ease of

deployment below.

Data Mining Application Description Schema. The DataMiningGrid

ADS is a central feature of the DataMiningGrid system. Each data mining

application is characterized by an instance of the ADS. Particular ADS in-

42

stances are used for registering applications in a grid, searching applications,

creating Triana-based user interfaces dynamically, resource brokering, etc.

Data Services. The DataMiningGrid Data Services are represented by a

set of clients based on the OGSA-DAI software [5]. They facilitate integrating

distributed databases, ‘on-the-fly’ data formatting to support data mining op-

erations, performing data assays or summaries of accessed data sets, and the

extension of OGSA-DAI services to provide additional data preparation and

transformation operations. In addition, remote file browsing and transfer util-

ities provide easy user access to file-based applications and are implemented

using the Java CoG Kit [44].

Ease of deployment. An important feature of the DataMiningGrid system

is that it allows users to mine their data without the need to install grid

middleware or any data mining software at the location where their data

resides. Many users will have data sets that they wish to mine which are not

already exposed as data resources on the DataMiningGrid. To use the Data-

MiningGrid system, a user must have the Triana workflow editor installed and

a valid DataMiningGrid certificate. The DataMiningGrid software consists

of Java libraries and these, along with important Java libraries from grid

middleware (CoG Kit, GridBus, OGSA-DAI and Globus Toolkit, are simply

bundled together and copied to a library folder of the Triana workflow editor.

These libraries contain the client software that is used to manipulate data

resources, select DataMiningGrid applications and orchestrate all the Data-

MiningGrid services needed to execute these applications.

Resource Broker. The DataMiningGrid Resource Broker is essential to the

DataMiningGrid system. It combines the following features: (a) fully auto-

43

mated resource aggregation, (b) data-oriented scheduling, (c) zero-footprint

on execution machines, (d) extensive monitoring of resources, (e) brokering

based on application requirements typical to data mining (e.g., parameter

sweep, data mining task, etc.), (f) support for user-friendly applications, (g)

interoperability, and (h) adherence to relevant existing and emerging grid and

grid-related standards (e.g., interoperability, security). Extensive performance

experiments indicate that the Resource Broker exhibits good speed-up 1 and

scale-up 2 behavior [27,23,28].

Standardization. Even in the fast-changing field of grid computing adher-

ence to standards (and de-facto standards) is crucial for building flexible,

interoperable and future-proof systems. A critical standard the system sup-

ports is WSRF, which has been widely adopted by the grid community. Globus

Toolkit 4 is the key middleware upon which the DataMiningGrid system is

built. Globus Toolkit 4 implements the WSRF and follows the OGSA stan-

dard.

Re-use of (open-source) technology. A critical consideration in developing

the DataMiningGrid technology was to ensure that it will be taken up by the

industrial and R&D communities and can evolve into the future. To support

this goal the DataMiningGrid has been developed based on existing open

technology such as Globus Toolkit 4, OGSA-DAI, Triana and GridBus.

1 Speed-up is typically defined as the ratio of serial execution time of the fastest

known serial algorithm (requiring a certain number of basic operations to solve the

problem) to the parallel execution time of the chosen algorithm.
2 Scale-up may be defined as the ability of a greater number of processors to ac-

commodate a proportionally greater workload in a more-or-less constant amount of

time.

44

6 Evaluation

The section presents experiments that were carried out to evaluate the per-

formance of the integrated system components.

6.1 Test bed

To evaluate the DataMiningGrid system, a comprehensive test bed spanning

the three European countries UK, Germany and Slovenia was set up. The

test bed includes several servers with Globus Toolkit 4 installations and three

sites with Condor compute clusters of different composition. The basic test

bed hardware configuration was as follows:

• The Grid1 GRAM in Germany: Pentium 1.4 GHz, 1 GB RAM (running

middleware).

• The Matrix GRAM installation in the UK, with 64 Itanium II 900 MHz,

2 GB RAM; and 10-25 Pentium, 2 to 3 GHz, 1 GB RAM machines in the

condor pool.

• The Grid2 GRAM installation in Germany, with 5 Pentium 1.4 GHz, 1 GB

RAM machines in the condor pool.

• The Kanin GRAM installation in Slovenia, with 40 Pentium 1.4 GHz, 512

MB RAM machines in the condor pool.

In addition to performing comprehensive data mining studies based on the

main use case scenarios, numerous tests were run using a wide range of ap-

plication programs. Experiments relating to two main use case scenarios are

presented below [43].

45

6.2 Ecosystem modeling

The increasing pollution of aquatic systems has triggered intensive efforts

in the monitoring and management of such systems. These efforts include

ecological modeling approaches supported by information technology. Com-

putational ecosystem models allow decision makers to run simulations under

different conditions corresponding to alternative environmental policies. In

this area decision-support tools from machine learning, data mining and other

fields are increasingly employed to model and simulate ecosystems. Because of

the underlying complexity (non-linear dynamics phenomena, multiple experi-

ments under different conditions) the necessary calculations are conceptually

complex and compute-intensive. In this use case scenario, the DataMining-

Grid system was employed to (1) induce models of aquatic ecosystems from

modeling knowledge and measurement data, and (2) simulate these models

under changing (different) environmental conditions. The main purpose of the

developed models was to predict phytoplankton dynamics of two European

lakes: Lake Glumsoe (Denmark) and Lake of Bled (Slovenia) [42].

This study is based on Lagramge [41], which is a system for equation dis-

covery. Equation discovery is the area of machine learning concerned with

the automated discovery of quantitative laws, expressed in the form of equa-

tions, from collections of measured data. Equation discovery methods could

be viewed as an extension to system or model identification methods, as they

aim to identify both an adequate structure of the equations and appropriate

values of the constant parameters. In order to perform complex scenarios with

Lagramge, parallelization of the discovery process is very attractive as it can

reduce the process time significantly. We implemented the entire procedure of

46

model building using the DataMiningGrid system.

To execute the experiments on the DataMiningGrid system, ecological model-

ing experts developed two workflows, which were then combined into a (two-

step) complex workflow. The first step corresponds to the model induction

task. It is concerned with discovering an equation structure and model pa-

rameters that fit the training data well. The second step corresponds to the

simulation task. This step calculates the variables representing the ecological

system over time under different conditions with the model(s) derived in step

one.

The first step (model induction) of the workflow is the one that is computa-

tionally demanding. The induced model is expressed in the form of an ordinary

differential equation. This part of the workflow interacts with the measurement

data, which are files stored on the grid as data resources, and with the model

storage directory, in order to store the output results, i.e., the induced models.

The second (model simulation) part of the workflow interacts with (a) the

model storage directory (a data resource in the DataMiningGrid system) in

order to obtain the previously induced model(s), and (b) with the measure-

ment data (data resource) to obtain the data set defining the initial conditions

for simulation as well as with (c) another storage directory in order to store

the simulation results, which are then analyzed and interpreted by the domain

experts.

In order to test the system, seven test cases were prepared and executed in

the test bed. Each test case contains different ecological modeling scenarios,

resulting in different number of jobs. For these experiments only 18 out of

ca. 120 machines in the test bed were available due to operating system re-

47

quirements of Lagramge 2.0, which runs only under Linux. The speed-up was

evaluated for a workload of 60 jobs, by varying the number of machines to pro-

cess the jobs. Changing the number of machines from 1 to 10 corresponded to

speed-up of 6.70. Furthermore, increasing the number of machines by a factor

of 2.50 and the workload by a factor of 2.00 produced a scale-up of 1.80. In

addition to speed-up in the model construction process, the ecological mod-

eling experts found the user-friendly access to the data mining tools to be a

great benefit.

6.3 Text classification

In customer relationship management and quality management, Daimler-

Chrysler maintains distributed repositories with about 15 million text doc-

uments, and in the order of 104 new documents are added daily. In this ap-

plication (a) these documents need to be classified according to subject –

this facilitates their redirection to suitable subject matter experts, (b) new

emerging subjects need to be discovered, and (c) keywords need to be ex-

tracted from documents or groups of documents. It is infeasible to handle and

aggregate this information manually or on a centralized server. This appli-

cation requires the automation of these tasks, handling of their distribution,

and features methods for distributed text classification. Because these data

are confidential they cannot be described here. Instead, we have applied the

same techniques on newswire data available from the German news agency

dpa (Deutsche Presse-Agentur).

We performed measurements of runtimes for cross-validation with standard

SVM kernels (called SVM-CV) and cross-validation with structured graph

48

kernels (called Hypergraph-CV) [12]. The measurements were run identically

on three different GRAM installations with 5 (Grid2 Condor pool), 24 (Kanin

Condor pool) and 64 (Matrix condor pool) machines respectively. There was

no run which included two or more of the geographically separated GRAMs at

the same time. The measurements contain 1, 2, 4, 8, 16, 32, 64 and 128 jobs on

each Condor pool with the same input data for SVM-CV and 1, 2, 4, 8, 16 jobs

for Hypergraph-CV (this uses unpublished algorithms from Fraunhofer). The

Hypergraph-CV measurements were also executed on an input data volume

that is 50% of the size of the original data. Each set of jobs was run in two

modes:

• Fork mode denotes the sequential execution of each job on the GRAM in-

stallation machine in question to obtain reference values.

• Condor mode denotes the distributed execution of the jobs on the computing

pool, which is controlled by the Condor batch job system.

Cross-validation was performed on 1 000 documents of the dpa collection of Oc-

tober 2004. The pre-processing yields approximately 10 000 variables (distinct

content words), the exact number depends on the pre-processing parameters.

The source XML file of October 2004 is 39 MB, the pre-processed data file is

1.70 MB. The XML data resides at Fraunhofer IAIS, Germany, and was trans-

ferred to the remote GRAM machines. Pre-processing was performed locally

at the Condor pools.

To determine the performance of a classifier on the given data set, cross-

validation consisted of pre-processing documents, training the classifier, and

classifying in N identical runs. We executed the runtime measurements on

cross-validation for both classifier variants: SVM-CV and Hypergraph-CV.

49

Fig. 4. Cross-validation: Grid2 GRAM installation

Speed-up depends on the location of input data, in particular because input

files can become rather large. For a central file server with Gigabit Ethernet,

we measured a linear speed-up only for up to 5 machines. Unlimited linear

speed-up is possible and was measured only if the input files are mirrored on

locally installed disks. Fig. 4 to Fig. 6 show the test results of the SVM-CV

application.

• Comparison of Fork / Condor execution: Both Fork and Condor execution

have a linear increase in runtime. Execution on a Condor pool is faster than

Fork execution on a single machine so the increase is more moderate.

• Comparison of Fork execution: Fork execution is nearly the same at each

GRAM installation machine, the Matrix machine is marginally faster, be-

cause it has faster hardware.

• Comparison of Condor execution: The more machines the pool has the faster

is the Condor execution.

50

Fig. 5. Cross-validation: Kanin GRAM installation

Fig. 6. Cross-validation: Matrix GRAM installation

7 Related work

The purpose of this section is to briefly review some of the main efforts in the

area of distributed, and in particular grid-enabled, data mining technologies

and compare these, as much as this is possible, to the DataMiningGrid sys-

51

tem. The criteria used to compare and discuss these systems are listed below,

and a summary of the comparison is provided in Table 1. Although relevant

and interesting, due to space limitations, this review does not consider work

on distributed data mining in peer-to-peer networks, privacy-preserving data

mining, distributed data stream mining, data mining in mobile and embedded

devices, distributed data mining in sensor networks, or parallel data mining

(unless it is related to distributed or grid computing environments).

The following list describes a number of criteria we deemed relevant in dis-

cussing and comparing the DataMiningGrid system to related systems:

• Domain restrictions. The system is restricted to applications in certain do-

mains.

• Data mining task/technique restrictions. The system is restricted to certain

data mining tasks (e.g., classification, clustering) or methods or algorithms

implementing the tasks (e.g., C5.0, c-means).

• Data mining technology restrictions. The system is restricted to certain data

mining platforms, tools or implementations (e.g., Weka).

• Modification of data mining application source. The system requires modi-

fication at source-code level of the data mining application program to be

grid-enabled.

• Data mining standards supported. Major data mining standards that are

directly supported by the system (e.g., CRISP-DM, PMML).

• Data mining-aware resource brokering. The system provides a grid resource

broker that takes into account requirements and constraints relevant to data

mining.

• Data mining application metadata The system allows the characterization of

data mining application programs or components with computer-readable

52

metadata. In particular, this metadata should describe the constraints,

properties and requirements of the application in terms of data mining

dimensions (task, method, implementation) and computing requirements

(memory, hardware architecture, software and operating system require-

ments). The grid resource broker should be able to access and use this

information for effective resource brokering.

• Shipping of data mining application. The system facilitates the automated

shipping of data mining application programs to different locations within

a grid.

• User interface. The user interface the system provides for different types of

users (end user, developer, administrator).

• Workflow support. The system provides a means to define and execute com-

plex data mining workflows.

• Application search. The system provides a way for the user to identify suit-

able data mining applications within a grid (based on metadata used to

characterize applications).

• Service-oriented architecture. The system is based on principles of service-

oriented architecture.

• Distributed data management. The system facilitates management of dis-

tributed data sources, i.e., access to distributed data sources and ship-

ping/staging of data across grid nodes.

• Grid standards supported. The grid standards supported by the system.

• Middleware. Critical grid middleware the system is based on (e.g., Globus

Toolkit, Unicore, etc.).

• Inherent data distribution. The system supports direct mining of data which

are inherently distributed, i.e., data which cannot be merged or staged on

a single grid site or node. Typically, such scenarios exist where data are

53

Table 1
Comparing major grid-enabling technology with DataMiningGrid.

Fe
at
ur
e
/
Sy

st
em

D
a
ta

M
in

in
g
G

ri
d

G
ri
d
M

in
e
r

K
-G

ri
d

D
M

G
A

/
W

e
ka

G

S
O

D
D

M

F
A

E
H

IM

Domain restrictions No No No No No No

DM task/technique restriction No No No Part HDM No

DM technology restriction No No No Part – No

Modification of DM application No – No No Yes No

DM application metadata Yes Yes Yes Yes No Yes*

DM standards supported CRISP PMML – Weka No Weka

DM-aware resource brokering Yes – Yes Yes* No Yes*

Shipping of DM application Yes – Yes No No No

User interface G/W G G G OBPD G

Workflow support Yes Yes Yes Yes* Yes Yes

Application search Yes – Yes Yes* No Yes

Service-oriented architecture Yes Yes Yes Yes Yes Yes

Distributed data management Yes Yes Yes Yes No No

Grid standards supported WSRF OGSA WSRF WSRF WSBP WS

Middleware GT4 GT3 GT4 GT4 No No

Inherent data distribution Part – Yes No HO No

Fine-grained parallelism Part Yes No Yes Yes Part

Open source AOSL2 – No Weka No GPL

Seamless application handling Yes – – – – Yes

partitioned horizontally (a shared set of variables across distributed sets of

observations) or vertically (shared set of observations over distributed sets

of variables).

• Fine-grained parallelism. The system allows portions of a single data mining

algorithm instance to be run in parallel on distributed grid nodes.

• Open source. Whether the system software is available as open source license

(and if yes, what kind of license).

• Seamless application handling. Data mining applications can be flexibly

added, modified, removed without any changes to user components.

Legend for Table 1: Yes/No: Does/does not possess feature/property;

Part: Possesses feature/property partially; CRISP: CRISP-DM: CRoss In-

54

dustry Standard Process for Data Mining; WSRF: Web Services Resource

Framework; OGSA/I: Open Grid Services Architecture / Infrastructure;

GT2/3/4: Globus Toolkit 2/3/4; G/W: Graphical / Web browser user

interface; WSBP: Business Process Execution Language for Web Services;

HDM: Geared towards high-dimensional data; HO: Horizontal data parti-

tion; OBPD: Oracle BPEL Process Designer; AOSL2/GPL: Apache Open

Source License v2 / Gnu Public License; CL: Command line (interface); WS:

Web services-related standards; DM: data mining; *Not implemented; –: In-

formation could not be obtained

GridMiner [8] has been designed to support data mining and online-

analytical processing (OLAP) in distributed computing environments. Grid-

Miner implements a number of common data mining algorithms, some as

parallel versions, it also supports some text mining tasks. Each data mining

service is implemented as standalone grid service specified by OGSA. The

system architecture is service-oriented and a Dynamic Service Composition

Engine facilitates the integration and execution of services as a workflow. Grid-

Miner provides the integration of distributed databases based on OGSA-DAI.

A Knowledge Base component of GridMiner handles all elements of the data

mining process, and serves as a service and user registry. The task of bridging

the Web and grid environment gap is performed by a Dynamic Service Control

Engine component.

From a high-level architecture perspective GridMiner seems to have a lot in

common with the DataMiningGrid. Perhaps one of the main advantages of

the DataMiningGrid over GridMiner is that DataMiningGrid complies with

the more recent trend towards WSRF.

55

Knowledge Grid (K-Grid) [11], [14] is a high-level, service-oriented frame-

work providing grid-based data mining tools and services. The K-Grid system

facilitates a wide range of data mining tasks and related tasks such as data

management and knowledge representation. The system architecture is orga-

nized into a High-level K-Grid Services and a Core-level K-Grid Services layer,

which are built on top of a Basic Grid Services layer. The Core K-Grid Ser-

vices handle (a) publication and search of data sources and search for mining

results, (b) publication and search for data extraction, mining and visualiza-

tion tools, (c) definition and management of abstract execution plans used to

describe complex data mining processes, and (d) presentation of data mining

results. The High-level K-Grid Services are responsible for (a) managing meta-

data describing K-Grid resources, and (b) mapping of the requests described

in the abstraction execution plan to available resources, and managing and

executing the abstract execution plan. The main components of K-Grid are

implemented using the VEGA (Visual Environment for Grid Applications),

which is itself based on Globus Toolkit. Recent developments of K-Grid [14]

seek to re-implement an earlier pre-WSRF [11] as a WSRF-compliant version.

K-Grid is not too dissimilar to DataMiningGrid, except that DataMiningGrid

was conceived from the outset with OGSA and WSRF in mind. Recent K-Grid

developments are geared towards WSRF compliance [14]. Unlike DataMining-

Grid, K-Grid is not available as open source.

Data Mining Grid Architecture (DMGA) [34] is a flexible data min-

ing grid architecture, based on the main phases of a data mining process:

pre-processing, data mining itself and post-processing. This architecture is

composed of generic, data grid and specific data mining grid services. WekaG

[33] is an implementation of this architecture based on Weka [46], one of the

56

most well known and used data mining tools and Globus Toolkit 4. The main

advantages of the DMGA/WekaG combination include: (1) DMGA/WekaG

can be adapted to the requirements of complex data mining processes. (2)

WekaG is very easy to use for data mining users; the user interfaces of Weka

and WekaG are the same. (3) New data mining services can be added in a

flexible way. (4) It is possible to use a combination of different data mining

services that make use of trading and negotiation protocols for selecting the

most suitable service. (5) DMGA provides the composition of services, that

is, the ability to create workflows. DMGA offers both horizontal composition,

in which different functional services are composed, and vertical composition,

in which several instances of the same service access different data sets. (6)

Finally, WekaG is able to support parallel implementations of data mining

algorithms. Weka is available as open source and WekaG is likely to be open

source in the future.

While DMGA is flexible with regard to underlying data mining applications,

its WekaG implementation (which is based on Weka) is restricted to appli-

cations implemented in WekaG. DataMiningGrid is not restricted to specific

data mining applications.

Anteater [24] is a service-oriented architecture for data mining that relies on

Web services to achieve extensibility and interoperability. Anteater is designed

to handle large volumes of data and high computational demands, and to han-

dle a diverse user population. A particular feature of the Anteater system is

its capability to distribute fine-grained parallel data mining applications and

to provide high degrees of scalability. Anteater’s architecture revolves around

a set of servers, including the: data server, mining server, application server

and visualization server. Anteater uses visual metaphors to present the sys-

57

tem’s functionality to domain-oriented end users by keeping technical details

transparent to them. To exploit parallelism while maintaining performance,

Anteater provides a runtime system called Anthill. Anthill requires data min-

ing applications to be decomposed into filter-stream subcomponents, which

abstract a data mining application into a series of filters (computation) and

streams (communication). Anteater has been evaluated on a number of algo-

rithms and real-world data mining applications.

Anteater requires data mining applications to be converted into a filter-stream

structure. While this provides scalability, this overhead cuts down on the num-

ber of applications that will actually be ported to this platform. It is not clear

to what extent Anteater provides resource brokering. This highlights one of

the key features of the DataMiningGrid system – it is very easy to grid-enable

existing data mining applications and to seamlessly distribute its execution

within a grid computing environments based on the resource allocation and

management provided by the DataMiningGrid Resource Broker.

Service-oriented distributed data mining (SODDM): Work by Che-

ung and colleagues [13] is based on a platform which focuses on services-

oriented distributed data mining (we refer to this platform as SODDM). This

approach concentrates on real-time, on-demand, self-adaptive, distributed and

privacy-preserving mining of inherently distributed data. Privacy preservation

is achieved via a learning-from-abstractions approach, which is based on statis-

tical properties of private data rather than individual data items. The overall

mining process is performed via a global analysis of local data abstractions.

SODDM is based on Web services and the underlying data mining processes

are specified in the Business Process Execution Language for Web Services

(BPEL4WS also known as WSBPEL. In addition to supporting long-running

58

(stateful) interactions, BPEL4WS provides a model and a grammar for spec-

ifying interactions between a business process and its partners through Web

services interfaces. The learning-from-abstraction and self-adaptive approach

to distributed data mining was demonstrated using different data mining ap-

plications, including clustering and manifold unfolding for visualization. To

achieve self-adaptation (trade-off between overall data mining quality and

source data granularity) SODDM implements a negotiation procedure be-

tween the SODDM global service broker and the local data sources (which

are endowed with autonomous negotiation properties). Cheung et al. consider

service-orientation a critical step towards future distributed data mining since

it will help to find better ways to control and manage aspects such as accuracy,

privacy, efficiency and resource utilization.

In contrast to DataMiningGrid, which has no restrictions with regard to data

mining domains, applications, techniques or technology, SODDM is geared

towards data mining applications focusing on high-dimensional data. Also,

SODDM seems to have some limitations in terms of resource brokering and

other grid-related aspect (see Table 1).

Federated Analysis Environment for Heterogeneous Intelligent Min-

ing (FAEHIM) [4] implements a toolkit for supporting data mining based on

a grid services approach. The toolkit consists of data mining grid services and

a workflow engine to enable users to compose those services into a solution for

a particular problem. Three types of grid services are provided to implement

data mining functions: (1) classification, (2) clustering and (3) association

rules. The algorithms used to implement the data mining functions are taken

from Weka [46]. In addition, visualization grid services based on GnuPlot and

Mathematica are also provided to visualize the output of the data mining grid

59

services. Data sets may be read by the grid services from the local file space

or streamed from a remote location.

A limitation of FAEHIM seems to be its reliance on Weka. It is not clear if

FAEHIM supports any form of intelligent resource brokering. Like DataMin-

ingGrid, FAEHIM uses Triana [40] to define data mining processes.

Platform Independent Text Mining Engine Tool (Pimiento) [3] is

an object-oriented application framework (OOAF), i.e., an application ‘tem-

plate’, for text mining. Implemented in Java Standard Edition, the Pimiento

OOAF gives application developers the primary benefits of an OOAF, such as

modularity, reusability, extensibility, and inversion of control. It implements

several text mining functions, including text categorization, language identi-

fication, clustering and similarity analysis. The overall aims of the Pimiento

OOAF platform are to let application developers incorporate text mining func-

tionalities without having to worry about the complexity implicit in a text

mining engine, the scalable management of text documents, or access control.

Addressing these aims, the Pimiento development was driven by the follow-

ing key requirements: (1) Interoperability: Based on an open architecture and

open application interfaces, the Pimiento system should enable seamless inter-

action and integration between the application and the text mining platform.

(2) Modularity: Applications should continue to function (using the text min-

ing platform via services or components) after changes to the functionality of

the platform. (3) Simplicity: Software developers should be able to add text

mining functionalities to their applications, without requiring in-depth knowl-

edge on text mining. (4) Sustainability: Existing applications should not be

negatively affected when new algorithms, languages and features are added

to the platform. (5) Scalability and performance: In particular, the platform

60

should be able to perform and scale well as the amount of analyzed documents

increases. (6) Security.

Pimiento is an interesting mining tool with focus on text mining. While this

tool supports distributed text mining tasks, it does not seem to facilitate

sophisticated resource brokering.

Discovery Net [35] focuses on scientific discovery from high-throughput data

generated in life science, geo-hazard and environmental domains. Discovery

Net provides a service-oriented computing model for knowledge discovery, al-

lowing users to access and use data analysis software and data sources made

available by third parties. The system is based on the Globus Toolkit and

provides components (a) to declare the properties of analytical software com-

ponents and scientific data stores, (b) to retrieve and compose Knowledge

Discovery Services, (c) to integrate structured and semi-structured data from

different data sources using XML schemas, and (d) to deploy and publish exist-

ing knowledge discovery procedures as new services. The system also provides

a Discovery Process Markup Language (DPML) which is an XML-based rep-

resentation of the Discovery Net workflows. Processes created with DPML

workflows can be deployed and shared as new services on the grid. Another

feature of Discovery Net allows dynamic access and integration of various data

sets in the workflows. Interfaces to SQL databases, OGSA-DAI sources, Oracle

databases and custom designed wrappers are built to enable data integration.

Discovery Net does not seem to support WSRF. It is not clear to what extent

the system supports resource brokering, specifically with sensitivity to data

mining applications.

Algorithm Development and Mining (ADaM) [1] consists a wide vari-

61

ety of data mining and image processing components designed for analyzing

scientific and remote sensing data. The components can be configured to cre-

ate customized data mining processes. In its latest version, individual ADaM

data mining operations (called toolkits) are available as executables, libraries

(e.g., C/C++), modules (Python), and can be accessed via multiple external

interfaces facilitating the implementation of data mining and image processing

components as Web and grid services.

ADaM focuses on image processing tasks. While the ADaM system supports

a wide range of interfaces and a composition mechanism to realize customized

data mining processes, its seem to lack a proper workflow editing and man-

agement facility and grid resource brokering.

myGrid [2] aims to exploit the growing interest in grid technology, with an em-

phasis on the information grid and bioinformatics. In addition to basic issues of

storage, computation and resource management, myGrid is designed to provide

higher level functionalities over an existing grid infrastructure that supports

scientists in making use of complex distributed resources. In particular, this

includes supporting the (a) scientific process of experimental investigation,

evidence accumulation, and result assimilation, (b) scientist’s use of the com-

munity’s information, and (c) facilitation of scientific collaboration, allowing

dynamic groupings to tackle emergent research problems. myGrid consists of a

collection of loosely-coupled middleware components and services designed to

support data intensive in silico experiments in biology. Workflows and query

specifications link together third party and local resources using Web services

technology. Experiment Knowledge Discovery is the part of the in silico life

cycle that relates to data mining. The myGrid system includes a sophisticated

workflow tool called Taverna Workbench, which allows users to construct com-

62

plex analysis workflows from components located on both remote and local

machines, run these workflows on their own data and visualize the results.

The myGrid software can be freely downloaded and has been used for build-

ing discovery workflows for investigations into various life science studies. The

myGrid project is part of the Open Middleware Infrastructure Institute UK

Consortium (OMII-UK). The integration of the myGrid software stack with

the production level OMII-UK software promises to increase the commitment

of the existing user community, and to encourage a significantly wider deploy-

ment of the workflow and semantic grid capabilities that myGrid offers.

In contrast to DataMiningGrid, myGrid focuses on distributed information

and knowledge management in the context of the life sciences. Part of the

system is devoted to data mining activities. DataMiningGrid is much leaner

and concentrates on distributing data mining tasks to enhance performance;

to facilitate the sharing of data, data mining applications, and hardware; and

to promote resource exploitation. For users and developers interested solely

in grid-enabled data mining, DataMiningGrid seems to be more suited than

myGrid.

Overall we believe the collection of features of the DataMiningGrid technology

make it a unique and competitive contender for grid-enabling existing and

developing new data mining applications for grid computing environments.

8 Conclusion

As the demand for automated analysis of large and distributed data grows,

new data mining challenges in distributed computing environments emerge.

63

The aim of DataMiningGrid project is to address some important requirements

arising from modern data mining scenarios. The technology developed by the

project facilitates grid-enabling of existing, and the development of novel, data

mining applications. Major features of the DataMiningGrid technology include

high performance, scalability, flexibility, ease of use, conceptual simplicity,

compliance with emerging grid (e.g., WSRF) and data mining standards (e.g.,

CRISP-DM), and use of mainstream grid and open technology. The Data-

MiningGrid technology has been evaluated on the basis of a wide range of

representative modern data mining applications. In comparison with related

technologies, the DataMiningGrid system offers an attractive alternative. The

software is freely available under the Apache Open Source License version

2 via the project Web site [16] or SourceForge. Future developments of the

DataMiningGrid technology include to explore the technology in the context

of new applications and to further develop the system accordingly. This may

be approached by the DataMiningGrid partners individually or in concert or

indeed by anyone who wishes to do so.

Acknowledgements

This work was supported by the European Commission FP6 grant No. 004475.

The DataMiningGrid Consortium consists of five organizations: University

of Ulster, Fraunhofer Institute for Intelligent Analysis and Information Sys-

tems IAIS, DaimlerChrysler AG, Technion – Israel Institute of Technology,

and University of Ljubljana. Each partner organization contributed 20% to

the development of the DataMiningGrid system presented in this paper. We

hereby acknowledge the cooperation of all DataMiningGrid partners and col-

laborators in the DataMiningGrid project. We also thank the following people

for their contribution and discussion in the related work section of this pa-

64

per: Ali Shaikh Ali (Cardiff University, Cardiff), Maŕıa S. Pérez-Hernández

(Universidad Politécnica de Madrid), William K. Cheung (Hong Kong Bap-

tist University, Hong Kong), and Domenico Thalia (Universita’ della Calabria,

Rende).

References

[1] ADaM Web site.

URL http://datamining.itsc.uah.edu/adam/

[2] myGrid Web site.

URL www.mygrid.org.uk

[3] J. Adeva, R. Calvo, Text mining with Pimiento, IEEE Internet Computing

10 (4) (2006) 27–35.

[4] A. S. Ali, O. Rana, I. Taylor, Web services composition for distributed

data mining, in: Proc of the 2005 IEEE International Conference on Parallel

Processing Workshops (ICPPW’05), 2005.

[5] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. C. Hong, B. C. et al., The

design and implementation of grid database services in ogsa-dai, Concurrency

and Computation: Practice and Experience 17 (2-4) (2005) 357–376.

[6] A. Au, V. Curcin, M. Ghanem, N. Giannadakis, Y. Guo, M. Jafri, M. Osmond,

A. Oleynikov, A. Rowe, J. Syed, P. Wendel, Y. Zhang, Why grid-based data

mining matters? Fighting natural disasters on the grid: from sars to land slides,

in: S. Cox (ed.), UK e-science all-hands meeting, EPSRC, 2004.

65

[7] M. Berry, G. Linoff, Data Mining Techniques For Marketing, Sales and

Customer Support, John Wiley & Sons, Inc., New York, 1997.

[8] P. Brezany, I. Janciak, A. T. AM, GridMiner: A fundamental infrastructure for

building intelligent grid systems, in: The 2005 IEEE/WIC/ACM International

Conference on Web Intelligence (WI’05), 2005.

[9] R. Brito, W. Dubitzky, J. Rodrigues, Protein folding and unfolding simulations:

a new challenge for data mining, OMICS: A Journal of Integrative Biology 8 (2)

(2004) 153–166.

[10] M. Cannataro, C. Comito, A data mining ontology for grid programming, in:

1st Int. Workshop on Semantics in Peer-to-Peer and Grid Computing, 2003.

[11] M. Cannataro, D. Talia, P. Trunfio, Distributed data mining on the grid, Future

Generation Computer Systems 18 (8) (2002) 1101–1112.

[12] C.-C. Chang, D.-J. Lin, LIBSVM: a library for support vector machines (2001).

URL www.csie.ntu.edu.tw/~cjlin/libsvm

[13] W. Cheung, X.-F. Zhang, Z.-W. Luo, F. Tong, Service-oriented distributed data

mining, IEEE Internet Computing 10 (4) (2006) 44–54.

[14] A. Congiusta, D. Talia, P. Trunfio, Distributed data mining services leveraging

WSRF, Future Generation Computer Systems 23 (1) (2007) 34–41.

[15] K. Czajkowski, C. Kesselman, S. Fitzgerald, I. Foster, Grid information services

for distributed resource sharing, in: Proc 10th IEEE International Symposium

on High-Performance Distributed Computing, 2001.

66

[16] DataMiningGrid Consortium, The DataMiningGrid project Web site (2006).

URL www.DataMiningGrid.org

[17] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, The KDD process for extracting

useful knowledge from volumes of data, Communications of the ACM 39 (11)

(1996) 27–34.

[18] I. Foster, Globus toolkit version 4: Software for service-oriented systems, in:

H. Jin, D. Reed, W. Jiang (eds.), NPC 2005, LNCS 3779, IFIP International

Federation for Information, 2005.

[19] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology of the grid: An open

grid services architecture for distributed systems integration.

URL www.globus.org/alliance/publications/papers/ogsa.pdf

[20] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling scalable

virtual organizations, International Journal of High Performance Computing

Applications 15 (3) (2001) 200–222.

[21] W. Gentzsch, Sun Grid Engine: Towards creating a compute power grid, in:

Proc of First IEEE International Symposium on Cluster Computing and the

Grid, 2001.

[22] E. Gerck, Overview of certification systems: X.509, PKIX, CA, PGP and SKIP.

do you understand digital certificates? do you understand digital certificates?

(2000).

URL www.thebell.net/papers/certover.pdf

[23] A. Grama, A. Gupta, V. Kumar, Isoefficiency function: A scalability metric for

67

parallel algorithms and architecture, IEEE Parallel and Distributed Technology

1 (3) (1993) 12–21.

[24] D. Guedes, W. J. Meira, R. Ferreira, Anteater: A service-oriented architecture

for high-performance data mining, IEEE Internet Computing 10 (4) (2006) 36–

43.

[25] D. Hand, H. Mannila, P. Smyth, Principles of Data Mining, MIT Press,

Cambridge, MA, 2001.

[26] M. Haynow, Perspectives on grid: A deeper look at schedulers (2006).

URL www-128.ibm.com/developerworks/grid/library/gr-sked/

[27] V. Kravtsov, T. Niessen, V. Stankovski, A. Schuster, Service-based resource

brokering for grid-based data mining, in: Proc of Int’l Conference on Grid

Computing and Applications, 2006.

[28] V. Kumar, A. Gupta, Analyzing scalability of parallel algorithms and

architectures, Journal of Parallel and Distributed Computing 22 (3) (1994)

379–391.

[29] M. Litzkow, M. Livny, Experience with the condor distributed batch system,

in: Proc IEEE Workshop on Experimental Distributed Systems, 1990.

[30] S. Ma, J. Hellerstein, EventBrowser: A flexible tool for scalable analysis of event

data, in: Proc of Distributed Systems, Operations and Management (DSOM),

1999.

[31] J. Nabrzyski, J. Schopf, J. Wȩglarz (eds.), Grid Resource Management: State

of the Art and Future Trends, Kluwer Academic Publishers, Boston, Dordrecht,

68

London, 2004.

[32] R. Natarajan, R. Sion, T. Phan, A grid-based approach for enterprise-scale data

mining, Future Generation Computer Systesm 23 (2007) 48–54.

[33] M. Pérez, A. Sánchez, P. Herrero, V. Robles, J. P. na, Adapting the weka data

mining toolkit to a grid based environment, in: AWIC 2005, LNAI 3528, 2005.

[34] M. Pérez, A. Sánchez, V. Robles, P. Herrero, J. P. na, Design and

implementation of a data mining grid-aware architecture, Future Generation

Computer Systems 23 (1) (2007) 42–47.

[35] S. A. Sairafi, F. S. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo,

D. Kalaitzopolous, M. Osmond, A. Rowe, iJ. Syed, P. Wendel, The design of

discovery net: Towards open grid services for knowledge discovery, International

Journal of High Performance Computing Applications 17.

[36] C. Shearer, The CRISP-DM model: The new blueprint for data mining, Journal

of Data Warehousing 5 (4) (2000) 13–22.

[37] B. Sotomayor, L. Childers, Globus Toolkit 4: Programming Java Services,

Moragan Kaufmann, 2006.

[38] V. Stankovski, M. May, J. Franke, A. Schuster, D. McCourt, W. Dubitzky,

A service-centric perspective for data mining in complex problem solving

environments, in: H. Arabnia, J. Ni (eds.), Proc of Int’l Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA’04), 2004.

[39] M. Swain, T. Hunniford, J. Mandel, N. Palfreyman, W. Dubitzky, Reverse-

engineering gene-regulatory networks using evolutionary algorithms and grid

69

computing, Journal of Clinical Monitoring and Computing 19 (4-5) (2005) 329–

337.

[40] I. Taylor, M. Shields, I. Wang, A. Harrison, The Triana Workflow Environment:

Architecture and Applications, in: I. Taylor, E. Deelman, D. Gannon, M. Shields

(eds.), Workflows for e-Science, Springer, New York, Secaucus, NJ, USA, 2007,

pp. 320–339.

[41] L. Todorovski, S. Džeroski, Declarative bias in equation discovery, in: Proc of

Fourteenth International Conference on Machine Learning, 1997.

[42] L. Todorovski, S. Džeroski, B. Kompare, Modelling and prediction of

phytoplankton growth with equation discovery, Ecologial Modelling 113 (1998)

71–81.

[43] J. Trnkoczy, Ẑ. Turk, V. Stankovski, A grid-based architecture for personalized

federation of digital libraries, Library Collections, Acquisitions, and Technical

Services 30 (2006) 139–153.

[44] J. von Laszewski, I. Foster, CoG Kits: A bridge between commodity distributed

computing and high-performance grids, a Java commodity grid kit, in: ACM

2000 Java Grande Conference, 2000.

[45] V. Welch, Globus toolkit version 4 grid security infrastructure: A standards

perspective.

URL www-unix.globus.org/toolkit/docs/development/4.0-drafts/

security/GT4-GSI-Overview.pdf

[46] I. Witten, E. Frank, Practical machine learning tools and techniques. 2nd

70

Edition, Morgan Kaufmann, 2005.

[47] S. Zhou, LSF: load sharing in large-scale heterogeneous distributed systems, in:

Proc of the Workshop on Cluster Computing, 1992.

[48] H. Zhuge, Semantics, resource and grid, Future Generation Computer Systems

20 (1) (2004) 1–5.

Short Biographies

Vlado Stankovski

Mr Vlado Stankovski, M.Sc., is researcher at the Department of Civil Informatics

at the Faculty of Civil and Geodetic Engineering of the University of Ljubljana.

His past and current research interests include the application of machine learning

techniques and evolving Internet technologies to engineering and medical problems.

Martin Swain

Dr Martin Swain received an M.Phys degree in Physics from the University of

Manchester in 1996, and MSc. and Ph.D. degrees in intelligent computing systems

and bioinformatics from the University of Aberdeen in 1997 and 2001 respectively.

His research interests are in biophysics, systems biology, data management and grid

computing.

Valentin Kravtsov

71

Mr Valentin Kravtsov received his Bachelor degree in Software Engineering at the

Technion – Israel Institute of Technology. His M.Sc. research topics include grid

technologies and distributed and parallel computing.

Thomas Niessen

Mr Thomas Niessen received his Master Degree in Computer Science at the Uni-

versity of Applied Sciences Bonn-Rhein-Sieg in 2005. His research interests include

distributed computing, especially grid technology, data mining, and databases.

Dennis Wegener

Mr Dennis Wegener works as research fellow at the Fraunhofer Institute for Intelli-

gent Analysis and Information Systems IAIS, Department Knowledge Discovery, in

Bonn, Germany. His research interests include data mining and grid computing.

Jörg Kindermann

Dr. Jörg Kindermann is a mathematician and linguist. After graduation at the Uni-

versity of Bielefeld he worked at the German National Research Center for Computer

Science. Since 2001 he is a senior research scientist at the Fraunhofer Institute IAIS.

His research interests are text and multimedia mining, high performance computing,

and statistical learning algorithms.

Werner Dubitzky

72

Prof. Werner Dubitzky holds a Chair in Bioinformatics and is Head of the Systems

Biology Research Group at the University of Ulster. His research interests include

bioinformatics, systems biology, data and text mining, artificial intelligence and grid

technology.

Fig. 7. Vlado Stankovski

73

Fig. 8. Martin Swain

Fig. 9. Valentin Kravtsov

74

Fig. 10. Thomas Niessen

75

Fig. 11. Dennis Wegner

Fig. 12. Joerg Kindermann

76

Fig. 13. Werner Dubitzky

77

