
The Design and Implementation of

OGSA-DQP: A Service-Based Distributed

Query Processor

Steven Lynden a Arijit Mukherjee b Alastair C. Hume c

Alvaro A.A. Fernandes a Norman W. Paton a Rizos Sakellariou a

Paul Watson b

aSchool of Computer Science, University of Manchester, Oxford Road, Manchester
M13 9PL, UK.

bSchool of Computer Science, University of Newcastle-upon-Tyne,
Newcastle-upon-Tyne NE1 7RU, UK.

cEPCC, The University of Edinburgh, James Clerk Maxwell Building, Mayfield
Road, Edinburgh, EH9 3JZ, UK.

Abstract

Service-based approaches are rising to prominence because of their potential to meet
the requirements for distributed application development in e-business and e-science.
The emergence of a service-oriented view of hardware and software resources raises
the question as to how database management systems and technologies can best be
deployed or adapted for use in such an environment. This paper explores one aspect
of service-based computing and data management, viz., how to integrate query pro-
cessing technology with a service-based architecture suitable for a Grid environment.
The paper addresses this by describing in detail the design and implementation of
a service-based distributed query processor. The query processor is service-based in
two orthogonal senses: firstly, it supports querying over data storage and analysis
resources that are made available as services, and, secondly, its internal architecture
factors out as services the functionalities related to the construction and execution
of distributed query plans. The resulting system both provides a declarative ap-
proach to service orchestration, and demonstrates how query processing can benefit
from a service-based architecture. As well as describing and motivating the archi-
tecture used, the paper also describes usage scenarios, and, using a bioinformatics
application, presents performance results that benchmark the system and illustrate
the benefits provided by the service-based architecture.

Key words: Web Service, Data Integration, Data Grid

Preprint submitted to Elsevier Science 13 August 2008

1 Introduction

The Grid is a software infrastructure that supports the discovery, access and
use of distributed computational resources [21]. Although the Grid was origi-
nally devised principally to support scientific applications, the functionalities
associated with middlewares, such as the Globus Toolkit 1 , are potentially rel-
evant to applications from many domains, in particular those with demanding,
but unpredictable, computational requirements. For the most part, Grid mid-
dlewares abstract over platform or protocol-specific mechanisms for authen-
tication, file access, data movement, application invocation, etc., and allow
dynamic deployment of jobs on diverse hardware and software platforms.

In parallel with the development of Grid computing, Web Services (WSs) [24]
are becoming widely accepted as a way of providing language and platform-
independent mechanisms for describing, discovering, invoking and orchestrat-
ing collections of networked computational services. Although the stable and
interoperable collection of WS standards managed by the WS-I 2 organisation
covers quite modest functionalities, other standardisation activities in Oasis 3

and the W3C 4 provide comprehensive mechanisms for service description,
security, management, notification and workflow description.

The principal strengths of WSs and Grid middlewares are complementary,
with WSs focusing on platform-neutral description, discovery and invocation,
and Grid middlewares focusing on the dynamic discovery and efficient use
of distributed computational resources. This complementarity has given rise
to the service-based Grids (for example the Open Grid Services Architecture
(OGSA) [20]), which make the functionality of Grid middlewares available
through WS interfaces.

Although the initial emphasis in Grid computing was on file-based data stor-
age [40], the importance of structured data management to typical Grid appli-
cations is now widely recognised, and several approaches exist for developing
Grid-enabled database services (e.g. [5,17]). To simplify somewhat, a Grid-
enabled database service provides a service-based interface to a database as
part of a wider collection of services for managing and using resources.

The provision of facilities that support application development is relevant to
all service-oriented architectures. For example, in a Grid setting, applications
can use Grid functionalities through toolkits [54] or Grid-enabled versions
of parallel programming libraries such as MPI [19]. In the WS setting, tools

1 http://www.globus.org
2 http://www.ws-i.org
3 http://www.oasis-open.org
4 http://www.w3.org

2

exist to support the generation of client stubs (e.g., Axis 5), but, more am-
bitiously, XML-based workflow languages have been developed to orchestrate
WSs, of which BPEL4WS 6 is perhaps the most prominent. However, all of
these approaches are essentially procedural in nature, and place significant
responsibility on programmers to specify the most appropriate order of exe-
cution for a collection of service requests and to obtain adequate resources for
the execution of computationally demanding applications.

This paper argues that distributed query processing (DQP) can provide effec-
tive declarative support for service orchestration, and describes an approach
to service-based DQP on the Grid, implemented in the OGSA-DQP system,
that: (i) supports queries over multiple services combining data access with
analysis; and (ii) uses an infrastructure consisting of distributed services for
efficient evaluation of distributed queries.

In the broad space of design options for a distributed query processor, OGSA-
DQP:

(1) Supports low-cost data integration, in that we use existing OGSA-DAI
wrappers to obtain access to networked resources, and in that there is no
need to map source schemas to a single global model. This is consistent
with the Grid ethos, in which the middleware is designed to encourage
the rapid and potentially temporary deployment of integrated collections
of resources.

(2) Builds on parallel database technology, in which both pipelined and parti-
tioned parallelism are used to generate initial results early and to increase
throughput. This is consistent with the Grid ethos, in which computa-
tional resources at multiple sites are acquired and combined to meet
requirements as they arise.

The argument for the importance of DQP in a service-based Grid setting builds
upon a claim of mutual benefit: the Grid stands to benefit from DQP, through
the provision of facilities for declarative request formulation that complement
existing approaches to service orchestration; and DQP stands to benefit from
the Grid, due to the support provided for the discovery and allocation of
computational resources, as required to support computationally demanding
database operations (such as joins), and implicit parallelism for complex anal-
yses.

The remainder of this paper is structured as follows. Section 2 describes
OGSA-DAI, which provides data access capabilities in service-based Grids.
Section 3 contains the principal technical contributions of the paper - a de-
tailed description of how the OGSA-DQP engine has been realised, using ser-

5 http://ws.apache.org/axis
6 http://www-128.ibm.com/developerworks/library/specification/ws-bpel

3

vices both as architectural components in the design of the engine itself and
as nodes in distributed query execution plans. Section 4 describes the range
of tools that users can use to interact with the OGSA-DQP system, including
a GUI client and programming toolkit. Section 5 presents the results of an
experimental evaluation. Section 6 draws contrasts with other work on dis-
tributed query processing and Grid data integration. Finally, Section 7 states
some conclusions. This paper reflects a number of changes to OGSA-DQP since
the conference paper in which it was first reported [3]; changes of substance
include a closer integration with OGSA-DAI both for query evaluation and
application development; a revision to the service definitions used to support
query evaluation; and the provision of an experimental evaluation.

2 OGSA-DAI

In a service-oriented Grid the principal objective is to enable computational
resources to be accessed and managed in a secure and systematic manner. As
databases are important computational resources, database access services can
be expected to have an important place in middlewares for data Grids [6]. In
this setting, the OGSA Data Access and Integration (OGSA-DAI) project 7

has developed a service-based infrastructure for accessing both relational data-
bases and XML repositories that integrates service-based access to data re-
sources through two WS platforms:

(1) The WS-I 8 platform in the OMII 9 middleware stack.
(2) The WSRF platform in the Globus Toolkit 4 10 middleware stack.

The role of OGSA-DAI in a service-based Grid, illustrated in Figure 1, involves
interactions between several components which are now defined:

• OGSA-DAI data service: a WS that implements various port types allowing
the submission of requests and data transport operations.

• Client: an entity that submits a request to the OGSA-DAI data service; a
request is in the form of a perform document that describes one or more
activities to be carried out by the service.

• Consumer: a process, other than the client, to which an OGSA-DAI service
delivers data.

• Producer: a process, other than the client, that sends data to an OGSA-DAI
data service.

7 http://www.ogsadai.org.uk
8 http://www.ws-i.org
9 http://www.omii.ac.uk
10 http://www-unix.globus.org/toolkit

4

C l i e n t

O G S A - D A I D a t a S e r v i c e

P e r f o r m

G D T

R e l a t i o n a l

X M L

F i l e sC o n s u m e r G D T

P r o d u c e r G D T

D a t a r e s o u r c e s

T h i r d - p a r t y d e l i v e r y

A s y n c h r o n o u s r e t r i e v a l o f
r e s u l t s

P e r f o r m d o c u m e n t

D i rec t r esu l t s / e r r o r s

Fig. 1. OGSA-DAI Data Service

In order to make a request to an OGSA-DAI data service, the client invokes a
WS operation on the data service, parameterised by a perform document. A
perform document is an XML document describing the request that the client
wants to be executed, defined by linking together a sequence of activities.
An activity is an OGSA-DAI construct corresponding to a specific task that
should be performed. The output of one activity can be linked to the input of
another to perform a number of tasks in sequence. For example, the output
of an SQLQueryStatement activity, which executes a SQL query, can be sent
to a DeliverToGDT activity to send the results to a consumer supporting the
Grid Data Transport (GDT) port type. The input of the SQLQueryStatement
activity may be pulled from a consumer supporting the GDT port type by
linking the output of a DeliverFromGDT activity to the SQLQueryStatement

activity. A range of activities are supported by OGSA-DAI, falling into the
broad categories of relational activities, XML activities, delivery activities,
transformation activities and file activities. Furthermore, the activity is an
OGSA-DAI extensibility point, allowing third-parties to define new activities
and add them to the ones supported by an OGSA-DAI data service.

2.1 Data Service Resources

Data service resource is the term used within the OGSA-DAI domain for an
individual resource that is managed by an OGSA-DAI data service. When a
perform document is submitted to an OGSA-DAI data service, a data service
resource is specified which is used by the activities contained in the perform
document to execute their tasks. The use of this mechanism allows a single

5

service to expose multiple data resources, which can be of different types,
each supporting a different set of activities. Data service resources may also
expose resource properties, which are XML elements describing properties of a
given resource. Resource properties may be queried and in some cases modified
using the interfaces defined by the WS-Resource Properties [29] specification.
OGSA-DAI data services expose resource properties describing the status of
executing perform documents and the activities supported by a data service
resource.

P e r f o r m
R e s o u r c e

O G S A - D A I d a t a s e r v i c e
P e r f o r m
D o c u m e n t
(X M L)

D R A

E n g i n e

A c t i v i t y g r a p h

P a r s i n g

E x e c u t i o n

Fig. 2. Data resource accessors. When a perform document is submitted, the OGSA–
DAI engine parses it and composes a directed acyclic activity graph. The engine
submits each activity to a data resource accessor for execution.

Data service resources and resource properties are also OGSA-DAI extensi-
bility points. Third parties may add their own data service resources which
can extend the set of resource properties supported by OGSA-DAI. To facil-
itate this extensibility mechanism, OGSA-DAI introduces the data resource
accessor (DRA). A DRA is a component that mediates communication be-
tween the OGSA-DAI engine, which processes perform documents, and the
data resource on which activities are executed. Figure 2 illustrates the role
played by DRAs within the OGSA-DAI data service. To support a new type
of data resource, a DRA is implemented to support the execution of a set of
activities on the data resource. In the next section it will be described how a
data resource accessor is used to represent a federation of services over which
distributed queries can be evaluated.

The service-based DQP approach described in this paper functions as an inte-
gration component allowing queries to be composed over multiple OGSA-DAI-
wrapped relational data sources. Although the core OGSA-DAI data service
provides a useful abstraction for accessing individual data resources on the
Grid, they do not address challenges associated with integrating data from
multiple resources; the following section describes how this is supported using
OGSA-DQP. Thus OGSA-DAI allows a program or a perform document to
interact with several different data resources, but does not support declara-
tive query evaluation over multiple sources. Declarative query evaluation over
multiple sources does not offer any additional capability compared with an

6

application that accesses multiple sources, but requests to a distributed query
processor are likely to be considerably more concise, and benefit in the case
of OGSA-DQP both from query optimization and parallel evaluation.

3 A Service-based DQP Architecture

This section describes a query processing framework, OGSA-DQP, in which
query compilation, optimisation and evaluation are implemented using a service-
based architecture; all of (i) the distributed query processor; (ii) the query
fragment execution nodes; (iii) the data resources accessed from a query; and
(iv) the computational resources invoked from queries are represented as ser-
vices.

An important benefit of this approach is that OGSA-DQP can be seen to pro-
vide an effective and efficient platform for declarative orchestration of services
in the Grid. As such, service-based DQP provides an alternative to procedural
approaches for expressing data-based computations over the Grid.

OGSA-DQP extends OGSA-DAI with the following services:

• DQP coordinator service: An OGSA-DAI data service, enhanced to sup-
port distributed queries using the extensibility points discussed in the pre-
vious section. The main enhancement is the contribution of the DQPQuery-

Statement activity which compiles, optimises and schedules SQL queries
for execution.

• DQP evaluator service: A service capable of evaluating a query fragment
provided by the coordinator. An evaluator is able to play a role in the
evaluation of a query by retrieving data from OGSA-DAI-wrapped data
resources, invoking analysis services and managing the flow of data between
other evaluators. Multiple evaluators are used, to provide the benefits of
parallelism during query evaluation.

Figure 3 illustrates the architecture of OGSA-DQP. Before queries may be sub-
mitted, OGSA-DQP obtains the metadata that it needs to compile, optimise,
partition and schedule distributed query execution plans over the multiple ex-
ecution nodes (evaluators). When a query is submitted, the following steps
take place:

(1) The client sends a perform document, containing a DQPQueryStatement,
using the perform port type of the OGSA-DAI data service. The query
is parsed, compiled and scheduled for execution and a query plan is pro-
duced. This query plan is partitioned, where each partition is an XML
document specifying the role of an individual evaluator in the evaluation

7

OGSA-DAI
data service perform GDT

 evaluator
QE

 evaluator
QE

 evaluator
QE

 OGSA-DAI
data service

 OGSA-DAI
data service

 analysis
service

perform

perform

perform
doc

Data flow during query evaluation
(step 2)

Service invocations during query submission,
compilation & assignment of partitions (step 1)

client

Fig. 3. OGSA-DQP Architecture

of the query. Each query partition is sent to the relevant evaluator using
the query evaluation (QE) port type of the evaluators.

(2) The evaluators retrieve data from OGSA-DAI data services and invoke
any analysis services required to evaluate the query. The flow of data
during the execution of a query plan forms a tree, where data flows up-
wards via the evaluators, which use the QE port type to send data to
other evaluators. The DQPQueryStatement activity, which is the root of
the tree, is able to receive data via the GDT port type of the OGSA-DAI
data service.

There are two phases involved in the use of OGSA-DQP, a set-up phase where
the federation of services over which queries may be executed is composed,
and a query phase during which queries are submitted and evaluated.

3.1 Setting up a distributed query service

To accomplish the set-up phase, the factory pattern is adopted and OGSA-
DQP is modelled as two separate data resources, one encapsulating a factory
entity and another representing a database federation over which queries may
be evaluated. In addition to the activity extensibility point, another exten-
sibility point is used that allows new types of data resources to be exposed
by OGSA-DAI data services. When OGSA-DAI exposes a data resource, the
engine instantiates a DRA to interface with the data resource, as was shown
in Figure 2. OGSA-DQP introduces DRAs for the following two types of data
resources:

• The DQP factory data resource, which maintains OGSA-DQP system level
installation data and supports the execution of the DQPFactory activity,
which is introduced to enable configuration.

• The DQP data resource, which represents a federation of data resources

8

and analysis services over which queries may be composed using DQPQuery-

Statement activities, and the pool of evaluator services which may be
utilised to evaluate such queries.

OGSA-DAI allows data resources to be exposed dynamically by providing
activities with the ability to instantiate a DRA at runtime, and this function-
ality is used by the DQPFactory activity to deploy DQP data resources. The
DQPFactory activity has one input, which takes an XML document specifying
the parameters required to configure a DQP data resource. This configuration
document is provided by the client and is used to specify the data sources and
analysis services that the DQP data resource should attempt to import. The
output of the DQPFactory activity returns the resource ID (the unique, auto-
matically assigned identifier used to identify individual resources exposed by
an OGSA-DAI data service) of the dynamically exposed DQP data resource.
When the activity is executed, the following sequence of events occurs:

(1) A DQP DRA is created and initialised.
(2) The DQPFactory activity passes the configuration document to the DRA,

which attempts to import the data sources and analysis services speci-
fied. During this process physical metadata about database tables is also
retrieved from the data sources. This information is used during optimi-
sation to construct query execution plans.

(3) If schema import is successful (i.e. at least one data source is success-
fully imported), a DQP data resource is exposed, through the created
DRA, which encapsulates the data federation over which queries can be
evaluated. The unique identifier used by the OGSA-DAI data service to
identify the resource is returned to the client. If schema import is un-
successful, the DQP DRA is destroyed and an error is reported to the
client.

3.2 Query submission, optimisation and evaluation

The DQPQueryStatement has one input, which accepts a SQL query, and one
output, which supplies the result of the query in XML. The following takes
place when the DQPQueryStatement is executed:

(1) An OGSA-DAI input stream is created. Input streams allow data to
be sent to an activity, either from another activity or remotely via the
GDT port type. OGSA-DAI allows input streams to be created during
the initialisation of an activity, which results in the activity possessing a
second input, although only the first is visible to the client. The creation
of the input stream allows the DQPQueryStatement to function like an
InputStream activity and receive data from remote services. Activities

9

such as DeliverToGDT and InputStream usually work in pairs to deliver
data from one OGSA-DAI service to another, however in this case the
input stream is created to receive results from evaluator services behind-
the-scenes.

(2) The query is compiled to yield a partitioned query plan, where each
partition is assigned to an evaluator. The compilation, optimisation and
scheduling of queries is described in more detail in Section 3.3. An XML
representation of the query plan is exposed as a property of the DQP
data resource. This resource property allows the client to obtain a repre-
sentation of the query plan as it is being executed.

(3) Each query plan partition is sent to the relevant evaluator. A query plan
partition contains the relevant information (service endpoint and input
stream identifier) needed by each evaluator to stream data back to the
DQPQueryStatement activity created in step 1. Evaluators are able to
stream data back to the DQPQueryStatement activity in the same way
that a DeliverToGDT activity delivers data from one OGSA-DAI data
service to another.

(4) The DQPQueryStatement activity waits for results from the evaluators. As
results are received, they are converted to XML and sent to the activity’s
output.

(5) When the complete set of query results has been received, the input
stream created in step 1 is closed and the resource property exposed in
step 2 is removed.

Queries are evaluated using both pipelined and partitioned parallelism. Pipelined
parallelism is achieved through the the use of a multi-threaded implementa-
tion of the iterator model [28]. In the iterator model, each operator produces
data one tuple at a time, allowing produced tuples to be processed by sub-
sequent operators in the query plan without waiting for an input operator to
finish. Partitioned parallelism is facilitated by the placement by the scheduler
of an individual plan partition on multiple nodes, as described further in Sec-
tion 3.3. Although the iterator model operates tuple-at-a-time, inter-service
requests (both between the DQP coordinator and evaluators, and between
different evaluators) transmit blocks of tuples, as individual WS invocations
have significant overheads.

3.3 Compiling, optimising and scheduling queries

The resources used to evaluate a query are identified by the query planner
and selected for use based on the predicted needs of the queries (computed
using a cost model [14]), and on the properties of the available computational
resources. In practice resource assignment is principally heuristic; for example,
resource assignment selects the fastest available nodes first, and prefers nodes

10

that are located on the same network. When a query is submitted, an execution
plan is produced using the two-step optimisation paradigm that has previously
been exploited for both parallel and distributed databases [35].

Phase 1: In the first phase, the query compiler performs the transformations
that are valid irrespective of the number of execution nodes (parsing, followed
by type checking, followed by logical and then physical optimisation) to yield
a single-node execution plan. The parser supports an SQL-based syntax that
is extended to allow function calls. During logical optimisation, selectivity es-
timates are computed based on the physical metadata obtained during schema
import. The selectivity estimates are then used to create a left-deep join tree
using a heuristic which aims to minimise the size of the intermediate rela-
tion produced at each stage (for details of the optimization algorithm used,
see [23], Section 7.6.6). Physical optimisation simply chooses an algorithm to
implement each join operator based on cost estimates for each suitable join
algorithm.

Phase 2: In the second phase, a partitioner breaks down the single-node exe-
cution plan into partitions and a scheduler assigns the partitions to execution
nodes. During this phase, the optimiser considers parallelising certain opera-
tors in order to speed up the query execution. There are two operator types
for which parallelisation can make a significant difference to the query exe-
cution time: function calls which invoke external WSs, and specific types of
hash table-based join algorithms. The optimiser considers parallelisable joins
and WS calls as candidates for parallelisation and increases the degree to
which they are parallelised until there are no more evaluators available or the
estimated cost of further parallelising the operator outweighs the estimated
benefit. This strategy is based on the approach described in [26].

The scheduler assigns query plan partitions to evaluators based on the com-
putational characteristics of the nodes on which evaluators are deployed. The
computational characteristics of a node consist of a range of attributes describ-
ing the node’s physical properties which can be used to estimate the speed
with which it can evaluate a given partition of the query execution plan. For
example, a node with a large amount of memory may be required to implement
a hash-join for which the hash table built by the join operator is expected to
be large. The provision of computational metadata about execution nodes is
an OGSA-DQP extensibility point, where users may provide a mechanism for
dynamically updating the metadata, the implementation of which depends on
the capabilities provided by the service-based Grid in which OGSA-DQP is
deployed. Metadata may be obtained statically, for example using a configu-
ration file when installing OGSA-DQP, or dynamically, for example using the
Index Service 11 provided by the Globus Toolkit 4.

11 http://www.globus.org/grid software/monitoring/

11

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

N2

N3, N4

reduce

reduce

exchange

reduce

scan

scan

exchange

hash_join

(proteinID)

(p.proteinID, blast)

(proteinTerm)

(protein)

(proteinID,sequence)

(p.proteinID=t.proteinID)

operation_call
(blast(p.sequence))

N1

(term=GO:0008372)

Fig. 4. Distributed Query Plan

Figure 4 depicts an execution plan produced by the compiler/optimiser. The
plan has been produced for a query that joins data from two bioinformatics
data sources, one of which contains protein sequences. The hash join operator
used in this plan caches the left input relation in a hash table and consumes
the right input one tuple at a time, producing matching tuples via lookups
using the hash table. The reduce operator is used by OGSA-DQP to imple-
ment projection, and the operation call operator invokes Web service opera-
tions. Three partitions (i.e., the dashed regions) have been decided upon whose
intersections are marked by the exchange operators [28] used to manage com-
munication and data distribution between evaluators. Note that the partition
containing the BLAST execution (producing sequence alignment scores for
input protein sequences, which can be computationally expensive) has been
scheduled to run on two of the four nodes N1-N4 harnessed for executing the
query.

3.4 Summary

The implementation of OGSA-DQP using the OGSA-DAI extensibility points
is based on two new activities, and two new data resources. As OGSA-DAI
manages the concurrent execution of activities, OGSA-DQP is capable of pro-
cessing multiple queries simultaneously without the need for manually de-
veloping a concurrent implementation. The use of the extensibility points
allows OGSA-DQP to take advantage of the both the authentication and
the host of delivery options provided by OGSA-DAI by connecting the out-
put of DQPQueryStatement activities to core OGSA-DAI activities such as
DeliverToGDT and DeliverToFTP. OGSA-DQP is also insulated from the mul-
tiple platform approach adopted by OGSA-DAI, which allows OGSA-DQP to
be deployed using either OGSA-DAI WSRF or OGSA-DAI WS-I and therefore
provides both of these options to the users of OGSA-DQP.

12

Other than OGSA-DAI, OGSA-DQP has few mandatory external dependen-
cies on other Grid components or services; as such, the infrastructure can ob-
tain information about available sevices from configuration parameters rather
than by interrogating registries, and uses web service communication rather
than Grid data movement protocols during query evaluation. Enhanced Grid
query processors could exploit diverse data transfer or reservation capabilities,
though at the cost of greater complexity in query planning and additional ex-
ternal dependencies for the query evaluator.

The software described in this paper is available in open-source form from
http://www.ogsadai.org.uk/dqp.

4 Usage scenarios

Use of OGSA-DQP is facilitated by a command-line client, a GUI client, and
a programming toolkit that allows users to integrate the invocation of the
distributed query service with their applications. These tools provide a range
of options for interacting with OGSA-DQP, depending on the requirements of
the user.

4.1 OGSA-DQP clients

The functionality of the clients is divided across two distinct modes of opera-
tion: administrator mode and user mode.

The main role of the administrator mode is to set up a query session, which
corresponds to the configuration of a DQP coordinator. This can be achieved
(i) by passing a configuration file as an argument to the command-line client,
or (ii) interactively by using the GUI client. The configuration corresponds to
the set-up phase described in Section 3.1, and results in the import of schemas
from OGSA-DAI-wrapped data sources and WSDL documents from analysis
services. Using the GUI client, the user is able to specify the evaluators, data
sources and analysis services that should be used when setting up a DQP
resource, and subsequently examine the outcome of the setup phase in detail
by viewing the metadata exposed by the DQP resource, describing imported
schemas and available resources. Any web service that takes or returns the
following types: xsd:String, xsd:Boolean, xsd:Decimal, xsd:Float, xsd:Double,
xsd:Time, xsd:Date, xsd:Long, xsd:Int, xsd:Short and xsd:Byte. Figure 5 shows
the GUI in administrator mode as the user browses the metadata exposed by
a DQP resource.

13

Following successful configuration and creation of a DQP resource representing
a federation of data and analysis services, both the command-line and GUI
clients allow queries to be submitted and their results displayed. Here, the
GUI client offers three advantages by:

• Allowing the query to be more easily composed by displaying the global
schema, which consists of the union of the schemas of the sources imported
from the resources being queried. The current version of OGSA-DQP does
not provide support for the development of a global schema that suppresses
schematic heterogeneities between sources (e.g. [34]), although OGSA-DQP
has been used as a back-end evaluation engine in several projects in which
schematic query evaluation has been investigated [25,55].

• Providing the user with a graphical representation of the query plan used
to evaluate a query.

• Providing the facility to export results in HTML and XML formats.

Figure 6 illustrates one of the features of the GUI client during the execution
of a query, where the user is examining a parallel query plan used to execute
the query. Each node in the displayed query plan is an operator, which may
be parallelised over a number of machines. The dotted boundaries annotated
with hostnames indicate the hosts on which a group of operators have been
scheduled for execution.

4.2 Programming with OGSA-DQP

OGSA-DAI provides a Java-based client toolkit for interacting with OGSA-
DAI data services, which is also an extensibility point where developers can
add their own client toolkit classes to support third-party data resources and
activities. The client toolkit allows developers to integrate DQP with their
applications using only a few lines of code. Configuration of a DQP resource
can be achieved as follows:

1 DataService service = fetcher.getDataService(

"http://test.man.ac.uk:8080/axis/services/dqpservice",

"dqp-factory");

2 DQPFactory factory = new DQPFactory(config);

3 ActivityRequest request = new ActivityRequest();

4 request.add(factory);

5 Response response = service.perform(request);

Line 1 uses the API provided by OGSA-DAI to create a local object (service)
representing a remote OGSA-DAI data service exposing a DQP factory data
service resource. In Line 2, a DQPFactory object is instantiated and used to
represent a DQP factory activity parameterised by config, which is the XML

14

Fig. 5. OGSA-DQP GUI client in administrator mode

document used to specify configuration parameters such as the services used
to form the federation over which queries may be composed. Lines 3 and 4
create an activity request (i.e. a perform document) which is sent to the data
service in Line 5. The Response object returned in Line 5 provides methods
allowing results or errors to be received from the data service. A configured
DQP data service resource can be queried using the client toolkit as follows:

1 DataService service = fetcher.getDataService(

"http://test.man.ac.uk:8080/axis/services/dqpservice",

"dqp-resource");

2 ActivityRequest queryRequest = new ActivityRequest();

3 DQPQuery dqpQuery = new DQPQuery("select id from dqp_goterm;");

4 queryRequest.add(dqpQuery);

5 Response response = service.perform(queryRequest);

Line 1 again creates an object to represent the OGSA-DAI data service,
except that this time a different data service resource is used. This corre-
sponds to a resource created as the result of a configuration operation such
as the one described above. Lines 2-4 create an activity request which con-
tains a DQPQueryStatement which is encapsulated in the client toolkit by the
DQPQuery class. Line 5 performs the request, and from the response object re-

15

Fig. 6. Screenshot of a query plan displayed by the GUI client

sults may streamed back to the client application from the data service. The
OGSA-DAI client toolkit also supports the querying of resource properties,
which allows the properties exposed by DQP resources, such as the schema of
the data resource federation, to be retrieved.

5 Performance Evaluation

Architecturally, OGSA-DQP differs from established distributed query eval-
uators in two principal ways: in using a service-based Grid to access remote
data and computational resources, and in exploiting partitioned parallelism
both for query-internal operations (such as joins) and for external web service
calls. This section describes experiments that have been carried out that seek:
(i) to illustrate the overall performance that has been obtained using a service-
based distributed query processor in both local and wide-area networks; and
(ii) to show the benefit of parallelism both for standard queries and for queries
invoking web services that provide application-specific analyses.

16

select ORF, GOTermIdentifier

from protein_goterm;

(a) SCAN-QUERY-1: scan protein goterm.

select id, type, name

from goterm;

(b) SCAN-QUERY-2: scan goterms.

select id, type, name, ORF, GOTermIdentifier

from goterm, protein_goterm

where goterm.id=protein_goterm.GOTermIdentifier

and id like ’GO:001%’ and ORF like ’Y%’;

(c) JOIN-QUERY: join goterm and protein goterm.

select calculateEntropy(sequence)

from sequence;

(d) ANALYSIS-QUERY: compute the entropy of proteins in the sequence table.

Fig. 7. Queries used in experimental evaluation

Several research projects have reported experimental results that in some
way build on OGSA-DQP, and thus which provide further evidence as to
the scaleability and performance of the architecture using literature [25] and
proteome [56] data resources.

5.1 Experiment Setup

The experiments involve three tables: goterm, which contains data from the
Gene Ontology (GO) [30] on biological function; protein, which stores data
on protein sequences; and protein goterm which associates proteins with the
terms that describe their functions. The sequence table contains the amino
acid sequences of proteins belonging to multiple organisms. Figure 8 describes
data volumes for each table.

As OGSA-DQP operates in a service-oriented environment, all data is shipped
across the network as XML documents using SOAP as the transport protocol,
which increases the volume of the data on the wire significantly.

The four queries used in the experiments are listed in Figure 7. The queries
SCAN-QUERY-1 and SCAN-QUERY-2 fully scan two of the data sources
mentioned above, and are used to illustrate the throughput of basic data access
operations over local and remote sources. JOIN-QUERY joins the two data
sources, and is used to study the effect of parallelism on join performance;
a main-memory hash-join is used throughout. ANALYSIS-QUERY is used
to explore the performance of parallel invocations of a WS operation. Each
protein sequence is used as an input parameter to a WS call to compute its
entropy (i.e. information content).

The data sources are hosted in MySQL databases. The experiments have been
run on local area networks at Manchester and Newcastle universities, which

17

Data Source Number of rows Size in the database Attributes

protein goterm 49171 1.23MB ORF, GoTermIdentifier

goterm 22622 1.56MB id, type, name

sequence 8763 1.9MB ORF, sequence

(All attributes are String types)

Fig. 8. The datasets used in the experiments

are connected to the UK academic network (JANET - Joint Academic NET-
work) which has a 10Gb/s backbone. The machines are connected via Fast
Ethernet switches (10/100Mbps) to a departmental network that consists of
a fibre optic Gigabit Ethernet backbone. The computational nodes used at
Manchester are AMD Athlon(tm) XP 3000+ machines, each with a 3GHz
CPU and 512MB-1GB RAM. The computational nodes used at Newcastle are
Intel(R) Xeon(TM) 2.80GHz CPUs with 2GB of RAM. The experiments are
now described.

5.2 Experiment 1

This experiment executes table scans with increasing data volumes. The ob-
jective is to discover the time taken for OGSA-DQP to scan remote tables
and to see how the response time scales as the size of the tables are increased.
For this experiment, the goterm and protein goterm tables are scanned using
SCAN-QUERY-1 and SCAN-QUERY-2 respectively. This experiment is per-
formed using three of the Manchester nodes, where two of the nodes each have
(i) a database containing one of the queries tables, (ii) an OGSA-DAI data
service exposing the databases, and (iii) a DQP evaluator service. Queries
originate from an OGSA-DQP coordinator deployed on the third node.

5.2.1 Results

Figure 9 shows the response times of SCAN-QUERY-1 and SCAN-QUERY-2
for increasing data volumes. The two main conclusions that can be reached
from this graph are that absolute response times shown are high for the
amounts of data delivered and that response time scales linearly as the data
volume increases. Experience reported in [32] indicates that the OGSA-DAI
database wrappers are around an order of magnitude slower than JDBC calls
for bulk delivery on a local area network. OGSA-DQP exploits a still-slower
block-delivery interface to OGSA-DAI to allow pipelined processing, from
which there is no real benefit in these simple queries; as such, there is a
significant performance overhead associated with the creation and unpacking
of XML data representations, and for sending in SOAP messages. Ongoing

18

research and development work on WS infrastructures is likely to reduce such
overheads significantly (e.g. [48]).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5000 10000 15000 20000 25000 30000 35000 40000 45000

tim
e

(s
ec

on
ds

)

number of tuples

SCAN-QUERY-1
SCAN-QUERY-2

Fig. 9. Comparison of the response times for scanning two data sources

5.3 Experiment 2

This experiment aims to investigate the benefit of parallelising operation call
operators that invoke WSs. ANALYSIS-QUERY is used to invoke the calcu-
lateEntropy operation which is made available by different WSs located on
a number of separate machines. OGSA-DQP is able to parallelise the execu-
tion of analysis queries by scheduling operation call operators for execution
on different evaluators, each of which invokes a separate instance of the WS
operation. This experiment is performed using the machines at Manchester,
where a collection of nodes each host a DQP evaluator and a WS support-
ing the calculateEntropy operation. A separate node hosts one evaluator and
the sequence table via an OGSA-DAI data service. The number of available
instances of the calculateEntropy operation is increased, with a total of 7 eval-
uators (6 evaluators on analysis service nodes and the single evaluator on the
data source node) made available to the DQP coordinator for the execution
of each query.

19

5.3.1 Results

Figure 10 shows the response times of ANALYSIS-QUERY as the number
of replicated operations is increased from 1 to 6. The results show clearly
that response time decreases as the level of parallelism used to execute the
calculateEntropy operation increases. The data source scanned, along with one
evaluator, reside on a node that does not host any of the WSs used to execute
the query. The optimiser chooses to schedule operation-call operators to run
on evaluators that are as close as possible to the WS being invoked, therefore
the output of the scan operator on the data source node is always routed to
a remote evaluator, resulting in some communication overhead regardless of
the degree of parallelism. The results show that the communication overhead
does not outweigh the benefit of increasing the degree of parallelism used to
execute the operation.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 1 2 3 4 5 6

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

on
ds

)

Number of service copies

execution time of calculateEntropy Web Service

Fig. 10. Response times for analysis queries with different levels of parallelism

5.4 Experiment 3

This experiment aims to investigate the benefits of parallelising join operators
by comparing the DQP framework proposed in this paper to a more centralized
wrapper-mediator approach, in which a single mediator interacts with a col-
lection of wrapped sources [33,13]. Using the wrapper-mediator architecture,
data is fetched from remote sites and processed centrally using a single evalu-
ator. In contrast, OGSA-DQP is able to process data remotely and in parallel
by parallelising operators such as joins and operation calls. OGSA-DQP can

20

simulate the wrapper-mediator architecture if only a single local evaluator
is available to the DQP coordinator, therefore necessitating the transport of
all data from remote data sources to this one evaluator, which then imple-
ments the query execution plan. In this experiment, queries originate from a
DQP coordinator deployed on one of the Manchester nodes. JOIN-QUERY
is executed using data sources located at Newcastle. The goterm and pro-
tein goterm tables involved in this query are each exposed by three separate
OGSA-DAI data services. This deployment replicates each table three times,
and the OGSA-DQP coordinator chooses at random which data service to use
to scan the tables when processing a query. The reason for replicating each
of the tables is to reduce the likelihood of data sources becoming bottlenecks
when multiple queries are processed concurrently. Experiments are performed
with two different sets of available evaluators:

(1) A single evaluator is deployed at Manchester. This is equivalent to the
wrapper-mediator approach.

(2) Nine evaluators are deployed on nodes at Newcastle, six of which are on
the same nodes as the data sources. This configuration enables OGSA-
DQP to parallelise the execution of joins over multiple evaluators.

For each of these deployment configurations, the average response time for
queries is monitored as the frequency with which queries are submitted is in-
creased (OGSA-DQP is able to process multiple queries concurrently using
the same set of resources). The experiment is performed by periodically sub-
mitting JOIN-QUERY and calculating the average time taken to evaluate the
queries over a fixed period. Initially, the experiment is performed with a client
that waits 16 seconds between the submission of each query. Subsequently, the
wait period is reduced by 2 seconds and the experiment is performed again.
This process is repeated until the DQP infrastructure fails. For configuration
2, the optimiser will choose to parallelise each join using four evaluators. Two
of these evaluators will reside on the nodes from which data is obtained in
order to minimise the communication overhead. Metadata regarding the total
memory and CPU speed of each node is made available to the DQP coordina-
tor, however these properties are identical for the Newcastle nodes, meaning
that the optimiser will randomly choose two of the evaluators used to execute
each join from those available.

5.4.1 Results

Figure 11 plots the average response time for each query submission wait pe-
riod for which the experiment was successfully performed. When the client
waited less than 1 second between submitting each query, the evaluator used
by the mediator-wrapper configuration ran out of memory and failed to pro-
cess queries. The graph shows that when the query submission wait period

21

is 10 seconds or more, the response times of the mediator-wrapper approach
(configuration 1) are less than those of the parallelised joins (configuration
2). For these query submission frequencies, there is no inter-query parallelism
as the response time is less than the wait period. Under these conditions the
mediator-wrapper architecture provides the better performance of the two
configurations. Where the wait period is less then 10 seconds and the query
evaluation infrastructure must process queries concurrently, the parallelised
joins used in configuration 2 outperform the mediator-wrapper configuration.
These results show that OGSA-DQP, with its support for partitioned paral-
lelism and ability to schedule queries over collections of available execution
nodes, can effectively reduce response times under these conditions and pro-
vide a scalable query evaluation infrastructure. In addition to the reduction
of response times under such conditions, the parallelisation of the hash join,
which caches its left input in main-memory, enhances scalability by providing
a means of distributing memory usage over multiple nodes.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(s

ec
on

ds
)

Wait time between query submission

mediator-wrapper
distributed evaluation

Fig. 11. Response times for analysis queries with different levels of parallelism

6 Related Work

Most early work on data Grids focused principally on the provision of infras-
tructures for managing and providing efficient access to file-based data [40].
The emphasis was therefore not on supporting structured data collections.
However, the need to provide effective metadata catalogues for file archives
gave rise to the use of database technology within data Grids (e.g., [16,40]),

22

and subsequently to the development of generic data access services, such as
Spitfire [7] and OGSA-DAI [4]. This activity on metadata management, com-
bined with the fact that an increasing number of the applications that use the
Grid make extensive use of database technology, has increased awareness of
the need to integrate database access interfaces with Grid middleware, both in
terms of access to existing data resources and the wider management of data
in Grid settings [2]. Community interest in Grid database services is reflected
in the fact that the OGF has have provided interfaces for accessing databases
in a Grid setting [5].

The distributed nature of Grid applications means that services to support
coordinated use of Grid resources are important, and considerable attention
has been given to functionalities for managing data derivation (e.g., [22]) and
replication (e.g., [11]); such data Grid capabilities are also emerging in com-
mercial offerings (e.g. [www.avaki.com]). However, such higher-level Grid data
management functionalities are still targeted principally at file-based data,
although the GRelC project has been developing an evolving collection of
libraries and services to support database access and management in Grids
[17].

The first proposal to use distributed query processing in a Grid setting was
the Polar* proposal from the authors [49,50]. Polar* differs from the approach
presented in this paper in that it is not service-based; in Polar*, Grid middle-
ware is accessed using a Grid-enabled version of MPI [19]. The absence of the
service-based context in Polar* means that connection to external databases
and computational services is much less seamless than in the service-based
setting.

Several projects use database language functionalities in pre-service-based
Grids, where query languages express application requirements, which are
then implemented by running jobs over Grid middlewares. For example, in
GridDB [37] a functional language is proposed from which calls can be made
to external programs or relational databases. These relational databases are
typically used to represent internal state from a computation, and programs
in the functional language are compiled for execution using Condor [36] to
manage access to a cluster of computational resources. As such, GridDB can
be seen as exploiting databases for information management within workflows
expressed as functional programs, rather than as using queries as the way of ex-
pressing requests over multiple resources. A similarly named, but independent
activity, is GridDB-Lite [43]. Like OGSA-DQP, in GridDB-Lite, data integra-
tion and analysis tasks are expressed as queries, although in a variation of SQL
that makes explicit how data is to be partitioned over an analysis middleware.
As such, like OGSA-DQP, the objective is to benefit from declarative requests
over a Grid middleware. Architecturally the approach in GridDB-Lite seems
rather different, in that the approach seems more bottom-up – identifying pat-

23

terns in the use of existing Grid libraries that can be captured in a declarative
manner – rather than top-down – working out how an existing query language
can be deployed for data and process integration in a service-oriented environ-
ment. In POQSEC [18], like GridDB and GridDB-Lite, queries expressed in a
declarative language are compiled into scripts that run over an existing mid-
dleware. As such, an analogy can be drawn with Grid workflow engines such as
Pegasus [15], in which abstract characterisations of application requirements
are mapped onto lower level job and file descriptions for execution. This con-
trasts with OGSA-DQP, in which all resources are accessed by way of web
services. All these proposals investigate the mapping of query functionalities
onto Grid resources. In Grid query processing most such work has focused
on extensions to classical distributed query processing architectures, although
opportunities also exist for adapting other paradigms for use in a Grid set-
ting. For example, HiSbase [47] uses application-specific mapping functions to
allocate data to Grid nodes using a decentralized Peer-to-Peer model.

In a WS setting, structured data representations, at least in the form of XML
Schemas, have been much more prominent from the start. In addition, vendors
have been quick to integrate WS and data management products (e.g., [38,45]).
One previous proposal for querying over collections of WSs is that of Sky-
Query [39], which applies the classical wrapper-mediator architecture in a
service-based setting. A variation of SkyQuery deploys WSs at each database
store for handling metadata, performing queries, and cross matching partial
results. However, the SkyQuery proposal is less ambitious than that presented
here, in a number of respects: (i) the only services that contribute to query
evaluation are the data sources – there is no query-specific allocation of evalu-
ators, for example, to support evaluation of large joins or to reduce processing
bottlenecks; (ii) the execution plan generated by the optimiser is a straightfor-
ward pipeline – there is no partitioned parallelism; and (iii) the query language
supported is specialised for use with astronomical queries, and seems to as-
sume that database nodes contain horizontal partitions of the overall database
– there seem not to be generic facilities for joining data from multiple nodes,
for example. Thus SkyQuery is an important early demonstration of the viabil-
ity of WSs for supporting distributed query processing, but it lacks allocation
of resources to match the needs of specific requests. This latter feature is
central to the ethos of the Grid, in which computational resources are made
shareable, and thus can be deployed flexibly to support changing user needs.
An alternative approach for querying collections of WSs is provided by [52],
which proposes a Web Service Management System (WSMS) that optimises
pipelined execution plans over collections of Web services. Although this ap-
proach exploits the distribution of Web services over multiple nodes to provide
parallelism, all other operations (such as joins) take place at the centralised
WSMS. This approach eliminates the potential for the partitioned parallelism
provided by OGSA-DQP.

24

How does the work presented here compare with other work on DQP, as
surveyed in [35]? The principal differences derive from the context in which
queries are executed. The aim of the current proposal is essentially the same
as that of the developers of systems such as Garlic [33] and Kleisli [13], i.e., to
support declarative query formulation over distributed data stores and analysis
tools. However, the development of service-based Grids provides certain op-
portunities for the developers of DQP systems that were more elusive before.
For example, WSs promise to make available comprehensive discovery and
access facilities for distributed resources that ease their integration into fed-
erated architectures. We note that no custom-built wrappers were developed
to support the bioinformatics application illustrated in this paper – generic
OGSA-DAI data services were used to access the databases, and regular WSs
were used as analysis components. OGSA-DAI provides not only access to
the data in underlying sources, but also provides ExtractDatabaseSchema and
ExtractPhysicalSchema activities, that provide details about sources that are
used by OGSA-DQP in query compilation and optimization. This contrasts
with both Garlic and Kleisli, where custom wrappers are constructed for in-
terfacing the query engine to the external resources. In Garlic, the wrapper
customization process allows different sources to provide different levels of
service to the distributed query processor, whereas in OGSA-DQP we have
chosen an off-the-shelf wrapper infrastructure with a view to minimising up-
front configuration costs. In addition to the automatic extraction of source
descriptions, we observe that the resources used to evaluate queries are al-
located on a per-query basis, based on the anticipated needs of the request.
Where requests require substantially greater resources to run efficiently, these
can be allocated from those available on the Grid. This contrasts with both
Garlic and Kleisli, where query evaluation is shared between the central query
evaluator and the source wrappers, with no dynamic resource allocation.

There has been a significant amount of work on internet-scale query process-
ing, with varying levels of similarity to OGSA-DQP. Perhaps the most similar
is ObjectGlobe [8]. Although ObjectGlobe predates WSs, and thus service-
based Grids, ObjectGlobe uses registries, dynamically allocated query engines
and source wrappers in ways that have much in common with those in OGSA-
DQP. The principal difference is that various functionalities were developed
specifically to support ObjectGlobe that are provided in a generic way as part
of a service-based Grid middleware. As such, OGSA-DQP can be seen as indi-
cating how the requirements that motivated the development of ObjectGlobe
can be supported within a service-based Grid. Various other proposals make
assumptions that significantly affect the way a query processing technology
is deployed or used. For example, in [44] and [31], query processing takes
place over peer-to-peer networks, in which there is no global metadata, data
sources arrive and depart organically during the evaluation of a query, and
partial results are accepted as the norm. Approaches also exist for executing
queries over data streams (e.g. [41,10]) where continuous queries may need to

25

be evaluated incrementally. OGSA-DQP and ObjectGlobe both deploy query
components on potentially widely distributed computational nodes, but retain
conventional query and data model semantics.

Several projects have used OGSA-DQP as a starting point for research into
more experimental aspects of distributed query processing, or as a platform for
data integration in scientific applications. In distributed query processing, ex-
tensions to the parallel query evaluator have been developed that: (i) support
fault tolerance in the context of failures to evaluator nodes by maintaining
intermediate query results in upstream caches until the data has been fully
processed by downstream nodes [51]; (ii) adapt with a view to reducing load
imbalance by dynamically changing the distribution of work across parallel
query partitions [27]; and (iii) dynamically deploy evaluator web services as
required to support query evaluation [42]. Furthermore, as data resources are
accessed via OGSA-DAI, which in turn is designed to be extensible with repect
to the sorts of data resource accessed (e.g. [46]), OGSA-DQP has been able to
be extended to support different categories of data resource, including XML
data resources and web-based data resources [53]. The focus on this paper has
been narrower, with a view to detailing the stable features that form the pub-
lic release of OGSA-DQP, and that have served as a starting point for these
more preliminary investigations. In terms of applications, OGSA-DQP has
been applied to support the intergration of proteome [55] and Epidemiology
data resources [1].

7 Conclusions

WSs, in particular in conjunction with the resource access and management
facilities of Grid computing, show considerable promise as an infrastructure
over which distributed applications in e-business and e-science can be devel-
oped. However, to date, the emphasis has been on the development of core
middleware functionalities, such as for service description, discovery and ac-
cess. Extensions to support the coordinated use of such services, for example
using distributed transactions [9] or workflow languages [12], are becoming
more widely adopted. This paper seeks to contribute to the corpus of work on
higher-level services by demonstrating how techniques from distributed query
processing can be deployed in a service-based Grid. The proposal is service-
based in two respects:

• Queries are written with respect to and evaluated over distributed resources
discovered and accessed using WSs. This is important because it is as yet far
from clear how best to orchestrate collections of services in data-intensive
Grid applications. Although it is likely that workflow languages will have a
prominent role, DQP offers system-supported optimisation of declarative re-

26

quests with implicit parallelism, a combination that should yield significant
programmer productivity and performance benefits for large-scale, data in-
tensive applications. As such, we believe that service-based architectures
stand to benefit significantly from DQP. The proposal made in this paper is
the most comprehensive to date for a distributed query processor that acts
over services.

• The query processor has been designed and implemented as a collection
of cooperating services, which is important because although service-based
Grids have found widespread support within the academic and industrial
Grid community, there are as yet few examples of higher-level services devel-
oped using them. This proposal can be seen to provide important validation
of service-based Grids for developing higher-level functionalities. Further-
more, it has been shown how the combination of dynamic computational
resource allocation can be used to match the requirements of a distributed
query to the resources available in a heterogeneous distributed environment.
In addition, experiments have illustrated the performance benefits in this
context of both pipelined and partitioned parallelism in both local and wide
area networks. As such, we believe that DQP stands to benefit significantly
from the availability of service based Grids. The proposal made in this paper
is much the most comprehensive to date for a distributed query processor
that uses service-based Grids in its implementation.

Acknowledgements: This work has been supported by the UK e-Science
programme, whose support we are pleased to acknowledge. Several coworkers
have contributed to our understanding of query processing in service-based
settings, including Nedim Alpdemir, Malcolm Atkinson, Desmond Fitzgerald,
Anastasios Gounaris and Jim Smith.

References

[1] J. Ainsworth, R. Harper, I. Juma, and I. Buchan. Psygrid: Applying e-science
to epidemiology. 19th IEEE Symposium on Computer-Based Medical Systems,
pages 727–732, 2006.

[2] G. Aloisio, M. Cafaro, and S. Fiore. The grid-dbms: Towards dynamic
data management in grid environments. In Proc. Intl. Conf. on Information
Technology: Coding and Computation, pages 199–204. IEEE Press, 2005.

[3] M.N. Alpdemir, A. Mukherjee, N.W. Paton, P. Watson, A.A.A. Fernandes,
A. Gounaris, and J. Smith. Service-based distributed querying on the grid.
In Proc. 1st Int. Conf. Service-Oriented Computing, pages 467–482. Springer,
2003.

[4] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N.P. Chue Hong, B. Collins,
N. Hardman, A.C. Hulme, A. Knox, M. Jackson, A. Krause, S. Laws,

27

J. Magowan, N.W. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead.
The design and implementation of Grid database services in OGSA-DAI.
Concurrency and Computation: Practice and Experience, 17:357–376, 2005.

[5] M. Antonioletti, A. Krause, N. W. Paton, A. Eisenberg, S. Laws, S. Malaika,
J. Melton, and D. Pearson. The ws-dai family of specifications for web service
data access and integration. SIGMOD Rec., 35(1):48–55, 2006.

[6] M. Atkinson, A.L. Chervenak, P. Kunszt, I. Narang, N.W. Paton, D. Pearson,
A. Shoshani, and P. Watson. Data Access, Integration and Management. In
The Grid 2: Blueprint for a New Computing Infrashructure, pages 391–429.
Morgan-Kaufmann, 2004.

[7] W. H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M. Silander.
Project Spitfire - Towards Grid Web Service Databases. In Global Grid Forum
5, 2002.

[8] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, and S. Seltzsam
ans K. Stocker. ObjectGlobe: Ubiquitous Query Processing on the Internet.
VLDB Journal, 10(1):48–71, 2001.

[9] F. Cabrera et al. Web Services
Transaction (WS-Transaction). Technical report, IBM developerWorks Report,
http://www-106.ibm.com/developerworks/library/ws-transpec/, 2002.

[10] M. Cherniack, H. Balakrishnan, and M. Balazinska. Scalable distributed stream
processing. In Proceedings of the First Biennial Conference on Innovative Data
Systems Research (CIDR), Asilomar, California, January 2003.

[11] A. Chervenak et al. Giggle: A Framework for Constructing Scaleable Replica
Location Services. In Proc. Supercomputing. IEEE Press, 2002.

[12] F. Curbera et al. Business Process Execution Language for Web
Services. Technical report, IBM developerWorks Report, http://www-
106.ibm.com/developerworks/library/ws-bpel/, 2002.

[13] S. B. Davidson, J. Crabtree, B. P. Brunk, J. Schug, V. Tannen, G. C. Overton,
and C. J. Stoeckert. K2/Kleisli and GUS: Experiments in Integrated Access to
Genomic Data Sources. IBM Systems Journal, 40(2):512–531, 2001.

[14] S. de F. Mendes Sampaio, N. W. Paton, J. Smith, and P. Watson. Measuring
and modelling the performance of a parallel odmg compliant object database
server. Concurrency and Computation: Practice and Experience, 18(1):63–109,
2006.

[15] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. C. Laity, J. C. Jacob, and D. S. Katz.
Pegasus: A framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13(3):219–237, 2005.

[16] P. Dinda and B. Plale. A Unified Relational Approach to Grid Information
Services. Technical Report GWD-GIS-012-1, Global Grid Forum, 2001.

28

[17] S. Fiore, A. Negro, S. Vadacca, M. Cafaro, M. Mirto, and G. Aloisio. Advanced
Grid DataBase Management with the GRelC Data Access Service . In Parallel
and Distributed Processing and Applications, pages 683–694. Springer, 2007.

[18] R. Fomkin and T. Risch. Framework for querying distributed objects managed
by a grid infrastructure. In Data Management in Grids (DMG), pages 58–70.
Springer, 2005.

[19] I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems. In Proc. Supercomputing.
IEEE Press, 1998.

[20] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Services for Distributed
System Integration. IEEE Computer, 35(6):37–46, 2002.

[21] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Int. J. Supercomputer Applications, 15(3), 2001.

[22] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A New
Model and Architecture for Data-Intensive Collaboration. In Proc. CIDR, 2003.

[23] H. Garcia-Milina, J.D. Ullman, and J. Widom. Database System
Implementation. Morgan Kaufmann, 2000.

[24] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web Services
Architecture. IBM Sys. Journal, 41(2):170–177, 2002.

[25] A. Gounaris, C. Comito, R. Sakellariou, and D. Talia. A service-oriented system
to support data integration on data grids. In CCGRID, pages 627–635, 2007.

[26] A. Gounaris, R. Sakellariou, N. W. Paton, and A. A. Fernandes. A novel
approach to resource scheduling for parallel query processing on computational
grids. Distrib. Parallel Databases, 19(2-3):87–106, 2006.

[27] A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou, A. A. A. Fernandes, and
P. Watson. Adapting to changing resource performance in grid query processing.
In Data Management in Grids (DMG), pages 30–44. Springer, 2005.

[28] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing
System. In Proc. SIGMOD, pages 102–111, 1990.

[29] S. Graham and J. Treadwell (editors). Web service resource properties 1.2.
Technical report, http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-
1.2-spec-os.pdf, 2006.

[30] M.A. Harris et al. The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Research, 32(1):D258–261, 2004.

[31] R. Huebsch, J.M. Hellerstein, N. Lanham, B. Thau Loo, S. Shenker, and
I. Stoica. Querying the internet with pier. In VLDB, pages 321–332, 2003.

[32] M. Jackson et al. Performance Analysis of the OGSA-DAI Software. In Proc.
e-Science All Hands Conference, 2004.

29

[33] V. Josifovski, P. Schwarz, L. Haas, and E. Lin. Garlic: A New Flavor of
Federated Query Processing for DB2. In Proc. SIGMOD, pages 524–532, 2002.

[34] W. Kim, I. Choi, S. K. Gala, and M. Scheevel. On resolving schematic
heterogeneity in multidatabase systems. Distributed and Parallel Databases,
1(3):251–279, 1993.

[35] D. Kossmann. The State of the Art in Distributed Query Processing. ACM
Computing Surveys, 32(4):422–469, 2000.

[36] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle
Workstations. In Proc. 8th International Conference on Distributed Computing
Systems, pages 104–111. IEEE Press, 1988.

[37] D.T. Liu and M.J. Franklin. GridDB: A Data-Centric Overlay for Scientific
Grids. In Proc. VLDB, pages 600–611. Morgan-Kaufmann, 2004.

[38] S. Malaika, C.J. Nelin, R. Qu, B. Reinwald, and D. C. Wolfson. DB2 and Web
Services. IBM Systems Journal, 41(4):666–685, 2002.

[39] T. Malik, A.S. Szalay, T. Budavari, and A.R. Thakar. SkyQuery: A Web Service
Approach to Federate Databases. In Proc. CIDR, 2003.

[40] R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan. Data-Intensive
Computing. In I. Foster and C. Kesselman, editors, The Grid: Blueprint for a
New Computing Infrastrcuture, chapter 5, pages 105–129. Morgan Kaufmann,
1999.

[41] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, and R. Varma. Query processing, resource
management, and approximation in a data stream management system. In
Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR), pages 245–256, Asilomar, California, January 2003.

[42] A. Mukherjee and P. Watson. Adding dynamism to ogsa-dqp: Incorporating the
dynasoar framework in distributed query processing. In Euro-Par Workshops,
pages 22–33, 2006.

[43] S. Narayanan, T.M. Kurc, and J. Saltz. Database Support for Data-Driven
Scientific Applications in the Grid. Parallel Processing Letters, 13(2):245–271,
2003.

[44] V. Papadimos, D. Maier, and K. Tufte. Distributed query processing and
catalogs for peer-to-peer systems. In Proceedings of CIDR 2003, First Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, 2003.

[45] R. M. Riordan, editor. Microsoft ADO.NET Step by Step. Microsoft Press,
2002.

[46] A. Sánchez, M. S. Pérez, K. Karasavvas, P. Herrero, and A. Pérez. Mapfs-dai,
an extension of ogsa-dai based on a parallel file system. Future Generation
Comp. Syst., 23(1):138–145, 2007.

30

[47] T. Scholl, B. Bauer, B. Gufler, R. Kuntschke, A. Reiser, and A. Kemper.
Scalable community-driven data sharing in e-science grids. Future Generation
Comp. Syst., 2008. doi:10.1016/j.future.2008.05.006.

[48] B. Seshasayee, K. Schwan, and P. Widener. Soap-binq: High-Performance SOAP
with continuous quality management. In Proc. ICDCS, pages 158–165, 2004.

[49] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. A. Fernandes, and
R. Sakellariou. Distributed Query Processing on the Grid. In Proc. Grid
Computing 2002, pages 279–290. Springer, LNCS 2536, 2002.

[50] J. Smith, A. Gounaris, P. Watson, N.W. Paton, A.A.A. Fernandes, and
R. Sakellariou. Distributed query processing on the grid. Intl. J. High
Performance Computing Applications, 17(4):353–368, 2003.

[51] J. Smith and P. Watson. Fault-tolerance in distributed query processing. In
IDEAS, pages 329–338. IEEE Press, 2005.

[52] U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query optimization
over web services. In VLDB’2006: Proceedings of the 32nd international
conference on Very large data bases, pages 355–366. VLDB Endowment, 2006.

[53] Said Mirza Pahlevi Steven Lynden and Isao Kojima. Service-based data
integration using ogsa-dqp and ogsa-webdb. In Proc. 9th IEEE/ACM
International Conference on Grid Computing (Grid 2008). IEEE Press, 2008.

[54] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid
Kit. Concurrency and Computation: Practice and Experience, 13(8-9):643–662,
2001.

[55] L. Zamboulis, H. Fan, K. Belhajjame, J. A. Siepen, A. C. Jones, N. J. Martin,
A. Poulovassilis, S. J. Hubbard, S. M. Embury, and N. W. Paton. Data access
and integration in the ispider proteomics grid. In Data Integration in the Life
Sciences (DILS), pages 3–18. Springer, 2006.

[56] L. Zamboulis, N. Martin, and A. Poulovassilis. Query Processing and
Optimization in Integrated Heterogeneous Grid Resources. Technical Report
BBKCS-08-05, Birkbeck College, University of London, 2008.

31

