
SPECIAL ISSUE: THE THIRD PROVENANCE CHALLENGE ON USING THE

OPEN PROVENANCE MODEL FOR INTEROPERABILITY

Yogesh Simmhan (University of Southern California), Paul Groth (Vrije University), Luc

Moreau (University of Southampton), Guest Editors

1 Abstract

The third provenance challenge was organized to evaluate the efficacy of the Open Provenance Model (OPM) in

representing and sharing provenance with the goal of improving the specification. A data loading scientific

workflow that ingests data files into a relational database for the Pan-STARRS sky survey project was selected as a

candidate for collecting provenance. Challenge participants record provenance, run queries over it, and

export/import provenance as OPM documents with other teams to verify interoperability. Fourteen teams

participated in the challenge that concluded at a workshop in June 2009 at Amsterdam. The experiences of several

participating teams are included in this special issue. In this editorial, we describe the challenge in detail, review its

outcome, and introduce articles included in this special issue.

2 Introduction

Provenance has been described as the derivation history of data [1], documentation of processes that effect a digital

object [2], the origin, context or pedigree of data [3,4], or just the origin of something [2]. It is represented variously

as annotations and acyclic graphs, mapped to XML/RDF metadata and relational tuples. There have been several

surveys, documented in [2], that have shown the importance of provenance to the quality of scientific data derived

from workflows [1], reliability of web pages and documents [3], to show why, where and how a data came to be in

databases [5], and for reproducibility of computational tasks [4]. The importance of recording provenance is

inarguable for many applications, as is the pressing need to be able to share it across organizational and

technological boundaries instead of having its usefulness curtailed within silos.

Different aspects of provenance have been increasingly investigated since the Data Derivation and Provenance

workshop in 2002 [6] – one of the first workshops dealing with data provenance – paved the way for the

International Provenance and Annotation Workshop (IPAW) series [7], currently in its third installment. The

provenance challenge [8] was conceived at the first IPAW workshop as a means to build consensus around what

provenance means and to identify common ways to represent, collect, share and query it across provenance systems.

The experience gained from the first two provenance challenges in 2006 and 2007 helped evolve a preliminary

specification for modeling and sharing provenance documents. This draft Open Provenance Model (OPM) v1.0

specification [9] introduced three entities: digital or physical artifacts, processes that operate on artifacts, and agents

that control processes, and identified causal relationships between them. The draft specification was discussed at the

second IPAW workshop and community feedback incorporated into v1.01 [10]. The need was felt to test the

efficacy of the updated specification in representing causality of real world applications and, importantly, its

usefulness for interoperating across systems. Other peripheral goals were to build momentum around the proposed

standard, integrate support for OPM within existing provenance systems, and spawn novel OPM-based tools for the

community. These formed the basis for organizing the third provenance challenge discussed below. One key

outcome of the collaborative challenge has been the release of the Open Provenance Model Core Specification v1.1

[11], which is part of this special issue, and a community process to update and maintain it. In this editorial, we (1)

Specify the goals and describe the problem used for the third provenance challenge, (2) Review the participation and

outcome of the challenge for various teams, (3) Summarize progress on the OPM specification as part of the

challenge workshop, and (4) Introduce articles in this special issue that originated from both the challenge and other

subsequent efforts on interoperability using the Open Provenance Model.

3 The Provenance Challenge

Definition of the third provenance challenge (PC3) was initiated by soliciting proposals for workflows that are used

in real world applications while also being suitable for flexing the different features of the Open Provenance Model.

Groups were invited to submit a candidate workflow with English and graphical description, and highlight its

novelty in going beyond the fMRI workflow used for prior challenges. They were also to specify the availability of

component tasks in the workflow that other teams could reuse or implement, and the reference input and

intermediate data for the workflow.

Ten workflows submissions were received for consideration. These workflows spanned across domains such as

bioinformatics (Paolo Missier, University of Manchester), brain imaging (Julian Freire and Erik Anderson,

University of Utah), astronomy (Yogesh Simmhan and Roger Barga, Microsoft Research), oceanography (Satya

Sahoo, Wright State University; Roger Barga, Microsoft Research), and software build system (Luc Moreau,

University of Southampton; Paul Groth, Information Sciences Institute). The candidate workflows were submitted

by October 2008 and discussed during a session at the IEEE eScience conference in December 10-12, 2008 at

Indianapolis. From them, the astronomy database loading workflow was chosen through community participation

and further refined. The challenge definition, sample code and data, and provenance queries were published on the

PC3 wiki site [12] and the challenge opened for participation on March 2, 2009. Teams participating in the

challenge cataloged their workflow graphs, OPM provenance documents, and provenance query results in the PC3

wiki, and presented them at the Third Provenance Challenge workshop in June 10-11, 2009 at Amsterdam.

3.1 Guidelines for the Challenge

The challenge had the following specific goals it expected to accomplish:

1. Identify strengths and weaknesses of the Open Provenance Model (OPM) v1.01 draft specification to enable a

final specification to be produced.

2. Encourage the development of concrete bindings for OPM in various languages and platforms used by the

challenge participants.

3. Determine the expressivity of OPM for different process and artifact technologies, such as workflows, SQL,

files and databases.

4. Verify the efficacy of OPM to enable interoperability across heterogeneous applications, providing the ability to

reconstruct and interpret provenance documents produced by them.

5. Finally, continue with the process of community building to further discuss interoperability mechanisms for

provenance systems.

The challenge involved collecting provenance for a workflow, a series of tasks that take input data and produce

output data. In earlier challenges, the tasks and data were agnostic to technology and were pure data flows. However,

given the goals of this challenge to try different technologies, an effort was made to incorporate data present as text

files, relational databases, relational tables, tuples, and collections. Similarly, the workflow tasks included

applications, file operations, and relational database queries. In addition, the workflow incorporated control flow

statements, such as iterations and conditional branching, to reflect more complex constructs than earlier challenges.

The workflow was described both in text and graphically, and accompanied by source code for the workflow tasks.

Tasks were available in C# and in Java, and SQL database tasks could run on Microsoft SQL Server and Apache

Derby databases. This enabled running the workflow in diverse OS platforms. Participants were invited to map the

workflow, optionally using the implementations provided, to a workflow system of their choice (or to simulate its

execution) in order to generate provenance for the workflow. The provenance collected was shared as an Open

Provenance Model document. Since a serialization of OPM was not part of the specification, participants could

either export the OPM document in sample XML and RDF serializations that were available, or in a serialization of

their choosing.

 The teams were expected to run several provenance queries that were specified on the provenance that they collect

from their workflow, as well as the provenance that they import from other teams as OPM documents. The queries

tested the expressivity of the OPM specification for the given workflow and also identified (potential) information

loss when exporting and importing OPM documents between provenance systems due to vagueness or shortcomings

in the specification. There were two sets of queries: core

queries that were required to be attempted by all teams and

optional queries that could be suggested by the participants to

highlight specific features or pitfalls.

Participants were asked to share their workflows, exported

OPM graphs, and results of running the queries on

provenance that they collect and OPM documents they import

on the PC3 wiki site [12] and present their results at the

challenge workshop.

3.2 The Pan-STARRS Load Workflow

Panoramic Sky Survey and Rapid Response System (Pan-

STARRS) [13] is a next generation sky survey project that

continuously scans the visible sky once a week and builds a

time series of data that catalogs the solar system and can

detect Earth impacting objects. Pan-STARRS uses several

workflows for its data loading pipeline [14] that convert raw

image data from the digital telescope into queryable

observations and metadata that are stored in relational

databases. One of these data loading workflows was selected

and adapted for the provenance challenge. Figure 1 shows the

data and control flows in the Pan-STAR load workflow used

in the challenge.

The load workflow imports observations of space objects

arriving in the form of Comma Separated Value (CSV) files

into tables in a relational database. There are two inputs to the

workflow: (1) the directory location of a set of related CSV

files from a single telescope image that need to be loaded into

a new database, and (2) a JobID that indicates the name of the

database to be created to hold the data. The input directory

contains a “CSV Ready” manifest file, listing the CSV files to

be loaded, and three CSV files – detection, frame meta, and

image meta – that each correspond to a table in the database.

The workflow then performs several tasks that verify the

existence of the input CSV files, create a database to load the

files, iterate through each input CSV file to validate and load

it into a distinct table in the, update computed columns in the

table, perform post load validations, and finally compact the

database once all files are successfully loaded. Tasks that fail

to validate input data cause the workflow to halt. The load

workflow tasks are listed in Table 1.

In Figure 1, solid lines denote the data passed from one task

to another. These may be string paths and URIs that reference

files, tables, and databases, or simple parameters used by the

task. The C# and Java implementations use class objects and

collections to represent some of these parameters, though all

of them can be formatted as strings, basic types and their

Figure 1. Pan-STARRS load workflow used in

the provenance challenge

collections. The workflow itself can be represented as a pure SQL script as many of the C# or Java tasks just wrap

SQL update statements. The workflow also incorporates control flows in the form of conditions and iterations,

represented by dotted lines, which allow for different execution paths to be taken.

Table 1. Description of tasks used in the workflow, with their inputs and outputs.

Workflow Task Input Data Output Data

Pre-Load Tasks

IsCSVReadyFileExists : Checks

for existence of CSV root

directory & manifest file.

string CSVRootPathInput : Path

to root directory of CSV Batch

bool IsCSVReadyFileExistsOutput : Returns true

if the CSV root directory and csv_ready.csv

manifest file it contains exist in file system. False

otherwise.

ReadCSVReadyFile : Reads the

contents of the csv_ready.csv

manifest file and creates a

CSVFileEntry to hold metadata on

each CSV file listed in it.

string CSVRootPathInput : Path

to root directory of CSV Batch

List<CSVFileEntry> ReadCSVReadyFileOutput:

List of CSVFileEntrys read from the manifest file.

Each contains the FilePath of a CSV file to load,

the HeaderPath to a header file listing data

columns, the RowCount of rows in the file, the

TargetTable name to load into, and the Checksum

for the file.

IsMatchCSVFileTables : Checks

if all tables to be loaded have

corresponding CSV data files in

the manifest.

List<CSVFileEntry>

FileEntriesInput : List of

CSVFileEntrys read from the

manifest file.

bool IsMatchCSVFileTablesOutput : Returns

true if all tables have matching CSV files. False

otherwise.

IsExistsCSVFile : Checks for

existence of CSV data file and

Header file listed in the manifest.

CSVFileEntry FileEntryInput : A

CSVFileEntry read from the

manifest file.

bool IsExistsCSVFileOutput : Returns true if the

CSV data file and Header files exist in file system.

False otherwise.

ReadCSVFileColumnNames :

Reads list of column names

present in the CSV data file from

the Header file.

CSVFileEntry FileEntryInput : A

CSVFileEntry read from the

manifest file.

CSVFileEntry FileEntryOutput : The input

CSVFileEntry updated with the ColumnsNames

field populated from the Header file.

IsMatchCSVFileColumnNames :

Checks if all columns expected

for a target table are present in the

corresponding CSV data file.

CSVFileEntry FileEntryInput : A

CSVFileEntry read from the

manifest file with columns names

populated.

bool IsMatchCSVFileColumnNamesOutput :

Returns true if column names present in CSV data

files match expected column names for the target

table to load the CSV file into. False otherwise.

Load Tasks

CreateEmptyLoadDB : Creates

an empty 'Load' database with

empty tables to load.

string JobID : Unique identifier for

the CSV Batch being loaded.

DatabaseEntry CreateEmptyLoadDBOutput : A

DatabaseEntry with the DBName, unique DBGuid

and ConnectionString for the created database.

LoadCSVFileIntoTable : Load a

single CSV data file into

corresponding table in the Load

database.

DatabaseEntry DBEntry : A

DatabaseEntry with the target table

to load the CSV data file. bool LoadCSVFileIntoTableOutput : Returns

true if the CSV data file was successfully loaded

into the target table. False otherwise.
CSVFileEntry FileEntry : A

CSVFileEntry to load into the

corresponding target table in the

database.

UpdateComputedColumns :

Updates the computed columns in

the target table that was loaded.

These derived columns would

have been "empty" (-999) in the

CSV data file.

DatabaseEntry DBEntry : A

DatabaseEntry with the target table

already loaded from the CSV file. bool UpdateComputedColumnsOutput : Returns

true if the derived columns were successfully

updated from existing columns. False otherwise.
CSVFileEntry FileEntry : A

CSVFile Entry containing the name

of target table to update in

database.

http://twiki.ipaw.info/bin/view/Challenge/ThirdPCWorkflow?sortcol=1&table=1&up=0#sorted_table

Post-Load Tasks

IsMatchTableRowCount :

Checks if number of rows loaded

into table matches expected

number of rows in CSV data file.

DatabaseEntry DBEntry : A

DatabaseEntry with the target table

loaded and updated.
bool IsMatchTableRowCountOutput : Returns

true if the number of rows in the target table equals

the expected number of rows in the CSV data file.

CSVFileEntry FileEntry : A

CSVFile Entry containing the

expected number of rows in the

CSV data file and the target table

name.

IsMatchTableColumnRanges :

Checks if the data loaded into

table columns fall within the

range of values expected for the

column.

DatabaseEntry DBEntry : A

DatabaseEntry with the target table

loaded and updated.
bool IsMatchTableColumnRangesOutput :

Returns true if the data values of columns in the

target table fall within expected range. False

otherwise.

CSVFileEntry FileEntry : A

CSVFileEntry containing the name

of target table in the database to

validate columns ranges.

CompactDatabase : Shrinks the

database after all write operations

complete.

DatabaseEntry DBEntry : A

DatabaseEntry with all tables

loaded and validated.

void

3.3 Provenance Challenge Core Queries

Queries over the provenance graphs help to evaluate the expressivity of the provenance collected. The query results

also validate the accuracy of provenance that is collected by a team by their own workflow implementation and the

OPM documents imported from other teams. The three core queries defined for this challenge were:

Q1. For a given detection, which CSV files contributed to it?

This should return the CSV file containing the Detection table for a simple answer. A more detailed analysis of the

provenance returns the CSV file containing the Detection table, CSV file containing the Image table (as the image is

an attribute of the detection), and CSV file containing the FrameMetadata table (as the frame metadata is an

attribute of the image).

Q2. The user considers a table to contain values they do not expect. Was the range check

(IsMatchTableColumnRanges) performed for this table?

This must return ‘Yes’ if the range check task was performed before resulting in the values. ‘No’ if it was not

performed.

Q3. Which operation executions were strictly necessary for the Image table to contain a particular (non-computed)

value?

This query would return the execution of ReadCSVReadyFile and CreateEmptyLoadDB, and the invocation of

ReadCSVFileColumnNames and LoadCSVFileIntoTable during the second iteration of the for loop – because Image

is loaded in the second iteration. The results exclude the invocation of the various condition checks since they do not

change the data, the invocation of UpdatedComputedColumns because the Image table data has no derived columns

to update, and the invocation of CompactDatabase because it does not affect the value.

Besides the three core queries, there were 13 other optional queries that the teams could attempt. These are omitted

for brevity and can be found in the provenance challenge wiki [12].

4 Summary of Team Contributions

The provenance challenge saw the participation of fourteen teams [15] at the time of the provenance challenge

workshop in Amsterdam. Their results are posted on the challenge wiki website [12] and the details of the teams,

their approaches to provenance storage and modeling, and the results of their interoperability are summarized in

Table 2. From the outset, the provenance challenge series was intended to be informative rather than competitive; so

there are no specific victors of the challenge.

Table 2. Details of Teams Participating in the Challenge.

Team Workflow/
Provenance
System

Native
Provenance
Format

OPM Binding
Format

Native
Provenance
Storage

PC3 Query
Format

Teams Interoperated With

(Query Success Status)

NCSA Java/Tupelo RDF XML, RDF Java API NCSA (Success)

Univ of Chicago Swift Relational XML DBMS UChicago (Partial)

Microsoft
Research

Trident Relational XML DBMS/MS SQL
Server

SQL MSR (Success), Soton (Fail),
UoM (Fail), UCD (Partial), IU
(Success), UUtah (Fail)

UC-Davis COMAD-Kepler Relational XML DBMS/ MySQL SQL UCD (Success), Soton, RPI,
KCL, Harvard

Univ of Soton,
USC-ISI

Java XML XML, RDF File Java API Soton (Success)

Univ of
Manchester

Taverna RDF XML, RDF SPARQL UoM, UCD, Soton, NCSA

RPI/Tetherless Java/ProtoProv RDF XML Jena SPARQL RPI (Success)

UvA/VL-e WS-VLAM/
PLIER

Relational XML DBMS SQL UvA (Success)

SDSC Kepler XML XQuery SDSC (Success)

Univ of Utah VisTrails,
Python

XML XML XQuery UUtah (Partial), SDSC
(Partial)

Kings College,
London

Java XML KCL (Success)

Harvard Univ Bash, Java/
PASS

Path Query
Language Graphs

XML PQL DB Store PQL Harvard (Success)

Indiana Univ ODE/Karma Relational XML DBMS/ MySQL SQL IU (Success)

UTEP WDO-It! Proof Markup
Language

 File

There were several interesting approaches taken by the teams to address challenges posed by the interoperability

problem. One was in dealing with control-flows in the workflow, which was not seen in the previous challenges.

Some teams modeled the control-flow activities as processes that trigger subsequent processes, while others

modeled them as explicit data-flows that pass the boolean value. Teams that used pure dataflow-based systems did

not even support tracking of control-flows. Many teams also unrolled the iterations in the workflow, optionally

keeping track of the iteration step count. Validation errors (e.g. IsMatchtableCount) were also handled differently,

with certain teams able to halt workflow execution as expected while others let them proceed but use an error flag to

suppress the application logic for subsequent workflow activities from executing. All of these techniques have a

corresponding impact on the provenance collected and its interoperability.

Teams also encountered difficulties due to different approaches taken for recording process and artifact identifiers in

OPM since the model does not prescribe any naming scheme. Also, OPM makes a distinction between the artifact

instance at the moment it is used or generated, and the logical or physical identifier for the actual artifact, which

caused some challenge queries to require additional examination. Naming was particularly a problem for database

artifacts like tables and tuples since several teams did not support tracking of database artifacts. Different teams

were able to track database and file entities at various levels of granularities.

Challenge queries that combined provenance information with additional metadata or data values also posed

difficulties for teams. Additional ad hoc annotations were used by certain teams to capture part of the metadata

within the OPM model itself, with particular teams even encoding the entire artifact value as part of the provenance

annotation.

Given that this was the first time the OPM specification was put to use, the initial interoperability challenge for

teams was in mapping from their native provenance model to OPM. Most teams were successful in achieving this to

answer the core queries. A number of teams also attempted, with different degrees of success, to interoperate with

the OPM generated by others. More detailed experiences of some of these teams in addressing the challenge and

using the Open Provenance Model are discussed in articles in this special issue.

5 Progress on the OPM Specification

The Open Provenance Model OPM v1.00, originally crafted in a meeting held in Salt Lake City in August 2007, was

released to the community in December 2007 [9]. The first OPM workshop in June 2008 involved some twenty

participants discussing issues related this specification, and led to a revised specification, referred to as OPM v1.01

[10].

From the outset, the original authors' intent has been to define a data model that is open from an inter-operability

viewpoint but also with respect to the community of its contributors, reviewers and users. To formalize its openness,

the workshop participants agreed on a lightweight, structured process, inspired by the open source community, to

manage changes to the OPM specification. The process, aimed at making decisions by consensus, consists of public

call for change proposals, public review and public voting [16].

Using this open process, the workshop was followed by a revision of the specification, in light of the experience

gained from the third provenance challenge. Proposed changes, discussions and vote results can be seen at the OPM

Wiki [12]. We summarize the key changes that are reflected in the version of the specification available in this

special issue [11].

A number of structural changes were introduced to the document. While a formal specification is useful to make

details precise and explicit, it was decided that it should be moved out of the core OPM specification, since it is

difficult to keep it synchronized with the specification. It was agreed that extensibility is paramount in OPM, and

that it must captured by a notion of profile. Collections were deemed to be an optional feature, and it was decided

that they should be expressed as an optional profile, outside the core specification. On the other hand, time is

regarded as an essential feature of OPM, intrinsic to its semantics, and there was kept in the core specification.

Several other issues were brought into the specification: it was made explicit that some edges must be asserted and

cannot be inferred (Used, WasGeneratedBy and WasDerivedFrom). A number of common annotations were

introduced to capture labels for nodes, sub-types for nodes and edges, and serial representation for artifact.

Active community participation is helping build a wide user base around the open provenance model specification

and plans are already afoot to define the fourth provenance challenge in 2010 to validate all features of OPM by the

broader community.

6 Articles in this Special Issue

The articles in this special issue discuss the role of OPM in fostering interoperability. The diverse selection of

articles present experiences using OPM – both as part of PC3 and for other scenarios, technical and performance

evaluations, interoperability challenges, and mapping across and extending provenance models. The Open

Provenance Model Core Specification (L. Moreau, et al.) is itself included in this issue, defining entities,

dependencies, and inference rules with examples. This serves as the definitive version of the specification for both

modelers and practitioners of provenance.

A novel application of OPM to representing message communication between distributed components is provided

by P. Groth. A distributed profile for OPM is proposed and used to compactly represent the provenance for the load

workflow used in PC3. A. Freitas consider another distributed system, the world wide web, and enumerate

provenance requirements and use cases for online content. They present mappings between their W3P model based

on semantic/web standards and OPM, and identify extensions that meet the identified requirements.

The Swift team used the Swift workflow scripting language to capture provenance for the PC3 workflow and

attempt the challenge queries. Their experience, along with a comparison of their internal provenance data model to

OPM is presented by L. Gadelha, et al. A similar entity-relationship model is used by C. Lim, et al. in their

OPMProv database store for OPM graphs, and its performance evaluation presented for importing and querying

OPM graphs from seven other PC3 teams.

As OPM gains traction, existing provenance systems will start incorporating support for OPM. Y. Simmhan, et al.

explore technical approaches considered when migrating the native provenance model in the Trident workflow

workbench to OPM for the challenge and provides insights on programming overhead, data consistency and

interoperability issues for each approach considered.

Interoperability challenges exist when collecting provenance from heterogeneous application platforms. B. Plale, et

al. propose a solution of automated application instrumentation to address this for Axis2 web services, with support

exporting and importing OPM graphs. L. Ding, et al. take a critical look at further interoperability issues that they

identify during the course of PC3, and recommend their Linked Provenance Data ontology to encapsulate and

extend OPM to address them.

OPM specifies the causal provenance chain, and it is meant to coexist with current and future metadata

specifications. S. Miles explores mapping the Dublin Core vocabulary popular in digital library and archival

community to OPM graphs, to enrich the context and attributes available to users while also automating metadata

interchange between software components. An interesting comparison between OPM used to represent provenance

of workflow execution (among others) and the model used to represent the workflow itself is provided by P. Missier,

et al. They examine information loss when “reverse engineering” a plausible workflow from a given OPM graph,

using the Taverna dataflow model as example, and suggest annotations to OPM to achieve lossless-ness.

7 References

[1] Yogesh Simmhan, Beth Plale, Dennis Gannon: A survey of data provenance in e-science. SIGMOD Record

34(3): 31-36 (2005).

[2] Moreau, L. (2009) The Foundations for Provenance on the Web. Foundations and Trends in Web Science.

(Submitted)

[3] Cheney, J., Chong, S., Foster, N., Seltzer, M., and Vansummeren, S. 2009. Provenance: a future history.

OOPSLA 2009.

[4] Juliana Freire, David Koop, Emanuele Santos, Claudio T. Silva, "Provenance for Computational Tasks: A

Survey," Computing in Science and Engineering, vol. 10, no. 3, pp. 11-21, May/June 2008.

[5] Peter Buneman, Sanjeev Khanna, Wang Chiew Tan: Why and Where: A Characterization of Data Provenance.

ICDT 2001: 316-330.

[6] Workshop on Data Derivation and Provenance, Chicago, 2002.

[7] International Provenance and Annotation Workshop, Chicago, 2006.

[8] Moreau, L., et al. Special Issue: The First Provenance Challenge. Concurrency Computation: Practices and

Experience, 20(5), Apr. 2008, 409-418.

[9] Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J. and Paulson, P. The Open Provenance Model (v1.0).

Technical Report, ECS, University of Southampton. December 18, 2007.

[10] Moreau (Editor), L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y., Futrelle, J., McGrath,

R., Myers, J., Paulson, P., Bowers, S., Ludaescher, B., Kwasnikowska, N., Van den Bussche, J., Ellkvist, T., Freire,

J. and Groth, P. (2008) The Open Provenance Model (v1.01). Technical Report, Electronics and Computer Science,

University of Southampton. July 17, 2008.

[11] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia Kwasnikowska, Simon

Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan, Eric Stephan and Jan Van den Bussche. The Open

Provenance Model --- Core Specification (v1.1). In this issue, Future Generation Computer Systems, 2010, Elsevier.

[12] The Third Provenance Challenge Wiki website. http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenance

Challenge.

[13] The Pan-STARRS Data Processing and Science Analysis Software Systems, Heasley, J. N.

Classification and Discovery in Large Astronomical Surveys. AIP Conference Proceedings, Volume 1082, pp. 352-

358 (2008).

[14] Yogesh Simmhan, Roger Barga, Catharine van Ingen, Maria Nieto-Santisteban, Lazslo Dobos, Nolan Li,

Michael Shipway, Alexander S. Szalay, Sue Werner, Jim Heasley, "GrayWulf: Scalable Software Architecture for

Data Intensive Computing," hicss, pp.1-10, 42nd Hawaii International Conference on System Sciences, 2009.

http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenance%20Challenge
http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenance%20Challenge

[15] Third Provenance Challenge participating teams and members: NCSA (Joe Futrelle, Jim Myers, Robert Clark),

Swift (Ben Clifford, Luiz M. R. Gadelha Jr.), Trident (Yogesh Simmhan, Roger Barga, and Dean Guo), UCDGC

(Manish Kumar Anand, Shawn Bowers, Bertram Ludaescher, Sven Kholer, Timothy McPhillips, Sean Riddle),

SOTON-ISI (Luc Moreau, Paul Groth), UManchester (Paolo Missier), RPI/TWC (James Michaelis, Li Ding,

Zhenning Shangguan, Rui Huang), UvA/VL-e (Victor Guevara, Ammar Benabdelkader, Adam Belloum), SDSC

(Ilkay Altintas, Daniel Crawl), VisTrails (Juliana Freire, David Koop, Tommy Ellkvist), KCL (Simon Miles), PASS

(Uri Braun, David Holland, Peter Macko, Diana MacLean, Daniel Margo, Kiran-Kumar Muniswamy-Reddy, Margo

Seltzer, Robin Smogor), Karma (Girish Subramanian, Bin Cao, Beth Plale), UTEP (Paulo Pinheiro da Silva,

Nicholas Del Rio, Leonardo Salayandia)

[16] Governance of the Open Provenance Model, L. Moreau, J. Freire, J. Futrelle, J. Myers and P.Paulson, 2009.

