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Abstract

E-science projects of various disciplines face a fundamental challenge: thousands of users want to obtain new scientific results by application-
specific and dynamic correlation of data from globally distributed sources. Considering the involved enormous and exponentially growing data
volumes, centralized data management reaches its limits. Since scientific data are often highly skewed and exploration tasks exhibit a large
degree of spatial locality, we propose the locality-aware allocation of data objects onto a distributed network of interoperating databases. HiSbase
is an approach to data management in scientific federated Data Grids that addresses the scalability issue by combining established techniques
of database research in the field of spatial data structures (quadtrees), histograms, and parallel databases with the scalable resource sharing
and load balancing capabilities of decentralized Peer-to-Peer (P2P) networks. The proposed combination constitutes a complementary e-science

infrastructure enabling load balancing and increased query throughput.

1 Introduction

E-science communities such as climatology, astrophysics,
medicine, and the geosciences face the fundamental challenge
of managing data volumes generated by upcoming applications
with expected data rates of several terabytes a day and petabytes
a year. The anticipated continuous growth at an exponential
rate further increases the need for scalable information man-
agement. Collaborating researchers from all over the world ac-
cess these distributed data sources [15] in order to find new
scientific results.

1.1 Challenges

Future e-science communities require the efficient process-
ing of data volumes that centralized data processing or a data
warehouse approach cannot sufficiently scale up to. Centralized
data processing, where researchers ship data on demand from
the distributed sources to a processing site—most often their
own computer—has the deficiency of high transmission cost.
On the other hand, a data warehouse does not cope with the
high query load and the demanding throughput requirements.

In astronomy, for example, most often the individual projects
provide interfaces to their own data set for interactive or service-
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based data retrieval. These service interfaces are standardized
by the International Virtual Observatory Alliance (IVOA)' in
order to ensure interoperability between the various interfaces.
User queries can consume only a limited amount of CPU re-
sources (e. g., 10 minutes), have a result size limit (e. g., 100 000
rows), and the number of parallel queries per user is restricted
in order to allow fair use and to avoid overloading the servers.
Batch systems (such as CasJobs [20]) offer less restrictive ac-
cess to the data sources and sometimes even a private database
for later processing or sharing the results with colleagues. How-
ever, some queries might suffer from long queuing times.

Furthermore, we observe that in many e-science communi-
ties, data sets are highly skewed and scientific data analysis
tasks exhibit a large degree of spatial locality. Dealing with
data skew while preserving spatial locality is fundamental to
realize a scalable information infrastructure for these commu-
nities. A more detailed scenario from the astrophysics domain
exhibiting these characteristics is given in Section 2.

To avert the scalability issues of their current systems, com-
munities investigate different technologies. The adaption to
domain-specific data and query characteristics is fundamental
for these approaches to result in benefits for the researchers.
These characteristics can include properties such as data skew
and complex multi-dimensional range queries.

Among the investigated technologies are community-driven
Data Grids which use decentralized Peer-to-Peer (P2P) tech-
nologies in order to provide scalable communication and data
management. Community-driven Data Grids are built on the

! http://www.ivoa.net
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Fig. 1. HiSbase architecture.

data sharing approach of federated Data Grids [35] and ex-
tend it by relaxing the data autonomy requirement for achiev-
ing better data load balancing and improving query throughput.
Distributed hash tables (DHT) allow the seamless integration
of new peers and resources. The symmetry of these networks,
i.e., the fact that peers act as servers (providing data) and as
clients (issuing queries), offers increased fault-tolerance and
robustness. In a DHT system, peers automatically detect node
failures and fix the overlay communication.

1.2 HiSbase Architecture

In this paper, we describe HiSbase, a distributed informa-
tion infrastructure that allows the sharing of CPU resources and
storage across scientific communities to build a community-
driven Data Grid. We distribute data across (e. g., hundreds of)
peers according to predominant query patterns to achieve higher
throughput for data analysis tasks. Therefore, most processing
tasks can be performed locally, achieving high cache locality
as peers mainly process queries on logically related data hosted
by themselves. Figure 1 illustrates this approach on an abstract
level. In the figure, logically related data originating from (pos-
sibly) different distributed sources are denoted by the same ge-
ometric shapes. HiSbase partitions and allocates data fed into
the system by means of community-specific distribution func-
tions, called histograms. Thereby, related data objects of var-
ious sources are mapped to the same peers. In Section 3, we
discuss several candidate data structures that preserve spatial
locality and adapt to the data distribution.

HiSbase, as described in Section 4, incorporates multi-
dimensional data and histograms as follows:

— We precompute the histogram of the actual data space in a
preparatory training phase based on a training set and pass
it to the initial HiSbase peer during startup (Section 4.1).

— Additional peers subsequently joining the network receive
their own local copy of the histogram from a neighboring
HiSbase peer.

— HiSbase allocates data at peers according to the precomputed
histogram (Section 4.2) and uses the histogram as a rout-
ing index. Data archives feed data into HiSbase by sending
their data to any HiSbase peer which routes the data to the
responsible peer (Section 4.3).

— Every HiSbase peer accepts queries and routes them to a co-
ordinator peer which owns (some of) the data needed to pro-
cess the query. If the coordinator does not cover all the data
relevant to the query, it guides cooperative query processing
among all peers contributing to the query result (Section 4.4).
In Section 5, we discuss the performance of a single peer

and a multi-peer HiSbase instance within a local area network

in comparison to a centralized database server with regard to
query throughput. We further outline the projected experiments
within the AstroGrid-D testbed.

1.3 Contributions

Scalable Data Sharing for e-Science Grids. HiSbase realizes
a scalable information economy [5] for e-science Data Grids
by building on advances in proven DHT-based P2P systems
such as Chord [33] and Pastry [26], as well as on achieve-
ments in P2P-based query processing [17]. HiSbase combines
these techniques with histograms for preserving data locality,
spatial data structures such as the quadtree [27] for efficient
access to histogram buckets, and space filling curves [21] for
mapping histogram buckets to the DHT key space. There have
been inspiring contributions extending DHTs to support multi-
dimensional range queries [4,12,32,34] and describing load-
balancing schemes for data and execution skew [2,7,11,23] in
the face of a varying data population and high network churn.
However, these systems currently treat the data items individ-
ually which results in prohibitive costs in an e-science envi-
ronment, €. g., it requires several months to distribute data of
several million objects to the participating sites.

Preserving locality and handling data skew through domain
specific partitioning. We suggest to reconsider static partition-
ing schemes as an application domain specific hash function to
allow scalable information management in e-science commu-
nities. Occasionally, this hash function is updated to accommo-
date better load-balancing, just like database systems regularly
update query optimizer statistics. HiSbase targets collaborative
communities having vast data volumes with fairly stable data
distributions. Long-term distribution changes can also be lev-
eled by reorganizing the histogram.

Increased Query Throughput. We investigate the potential
offered by P2P networks for increasing query throughput
in data-intensive e-science applications. Achieving sufficient
query throughput constitutes one of the main deficiencies of
centralized data management.

2 Sample Application Domain: Astrophysics

The abstract scenario above is applicable to many e-science
domains including climatology, geophysics, and medicine. We
employ data and use cases from the astrophysics domain for
further illustrations, since we are currently developing a dis-
tributed information management platform for the German as-
trophysics community (AstroGrid-D) [8] within D-Grid, the
German e-science and Grid Computing initiative. This platform
facilitates collaborations with national as well as international
partners.
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Fig. 2. The HiSbase GUI

In e-science, results of different investigations (experiments,
surveys, observations, etc.) are compared or combined to gain
further insight or to obtain the complete picture of a particular
phenomenon. Astrophysical example use cases comprise the
creation of probability maps for galaxy clusters [6,31] and the
combination of observational data from several archives cover-
ing, for example, various wavelength ranges in order to classify
spectral energy distributions [19].

In previous work we focused on the practical aspects of
developing a HiSbase instance for the astrophysics commu-
nity [29]. Implementing a prototype in realistic scenarios
closely cooperating with a community is fundamental in
our view to ensure the applicability of our approach. Using
solely simulation studies often does not correctly represent
the challenges of distributed systems, e.g., if the simulation
model does not capture all relevant parameters. We deployed a
HiSbase instance with up to 56 nodes on the resources of the
AstroGrid-D test bed, D-Grid resources, and on nodes within
the PlanetLab test bed in order to demonstrate the functional-
ity of our system. Figure 2 illustrates some aspects of HiSbase
such as submitting queries, comparing different histogram data
structures, and providing status information on the connected
HiSbase nodes. Our prototype uses the relational data model
and SQL as the current specification for the IVOA Astronomi-
cal Data Query Language (ADQL) is also SQL-based.

Furthermore, in earlier work we proposed a framework for
comparing various a priori calculated histogram data structures
and gave several different measures to evaluate the effective-
ness of the data structures [30]. This framework allows com-
munities to experiment with different data structures before de-
ciding which suits their needs best. This is a necessity for effi-
ciently distributing and processing data sets at a large scale and
distinguishes HiSbase from other proposals in the literature.

Catalog Size|No. of objects|~ object size
SDSS (DRS)| 3.6 TB| 215 million 14 KB
TWOMASS | 1TB| 471 million 2KB
USNO-B1.0 (0.08 TB| 1000 million 0.9KB

Table 1
Current astronomical data sets.

Project Daily data rate|Yearly rate
Pan-STARRS 10 TB 4PB
LSST 18 TB 7PB
LOFAR 33 TB 12 PB
LHC 42 TB 15PB

Table 2
Upcoming e-science data sets.

To give an idea of the future scalability challenges, Table 1
summarizes the size, the number of objects, and the approx-
imate size of an individual object for three of the major cur-
rent astrophysical catalogs SDSS (http://www.sdss.org/dr5/),
TWOMASS (http://www.ipac.caltech.edu/2mass/), and USNO-
B1.0 (http://www.nofs.navy.mil/data/fchpix/cfra.html). Assum-
ing a HiSbase network for astrophysics with one thousand ded-
icated Data Grid nodes, the catalogs of Table 1 could be kept
almost completely in main memory, each node covering about
5 GB of data.

These data sets still could be managed at a single site, al-
though with restrictions such as high transmission costs or
limited resource availability. Upcoming e-science projects (see
Table 2) in astrophysics and high energy physics face a data
deluge which will be distributed across several sites. Exam-
ples for such upcoming projects are the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS, http:
/Ipan-starrs.ifa.hawaii.edu/public/), the Large Synoptic Survey
Telescope (LSST, http://Isst.org/), and the Low Frequency Ar-
ray (LOFAR, http://www.lofar.org/) in astrophysics, as well as
the Large Hadron Collider (LHC, http://lhc.web.cern.ch/lhc/)
in high energy physics.

Researchers usually access and analyze logically related sub-
sets of these data volumes. The restrictions of such subsets
are mostly based on specific data characteristics. Typical ac-
cess patterns over astrophysical data sets are point-near-point
queries, point-in-region queries, and nearest-neighbor-searches.
Such queries are usually region-based, i.e., they process data
within certain regions of the sky. These regions are specified by
the two-dimensional celestial coordinates right ascension and
declination. Region-based queries can, of course, also contain
predicates on attributes other than the celestial coordinates. In
case of celestial objects, other attributes might comprise de-
tection time, catalog-identifier, temperature, or energy level. In
Figure 1, objects of the same region in the sky would have the
same shape and can be processed locally at the peer which is
responsible for the respective region.

After a grace period of about one year, basically all outcomes
of astrophysical projects supported by public funding become
publicly available. An increasing share of scientific research
is performed by looking ‘““at databases” rather than by looking
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Fig. 3. Sample data space with skewed data distribution.

directly at the sky. In order to ensure reproducibility, published
data sets are not changed. Instead, new additional versions are
made available.

Through the outreach of astronomy projects, many amateurs,
school kids, and university students do their research on these
data sets. Basically, everyone who is able to surf the web can
access astrophysics data. Therefore, suitable information sys-
tems need to support many users.

Traditionally, federated Data Grids retain data autonomy,
i.e., the participating institutes keep full control over their data
and deploy security policies that only allow users with appro-
priate credentials to access shared data resources. In situations
such as the ones described above, where institutes are keen
on making already published data sets available to a large au-
dience, community-driven Data Grids constitute an interesting
approach to distributed data management.

3 Locality Preservation

To allow efficient query processing on logically related data
sets we need to preserve the locality of data. Data locality is
especially important for the performance of data analysis tasks
in astrophysics. Distributing data objects randomly across a
global information network severely impairs the performance
of astrophysical query patterns.

3.1 Data Skew

Many application domains have highly skewed data sets.
This skew originates from data spaces with a mix of densely
and sparsely populated regions. The differences in data den-
sity may arise from the original data distribution or from the
fact that some regions have been investigated more extensively
than others, i. e., more data has been collected and is available.
In astrophysics, celestial objects are not distributed uniformly
over the sky, e. g., considering high data density in the galactic
plane or a supernova. We use an abstract skewed data sample
(Figure 3) for illustration.

In HiSbase, we preserve spatial proximity to efficiently pro-
cess region-based queries (Section 4.1) while addressing the
imbalance of the data distribution. HiSbase achieves this goal
by calculating a histogram that equips the Data Grid with a
community-specific data distribution. Among others, we de-
scribe the Z-quadtree histogram data structure that we de-
signed to preserve spatial locality for astrophysics data sets. Z-
quadtrees are quadtrees whose leaves correspond to histogram
buckets and are linearized on the DHT key space using a space
filling curve. These trees provide efficient access to histogram
buckets (regions) while balancing the data load across data
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Fig. 4. Left: Z-quadtree regions of our data sample. Middle: Corresponding
quadtree. Right: Leaf linearization.

nodes.? The extension of histogram data structures to addi-
tionally consider query skew is part of ongoing work and we
outline some of our ideas in Section 4.5.

3.2 Histogram Data Structures

HiSbase enables communities to design data structures for
distributing their data across several nodes and to adapt to data
and query characteristics of that particular community. We call
these data structures histograms for their similarities to stan-
dard histograms. Histograms are, for example, commonly used
in relational database management systems as means for selec-
tivity estimations [24].

Within HiSbase, histograms H are used in order to look up
multi-dimensional areas A and points p.
lookupArea(H,A) : S This method plays a central part dur-

ing query processing. Given a multi-dimensional data area

A, lookupArea returns the set S of region identifiers of his-

togram H which intersect with A.
lookupPoint(H,p) : r Mainly used during data distribution,

lookupPoint returns the region identifier » of histogram H

which contains a multi-dimensional data point p.

Most of the following histogram data structures are inspired
by the intensive research conducted by the computer science
community on locality-aware data structures developed for ac-
cessing and efficiently storing multi-dimensional data [10,28].
The individual community is free to choose any data structures
implementing the interface required by HiSbase and, therefore,
we are strengthening the histogram-aspect rather than the as-
pect of indexing multi-dimensional data.

3.2.1 Z-quadtree: A Histogram based on Quadtrees

The shape of data partitions defined by candidate data struc-
tures should be simple (e.g., squares). This allows simple
(SQL) queries to retrieve data during the process of integrating
new peers (see Section 4.2).

In the following, we describe the Z-quadtree as our preferred
data structure which is inspired by quadtrees [27].

A Z-quadtree partitions the data space according to the prin-
ciple of recursive decomposition. For a d-dimensional data
space, a Z-quadtree node either is a leaf with a d-dimensional
data region or an inner node with 2¢ children. The leaves of
the quadtree correspond to the histogram buckets. After the Z-
quadtree buckets are calculated they are linearized using the
Z-order space filling curve [21].

2 In the following, we use the terms regions and histogram buckets inter-
changeably. The leaves of a Z-quadtree represent the histogram buckets for that
particular histogram data structure.



The linearization is then used to map the buckets on the DHT
key space. We use a space filling curve instead of a random
mapping as the curve preserves spatial proximity if one peer
covers several buckets. If buckets are adjacent, they are likely
to be managed by the same peer.

Starting with a single leaf covering the entire data space, we
sequentially insert the training set into the tree (Section 4.1).
If the number of objects in the area of a leaf exceeds a prede-
fined threshold, its capacity, the leaf is split into 2¢ subareas ac-
cording to the quadtree splitting strategy. Inner nodes forward
the objects to the corresponding child. On the left in Figure 4,
we show the decomposition of our two-dimensional example
data set of Figure 3 using a leaf capacity of two objects. Af-
ter the complete training set is inserted, each leaf is assigned a
region identifier using a depth-first search (Figure 4, middle).
This immediately gives the desired leaf linearization which is
shown in Figure 4 on the right. While using the Z-order is the
canonical leaf linearization, other space filling curves such as
the Hilbert curve [16] are also applicable. Without the region
linearization, queries intersecting multiple regions would most
likely introduce additional traffic as the regions would be lo-
cated at multiple nodes. Yet from our experience, most queries
intersect one region only.

Algorithm 1 describes how the set S of region identifiers that
intersect with a query area A is retrieved in a Z-quadtree H.
Starting at the root node, lookupArea is executed recursively.
If the region r, of a leaf n intersects with query area A, its
region identifier r,.id is added to the result set S. Intersecting
inner nodes invoke lookupArea on every subtree. The method
to find the region which contains a data point, lookupPoint, can
be realized similarly.

Algorithm 1 lookupArea(H,A) for Z-quadtrees

Input: Z-quadtree H with root node 7,,,, query area A
Output: Set S = {regionid r.id | region r intersects with A}
§S—{}
n < Nyoot
if region r,, of n intersects with A then
if n is leaf then
S— SuU{r,.id}
else /* n is inner node */
for all subtrees H ;4 of n do
S — SUlookupArea(Hepijq,A)
end for
end if
end if

Z-quadtrees use the same concept as linear quadtrees [13],
a data structure used in image encoding. Using a lower resolu-
tion for sparsely populated data subspaces in Z-quadtrees cor-
responds to compressing the representation for common sub-
pixels of the linear quadtrees.

In contrast to the original quadtree, which is a spatial index
structure, the Z-quadtree is used for data dissemination, as a
routing index, and during query processing. The actual training
data used to create a histogram is not stored in the data structure
distributed to all peers.
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Fig. 5. A Z-quadtree employing different splitting strategies.

Lookups performed during data feeding and query process-
ing benefit from the regular structure of the quadtree leaves. The
center splitting strategy divides the region of a node into equally
sized subregions and is the default strategy for quadtrees. There-
fore the (final) quadtree is insensitive to the insertion order of
the data. Furthermore, the tree can be stored and communi-
cated in a very compressed form as region boundaries can be
derived by recursively dividing the complete data space until
the position of the region is reached.

As the capacity of quadtree leaves is only an upper bound,
not all quadtree leaves will be fully filled. Rare pathological
cases, e.g., a high data concentration in a very small area of
the data space, might result in a degenerated tree having many
empty regions. While we define the Z-quadtree top-down, we
actually build the Z-quadtree bottom up. We prefer bottom-
up construction over building the tree top-down because the
latter requires to determine the capacity for the quadtree leaves
before starting the training phase as splitting a leaf is triggered
if its capacity is exceeded. Furthermore, building Z-quadtrees
bottom-up is a requirement for other splitting strategies to work
correctly such as the median splitting strategy introduced in the
following section.

3.2.2 Related Histogram Data Structures

In [30], we report on experiments with an additional
quadtree-based histogram which uses a median splitting strat-
egy in order to address the issue of empty leaves. It uses
median-based heuristics for splitting a leaf at the median
instead of at the center. For our astronomical example, the
heuristics determine the split point (m,4,M4ec) by computing
the median for ra-coordinates and dec-coordinates indepen-
dently. Our heuristics are similar to the technique used by
optimized point Quadtrees [9], which only compute the median
in the first dimension and thus guarantee that no leaf contains
more than half the data of the original leaf. In the average
case, our heuristics offers a better data distribution by com-
puting the median in all dimensions independently. Figure 5
contrasts a quadtree with regular decomposition (Figure 5(a))
with a quadtree using our median heuristics (Figure 5(b)),
respectively. We furthermore discuss how application-specific
data structures, such as the zones index [14], can be applied
as histogram data structure offering various trade-offs. Further



Algorithm 2 Publish data in HiSbase

Input: Histogram H, multi-dimensional data point p
Region id r < lookupPoint(H, p)
Send newPointMessage(p) to r.

Algorithm 3 Query data in HiSbase

Input: Histogram H, multi-dimensional query area A.
Set of relevant region ids Sg < lookupArea(H,A)
Select coordinator r. from Sg
Send newQueryMessage(A, Sg) to re.

interesting spatial or multi-dimensional data structures can be
found in the survey by Gaede and Giinther [10] and the book
by Samet [28].

4 Architectural Design

The architectural design of HiSbase offers researchers a
framework for data and resource sharing within their commu-
nity. Algorithms 2 and 3 formally define the interface for data
publication and access within HiSbase.

In this section, we outline the creation of histograms during
the training phase and the information maintained at HiSbase
nodes. Finally, we describe data publication and node collabo-
ration during query processing.

4.1 Training Phase (Histogram Build-Up)

The Training phase comprises three steps:

(i) Extracting the training samples,

(ii) defining the partitioning of the data space,

(iii) and distributing the partitions to the data nodes.

For constructing the histogram, data from each data source is
taken into account. We can either use the entire data archive or a
representative subsample. However, transmitting the entire data
archive for histogram extraction is presumably prohibitive. For
example, the subset could be extracted using a random sample.
We achieved good histograms using 10 percent data samples in
our a priori analysis. Such an a priori analysis is applicable as
the data distribution does not change significantly very often
(e.g., on a yearly basis) in many scientific domains.

After the training set is inserted into the histogram, the his-
togram is serialized for distribution within the network. We
note that only the histogram structure is serialized. The training
data is discarded.

The resulting histogram is passed to the initial peer in the
HiSbase network. Peers subsequently joining the network re-
ceive the histogram from any other peer in the network. So
each peer keeps a copy of the histogram.

The number of histogram regions is determined beforehand.
In our experiments, we used histograms with up to ten times
more regions than the anticipated number of peers. This offers
a good trade-off between allowing more peers than initially es-
timated, histogram size, and complexity of finding the relevant
regions during query processing. The size of the histogram is
small in comparison to the amount of data transmitted dur-
ing query processing. As peers presumably get their histogram
from a physical neighbor, histogram distribution does not add
much overhead to the setup phase of the HiSbase network.

4.2 HiSbase Network

While the overall design of HiSbase abstracts from the un-
derlying DHT implementation, we use the distributed hash ta-
ble (DHT) infrastructure Pastry [26] to manage peers and route
messages in HiSbase. Like Chord [33], Pastry maps data and
peers to a one-dimensional key ring. In contrast to Chord, Pas-
try optimizes the initial phase of routing by preferring physical
neighbors to speed up communication within the overlay net-
work.

4.2.1 Mapping Nodes to Regions

The histogram regions are uniformly mapped onto the DHT
ring identifiers. Remember, the skew is accounted for by vary-
ing the size of the regions. In the case of the Z-quadtree, the
histogram regions correspond to the leaves. Due to this uniform
distribution, all regions are mapped to a peer with equal prob-
ability regardless of their individual size. The size of regions
might vary due to the adaption to data skew. The peers get a
random identifier and are responsible for regions close to their
identifier. Figure 6 illustrates the evenly distributed regions (0—
6) and their mapping to randomly distributed peers (a, b, c, d)
on the DHT key space. We use the routing of the underlying
DHT system to automatically assign regions to peers. To en-
sure that messages destined for a specific region are received
by the appropriate peer, we use the region identifiers for mes-
sage routing.

Fig. 6. Mapping of the quadtree of Figure 4 to multiple peers.

We prefer to use the key-based routing functionality of the
underlying DHT infrastructure over using a direct mapping of
histogram buckets on peers or using a centralized directory for
the histogram in combination with a histogram cache at the
individual peers. A direct mapping would require every peer to
maintain the complete list of participating peers and also the
mapping of the individual histogram buckets to the peers. Using
the key-based routing, each peer stores only O(logn) neighbors
and the mapping is done automatically by the underlying fabric.
Updating a histogram via a distributed broadcast is not more
expensive than distributing an updated histogram from a central
site. We can reuse functionality already implemented by the
P2P substrate and leverage the increased flexibility and the
automatic handling of node failures.

4.2.2 Evolving the Histogram

The histogram serves HiSbase as a partitioning function,
defining the data set a node is responsible for. To either achieve
a better load-balancing or level long-term data distribution
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Fig. 7. Histogram evolution.

changes, HiSbase nodes maintain three histograms and their

accompanying data sets. Each pair of histogram and data set

can evolve during the run-time of HiSbase and has one of the

following three functionalities: the build-up, active, and backup

functionality.

build-up The currently running feeding process, which is de-
scribed in the following section, distributes data according
to the build-up histogram. After a new histogram has been
distributed among the peers, HiSbase prepares this build-up
data set and stores it on disk.

active Once the build-up phase is completed, the active his-
togram and data set are used during query processing and
nodes keep them completely (or at least the relevant parts)
in main memory. The active histogram is further used for
messaging.

backup The completed build-up data set is additionally kept
on disk as backup for the active data set. This preserves the
active data set beyond the lifetime of the current network and
can be used if a node is restarted with the same identifier.
Figure 7 illustrates a scenario where the build-up histogram
contains additional regions while the active and backup his-
tograms are the same as in Figure 6.
Any of the participating nodes can be used to inject an up-
dated version of a histogram by broadcasting it to the HiSbase
network.

4.2.3 Node Arrival

When a node joins the HiSbase network, the active histogram
will be transmitted to that node and the node needs to receive the
data according to its responsibilities. For this purpose, HiSbase
reuses the mechanisms of the DHT structure to determine the
arrival of new nodes. In Pastry [26], nodes are notified if the
leaf set (the nodes which have similar identifiers) changes. Al-
gorithm 4 describes how a notified node determines the data it
is no longer responsible for. It then redistributes this data and
the newly joined peer can update its database.

4.2.4 Node Departure

HiSbase is developed for an environment where the partic-
ipating servers are quite reliable. High churn is currently not
in our focus as distributing the envisioned amounts of data
across unreliable peers is not very useful. Nonetheless, some
peers might temporarily fail. As mentioned in the introduction,
HiSbase does not replace but complement the “traditional” data
centers since these also serve as data sources for distributing
the data in HiSbase. A peer that recognizes the departure of

Node p covers a set of regions P. Let B, be the set of regions
p is responsible for after a new node has arrived. a; denotes the
area of a region i.

if P\, # P then
find Ppove = P\Pnew
for all » € P,,,,. do
a, = getArea(r)
redistribute data from a, to region r
end for
end if

a neighboring node and needs to take over parts of the data
refetches the data from the according archives.

4.3 Data Distribution (Feeding)

Connected data centers directly feed data into HiSbase as
suggested by Figure 1. Data integration is not in the focus of
our work. We assume that the data being fed into HiSbase ad-
heres to a common schema or is already properly transformed.
In HiSbase, the histogram is used to determine which peer
stores which data. All peers maintain the data objects which are
in their histogram buckets, independently from the archive the
data comes from. HiSbase abstracts from the specific database
system which allows the use and comparison of various tradi-
tional as well as main memory database systems.

Data archives which want to publish their data in HiSbase
connect to any HiSbase peer, preferably to a peer nearby or to
a peer which has a high network bandwidth. Proceeding ac-
cording to Algorithm 2, the peer uses its histogram to deter-
mine which histogram bucket contains a data object by using
the lookupPoint method. Then it routes the object to the DHT
identifier of this region. The message contains the data object
and information about the data source. Via the underlying DHT
mechanism, the data item arrives at the responsible peer which
updates its database.

Distributing each data item individually would introduce a
very high overhead. The precomputed histogram allows us to
optimize the feeding stage by introducing bulk feeding. A peer
which feeds the network can buffer several objects for the same
region until a threshold is reached. Time-based as well as count-
based thresholds are applicable.

Integrating new data sets is achieved by feeding them into
the network as described above after the according tables are
created at each node. If the new data set is a detailed survey of a
sky region that has not yet been covered by any existing archive
in the community network, it might be appropriate to create a
new histogram in order to improve the data load balancing. In
that case, a data sample of the survey is extracted and integrated
into the training phase.

4.4  Query Processing

Region-based queries are submitted to any peer of the
HiSbase network. The peer extracts the multi-dimensional area
A from the query predicate. It selects an arbitrary identifier
r. from the set of intersecting regions which is determined
by lookupArea. The peer p. which is responsible for region



re 1s the coordinator. The coordinator collects intermediate
results and performs post-processing tasks (e.g., duplicate
elimination).

Let us assume a region-based query was issued at peer d in
Figure 6. The area of the query is marked with the thick-lined
rectangle in Figure 4. The regions relevant to our example query
are the regions 1 and 3. If peer d covers regions relevant to the
query, it becomes the coordinator itself. This is not the case in
our example. We select region 1 as r. and thus peer a becomes
the coordinator. Peer d forwards a coordination request to peer
a. The coordination request contains the query and the relevant
regions. After peer a receives the coordination request, it issues
the query to its own database (as it covers relevant regions)
and sends the query to all other relevant regions. Peer b also
participates in the query processing in our example as it covers
region 3. It sends its intermediate results back to the coordinator,
peer a. After having received all intermediate results, peer a
sends the complete result to peer d.

Peers may cover several regions. As region identifiers are
used for submitting queries, peers can receive the same query
several times. Each peer stores a hash of currently processed
queries to avoid multiple evaluations of the same query. Re-
sults and error messages are directly transmitted to the coordi-
nator or the submitting node without using the overlay routing
algorithm.

4.5 Query Load-Balancing

Currently we are looking at several techniques for combining
our data load balancing approach with query load balancing
techniques to efficiently handle query hot spots. We investigate
extensions to our training phase as well as techniques which
redistribute load during run-time.

We currently enhance the training phase with query statistics
such as earlier workloads. Based on these statistics, the data
partitioning can be modified to enable the application of query
load balancing techniques such as replication or load migration.

Using two parallel Pastry rings with different histograms in-
creases the data availability within the HiSbase network. By
changing the offset (or even the space filling curve) of the map-
ping process from Section 4.2.1, the second histogram stores
the data on different nodes and both copies are available during
query processing.

We are also considering to introduce a master-slave hierar-
chy, where idle peers can support overloaded nodes by offer-
ing their storage and compute resources. These may be nec-
essary to cope with short-term changes in query load distribu-
tion. Whether a peer is overloaded or constitutes a potential
slave-node is determined based on workload statistics collected
during run-time. These statistics can also augment the training
phase for the next histogram evolution (see Section 4.2.2).

5 System Evaluation

We evaluate HiSbase by performing throughput measure-
ments with our Java-based prototype [29] using the FreePas-
try? implementation of Pastry. The evaluation data set com-

3 http://freepastry.org
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Fig. 8. Evaluation data sets.

prises about 137 million objects from subsets of the ROSAT (25
million objects), SDSS (84 million objects), and TWOMASS
(28 million objects) catalogs and has a size of about 50 GB.
Figure 8 illustrates the data skew of these data samples.

5.1 Throughput Measurements

We measure throughput for varying multi-programming lev-
els (MPLs), i.e., a varying number of parallel queries in the
system, to evaluate at what degree of parallelism a distributed
architecture can outperform a centralized solution. Each run has
k peers, a batch containing / queries, and an MPL m. MPL=m
denotes that each peer keeps m parallel queries in the system.
At the start of a run, each peer immediately submits m queries.
We measure timestamps s, ; and r, , when peer p has submitted
its g-th query and has received the results, respectively. After
receiving an answer, peers submit their next query in order to
sustain the multi-programming level.

For measuring the throughput 7', we only consider queries
processed in the time span when every peer is guaranteed to
work on MPL=m parallel queries, the saturation phase L. Iy
is the time interval between the point in time when the last peer
has submitted its m-th query and the first peer has submitted
its last query, which is expressed formally as:

Ly = | max (sp,,), min (s,;) (1)

1<p<k 1<p<k

We shortly illustrate the case of computing I, for one single
HiSbase node p;. Let MPL=10 and [ = 500, then the node
submits 10 queries to HiSbase in order to reach the desired
degree of parallelism. In this scenario, I, starts at 51 19. As soon
as a query result is received, a new query is issued to HiSbase.
Finally, the saturation phase Iy, ends when the node submits
its last (500t) query at timestamp s1 500. When multiple nodes
participate in the HiSbase network, the last s, 10 and the first
sp,500 timestamp determine the saturation phase of the complete
network, as defined in Equation 1.

The throughput T is based on the number of successfully
processed queries during the saturation phase I

_ NP9 [ rpg €lbar 1 Sp<k1<q<I}

IS(I[

T 2

We used a body of 730 cross-match queries for our evalua-
tion. Cross-match queries determine whether data points from
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different sources are likely to stem from the same celestial ob-
ject. The queries were created from 730 random sources of the
SDSS catalog, using rectangular regions with an edge length
of 0.05°. The size of the query rectangles is based on realistic
values and each query covers approximately an area which is
% of the whole sky. Peers submit these queries in random or-
der. To this end, we present results for a histogram based on a
Z-quadtree with 256 regions using the center splitting strategy.

5.1.1 Single Peer Instance

The first experiment compares the query throughput of a
standalone database with the query throughput of the same
database used by a single HiSbase peer to measure the overhead
introduced by the HiSbase layer. The peer is a Linux server with
an Intel Xeon processor at 3.06 GHz, 2 GB RAM, and IBM
DB2 V8.1. Queries to the standalone database are submitted
via parallel JDBC connections. Figure 9 shows the throughput
in queries per second of the standalone database and the single
peer HiSbase instance. The throughput increases for both sin-
gle node setups through higher parallelism until their maximum
throughput (sweet spot) is reached. The maximum throughput
of both systems is roughly at 10 queries: 1.17 queries per sec-
ond at MPL=8 for the standalone database and 0.97 for the
single peer HiSbase instance at MPL=9. Although the stand-
alone database performed better than the single HiSbase node
in our evaluation, HiSbase introduces an acceptable overhead
as in practice an instance with multiple (typically hundreds of)
peers is used.

Just to give an impression of current throughput figures, the
traffic statistics of the SkyServer® archive show that in 2007
during an average month about 2312 queries have been sub-
mitted to the SQL interface which corresponds roughly to less
than one query per second. However, there are already several
occasions where the number of queries per second is signifi-
cantly higher.

5.1.2  Multi-Peer Instance

We tested a multi-peer instance in a local area network (LAN)
which measures how HiSbase performs in a setting with low
latency and high network bandwidth. The LAN configuration
of HiSbase was set up on 16 consumer-class Windows PCs
equipped with 1.6 GHz Processors, 512 MB RAM, and again

4 http://skyserver.sdss.org/log/en/traffic/
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Fig. 10. Throughput comparison of the multi-peer instance with the projected
values of the single-peer configuration.

with the IBM DB2 V8.1 database system. Figure 10 contrasts
the projected throughput of the single peer configuration de-
scribed above (by multiplying the previous results with 16) and
the 16-peer instance. The 16 peers achieve a stable super-linear
throughput compared to the single peer from MPL=20 onwards.
Smaller data partitions and especially a higher cache locality
constitute this throughput improvement as peers only process
similar queries. We did not continue the measurements beyond
an MPL=600, which corresponds to 9 600 parallel queries, as
expected numbers of parallel users are currently below this de-
gree of parallelism.

5.1.3 AstroGrid-D and PlanetLab Instance

In order to verify the scalability of our HiSbase approach, we
also conducted benchmarks on resources within AstroGrid-D
and D-Grid as well as on the PlanetLab test bed, as PlanetLab
is widely used for evaluating globally decentralized applica-
tions. In PlanetLab, applications run in so-called slices (virtual
machines) and in parallel with several other installed applica-
tions. Within the AstroGrid-D test bed, the resources are more
dedicated, reliable, and have high-bandwidth links. We suc-
cessfully demonstrated HiSbase using up to 56 resources from
our labs, the AstroGrid-D test bed, and on PlanetLab. Perform-
ing throughput measurements on such a distributed and hetero-
geneous environment has many challenges which we want to
summarize briefly.

For demonstration purposes, we used the Derby database
system which is a pure-Java embedded database developed by
Apache. For performing our benchmarks, however, Derby can-
not keep up with the performance of full-fledged commercial
database systems. Deploying these commercial database sys-
tems on all network nodes is not only difficult with regards
to licencing issues but also with regard to maintaining the in-
frastructure. Taming the heterogeneity of the resources is also
a non-trivial task as different protocols are needed for trans-
ferring data and accessing nodes. Within the LAN of our lab,
data either resides on local hard disks or a network attached
storage (NAS) and therefore it is easy to administer and to har-
vest the results. Data transfer between Grid nodes is performed
via GridFTP and gsissh, while in the PlanetLab network ssh
and scp are used. Supporting research communities concerning
these practical issues clearly is an important aspect of solving
their data management challenges.



6 Related Work

The HiSbase approach provides several benefits to e-science
communities by addressing domain specific data and query
characteristics. HiSbase offers a higher throughput via paral-
lelization, higher cache locality, and load-balancing across sev-
eral sites compared to centralized data management. HiSbase
enables scalable sharing of decentralized resources within a
community as it uses the DHT mechanism of key-based rout-
ing for data distribution and message routing. Using these tech-
niques, new nodes are easily added to the network and hetero-
geneous database management systems can be integrated with
little effort as each HiSbase peer only needs to know its own
local database configuration.

Using parallelism and partitioning to increase query through-
put is a well-established technique from distributed and parallel
databases [18]. Compared to HiSbase, distributed databases run
in a more homogeneous setting whereas parallel databases are
not designed for world-wide distributed resources. Autonomous
database systems [22] also deal with the correlation of sev-
eral data sources. However, data is not distributed across par-
ticipating servers (adhering to the nodes’ autonomy) and thus
correlation needs to be done at the client sites which leads to
additional data traffic.

DHT architectures such as CAN [25], Chord [33], Pastry
[26], and Tapestry [36] overcome the limitations of central-
ized information systems by storing data in a distributed
one-dimensional key space (except for CAN which uses
a d-dimensional torus). While these systems achieve load-
balancing by randomly hashing data and peers to their key
space, they do not support multi-dimensional range queries or
preserve spatial locality.

A large variety of systems have been proposed to sup-
port (multi-dimensional) range queries [4,12,32,34] or to
address data (or execution) load-balancing in P2P environ-
ments [2,7,11,23]. These systems are predominantly designed
for settings that are very dynamic, i.e., data hot spots and
the data itself change very frequently and the systems have a
very high churn. This flexibility comes at the price of dealing
with each data object (of several hundred million data objects)
individually. We exemplify some of these systems below and
discuss how they relate to HiSbase.

One approach [4] uses Voronoi diagrams in order to partition
the data space and to support queries on multi-dimensional data.
Independently, MURK [12] uses k-d trees to realize a similar
idea. In these systems, peers covering large data partitions have
more neighbors, while in HiSbase the number of neighbors
is independent from the number and size of covered regions.
SCRAP [12] directly applies a space filling curve to the data
and assigns one-dimensional ranges to peers. In HiSbase, the
submitting peer exactly determines the histogram regions in the
multi-dimensional data space and only these peers are contacted
during query processing while SCRAP can only approximate a
multi-dimensional query range using multiple one-dimensional
ranges.

The distributed quadtree index [34] also supports range
queries and objects with multi-dimensional extents. The repre-
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sentatives for the quadtree leaves are randomly placed on the
key space of an underlying DHT structure (e. g., Chord [33]).
To a certain level (f,;;) no objects are stored (to avoid the
bottleneck of higher-layer nodes) or to avoid too much frag-
mentation (fiqx). Each peer caches direct links to the children
of the quadtree nodes it is covering. Thus, it takes O(logn)
hops to find an f;,;,-node and then a constant number of steps
to reach the relevant leaves. This number of steps also has to
be processed with data objects without an extent which are
stored at level f,,,.. In HiSbase, no additional routing steps are
necessary. HiSbase discovers the relevant region directly and
routes to the responsible peer using O(logn) messages.

Also based on quadtrees, an on-line balancing algorithm for
frequent changes in data hot spots has been described [32]. The
quadtree leaves are mapped on a skip graph [3] layer using a
space filling curve. While the concept is similar to Z-quadtrees,
peers need to cover quadtree leaves on the same tree level while
in HiSbase there is no such restriction. Accounting for stable
data distributions, e-science communities might not benefit as
much from such an approach as from techniques increasing
query throughput.

How to achieve load balancing in one-dimensional, range-
partitioned data is described in [11,2]. The authors of [11] show
that load balancing schemes for range-partitioned data in highly
dynamic P2P networks either need to adjust the load between
neighbors or need to change peer positions within the range.
SCRAP is an extension of [11] to multi-dimensional data. In
[2], only representative values of the data ranges are maintained
in the skip graph. Load balancing between these data ranges
is achieved by arranging less-filled (open) buckets close to full
(closed) buckets. HotRod [23] addresses query hot spots on
one-dimensional data by replicating popular data ranges on
additional rings. Their query load-balancing technique could
be integrated with our data load-balancing.

P-Ring [7] addresses data skew in an orthogonal manner in
comparison to HiSbase. While HiSbase adapts the buckets of
the histogram data structure to data skew and distributes these
across the cooperating peers, P-Ring has the notion of “helper
peers” that support peers which are overloaded by skewed in-
sertions either by data redistribution between neighbors or by
merging their data into a neighbor’s range. Considering multi-
dimensional range queries, P-Ring would need to approximate
the query area with multiple one-dimensional intervals. Using
the insertion rate of 4 data items per second as in the simula-
tion study of P-Ring, importing 80 million objects would last
33 weeks (20 million seconds) which is inappropriate for e-
science communities having terabyte-scale data sets.

Related work in sensor networks (e. g., [1]) illuminates as-
pects of data distribution and load balancing from a different
perspective where data is created within the network. Identify-
ing synergies between our capabilities to directly support data
sets on a terabyte-scale with billions of records and the exist-
ing approaches to on-line load-balancing is an interesting and
challenging task for future research.



7 Conclusions and Future Work

In order to use P2P technologies for data-intensive e-science
applications on the Grid, we argue that peers require additional
distributed information, such as a histogram data structure.
HiSbase allows e-science communities to build up decentral-
ized and cooperative information networks and offers a frame-
work to design histogram data structures for accommodating
specific data characteristics and dominant query patterns. The
histogram data structure defines a partitioning scheme to bene-
fit from high throughput via parallelism and high cache local-
ity and is also used as routing index for increased flexibility.
HiSbase complements existing community-solutions. Given the
enormous variety of use cases and applications it is unlikely to
find a single best solution.

Future aspects comprise support for the IVOA Astronomical
Data Query Language (ADQL) and to investigate other data
intensive e-science applications such as data mining.
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