The Wandering Token: Congestion Avoidance
of a Shared Resource

Augusto Ciuffoletti

Universita degli Studi di Pisa - Dipartimento di Informatica

CoreGRID Institute of Grid Information, Resource and Workflow Monitoring
Services

Abstract

In a distributed system where scalability is an issue, the problem of enforcing mutual
exclusion often arises in a soft form: the infrequent failure of the mutual exclusion
predicate is tolerated, without compromising the consistent operation of the overall
ystem. For instance this occurs when the operation subject to mutual xclusion
requires massive use of a shared resource.

We introduce a scalable soft mutual exclusion algorithm, based on token passing:
one distinguished feature of our algorithm is that instead of introducing an overlay
topology we adopt a random walk approach.

The consistency of our proposal is evaluated by simulation, and we exemplify its
use in the coordination of large data transfers in a backbone based network.

This algorithm is studied in the frame of the CoreGRID Institute of Grid Informa-
tion, Resource and Workflow Monitoring Services, in cooperation with the FORTH
Institute, in Greece.

Key words: congestion avoidance, random walk, token circulation, self-stabilization,
soft mutual exclusion

1 Introduction

In an ideal distributed system all resources are equivalently able to play any
role. However, in practical applications, it is often the case that the introduc-
tion of a centralized resource may be appropriate, in order to reduce the cost,
or to improve the performance. The loss of scalability and fault tolerance,

Email address: augusto@di.unipi.it (Augusto Ciuffoletti).

Preprint submitted to Elsevier 10 October 2007

which is inherent to the introduction of a centralized resource, is accepted as
a trade-off, but, in order to avoid resource congestion, an appropriate access
control mechanism must be provided.

To appreciate the trade-off, let us introduce the following scenario: a site
that produces a stream of data at a constant rate, like data from a scientific
experiment, and a number of geographically dispersed labs that want to receive
the stream of data in order to analyze it or just to keep replicas (see for
instance the Virgo experiment described by Buskulic (2002)). Data source
fan out and network bandwidth are just adequate for the nominal number of
remote users. We have here two centralized resources which is appropriate to
leave as such, despite they introduce scalability and fault tolerance limitations:
the experiment sensor, and the network link(s) (maybe a backbone) in common
between all routes to the remote labs. Replicating such resources, which is
possible in principle, turns out to be inappropriate in practice, as long as the
capacity of the resources is sufficient for the task: load sharing between distinct
data sources is awkward, and redundant routes are expensive. In such case a
fair sharing pattern of the centralized resources is appropriate, thus accepting
a single source of data, and overlapping routes.

Locating a resource sharing mechanism at resource-side tends to deteriorate
scalability, since the resource must also negotiate the use of the service it offers.
In addition, all clients should share the same protocol to negotiate a share of
the resource: this is a limit to the deployment for such an architecture, since all
potential clients must share the same negotiation protocol used by the specific
source. Consider the above scenario: if we want to avoid network congestion
due to simultaneous downloads, a resource-side solution should introduce, at
the very least, network performance awareness and a queuing system inside
the data source.

Here we propose a client-side mechanism designed for environments where
resources are legacy. In the above example, we do not want to introduce an ad-
hoc server (like, for instance, in GridF'TP Allcock and Perelmutov (2005)), and
we do not want to rely on traffic control techniques on the network elements
(as in Jacobson (1988)). Instead, we assume that clients coordinate an access
pattern that ensures a fair sharing of a plain FTP server through Internet
connections.

The basic requirement for a solution to our problem is that resource perfor-
mance, as observed by a client, must be nominal as long as the overall load
does not exceed resource capacity. When requests overtake the capacity of
the resource, it should reproduce at client side the effect of an overload, but
without stress or damage for the resources. The mechanism must not intro-
duce bounds on system size, other than those enforced by resource capacity:
this excludes the adoption of centralized algorithms, that are not scalable, as

well as distributed algorithms based on deterministic consensus, that have an
heavy footprint.

To further specify our case study, we assume the data source produces at
a rate of 660K Bps. The FTP server and the backbone offer a 200M Bps
bandwidth, which saturates with 300 subscribers . We want that subscribers
coordinate their access to the infrastructure in order to limit their access to the
stream source, thus keeping the overall used bandwidth below 200M Bps, and
that data is retrieved timely, so that the data source can flush old data. The
bandwidth limit can be exceeded only exceptionally: the Service Agreement
states that bursts up to 400M Bps are delivered with an additional cost, and
that packet delivery is not guaranteed over that further limit. This might
justify a flexible control over the number of subscribers, that might go over
the theoretical maximum of 300 subscribers.

Summarizing, unlike traditional mutual exclusion modeled by a concurrent
write on a shared register, our problem statement includes the occasional
occurrence of simultaneous accesses to the resource. This is due to the nature
of the resource whose performance may degrade (in the case study, degradation
is initially only financial) when many are executed simultaneously, but without
damage for the consistency of the system. This is formally translated in the
following definition:

Requirement 1 A soft mutual exclusion algorithm for the protected opera-
tion A ensures that at any time, with high probability, there is just one agent
enabled to perform A. The probability that more than one agent is enabled
falls exponentially in the number of enabled agents.

We propose a distributed algorithm that implements soft mutual exclusion.
The algorithm falls into the peer to peer family, since there is no centralized
agent, and all participants run the same code. It is randomized, in the sense
that it is controlled by decisions affected by a random bias, injected in order to
improve the performance, and probabilistic, in the sense that its performance
is a random variable, with a favorable distribution.

The basic idea is sharing a single token within a membership of agents. The
distributed algorithm used to control token sharing must ensure that, with
high probability, exactly one token is present in the system, and that all peer
agents hold the token a number of times that, in the long run, converge to the
same value. We obtain such result moving at each step the token to another
member chosen at random within the membership, thus implementing a sort
of random walk.

1 We have adopted the same network capacity as in the Virgo experiment referenced
above, but introducing an higher number of subscribers, to highlight scalability

The random variable that is representative of the performance of the algorithm
is the return time of the random walk: in Jonasson (1998) the authors prove
that the distribution of token inter-arrival time on a peer is characterized
by a small probability after a value that grows with O(N log N), where N
is the number of agents in the system. We do not assume a fixed topology
or a preliminary owverlay design phase (as in Kwon and Byers (2003), aimed
at multicast). We evaluate the performance of our algorithm in a full mesh
that represents the transport level of the Internet. Formal results (see Jonasson
(1998)) justify the claim that our algorithm may be of interest also in networks
with an average degree comparable with log N.

The study of token circulation algorithms is one of the classical branches of
distributed computing, and the literature about that topic is overwhelming:
of particular interest is Dijkstra (1974), that in two pages exactly frames
the problem and gives a cornerstone solution. Our solution exhibits strong
relationships with such self-stabilization approach: however, instead of using
the deterministic knowledge of neighbor’s state, we enforce mutual exclusion
using time constraints computed locally. We share with some randomized self-
stabilizing algorithms the basic idea of performing random moves in order
to compensate lack of information. The closure requirement (in a legal state,
the application of the algorithm brings to another legal state) may be broken
as a result of the application of randomized rules, either generating spurious
tokens, or removing the token.

In the literature we find a few examples of the application of random walks
to the problem of token circulation. This is probably due to the interest for
a deterministic solutions of the problem, where the existence of spurious to-
kens corresponds to a failure. Therefore sophisticated techniques are used to
recover from this event, without incurring in its generation. To this purpose,
the maintenance of an overlay topology is often introduced, like in Chen and
Welch (2002).

Our approach may be regarded as an evolution of Israeli and Jalfon (1990):
with respect to that work, we break the closure requirement, which states the
deterministic impossibility to produce a spurious token, and we introduce it
as a low probability event. In contrast, we introduce a more efficient rule to
remove spurious tokens, as discussed at page 8.

In the same spirit Thibault et al. (2004) introduce a randomized technique to
circulate a token in a highly dynamic network composed of mobile agents. The
authors make use of timeouts (as in Gouda and Multari (1991)) to detect a
token loss event, and a flooding mechanism to avoid the generation of spurious
tokens. In order to control the flooding operation, an overlay tree network
is maintained, using an adjacency table contained in the token itself. The
solution we propose does not make use of broadcasts to prevent the creation of

spurious tokens: instead, we rely on an efficient rule based on local knowledge
in order to remove them. In addition, the token does not carry any data,
except its identifier and other fixed length data.

In Malpani et al. (2001) authors discuss and compare non-probabilistic algo-
rithms that circulate a token in a group of mobile nodes: as in the former
citation, the paper addresses mobile networks, and is pervaded by routing
considerations that are peculiar to that case. In our work we mainly take
advantage of the adaptability of the circulating token paradigm in order to
tolerate with minimal overhead a number of adverse events that are typical
of a distributed environment, like the switch-off of one of the peers, but we
consider that all neighbors are reachable at equal cost, and we do not need to
take any record of system topology.

The algorithm introduced in this paper shares with all peer-to-peer algorithms
the reliance on the existence of a membership, a number of processes that loy-
ally execute the same algorithm. Such membership is dynamic, in the sense
that new members may join, and others may leave, while the algorithm is run-
ning. The concept of membership is another pillar of distributed computing,
and we do not introduce a new solution to this problem. Instead, here we give
a set of requirements for a solution that applies to our scenario, and some
literature that addresses the problem in a more or less suitable way.

Synthetically, the requirements are the following:

e a member knows a O(log N) number of other members, in order to perform
the randomized routing of the token;

e a member behaves according to the token passing algorithm;

e a member utilizes the shared resource only if it holds the token;

The first problem is largely addressed in literature: see Ganesh et al. (2003)
for a solution that meets our scenario. As for the other two, one solution is to
control the access to the group, and assume that the admitted members either
behave loyally, or are banned from the membership. To take advantage of this
assumption, both token passing operations and resource utilization must be
authenticated: see Challal and Seba (2005) for a survey on the subject.

However, we observe that known techniques that address a secure member-
ship overkill our quite simple instance: ensuring a reliable and secure token
passing operation. They turn out to be more expensive, in terms of resource
utilization, than the token passing algorithm itself. Therefore, we have stud-
ied and presented in Ciuffoletti (2007) a secure group membership protocol
whose performance and cost are adequate to the issue presented in this paper.
Since its features are relevant for the applicability of our work, we include the
reference as a further reading.

The next section of this paper proceeds with the description of the algorithm:
we define the relevant parameters and discuss its behavior in the stable case,
i.e. in absence of exceptional events. Next we introduce the token loss detection
event, and finally the token removal event. All such events are triggered under
probabilistic assumptions, which makes an analytic evaluation of the algorithm
awkward. So we opt for a simulation analysis using the parameters of our case
study, as summarized in section 3. Since none of the referenced works addresses
the scenario we propose, we have opted to compare the operation controlled
by our algorithm against an uncoordinated operation.

2 System model and the wandering token idea

The system is composed of a set of N peer agents, whose clocks are loosely
synchronized, interconnected by a complete mesh of links: for each couple of
agents (c;,c;) there is a link [; ; that connects them, as in a transport level
view of the Internet.

The resource sharing problem is defined by two parameters: N,,,, the number
of agents that saturates the resource and A,, the time during which access is
granted to the resource, once the agent holds the token.

The solution we propose is the probabilistic self-stabilizing algorithm described
in figure 1: line numbering will be used to illustrate the pseudo-code.

Let us examine the stable behavior first, when there is exactly one circulating
token. In that case the behavior of an agent consists of receiving the token
(see line 8 in the figure 1), performing an action associated to the presence of
the token (18-26), and passing the token to a randomly selected peer (27).
The associated action consists in a simple delay of Ay, seconds in case the
agent already performed the protected operation less than A,,;, seconds ago
(21); otherwise the agent holds the token for a time A,,, while the protected
operation is performed (24). We assume Ay, to be significantly smaller than
A,p. Given Ny, and A,, we compute (2) a reasonable value for A,,;, as

A Bop* Ninaa

man 2
which is half the access period that would saturate the resource. Such simple
rule of thumb is appropriate in many cases.

A token loss event, which has a probability that is significantly reduced by a
4-way token passing protocol illustrated in the companion paper Ciuffoletti
(2007), breaks the stable behavior. The token regeneration rule (29-33) is

1 comment: Compute algorithm parameters
2 Amm — Aop * Nmam/2

3 Ygenerate = Anin * Nrmaz;

4 lasttoken = {timestamp = 0,id = NULL}
5 while (true)

6 do

7 comment: Receive token or trigger regeneration timeout
8 select(receive(token), Amin + poisson(Ygenerate))
9 if (defined(token))
10 then
11 comment: Apply sandwich token removal rule
12 if (34,7, < j A history(j).id = token.id N history(i).timestamp < token.timestam
13 then
1 comment: Silently remove the token
15 discard(token)
16 fi
17 comment: Decide whether to execute the protected operation
18 if (time — (lastaccess.timestamp)) < Apin
19 then
20 comment: Just skip an early token
21 sleep(Askip)
22 else
23 comment: Execute protected operation
24 execute(A)
25 lastaccess = {timestamp = time,id = token.id}
26 fi
27 send(token)
28 else
29 comment: On timeout, generate a new token
30 token = {timestamp = localclock,id = newid()}
31 execute(A)
32 lastaccess = {timestamp = time,id = token.id}
33 send(token)
34 fi
35 push(history, token)
36 od

Fig. 1. The wandering token algorithm

triggered when the agent does not receive one within a timeout that is obtained
incrementing A,,;, of a random quantity (8). A randomized rule guarantees
the absence of synchronization effects that might degrade the performance. To
this purpose, the Poisson distribution is regarded as a convenient candidate.

The Vgenerate parameter corresponds to the v parameter of such distribution,
and a reasonable value is (3):

max

2

A,y * N2

Ygenerate = Amm * Nmax =

If we rescale such distribution in order to have N,,,, events per time units, we
obtain a distribution with an inter-arrival time of A,,;, time units. Therefore,
in our system, where N,,,, agents run in parallel, the timeouts will expire, on
the average, every 2 % A,,;, time units, which corresponds to the requested
access period and is considered as a reasonable setup. Although the value of
this parameter influences the behavior of the algorithm, significant variations
do not modify its basic properties in a given environment.

The token generation rule does not exclude that a new token is created even
if there is another token circulating: in that case, such rule may induce the
simultaneous presence of multiple, but distinct, tokens in the system. There-
fore the token generation rule, which is introduced in order to recover from
an unlikely token loss event, most times has the effect of breaking the closure
requirement by introducing spurious tokens.

In order to remove spurious tokens, we apply to a token removal rule (12):
for this we require that tokens are timestamped when they are generated,
using a coarse grain clock (30). The agent discards a token with id x when
two conditions hold (12): i) the token was already received in the past at
time Tj4s and ii) another token with lower timestamp was received after time
Tiast 2. Visually, the three tokens of which one is hold form a sandwich, and
the agent silently discards the token it holds (15).

Such rule is justified considering that if an agent receives a token with a
timestamp lower than a previously observed token y, it can conclude that
token y is spurious. It does not have any convenient way to remove token
y at once, since it has been already passed elsewhere, but, the next time it
observes token y, it will have a chance to remove it, and nobody in the system
might have removed token z as a consequence of the existence of token y.
We understand that timestamps are not required to be accurate: in case two
tokens have inconsistent timestamps, the application of the sandwich rule will
remove the one generated before, instead of the other. This fact has no side
effects on our protocol, so we conclude that, in principle, timestamps could be
generated randomly.

The sandwich rule has two minor weaknesses. One is that the removal oper-
ation has a latency that corresponds to the inter-arrival time of the token on
a given node (aka the return time), which is of the order of 2 x A,,;, Lovasz
(1993): during that time the state of the system is not legal, and simultaneous
accesses occur. The other is that token x above, in the meanwhile, might be
lost: in that case token vy, although generated as a spurious token, might have
become the new unique token. Such drawbacks have a minor impact on system
operation, and do not diminish the practical interest for the algorithm: they

2 Test is introduced only for the sake of the explanation, and is not used in the
program: the position of the token in the history stack (35) replaces such information

indicate directions for its improvement, further reducing their probability to
occur.

The problem of token elimination is well studied in theory, and is often re-
ferred as a solution to the leader election problem (see Bshouty et al. (1999)).
However our setting discourages a formal approach for the validation of our
proposal: a complex random process controls both token generation, and to-
ken collision (or meeting). These two facts make smart theoretical results, that
are based on an initial population of tokens, and on exact collision of tokens
for token elimination, useless for our purpose. However, we note that, with
respect to Israeli and Jalfon (1990), the probability of collision is augmented
by widening the collision window so that recovery is substantially improved.

3 Simulation results

The simulation results summarized in this section reflect the case study de-
scribed in the introduction: agents of our algorithm correspond to subscribers
that require the availability of 650K Bps over a 200M Bps channel, fairly dis-
tributed in time. From the definition of the problem we derive that the system
supports approximately 300 subscribers (N,,q.). We assume each subscriber
is granted exclusive access to the channel for a time slot of a fixed size, that
corresponds to A,,, set to 4 seconds: this guarantees a limited return time,
which limits the buffering on the server to the order of the GBytes. In case
the token recently visited the same subscriber, the token will be released af-
ter Agkip seconds, set to 100 msecs, which is consistent with typical network
performances.

We carried out a series of simulations using a simple (a few hundreds Perl
lines) ad hoc discrete event simulator, which is available upon request. Each
simulation lasted 10° seconds, corresponding to approximately one day oper-
ation. In order to simulate network unreliability, we injected token loss events
every 10% seconds. We do not simulate variable durations of the token pass-
ing operation, which is assumed to be negligible with respect to Ay, the
minimum time a subscriber holds the token.

To have a sort of reference, we also introduce a solution to the problem that
does not use any form of coordination: each subscriber issues a service re-
quest randomly. The interval between two successive requests from a given
subscriber is 4 % 300 = 1200 seconds (equal to the average return time in the
token based simulation), incremented by a random bias, chosen in the interval
[—600, +600], that breaks synchronous behaviors.

Observing simulation results as summarized in figure 2 (dashed line only),

Noinaz 300 peer agents | from case study

Askip 0.1 seconds from case study

Ayp 4 seconds from case study

Noin 600 seconds (App * Nz) /2

Vgenerate 180 = 103 seconds Amzn * Nma:c

Yioss 10 %103 | seconds mean time be-
tween packet loss
events

Table 1

Parameters used in the simulation

we understand that such algorithm is a low end solution to the soft mutual
exclusion problem: in fact the number of seconds during which more than
one protected operation is running falls exponentially with the number of
simultaneous operations. However it is not applicable as a solution to our case
study: the share of time when the resource is idle is 40% (abscissa 0 in figure
2), while during 8% of the time more than two subscribers are simultaneously
active, thus falling in the “delivery not guaranteed” region.

The simulation of a system controlled using the wandering token algorithm
requires the definition of two further parameters: A,,;;, and Ygenerate, which are
set according to the formulas given previously. Their values are summarized
in table 1.

The comparison with the benchmark solution is clearly favorable, as shown
in figure 2: the system controlled with the wandering token is idle less than
10% of the time (only due to network unreliability), while exhibiting 0.3%
percent of the time (below figure resolution) with more than two subscribers
concurrently downloading a chunk of data. The extra-billing zone (exactly 2
concurrent downloads) takes 5% of the time.

Another relevant parameter to evaluate the quality of our solution is the dis-
tribution of the time between successive accesses to the resource. In the case of
the benchmark algorithm this is uniformly distributed between 600 and 1800
seconds: therefore the server can reliably flush data older than 1800 seconds.

In the case of the wandering token algorithm the evaluation is more complex,
since the token inter-arrival time is ruled by a non-deterministic law. In figure
4 we see that 80% of the times the token interarrival time falls below 1200secs,
but the tail extends far after 1800 seconds, which means a larger buffer in the
source than in the uncoordinated case. In our use case this is not a problem,
since the data source is ready to hold TBytes of historical data.

It is interesting to see how such distributions changes when the number of

10

Number of processed events per time unit (concurrency)

90 T T T - T
80 - wandering token

benchmark -------
70 —

60 .
50 I T
40 |- .
30 .
20 | y
10 E .

0 I I 1 !
0 1 2 3 4

n. of processed events

percent of time units

Fig. 2. Benchmark algorithm vs. wandering token: distribution of the number of
concurrent operations for memberships of 300 (full load) subscribers (simulation
lasted 10° time units, corresponding to seconds in our use case)

Number of processed events per time unit (concurrency)

90 T T T I_
go L [T N=210

70 | N=360 -------- 7
60 .
50 .
40 .
30 .
20 .
10 Freasrrmasseanst frrreeeeeeeeesees : .

0 1 1 ! L
0 1 2 3 4

n. of processed events

percent of time units

Fig. 3. Wandering token: distribution of the number of concurrent operations on a
shared resource for membership size from 210 to 360 (simulation lasted 10° time
units, corresponding to seconds in our use case)

subscribers does not correspond exactly to N,,... In figure 3 and 4 we observe
that figures change smoothly varying the number of subscribers from 70%
to 120% of Nyee: the probability of concurrent access (in figure 3) does not
exceed 10%, and the inter-arrival time (in figure 4) in case of overbooking,
tends to have a longer tail, although more than 50% of the inter-arrival times
are below 1200 seconds.

The stability of the algorithm is illustrated in Figure 5, where we see how
the number of tokens varies during a simulation. We injected a token loss
event every 10000 seconds (3 hours), while the system supports the nominal
number of subscribers. The frequency of token loss events used in our simula-
tion is more than ten times higher than packet loss rate observed in the open
Internet: further, a 4-way secure token passing protocol has been developed
and described in Ciuffoletti (2007) that reduces the average frequency of loss
events to approximately one week, in the scale of our case study, introducing
a token latency that is compatible with our use case.

11

Distribution of interarrival times

90 T T T T T T T _I
g0 L N=210

70 F N=360 ==+ .
60 F | -
50 -
40 .
30 -
20F | T .
10 + SELEEEREN E

0 | L b———gaae horrassyy L L

0 600 1200 1800 2400 3000 3600 4200 4800 5400
interarrival time

percent of events

Fig. 4. Wandering token: distribution of intervals between successive firing of the
protected operation (simulation lasted 10° time units, corresponding to seconds in
our use case)

Number of tokens per time unit (stabilization)

4 T T T T
N=300 ——

o 3t -
Q
4
S 2 .
I A]
c 1 (

0

0 20000 40000 60000 80000 100000

time

Fig. 5. Wandering token: number of tokens in the system during a simulation (full
load)

Simulation results show that the algorithm promptly recovers from the pres-
ence of spurious tokens, indicated by narrow positive spikes; spurious tokens
never exceed the number of two. In case the token is lost, the latency before
its regeneration may be relevant: this justifies our efforts in the design of a
reliable token passing protocol.

Based on the above results, we can figure out the behavior of the system in
our use case. As long as the number of subscribers is N4, or less, concurrent
access of more than two subscribers occurs during less than one percent of the
time, and 80% of the times the applications have access to the backbone within
2% Ain. When the number of subscribers grows over resource saturation, the
chance of concurrent execution increases, but the event that more than 2 data
transfers are occurring simultaneously is rare. The application is aware of the
problem, since it is able to measure token inter-arrival times, that will increase
linearly with the number of subscribers.

12

4 Conclusions

The wandering token algorithm is proposed as a solution for an architecture
where moderating the concurrent access to a shared resource can improve per-
formance. Its cost, in terms of communication and computation, is negligible.

The algorithm is fully scalable: the algorithm does not induce any bound on
the number of agents exchanging the token. When such number overtakes
the capacity of the shared resource, the wandering token algorithm gradually
reduces the resource share granted to each agent, thus shielding the shared
resource from the consequences of the overload.

The solution presented in this paper is strongly related to the provision of
two other services: a reliable and secure token exchange mechanism, and the
maintenance of a trusted membership. The risk of overkilling such problems,
introducing algorithms that are more expensive than the resource sharing
protocol is real. We have studied such problems, and presented our results in
Ciuffoletti (2007).

In order to give a intuitive support to our presentation, we have created, start-
ing from a real application, a use case. The algorithm is currently proposed
as a solution to a quite different case: the maintenance of a distributed direc-
tory of host capabilities in a Grid environment Ciuffoletti and Polychronakis
(2006). We have considered more helpful the simple use case presented in this

paper.

References

Allcock, W. and Perelmutov, T. (2005). Gridftp v2 protocol description. Tech-
nical Report GFD-R-P.047, OGF - GridFTP WG.

Bshouty, N. H., Higham, L., and Warpechowska-Gruca, J. (1999). Meet-
ing times of random walks on graphs. Information Processing Letters,
69(5):259-265.

Buskulic, D. (2002). Data analysis software tools used during virgo engineering
runs, review and future need. In 8th International Workshop on Advanced
Computing and Analysis Techniques in Physics Research (ACAT 2002),
page 6, Moskow.

Challal, Y. and Seba, H. (2005). Group key management protocols: A novel
taxonomy. International Journal of Information Technology, 2(1):14.

Chen, Y. and Welch, J. L. (2002). Self-stabilizing mutual exclusion using
tokens in mobile ad hoc network. Technical Report 2002-4-2, Texas A-M
University — Dept. of Computer Science.

Ciuffoletti, A. (2007). Secure token passing at application level. In 1st Inter-

13

national Workshop on Security Trust and Privacy in Grid Systems, page 6,
Nice.

Ciuffoletti, A. and Polychronakis, M. (2006). Architecture of a network moni-
toring element. In CoreGRID workshop at EURO-Par 2006, page 10, Dres-
den (Germany).

Dijkstra, E. W. (1974). Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643-644.

Ganesh, A. J., Kermarrec, A.-M., and Massouli, L. (2003). Peer-to-peer mem-
bership management for gossip-based protocols. [EEE Transactions on
Computers, 52(2).

Gouda, M. and Multari, N. (1991). Stabilizing communication protocols. [EEE
Transactions on Computers, 40(4):448-458.

Israeli, A. and Jalfon, M. (1990). Token management schemes and random
walks yield self stabilizing mutual exclusion. In Proceedings of the Ninth
Annual ACM Symposium on Distributed Computing, pages 119-129, Quebec
City, Quebec, Canada.

Jacobson, V. (1988). Congestion avoidance and control. In SIGCOMM ’ 88,
Stanford (CA), USA. ACM.

Jonasson, J. (1998). On the cover time of random walks on random graphs.
Combinatorics, Probability and Computing, (7):265-279.

Kwon, G. and Byers, J. (2003). ROMA: Reliable overlay multicast with loosely
coupled TCP connections. Technical Report BU-CS-TR-2003-015, Boston
University.

Lovasz, L. (1993). Random walks on graphs: a survey. In Miklos, D., Sos, V. T.,
and Szonyi, T., editors, Combinatorics, Paul Erdos is Figthy, volume II. J.
Bolyai Math. Society.

Malpani, N., Vaidya, N., and Welch, J. (2001). Distributed token circulation in
mobile ad hoc networks. In Proceedings of the 9th International Conference
on Network Protocols (ICNP), page 8, Riverside, California.

Thibault, B., Bui, A., and Flauzac, O. (2004). Topological adaptability for the
distributed token circulation paradigm in faulty environment. In Cao, J.,
editor, Second International Symposium on Parallel and Distributed Pro-
cessing and Applications — Hong Kong (China), number 3358 in Lecture
Notes in Computer Science, pages 146-155. Springer.

14

