
Distance Browsing in Distributed Multimedia Databases

Fabrizio Falchi
ISTI-CNR
Pisa, Italy

fabrizio.falchi@isti.cnr.it

Claudio Gennaro
ISTI-CNR
Pisa, Italy

claudio.gennaro@isti.cnr.it
Fausto Rabitti

ISTI-CNR
Pisa, Italy

fausto.rabitti@isti.cnr.it

Pavel Zezula
Masaryk University

Brno, Czech Republic
zezula@fi.muni.cz

ABSTRACT
The state of the art of searching for non-text data (e.g.,
images) is to use extracted metadata annotations or text,
which might be available as a related information. However,
supporting real content-based audio-visual search, based on
similarity search on features, is significantly more expensive
than searching for text. Moreover, such search exhibits lin-
ear scalability with respect to the data set size, so parallel
query execution is needed.

In this paper, we present a Distributed Incremental Near-
est Neighbor algorithm (DINN ) for finding closest objects
in an incremental fashion over data distributed among com-
puter nodes, each able to perform its local Incremental Near-
est Neighbor (local-INN ) algorithm. We prove that our al-
gorithm is optimum with respect to both the number of
involved nodes and the number of local-INN invocations.
An implementation of our DINN algorithm, on a real P2P
system called MCAN , was used for conducting an extensive
experimental evaluation on a real-life dataset.

The proposed algorithm is being used in two running
projects: SAPIR and NeP4B.

1. INTRODUCTION
A large component of the Web content nowadays consists

of non-text data, such as images, music, animations, and
videos. Current search engines index Web documents by
their textual content. For instance, web tools for perform-
ing image searching (such as the ones provided by Google,
Yahoo!, or MSN Live Search) simply index the text associ-
ated with the image and the ALT attribute of the IMG tag
used to provide a description of an image.

Image indexing methods based on content-based analysis
or pattern matching (which for instance analyzes the charac-
teristics of images, i.e., features, such as colors and shapes)
are usually not exploited at all. The problem is that these
processes are significantly more expensive than text analy-
sis. Nevertheless, what is more important is that the search
on the level of features exhibits linear scalability with re-
spect to the data search size, which is not acceptable for the
expected dimension of the problem. The reason is that for
this kind of data the appropriate search methods are based
on similarity paradigms that typically exploits range queries
and nearest neighbor queries. These queries are computa-
tionally more intensive than the exact match, because con-
ventional inverted indexes used for text are not applicable
for such data.

Besides multimedia information retrieval, there are other
applications, such as bioinformatics, data mining, pattern
recognition, machine learning, computer vision, that can
take advantage of the similarity search paradigm. How-
ever, different applications have in general different similar-
ity functions. A convenient way to address this problem and
achieve one solution for several purposes is to formalize the
similarity by the mathematical notion of the metric space.
Here data elements are assumed to be objects from a metric
space where pairwise distances between the objects can be
determined and where any distance satisfies the properties
of symmetry, non-negativity, identity, and triangle inequality
[16]. In this respect, the metric space approach to similar-
ity searching is highly extensible. However, our Distributed
Incremental Nearest Neighbor (DINN ) algorithm does even
not require the objects to be metric – we only suppose that
the distance is non-negative.

To address the problems of scalability, P2P communica-
tion paradigm seems to be a convenient approach, and sev-
eral scalable and distributed search structures have been
proposed even for the most generic case of metric space
searching (see [3] and [4]) for a survey). A common charac-
teristic of all these existing approaches is the autonomy of
the peers with no need of central coordination or flooding
strategies. Since there are no bottlenecks, the structures are
scalable and high performance is achieved through parallel
query execution on individual peers.

Since the number of closest objects is typically easier to
specify than establishing a search range, users prefer the
nearest neighbors to the range queries. For example, given
an image, it is easier to ask for 10 most similar ones ac-
cording to an image similarity criterion than to define the
similarity threshold quantified as a real number. However,
nearest neighbors algorithms are typically more difficult to
implement, and in P2P environments the situation is even
worse. The main reason is that traditional (optimum) ap-
proaches [10] are based on a priority queue with a ranking
criterion, which sequentially decides the order of accessed
data buckets. In fact, the existence of centralized entities
and sequential processing are completely in contradiction
with decentralization and parallelism objectives of any P2P
search network. Things are further complicated by the nat-
ural necessity of some applications to retrieve the nearest
neighbor in an incremental fashion, because the number of
desired neighbors is unknown in advance. By incremental,
we mean that such an algorithm computes the neighbors one



by one, without the need to re-compute the query from the
scratch.

An important example of application of Incremental Near-
est Neighbor is processing of complex queries, that is queries
involving more than one feature overlay, such as: find all
images most similar to the query image with respect to the
color and the shape at once. In this situation, we do not
know how many neighbors must be retrieved in individual
layers before the best object is found that satisfies the com-
plex condition. In fact, the widely used A0 (also called Fa-
gin’s Algorithm) [5] as well as the threshold algorithm [6]
suppose that each single source for a specific feature is able
to perform a INN algorithm.

In this paper, we present a first attempt to approach the
Incremental Nearest Neighbor problem for P2P-based sys-
tems. Our proposed solution, based on a generalization of
the algorithm proposed in [10] for hierarchical centralized
structures, is optimal and independent from any specific
P2P architecture – it can be applied to any Scalable and
Distributed Data Structure (SDDS), P2P system, and Grid-
based similarity search infrastructure. We implemented our
algorithm on a real P2P system called MCAN [8, 9] and we
conducted an extensive experimental evaluation on a real-
life dataset of 1,000,000 objects. MCAN is a scalable dis-
tributed similarity search structure for metric data (for a
survey see [3]) which extends the Content-Addressable Net-
work (CAN) (a well known Distributed Hash Table).

The INN algorithm is being used in two running projects:
SAPIR 1 and NeP4B 2. The European project SAPIR (Search
on Audio-visual content using Peer-to-peer Information Re-
trieval) aims at finding new ways to analyze, index, and
retrieve the tremendous amounts of speech, image, video,
and music that are filling our digital universe, going be-
yond what the most popular engines are still doing, that is,
searching using text tags that have been associated to mul-
timedia files. SAPIR is a three-year research project that
aims at breaking this technological barrier by developing a
large-scale, distributed peer-to-peer infrastructure that will
make it possible to search for audio-visual content by query-
ing the specific characteristics (i.e. features) of the content.
SAPIR’s goal is to establish a giant peer-to-peer network,
where users are peers that produce audiovisual content using
multiple devices (e.g., cell phones) and service providers will
use more powerful peers that maintain indexes and provide
search capabilities

NeP4B (Networked Peers for Business), is an Italian project
aiming at innovative ICTs solutions for Small and Medium
size Enterprizes (SMEs), by developing an advanced tech-
nological infrastructure to enable companies of any nature,
size and geographic location to search for partners, negotiate
and collaborate without limitations and constraints. The
infrastructure will base on independent and interoperable
semantic peers which behave as nodes of a virtual network.
The project vision is towards an Internet-based structured
marketplace where companies can access the huge amount of
information already present in vertical portals and corporate
databases and use it for dynamic, value-adding collaboration
purposes. In the NeP4B P2P infrastructure the semantic
peers represent aggregations of SMEs with similar activities
and the multimedia objects are descriptions/presentations of

1http://www.sapir.eu/
2http://dbgroup.unimo.it/nep4b/

their products/services extracted from the companies’ Web
sites.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 provides an overview
of our proposed solution while the formal definition is given
in Section 4. In Section 5 we report the results of an exten-
sive experimental evaluation of the DINN over the MCAN .
Conclusions and future work are discussed in Section 6.

An earlier version of this paper has been presented at
the Second International Conference on Scalable Informa-
tion Systems (INFOSCALE 2007) [7].

2. RELATED WORK
Our proposed solution is based on a generalization of the

algorithm proposed in [10]. The incremental nearest neigh-
bor algorithm defined in [10] is applicable whenever the
search space is structured in a hierarchical manner. The
algorithm starts off by initializing the queue of pending re-
quests with the root of the search structure - since the order
of entries in this queue is crucial, they refer to it as the pri-
ority queue. In the main loop, the element closest to the
query is taken off the queue. If it is an object, it reports
it as the next nearest object. Otherwise, the child elements
of the element in the search hierarchy are inserted into the
priority queue.

In [15] an efficient algorithm to perform k-NN in a P2P
system (specifically the Chord [14]) is proposed. The algo-
rithm uses the same priority queue based approach of [10].
As far as we know, it is the first attempt to extend [10] to
the distributed environment making use of the parallelism
of the P2P network.

They define their algorithm for a hierarchical index (as in
[10]). To provide distributed hashing of spatial data they
use a distributed quadtree index they developed, although
they say that other indices can be utilized as well (e.g., P2P
R-trees [11]). The query is first initiated on a single peer in
the P2P network. This peer maintains the priority queue of
quadtree blocks (mapping to a control point each) that are
being processed for the query. To process a block, they have
to contact from this query initiating peer, the peer that owns
that block, i.e., the control point. Hence, in their parallel
algorithm, they contact, rather than just the top entry of
the priority queue, a multiple number of these peers.

3. DINN OUTLINE
The INN algorithm [10] was defined for a large class of

centralized hierarchical spatial data structures. Instead our
DINN algorithm is distributed and not limited to hierarchi-
cal structures. Thus it can be used over SDDSs, P2P sys-
tems and Grid infrastructures. Our algorithm is built over
nodes which are able to perform locally an INN between the
objects they store (this will be formalized in Assumption 1).

In particular, we reformulate the definition of priority
queue (Queue) given in [10] by considering as elements of
Queue, objects and nodes (or peers). We prove that our
algorithm is optimal, in terms of both number of involved
nodes and local-INN invocations. The elements of Queue
are ordered according to a key which is always associated
with both objects and nodes. The key associated with each
object is the distance between the query and the object it-
self. Instead the key associated with each node is a lower
bound for the distance between the query and the next re-



sult coming from the node. While for an already involved
node this lower bound can be simply the distance from the
query of the last object retrieved by its local-INN , for the
not yet involved nodes a naive solution could be to always
use 0 as lower bound. However, this would imply all nodes
to be involved for every similarity query. To avoid this, we
suppose that each node is able to evaluate this lower bound
for every node it knows (in P2P systems they are called
neighbors).

Furthermore, in P2P systems there is no global knowl-
edge of the network. Thus, we make an assumption (see
Assumption 2) regarding the ability to find the next most
promising node (by considering the lower bound mentioned
before). This assumption replace the consistency condition
used in [10] for hierarchical data structures. We prove that
our assumption can be satisfied under one of two simpler
conditions (see Subsection 4.3.3) which are common for data
structures able to perform similarity search.

During the DINN algorithm execution, Queue contains a
certain number of entries sorted in order of decreasing key.
Entries can be both nodes and objects. Because of the values
used as key, when a node is after an object we are sure that
no better results than the object itself can be found in the
node. The algorithm proceeds by processing Queue from
the top. Basically if the first entry of the queue is an object,
this object is the result of the DINN . In case the first entry
is a node, we invoke its local-INN . The resulting object of
this invocation is placed in Queue and its distance from the
query allows us to update the entry with a more accurate
(greater) lower bound which moves the node backward in
Queue.

This outlined implementation is intrinsically sequential,
since a single step of the algorithm involves only the first
element of Queue at a time. In the second part of the pa-
per, we straightforwardly generalize the algorithm introduc-
ing parallelism by invoking the local-INN algorithm of more
than one node simultaneously. The precise definition of the
algorithms is provided in the next section. Examples are
given to help understanding the algorithm.

4. THE DINN ALGORITHM

4.1 Definitions and Notation
In this subsection we provide a number of definitions and

notations required to define the DINN algorithm.
Notation:

• N is the set of the nodes participating in the dis-
tributed system

• D is the objects domain

• Xi ⊂ D is the set of the objects stored in a given node
Ni ∈ N

• X =
⋃

i Xi is the set of the objects stored in the whole
network.

As in [10], our DINN is based on a priority queue:

Definition 1. A priority queue (Queue) is a set of pairs
〈element, ϑ〉 ordered according to key ϑ ∈ R+. An element
can be either an object or a node.

Symbol Meaning

N the set of the nodes participating in the dis-
tributed system

Ni a node participating in the distributed system
(Ni ∈ N )

D the objects domain
x an object in the domain (x ∈ D)

d(x, y) the distance between x and y (x, y ∈ D)

r a value in R+

Xi Xi ⊂ D is the set of the objects stored in a
given node Ni ∈ N

X the set of the objects stored in the whole net-
work (X =

⋃
i Xi)

δ(Ni, x) the lower bound for the distances between x ∈
D and all the objects stored in Ni (i.e., Xi)

Nx,r the set of nodes in N that could have objects
closer to x than r

Nx a subset of nodes N which is either downward
closed (with respect to x) or empty

Nn the closest node to x in (N \ Nx)
N ∗ the set of nodes that already performed a local-

INN
e an element, either an object or a node, in

Queue

ϑ ϑ ∈ R+ is the key used for ordering the ele-
ments of Queue

Queue the set of pairs 〈element, ϑ〉 ordered according
to key ϑ

k the number of objects already retrieved by the
previous invocations of the DINN

k+ the number of next neighbors we want to re-
trieve

kans the number of results already found by the
DINN during the current invocation

k̂ k̂ = k+ − kans

xk̂ xk̂ ∈ X is the k̂-th object in Queue
p p ∈ [0, 1] is the parameter used to set the de-

gree of parallelization of the DINN
li li ∈ Xi is the last object returned by Ni

Table 1: Notation

In order to avoid involving all the nodes in the DINN
execution, we suppose there is the possibility to evaluate a
lower bound (δ) for the distances between the objects stored
in a certain node and any given object in D.

Definition 2. Given a node Ni ∈ N and an object x ∈ D
we define δ : N×D → R+ as a lower bound for the distances
between x and all the objects stored in Ni (i.e., Xi):

δ(Ni, x) ≤ min{d(y, x), y ∈ Xi}

Note that this lower bound could even be 0 for every node.
Thus we do not strictly require this lower bound to be evalu-
able, but we use it for efficiency in case it can be given. In
case each node Ni ∈ N of a given distributed data structure
is responsible for a portion Di of the domain D we will say
that δ is strong iff:

∀Ni ∈ N , δ(Ni, x) = 0⇔ x ∈ Di



In defining our DINN algorithm we will use the general
notion of downward closed set. We will limit this notion to
set of nodes with respect to a given object (making use the
lower bound δ defined above).

Definition 3. A set of nodes Nx is downward closed with
respect to an object x ∈ D iff ∀Nj , Ni ∈ N :

Ni ∈ Nx ∧ δ(Nj , x) < δ(Ni, x)⇒ Nj ∈ Nx

In other words, if a set of nodes is downward closed with
respect to an object x ∈ D, there are no nodes, out of the
set, with a lower bound less to those of the nodes in the set.
In Figure 1 we give an example of downward closed sets of
nodes. The position of each node Ni on the axis is deter-
mined by δ(Ni, x). The nodes are grouped in all the possible
downward closed sets. Note that, by Definition 3, each set
contains N1 which has the minimum δ from x. Moreover,
each downward closed set of nodes contains any node be-
tween N1 and the furthest away node in the set itself. Obvi-
ously, the position on the axis of the nodes depends on the
particular object x.

Another special set of nodes we will refer in the algorithm
definition is the set of nodes whose lower bound δ is less
than a given r ∈ R+:

Definition 4. Let x be an object in D and r ∈ R+. Nx,r

is the set of nodes in N that could have objects closer to x
than r, i.e.,

Nx,r = {Ni : Ni ∈ N ∧ δ(Ni, x) ≤ r}.

In Table 4.1, we report the list of symbols used in this
paper with their corresponding meaning. Please note that
in this table also symbols that will be defined and used in
the next section can be found.

4.2 Assumptions
Our DINN algorithm is based on two assumptions.

Assumption 1. Each node Ni ∈ N is able to perform a
local-INN algorithm over the objects Xi ⊆ Di it stores.

Assumption 2. Let x ∈ D be an object in the domain.
Let Nx ⊆ N be a subset of nodes which is either downward
closed (with respect to x) or empty. Let Nn ∈ (N \ Nx) be
the closest node to x in (N \ Nx), i.e.,

Nn = arg min
Ni

{δ(Ni, x), Ni ∈ (N \Nx)}.

Whenever an arbitrary node Nc ∈ N knows Nx (i.e., would
be able to contact all the nodes in Nx), Nc must be able to
check if Nn exists (i.e., (N \ Nx) 6= ∅) and, eventually, to
contact it.

Assumption 1 is needed because our DINN algorithm is
built over nodes which are able to perform a local-INN.

Assumption 2 is necessary for engaging the nodes in the
DINN algorithm execution as it progresses. Basically, given
the lower bound δ defined in Definition 2, we require a mech-
anism for adding the nodes to Queue in order of increasing δ
from a query q. In case there is some replication in the dis-
tributed system, there could be two or more nodes Nj ∈ N
for which δ(Nj , x) = 0. However, we only need to find one
of them.

When Nx 6= ∅, Assumption 2 means that the distributed
system must be able to search for the next most promising
node (Nn) given that we already know a set of nodes (Nx)
which are more, or equal, promising (by considering δ) than
the next one (i.e., Nx is downward closed).

The role of the downward closed subset Nx will be clar-
ified in the next section which will extensively discuss the
algorithm. However, we can anticipate that, because of the
algorithm definition, it is a subset of the nodes that, at
any given time during the algorithm execution, have been
already asked for a local-INN execution. In particular, if
Nx = ∅, Assumption 2 means that any node Nc ∈ N must
be able to find (using some routing mechanism provided by
the distributed system), a node Nn ∈ N for which the dis-
tance δ(Nn, x) is minimum.

If, for a specific data structure, it is not possible to eval-
uate the lower bound δ, we can consider δ(Ni, q) = 0 for
every node Ni ∈ N . In this case the order in which the
nodes are added to Queue is undefined. However in this
case, we will involve all the nodes in (almost) every execu-
tion of the DINN algorithm. In fact, given that there is not
a lower bound for the distance between the objects stored
in a given node and the query, we can not exclude any node
a priori.

Please note that, we do not suppose that in the distributed
system there is a global knowledge of the network. We only
assume that there is a way (usually a routing mechanism) to
find the most promising node for the algorithm progress. It
can also be noted that, if δ is strong, the first node added to
Queue is the node Nn that would contain x (i.e., δ(Nn, x) =
0). Therefore, in this case, the problem of finding the most
promising node becomes similar to the lookup problem in
DHTs.

While Assumption 2 is the most generic one, there are
simpler assumptions that can substitute it. In fact, in Sec-
tion 4.3.3, we illustrate two sufficient conditions for Assump-
tion 2. Condition 1 guarantees that the next most promising
node is always in Queue by just collecting information about
neighbors of yet involved nodes. On the other hand, Condi-
tion 2 is easily satisfied by data structures able to perform
similarity search because it basically makes use of the capa-
bility of a system to perform range queries.

4.3 The algorithm
In this section we present the definition of our DINN algo-

rithm for retrieving objects in order of decreasing similarity
with respect to a given query q. In particular, we will de-
fine the process of retrieving the next closest object to q at
each DINN invocation. In Subsection 4.4 we will present a
message reduction optimization in case we want to retrieve
more than one object at each DINN invocation. Finally in
Subsection 4.5 the proposed algorithm will be extended to
parallelize the operations made by distinct nodes.

To perform the DINN we need to define a node that takes
the role of coordinating node (Nc). A good candidate for
this role is the initiating node (i.e., the node requesting the
search). Another good candidate, in case δ is strong (see
Definition 2) is the node that would store the query (i.e.,
δ(Nc, x) = 0). However, the definition of our DINN algo-
rithm is independent on the particular choice of the coordi-
nating node. This choice only affects the number of messages
exchanged during the query execution.

As in [10] we need a Queue (see Definition 1) in which el-



N2N5N3N7N 1

0
δ(Ni, x)

N4

Figure 1: Downward closed set of nodes with respect to object.

ements are ordered according to their key (see Definition 5).
Moreover, when an object and an element have the same key,
the object comes before the node in Queue. In Queue nodes
will be assigned a different key (ϑ) depending on whether
they have already returned objects or not. Thus, we will use
the following notation:

Notation 1. N ∗ ⊂ N is the set of nodes that already per-
formed a local-INN .

An important part of the DINN algorithm definition is
the definition of the keys used to order elements in Queue.

Definition 5. Given a query object q ∈ D we define the
key ϑ as:

• ϑx = d(x, q), for any object x ∈ D;

• ϑNi = δ(Ni, q), for any node Ni that has not yet been
asked for a local-INN (i.e., Ni /∈ N ∗);

• ϑNi = d(li, q), for any Ni ∈ N ∗, where li ∈ Xi is
the last object that Ni returned when performing its
local-INN.

Note that both keys used for nodes are lower bounds for
the distance between the query q and the next result coming
from the local-INN invocation on node Ni.

The DINN algorithm consists of a loop in which:

1. If Queue is empty, the closest node (Nn) to q that has
not yet performed a local-INN is added to Queue. In
case Nn does not exist, the DINN terminates (there
are no more objects in the distributed data structures);

2. Else, if the first element in Queue is a node (Ni), this
node is asked to perform a local-INN . Then the re-
turned result li ∈ Xi is added to Queue and the key of
Ni is updated with ϑNi = d(li, q). In case Ni did not
return any object (i.e., it has already returned all its
objects), the Ni is removed from Queue;

3. Else, if the first element in Queue is an object x: let Nn

be the closest node to q that has not yet performed a
local-INN and has δ(Nn, q) < d(x, q); if Nn exists, add
it to Queue, otherwise the loop is exited returning x as
the next result. Note that ifN ∗ is downward closed Nn

can be found because of Assumption 2. We prove N ∗

to be downward closed in Corollary 1 (Section 4.3.1).

Queue must be kept alive for future request of more re-
sults. Obviously, the requester can close the session assert-
ing that no more results will be asked. In this case Queue
can be discarded.

In Algorithm 1 we give a definition of the DINN algorithm
using a pseudo language. The functions and procedures used
in Algorithm 1 are defined as follows:

Algorithm 1 Distributed Incremental Nearest Neighbor Al-
gorithm

loop
if Queue is empty then
Ni ⇐ Getnextnode(q, N ∗)
if Ni = NULL then

Return NULL
end if
Enqueue(Queue, 〈Ni, δ(Ni, q)〉 )

else if First(Queue) is an object then
x⇐ First(Queue)
Ni ⇐ Getnextnodeinr(q, 〈N ∗, d(x, q)〉 )
if Ni = NULL then

Return x
end if
Enqueue(Queue, 〈Ni, δ(Ni, q)〉 )

else if First(Queue) is a node then
Ni ⇐ First(Queue)
x⇐ LocalINN(q, Ni)
N ∗ ⇐ N ∗ ∪Ni

if x 6= NULL then
Enqueue(Queue, 〈x, d(x, q)〉 )
Updatekey(〈Ni, d(x, q)〉 )

else {node Ni has no more objects}
Exqueue(Queue, Ni)

end if
end if

end loop

• First(Queue): returns the first element in Queue.

• LocalINN(q, Ni): asks node Ni to return the next
result according to its local-INN with respect to the
query q.

• Enqueue(Queue, 〈e, ϑ〉 ): adds element e, either an
object or a node, to Queue with key ϑ.

• Updatekey(Queue, 〈Ni, r〉 ): updates the key of node
Ni in Queue with the value r ∈ R+.

• Exqueue(Queue, e): removes element e and its key
from Queue.

• Getnextnodeinr(q, N ∗, r): returns
arg min

Ni

{δ(Ni, q), Ni ∈ (Nq,r \ N ∗)}.

• Getnextnode(q, N ∗): returns
arg min

Ni

{δ(Ni, q), Ni ∈ (N \N ∗)}.

Note that if N ∗ is always downward closed with respect to
q, because of Assumption 2 it is possible to implement the



function Getnextnode(q, N ∗). We prove this in Corol-
lary 1 (Section 4.3.1). Please note also that Getnextn-
odeinr(q, N ∗, r) can be implemented using Getnextn-
ode(q, N ∗). On the other side, using Getnextnodeinr,
we can realize Getnextnode increasing r until a node is
found. However, Getnextnodeinr(q, N ∗, r) can be more
efficiently implemented considering that it does not need to
return a node if it is farther away than r from q.

In Figure 2 we give an example of Queue at a given time
during the DINN execution. The dotted lines show from
which node every object comes from. Let us suppose that
we are searching for the next nearest object to the query q
and we have already found some results which are no more
in Queue (please note that whenever a result is found it is
moved out of Queue). The next element in Queue is N3.
Thus, we have to to invoke its the N3 local-INN to retrieve
the N3 next result. Let w be the next result retrieved by N3.
Once w is retrieved, both w and N3 are put in the Queue
with the same key d(w, q). However, because w is an object,
it will be before N3 in Queue. If d(w, q) < d(z, q) then w is
the first element in Queue and thus it is also the next result
of the DINN. Otherwise z is the first element in Queue and
also the next result.

4.3.1 Correctness
In this section we prove that our DINN algorithm is cor-

rect, i.e., it returns objects in order of increasing distance
(decreasing similarity) from the query q (Theorem 1).

First of all, to guarantee that it is possible to define Get-
nextnodeinr and Getnextnode for a given distributed
system under Assumption 2, we must prove that N ∗ is al-
ways downward closed with respect to q:

Corollary 1. At any time during the DINN algorithm
execution, the set of nodes N ∗ (i.e., the set of nodes that
already performed a local-INN) is downward closed with re-
spect to the query q.

Proof. We prove the corollary using induction. When
the algorithm starts Queue is empty and a node Ni is added
to Queue using Getnextnode(q, ∅) (usually δ(Ni, q) = 0).
After Ni has been asked for a result, N ∗ contains only Ni

and is downward closed by definition of Getnextnode. At
any given time during the algorithm execution, let Nn be the
node, if it exists, returned either by the function Getnextn-
odeinr(q, r, N ∗) or by the function Getnextnode(q, N ∗).
Because of the functions definitions, if Nn exists, there is no
other node Nj ∈ N ∗ for which δ(Nj , q) < δ(Nn, q). Then
(N ∗ ∪Nn) is still downward closed with respect to q.

Theorem 1 (Correctness). Let R be the set of ob-
jects already returned by the DINN algorithm. Whenever
DINN returns an object x there are no objects nearer to the
query:

∀y ∈ X , d(y, q) < d(x, q)⇒ y ∈ R
Proof. By definition of X there must be a node Nj ∈ N

for which y ∈ Xj . Using Definition Definitionnot:qrnodes,
d(y, q) < d(x, q) ⇒ Nj ∈ Nq,d(x,q). Because of the al-
gorithm definition, Getnextnodeinr(x, d(x, q), N ∗) did
not return any node. Then, by Getnextnodeinr defini-
tion, (Nq,d(x,q) \ N ∗) = ∅ and then Nj ∈ N ∗ (i.e., y be-
longs to a node which has already been asked for a local-
INN ). If Ny ∈ N ∗ has some not returned objects by al-
gorithm definition Nj is in Queue with key d(li, q) (where

li ∈ Xi is the last object it returned). Because x is first,
d(li, q) ≥ d(x, q) > d(y, q). Then y must be between the
objects Ni already returned, which are either in R or in
Queue. But y can not be in the priority because x is first
and objects are ordered according to their distance from the
query, then y ∈ R .

4.3.2 Optimality
In this section we prove that our DINN algorithm is opti-

mal in terms of number of involved nodes (Theorem 2) and
number of local-INN invocations (Theorem 3).

Theorem 2. The DINN is optimal with respect to the
number of involved nodes given the lower bound δ.

Proof. The theorem can be rewritten as follows. Let N ∗

be the set of involved nodes, x ∈ X the last object returned
by the DINN and q ∈ D the query object. Whenever the
local-INN of Ni is invoked, the lower bound δ of the distance
between q and the objects in Ni is less than the distance
between q and x, i.e.,

Ni ∈ N ∗ ⇒ δ(Ni, q) ≤ d(x, q).

Because of the algorithm definition (see Algorithm 1), the
last returned object x was at the head of Queue and each
node is requested to perform a local-INN result only when
they are at the head of Queue. Because of δ(Ni, q) and
d(x, q) are used as key for not yet involved nodes and ob-
jects respectively (see Definition 5), the last equation always
holds. In fact, both objects and nodes are ordered in Queue
according to their keys.

Theorem 3. The DINN is optimal with respect to the
number of local-INN invocations given the lower bounds
δ for the not yet involved nodes, and d(li, q) for the yet in-
volved nodes.

Proof. In Theorem 2 we proved that the DINN is opti-
mal in terms of number of involved nodes. Thus, DINN is
optimal in terms of local-INN first invocations. Moreover,
being ϑNi = d(li, q) the key (used to order the elements in
Queue) for a node Ni that already performed a local-INN
(see Definition 5), whenever Ni is asked to retrieve its next
result (using its local-INN ) we are sure that the DINN next
result will be further away than d(li, q). In fact, we are us-
ing as key in Queue d(x, q) for every object x and a lower
bound for d(yi, q) for every node Ni (see Definition 5).

4.3.3 Sufficient Conditions for
Assumption 2

In this section we give two conditions which are sufficient
for Assumption 2. Condition 1 guarantees that the next
most promising node is always in Queue just collecting in-
formation about neighbors of yet involved nodes (i.e., with-
out generating more messages) and is satisfied by MCAN
which we used in our experiments. On the other hand, Con-
dition 2 makes use of the capability to perform range queries
and is thus easily satisfied by data structures able to perform
similarity search (as the ones presented in [3] and [4]).

Condition 1. Let Nq be a downward closed set of nodes
with respect to an object q ∈ D. For any given Ni ∈ N ,
let Ni ⊆ N be the set of nodes which Ni is able to con-
tact directly independently from the execution of the cur-
rent DINN algorithm. Let Nn ∈ N be the closest node to



the query (according to δ) which is not in Nx (as defined in
Assumption 2) . If Nn exists, it is in the union of the set of
nodes known by the nodes in Nx :

Nn = arg min
Ni

{δ(Ni, q), Ni ∈ (Nq,r\Nx)} ∈
⋃
{Ni, Ni ∈ Nx}.

Theorem 4. Condition 1 is sufficient for Assumption 2.

Proof. By Condition 1, Nc can ask each node Ni ∈ N ∗

which are the nodes it has knowledge about (Ni). Sorting
the union of them (

⋃
{Ni, Ni ∈ Nx}) Nc is able to find Nn.

Thus, Assumption 2 is satisfied.

Condition 1 basically says that it is always possible to
pass from one node Nn−1 to the next one (Nn) just using
the information we found in the previous nodes. The in-
formation we need is the knowledge they have about other
nodes (typically neighbors). This condition is very useful to
efficiently implement Getnextnode and it is satisfied by
MCAN which is used in our experiments.

Condition 2. For any given object q ∈ D and r ∈ R+,
every node Ni ∈ N is able to know all the nodes (their
addresses) in Nx,r.

Theorem 5. Condition 2 is sufficient for Assumption 2.

Proof. By Condition 2, Nc can ask for all the nodes in
Nq,r . If (Nq,r \ Nx) 6= ∅ , the next node Nn is the nearest
to the query in (Nq,r \ Nx). Otherwise, if (Nq,r \ Nx) = ∅ ,
Nc can try again increasing r until r ≤ dmax. In this last
case Nn does not exist.

Please note that all distributed data structures able to
perform a range query, should be able to satisfy Condition 2
(and then Assumption 2). Under Condition 2 Getnextn-
odeinr is efficiently implemented while Getnextnode can
be realized increasing r until either a node is found, using
Getnextnodeinr, or r exceeds the max possible value of d
(i.e., dmax = max(d(y, x), y, x ∈ D)).

4.3.4 Considerations
The major differences between our DINN algorithm and

the INN defined in [10] are:

• Once a node comes at the head of the queue we don’t
ask it to return all its objects ordered according to
their distances from the query. This would be the nat-
ural extension for the INN algorithm, but, in a dis-
tributed environment, such an algorithm could not be
scalable. Therefore, we ask it to return its next object
using its local-INN ;

• Whenever a node returns an object, we move it back
in the queue using d(li, q) as new key (li is the last
object the Ni returned as a result). Please note that
d(li, q) is a lower bound for the distance between q and
the next result coming from the local-INN of Ni;

• The original INN algorithm requests a consistency con-
dition (Definition 1 of [10]) to ensure that once a node
reaches the head of the queue no other nodes can re-
turn objects with a distance smaller than the head
node key. This condition has been defined for hierar-
chical data structure thus limiting the use of their INN
algorithm. In our DINN we replaced the consistency
condition with Assumption 2.

4.4 Message reduction
In this section we give an extension of our DINN to reduce

the number of messages when we want to retrieve the next
k+ ≥ 1 objects. The price to be paid for the messages
reduction is the possibility to ask a node to retrieve more
objects than what is strictly necessary. At any given time
during the execution of the DINN :

Notation 2. let k be the number of objects already re-
trieved by the previous invocations of the DINN,

Notation 3. let k+ be the number of more objects we want
to retrieve, and

Notation 4. let kans ≤ k+ be the number of results al-
ready found by the DINN during the current invocation.

If a node Ni is first in Queue we ask this node to retrieve
the next k̂ results where:

k̂ = k+ − kans

Because k̂ represents the number of objects we need to end
the given task (i.e., retrieving the next k+ objects) we are
sure that we will never involve Ni again before the current
task will be completed. Note that, by definition, k̂ ≥ 1
always holds until the current task is completed.

Furthermore, we can reduce the number of unnecessary
objects retrieved, by considering the distance of the k̂-th
object, if it exists, in Queue.

Definition 6. At any given time during the DINN algo-
rithm execution, let xk̂ ∈ X be the k̂-th object, if it exists,
in Queue. To guarantee that node Ni will be involved only
once during the current task, we ask node Ni to perform a
sequence of local-INN invocations until at least one of the
following conditions is true:

• k̂ more objects have been retrieved (k̂ = k+ − kans);

• d(li, q) ≥ d(xk̂, q), where li is the last object retrieved;

• all the objects stored in Ni have been retrieved.

The results coming from Ni are added to Queue. If all the
objects stored in Ni have been retrieved Ni is removed from
Queue, otherwise its key is update with ϑNi = d(li, q) and
then ϑNi ≥ d(xk̂, q). At this stage there are two possibilities:

either the k̂ enqueued objects are before Ni or Ni is after
xk̂. In both cases at least k̂ objects are before Ni in Queue.

Thus, we will not involve Ni again in retrieving the next k̂
results.

In Figure 2 we give an example of Queue at a given time
during the DINN execution. The dotted lines show from
which node every object comes from. Let us suppose that
we are searching for the next k+ = 5 objects and we have
already found the next kans = 2 results (they are no more

in Queue). We still have to search for the next k̂ = k+ −
kans = 5 − 2 = 3 results. The k̂-th object xk̂ in Queue is
z. Using the proposed extension, the DINN will ask node
N3 to retrieve objects (using its local-INN ) until either 3
objects have been found or the last object l3 retrieved by
N3 has distance d(l3, q) ≥ d(z, q).



x d(x,q) N5 δ(N5,q)N3 δ(N3,q) N7 d(x,q) z d(z,q)

1th object 2nd object

N1 d(z,q)y d(y,q)

3rd object

Figure 2: Snapshot of the priority queue at a given time during the execution of the DINN algorithm

4.5 Parallelization
The DINN algorithm presented in Section 4.3 always in-

volves only the most promising node – the first in Queue.
In this section we give a parallelized version of our DINN .

Generally speaking, the k-NN operation, is not an easily
operation to parallelize as the RangeQuery is. To execute
a RangeQuery, every single node can perform the search
among his objects without considering the results coming
from other nodes. Given the query and the range, each
node can search among his objects regardless the results
found in other peers. To parallelize the DINN algorithm we
must accept the possibility to ask a node to give its next
result even if it could be not necessary. Furthermore, in
a parallelized DINN it is possible to involve nodes which
would not be involved by the serial execution.

Let us assume that at a given time during the algorithm
execution x1 is the first object in Queue. In principle it is
possible that we will ask all the nodes before x1 in Queue
to invoke their local-INN (e.g., if all these nodes return re-
sults further away from q than x1). To parallelize the DINN
execution, we can decide to ask all the nodes before x1 to
retrieve the next object.

We now give a definition of DINN parallelization which
can be also used in combination with the message optimiza-
tion given in Definition 6.

Definition 7. Let xk̂ ∈ X be the k̂-th object in Queue and
d(xk̂, q) its distance from the query. Let p ∈ [0, 1] be the
parallelization parameter. We parallelize the DINN asking
all the nodes Ni ∈ Queue whose ϑNi ≤ p d(xk̂, q). In other
words, using Definition 5, a node Ni ∈ Queue is involved iff:

• ϑNi = δ(Ni, q) ≤ p d(xk̂, q),
in case Ni ∈ N \ N ∗ (i.e., Ni has not yet been asked
for a local-INN );

• ϑNi = d(li, q) ≤ p d(xk̂, q),
otherwise (i.e., Ni ∈ N ∗) where li ∈ Xi is the last
object that Ni returned invoking its local-INN.

Any involved node is asked to retrieve its next object in-
voking its local-INN . However, using the DINN optimiza-
tion for k-INN search (see Definition 6), any node can be
asked to perform more than one local-INN with a single
message. However, in this case, there are nodes that are not
at the top of Queue, asked to retrieve objects. We can then
consider the case in which there are objects before them in
Queue. Let k̃Ni be the objects in Queue before node Ni.
The max number of objects we are interested in retrieving
from Ni is no more k̂ but k̂ − k̃Ni .

In Figure 2 we give a snapshot of Queue at a given time
during the DINN execution. As said before, the dotted lines
show from which node each object comes from. As before,
let us suppose that we are searching for the next k+ = 5
objects and we have already found the next kans = 2 results.

We still have to search for the next k̂ = 3 results. Using the
proposed extension, the DINN will ask node N3, N5 and N7

to invoke their local-INN and they all will work in parallel.
If we also use the message reduction optimization, N3 will
be asked to retrieve at most 3 objects, while N5 and N7 will
be asked to retrieve at most 2 objects. All of them will stop
the iteration of their local-INN if d(l, q) ≥ d(z, q), where l is
the last object they retrieved.

Unfortunately, there could be some nodes (Ni) not yet
in Queue for which ϑNi ≤ p d(xk̂, q). In fact, the DINN
algorithm does guarantee only that the next most promising
node is present in Queue before asking to the first node
in Queue to perform a local-INN. In this case the DINN
algorithm will continue to be correct, but the parallelization
would be reduced. To better parallelize the DINN algorithm
is useful to put more nodes in Queue than necessary. As said
before, parallelizing the DINN can increase the total cost.
For this reason a parametrized parallelization is useful to
find the desired trade-off between total and parallel cost.

Definition 8. Let k̂ ∈ N+, and xk̂ ∈ X the k̂-th object,
if it exists, in Queue which is, by definition, ordered. Let
p ∈ [0, 1] be the parallelization parameter. We ask all the
nodes in Queue whose ϑ ≤ p d(xk̂, q) until at least one of
the following conditions is true (as in Definition 6):

• k̂ more objects have been retrieved (k̂ = k+ − kans);

• d(li, q) ≥ d(xk̂, q), where li is the last object retrieved;

• all the objects stored in Ni have been retrieved.

Note that, since k̂ ≤ k+, the degree of parallelization does
depend on k+. In other words, the more objects we request
at each invocation of the DINN algorithm, the greater de-
gree of parallelization we obtain with the same p.

In case xk̂ does not exist (i.e., there are less than k̂ objects
in Queue), we involve just the first node (which is at the top
of Queue). Once xk̂ apeears in Queue, the parallelization is
used again.

Another choice, in case xk̂ does not exist, is to use, in place
of d(xk̂, q), the distance from the query of the last object
in Queue. In this case the operation would became more
parallel but also more expensive considering its total cost.
The degree of parallelization of the DINN is also related to
the number of nodes present in Queue. Thus, it is important
to have more than only the next most promising node Nn

(see Assumption 2) in Queue. Different strategies can be
used to efficiently put nodes in Queue depending on the
specific data structure that is used. In our implementation
of the DINN over the MCAN , we decided to put in Queue
the neighbors of every involved node.

5. DINN OVER MCAN



0

50

100

150

200

250

300

0 200000 400000 600000 800000 1000000

Number of Objects

N
. o

f 
n

o
d

es

Figure 3: N. of nodes as dataset grows

The MCAN [8, 9] is a scalable distributed similarity search
structure for metric data. Extending the Content-Addressable
Network (CAN), which is a well known Distributed Hash Ta-
ble, MCAN is able to perform distributed similarity searches
between objects assuming that the objects, together with
the used distance, are metric. For a complete description of
MCAN see [8]. A comparison of MCAN with similar dis-
tributed similarity search structure for metric data can be
found in [3].

MCAN satisfies Condition 1 which guarantees Assump-
tion 2 as demonstrated in Theorem 4 (see Section 4.3.3). In
fact, it can be proved that in MCAN if a node Ni is neigh-
bor of a node Nj that is closer to the query than Ni and
δ(Nj , q) > 0, then Nj is also neighbor of at least one other
node which is closer to the query than Nj . In other word
MCAN satisfies Condition 1 and thus also Assumption 2.
In fact, given a set of nodes N ∗ downward closed with re-
spect to q, the node Nn is always between the neighbors of
at least a node Nj ∈ N ∗ (Theorem 4).

5.1 Experimental Results
Experiments have been conducted using a real-life dataset

of 1,000,000 objects using real nodes in a LAN network.
Each object is a 45-dimensional vector of extracted color im-
age features. The similarity of the vectors was measured by
a quadratic-form distance [13]. The same dataset has been
used for [9, 3, 12, 1, 4]. The dimensionality used for the
MCAN is 3 as in [9]. All the presented performance charac-
teristics of query processing have been taken as an average
over 100 queries with randomly chosen query objects.

To study scalability with respect to the number of objects,
we limited the number of objects each node can maintain
(the same has been done in [2, 8, 9, 3, 12, 4]). When a
node exceeds its space limit it splits by sending a subset
of its objects to a free node that takes the responsibility
for a part of the original region. Note that, limiting the
number of objects each node can maintain, we simulate the
simultaneous growing of dataset and number of nodes. In
Figure 3 we show the number of nodes as the dataset grows.

The parallelization and the number of messages reduc-
tion are tuned varying respectively parameter p, defined in
Definition 8, and k+ (i.e., the objects requested at each in-
vocation of the DINN algorithm). As described in Sub-
section 4.4, the more the objects (k+) we request at each
invocation, the greater degree of parallelization we obtain
with the same p.

Usually evaluation methodologies of metric space access

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500

Number of Results (k )

L
o

ca
l I

N
N

s

1 5

10 50

100

Figure 4: N. of local-INN invocations for different
k+ (parallelization parameter p = 0)

0

100

200

300

400

500

600

700

0 100 200 300 400 500

Number of Results (k )

N
u

m
b

er
 o

f 
M

es
sa

g
es

1

5

10

50

100

Figure 5: N. of messages for different k+ (p = 0)

0

500

1000

1500

2000

2500

0 100 200 300 400 500

Number of Results (k )

C
o

st

1 5

10 50

100

Figure 6: Estimated cost for different k+ (p = 0)



methods are based on the number of distance computa-
tions. However, to give a fair performance evaluation, we
base our evaluation on the number of local-INN invocations.
This evaluation approach has the advantage to be indepen-
dent from the particular local-INN implementation. Fur-
thermore, different nodes could even have different local-INN
implementations. We use the following two characteristics
to measure the computational costs of a query:

• total number of local-INNs – the sum of the number
of local-INN invocations on all involved nodes,

• parallel computations – the maximum number of local-
INN invocations performed in a sequential manner
during the parallel query processing.

Note that the total number of local-INNs corresponds to
the cost on a centralized version of the specific structure
while the parallel computations, together with the number
of messages, directly effects the response time.

In Figure 4 we show the total number of local-INNs for
p = 0 (i.e., no parallelization) for different k+ as function
of the number of results k. Note that, to obtain the same
number of results k varying k+, we need

⌈
k/k+

⌉
DINN invo-

cations. While increasing k+ does not seem worthwhile since
the total number of local-INNs increases, the advantage of
greater k+ is evident observing the number of messages ex-
changed during the DINN execution in Figure 5. In fact,
as said in Subsection 4.4, increasing k+, we can reduce the
number of messages.

Since obtaining the first result from a local-INN in an ar-
bitrary node is significantly more expensive than obtaining
the next ones, a more realistic approach is to consider the
cost of the first result of a local-INN as several times the
cost of subsequent local-INN invocations. In Figure 6 we
report the same result of Figure 4, but assuming that the
first invocation cost of a local-INN is 10 times the cost of
subsequent invocations. In this case the gap between the
graphs for different k+ remains but it decreases. Note that,
since in this case there is no parallelization, there is no dif-
ference between the parallel and total cost.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 100 200 300 400 500

Number of Results

C
o

st

DINN stateless

Figure 7: Total estimated costs (p = 0, k+ = 10)

In Figure 7 we show the estimated cost for retrieving up
to 500 objects, 10 by 10 (i.e., k+ = 10) comparing the
defined DINN with a stateless execution of the DINN in
which after searching first 10 objects we destroy Queue and
then we ask for the next 10 objects (thus requesting a 20-
NearestNeighbor search from scratch) and so on. Here we

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

Number of Results (k )

P
ar

al
le

l C
o

st

1

5

10

50

100

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500

Number of Results (k )

T
o

ta
l C

o
st

1 5
10 50
100

Figure 8: Parallel and total estimated costs for dif-
ferent k+ (p = 1)

want to underline that the use of an Incremental Nearest
Neighbor algorithm when the number of desired neighbors
is unknown in advance is mandatory to preserve efficiency.
In fact the cost of retrieving the next k+ once a given num-
ber of results has already been retrieved using a stateless
approach is prohibitive.

Let’s now consider the parallelized version of the DINN
defined in Subsection 4.5. In Figure 8 we compare the total
and parallel cost when p = 1 (i.e., maximizing the paral-
lelization). The graph of the parallel cost demonstrates the
advantage of the parallel execution. Observing for instance
k = 100 for the case k+ = 10, the parallel cost is slightly
larger than 100, while for the same case the sequential cost
(Figure 6) is about 1300. k+ = 10 seems a good trade off
between the total and the parallel cost. In fact, the total
cost is almost the same as of the sequential case.

Another set of experiments were conducted by varying p
from 0 to 1 for a growing dataset. In this experiments we
fixed k = 500 and used various k+.

In Figure 9(a) we report the costs for growing dataset,
number of results k = 500 and k+ = 1. The total cost does
not significantly vary with p, i.e., parallelization, for k+ =
1, is obtained without increasing the total cost. Another
important aspect is that parallel cost is slightly influenced by
the dataset size when the parallelization degree is maximum
(p = 1).

In Figure 9(b) we report the costs for growing dataset,
k = 500 and k+ = 10. We can see that increasing k+ the
differences between the parallel costs of different degree of
parallelism (p) are more relevant. However, the total cost
for different p are very similar and almost the same of the



0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Number of Objects

P
ar

al
le

l 
C

o
st

0 0.5 1

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Number of Objects

T
o

ta
l 

C
o

st

0 0.5 1

(a) k+ = 1

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Number of Objects

P
ar

al
le

l 
C

o
st

0 0.5 1

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Number of Objects

T
o

ta
l 

C
o

st

0 0.5 1

(b) k+ = 10

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Number of Objects

P
ar

al
le

l 
C

o
st

0 0.5 1

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Number of Objects

T
o

ta
l 

C
o

st

0 0.5 1

(c) k+ = 50

Figure 9: Parallel and total Estimated Costs for ob-
taining 500 results for various values of the param-
eter p. Each subfigure reports the result presented
obtained using different k+

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200000 400000 600000 800000 1000000

Number of Objects

P
er

ce
nt

ag
e 

of
 in

vo
lv

ed
 n

od
e

s

0 0.5 1

Figure 10: Average percentage of involved nodes for
obtaining 50 results for k+ = 1 and various values of
the parameter p.

ones obtained for k+ = 1 in Figure 9(a). It is also important
to observe that for p = 1 the parallel cost scale.

Finally, in Figure 9(c) we report the costs for k = 500
and k+ = 50. In this case the parallel cost is better than
for the k+ = 1 case but the total cost does depend on p.
However, the most important result is that the parallel cost
not only scale with respect to the dataset size, but it slightly
decreases. Obviously, this is possible because we are adding
more resources (nodes) as the dataset size increase (propor-
tionally), but this should be common in a P2P environment
where typically more nodes means more data and vice-versa.

In Figure 10 we report the percentage of involved nodes
for k+ = 10 as the dataset grows. As expected, the more
parallelism, the greater percentage of involved nodes. How-
ever, it is interesting to notice that results for p = 0.5 and
p = 1 are almost the same. Considering scalability with re-
spect to the dataset size, it is important that the percentage
of involved nodes does decrease with the number of objects,
i.e., with the number of nodes.

6. CONCLUSIONS AND FUTURE WORK
Distributed incremental nearest neighbor search is a big

challenge for at least two reasons. It is quite handy to
have a possibility to easily increment the number of near-
est neighbors at a low cost instead of being forced to an
expensive solution of specifying high values of k to ensure
having enough objects in all situations or starting the near-
est neighbor search over and over again whenever the value
of k grows. Second, distributed environments do not allow
application of existing centralized solutions and completely
new solutions are needed.

In this paper, we have defined a distributed incremental
nearest neighbor especially suitable for structured P2P sim-
ilarity search networks. The proposed algorithms have been
implemented in a large network of computers using MCAN
and extensively tested on a real-life data collection: color
features of images. We proved our algorithm to be optimal
in terms of both the number of involved nodes and the num-
ber of local-INN invocations when executed in a serial way.
However, our algorithm also allows controlling the degree of
parallelism and the number of messages by using two special
parameters.

As a next step of our research, we plan to apply this dis-
tributed incremental nearest neighbor search to other dis-
tributed similarity search structures, such as GHT* [2], VPT*
[3], or M-Chord [12]. Naturally, this incremental approach
will vitally be important in developing multi-feature simi-
larity search execution strategies which are needed by the
top k multi-feature queries.

7. ACKNOWLEDGMENTS
This work has been partially supported by the SAPIR

(Search In Audio Visual Content Using P2P IR) project,
funded by the European Commission under IST FP6 (Sixth
Framework Programme, Contract no. 45128) and by the
NeP4B (Networked Peers for Business) FIRB project, funded
by the Italian Council.

8. REFERENCES
[1] Michal Batko, Vlastislav Dohnal, and Pavel Zezula.

M-Grid: similarity searching in grid. In P2PIR ’06:



Proceedings, pages 17–24, New York, NY, USA, 2006.
ACM Press.

[2] Michal Batko, Claudio Gennaro, and Pavel Zezula.
Similarity grid for searching in metric spaces. In 6th
Thematic Workshop of the EU Network of Excellence
DELOS. Revised Selected Papers, volume 3664 of
LNCS, pages 25–44. Springer-Verlag Berlin
Heidelberg, 2004.

[3] Michal Batko, David Novak, Fabrizio Falchi, and
Pavel Zezula. On scalability of the similarity search in
the world of peers. In InfoScale’06: Proceedings,
page 20, New York, NY, USA, 2006. ACM Press.

[4] Michal Batko, David Novak, Fabrizio Falchi, and
Pavel Zezula. Scalability Comparison of Peer-to-Peer
Similarity-Search Structures. Future Generation
Computer Systems, to appear.

[5] Ronald Fagin. Combining fuzzy information from
multiple systems. Journal of Computer and System
Sciences, 58(1):83–99, 1999.

[6] Ronald Fagin, Amnon Lotem and Moni Naor. Optimal
Aggregation Algorithms for Middleware. In Proc.
ACM Symp. Principles of Database Systems, pages
102–113, 2001.

[7] Fabrizio Falchi, Claudio Gennaro, Fausto Rabitti, and
Pavel Zezula. A distributed incremental nearest
neighbor algorithm. In InfoScale ’07: Proceedings of
the Second International Conference on Scalable
Information Systems, New York, NY, USA, 2007.
ACM Press.

[8] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A
content-addressable network for similarity search in
metric spaces. In DBISP2P ’05: Proceedings, volume
4125 of LNCS, pages 98–110. Springer, 2005.

[9] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula.
Nearest Neighbor Search in Metric Spaces through
Content-Addressable Networks. Information
Processing & Management, 43(3):665–683, May 2007.

[10] Gı́sli R. Hjaltason and Hanan Samet. Distance
browsing in spatial databases. ACM Transactions on
Database Systems (TODS), 24(2):265–318, 1999.

[11] Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa.
P2PR-tree: An r-tree-based spatial index for
peer-to-peer environments. In EDBT 2004 Workshops.
Revised Selected Papers, volume 3268 of LNCS, pages
516–525. Springer-Verlag Berlin Heidelberg, 2004.

[12] David Novak and Pavel Zezula. M-chord: a scalable
distributed similarity search structure. In
InfoScale’06: Proceedings, page 19, New York, NY,
USA, 2006. ACM Press.

[13] Thomas Seidl and Hans-Peter Kriegel. Efficient
user-adaptable similarity search in large multimedia
databases. In VLDB ’97: Proceedings, pages 506–515,
San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

[14] Ion Stoica, Robert Morris, David Liben-Nowell,
David R. Karger, M. Frans Kaashoek, Frank Dabek,
and Hari Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM
Transactions on Networking (TON), 11(1):17–32,
2003.

[15] Egemen Tanin, Deepa Nayar, and Hanan Samet. An
efficient nearest neighbor algorithm for p2p settings.

In dg.o2005: Proceedings, pages 21–28. Digital
Government Research Center, 2005.

[16] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal,
and Michal Batko. Similarity Search. The Metric
Space Approach, volume 32 of Advances in Database
Systems. Springer Science + Business Media, Inc., 233
Spring Street, New York, NY 10013, USA, 2006.


