
http://wrap.warwick.ac.uk/

Original citation:
He, Ligang, Zou, Deqing, Zhang, Zhang, Chen, Chao, Jin, Hai and Jarvis, Stephen A..
(2014) Developing resource consolidation frameworks for moldable virtual machines in
clouds. Future Generation Computer Systems, Volume 32 . pp. 69-81.
Permanent WRAP url:
http://wrap.warwick.ac.uk/54735

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.
Publisher statement:
© 2014 Elsevier, Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/54735
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:publications@warwick.ac.uk

Developing Resource Consolidation Frameworks for Moldable Virtual Machines in
Clouds

Ligang He1, Deqing Zou2, Zhang Zhang2, Chao Chen1, Hai Jin2, and Stephen A. Jarvis1

1. Department of Computer Science, University of Warwick, Coventry, United Kingdom
2. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

liganghe@dcs.warwick.ac.uk, Deqingzou@hust.edu.cn

Abstract—This paper considers the scenario where multiple
clusters of Virtual Machines (i.e., termed as Virtual Clusters)
are hosted in a Cloud system consisting of a cluster of physical
nodes. Multiple Virtual Clusters (VCs) cohabit in the physical
cluster, with each VC offering a particular type of service for
the incoming requests. In this context, VM consolidation,
which strives to use a minimal number of nodes to
accommodate all VMs in the system, plays an important role in
saving resource consumption. Most existing consolidation
methods proposed in literature regard VMs as “rigid” during
consolidation, i.e., VMs’ resource capacities remain unchanged.
In VC environments, QoS is usually delivered by a VC as a
single entity. Therefore, there is no reason why VMs’ resource
capacity cannot be adjusted as long as the whole VC is still
able to maintain the desired QoS. Treating VMs as “moldable”
during consolidation may be able to further consolidate VMs
into an even fewer number of nodes. This paper investigates
this issue and develops a Genetic Algorithm (GA) to
consolidate moldable VMs. The GA is able to evolve an
optimized system state, which represents the VM-to-node
mapping and the resource capacity allocated to each VM.
After the new system state is calculated by the GA, the Cloud
will transit from the current system state to the new one. The
transition time represents overhead and should be minimized.
In this paper, a cost model is formalized to capture the
transition overhead, and a reconfiguration algorithm is
developed to transit the Cloud to the optimized system state at
the low transition overhead. Experiments have been conducted
in this paper to evaluate the performance of the GA and the
reconfiguration algorithm.

Keywords-virtualization; Cluster; Cloud

I. INTRODUCTION

Cloud computing [13][14] has been attracting lots of
attention recently. Cloud computing is driven by economies
of scale, in which various services (such as Platform-as-a-
service, Software-as-a-service and Infrastructure-as-a-
Service) are delivered on demand to external customers. The
advent of virtualization technology [1][2][3] provides
dynamic resource partition within a single physical node,
while the VM migration enables the on-demand and fine-
grained resource provisions in multiple-node environments.
Therefore, a virtualization-based Cloud computing platform
offers excellent capability and flexibility to meet customer’s
changing demands. As the Clustering technology is a popular
approach to building a reliable, scalable and cost-effective
computing platform for scientific and e-business/commerce
applications, a virtualization-based Cloud platform often
creates multiple Virtual Clusters (VCs) in a physical cluster
and each VC consists of multiple VMs located in different

physical nodes. A VC then forms a service deployment or
application execution environment for external customers.
Some popular Cloud middleware, such as EUCALYPTUS
[15], Nimbus [16] and so on, can facilitate the system
managers and customers to deploy, manage and utilize VCs.

Power consumptions have become a crucial concern in
Cloud platforms due to the contradiction between the ever-
increasing scale of Cloud platforms and the energy shortage
in the modern society. Therefore, reducing power
consumptions or conducting “green computing” have
become a popular research topic nowadays. Different power
saving strategies have been proposed in the literature
[27][28][29][30][34][35]. A popular approach among them
strives to consolidate VMs to a fewer number of hosting
nodes [34][35]. The work in this paper falls into this scope.
Most existing consolidation methods proposed in literature
regard VMs as “rigid” during consolidation, i.e., VMs’
resource capacities remain unchanged. Different from the
work in literature, this paper treats VMs as “moldable”
during consolidation. This is because in VC environments,
QoS is usually delivered by a VC as a single entity.
Therefore, as long as the whole VC can still maintain the
desired QoS there is no reason why VMs’ resource capacity
cannot be adjusted. Treating VMs as “moldable” may be
able to consolidate VMs into an even fewer number of nodes.
This paper investigates this issue and develops a Genetic
Algorithm (GA) to consolidate moldable VMs. In a
virtualization-based Cloud, two fundamental attributes of the
system state are VM-to-node mapping and the resource
capacity allocated to each VM. The developed GA performs
the crossover and mutation operation on system states and is
able to generate an optimized state. Moreover, the design of
this GA is not limited to a particular type of resource, but is
capable of consolidating multiple types of resource.

After the optimized system state is calculated, the Cloud
is reconfigured from the current state to the new one. During
the reconfiguration, various VM operations may be
performed, including VM creation, VM deletion, VM
migration as well as changing a VM’s resource capacities.
The reconfiguration time represents management overhead
and should be minimized. Another contribution of this paper
is to formalize a cost model to capture the overhead of a
reconfiguration plan, and then develop a reconfiguration
algorithm to transit the Cloud to the optimized system state
with the low overhead.

Reference [43] presents the earlier version of this work.
Compared with [43], this paper introduces new contributions
as follows: i) an extension to the related work, ii) detailed
discussions of case studies, iii) conducting more simulation

experiments, iii) conducting real-life experiments on a
cluster.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III presents the
Cloud architecture and workload models considered in this
paper. The GA is presented in Section IV to consolidate
VMs. Section V presents the cost model to capture the
transition overhead, and develops an algorithm to
reconfigure the Cloud with the low overhead. Experiments
are conducted in Section VI to evaluate the effectiveness of
the developed consolidation framework. Finally, Section VII
concludes this paper.

II. RELATED WORK

Existing Cloud middleware normally provides resource
management components to meet the resource demands from
the Cloud users. For example, the virtualized resources that
comprise a EUCALYPTUS Cloud are exposed and managed
by the Cloud Controller (CLC) whose resource services
perform system-wide arbitration of resource allocations and
monitor both system components and virtual resources [15].
However, the main objective of the Cloud middleware in
literature is to provide the convenient management layer for
the system managers and external customers to manage,
deploy and utilize the underlying Cloud platform. The
optimization strategies in terms of performance (e.g.,
resource utilization) and quality (e.g., QoS and energy
consumption), especially the tradeoff between them, are
typically limited and could be further strengthened.

Server consolidation is a way to enhance Cloud
middleware by improving resource utilization and reducing
energy consumption [34][36]. The work in [36] addresses the
issue of using the minimal number of nodes to handle the
workload in a cluster consisting of multiple Virtual Clusters.
The work develops the “squeeze” and “release” measures to
dynamically redistribute the workloads in the cluster
according to the workload level in each individual node. The
workload redistribution is achieved by a sequence of live
VM migrations. The idle nodes in the cluster can then be
switched off to save energy. However, the work in [36] only
considers a single resource: CPU. In our work, the design of
the consolidation strategy is generic and can accommodate
multiple types of resource. Moreover, the resource capability
allocated to a VM remains unchanged in [36]. In this paper,
the resource allocations to VMs may be adjusted to further
improve the resource utilizations.

The work in [40] proposes a dynamic optimization model
for power and performance management of virtualized
clusters. The work applies the mixed integer programming
technique to find the minimized power consumptions in
virtualized clusters. The objective of the work in [40] is
similar as that in this paper. However, the work in [40] only
considers a single type of resource, CPU. Moreover, in order
to model the problem using mixed integer programming
technique, it assumes that the CPU speed is selected from a
set of discrete figures. In this paper, we consider multiple
types of resource (e.g., CPU and Memory), and the resource
capability allocated to a VM can be any figure that is no
more than the total capacity of the physical node. Therefore,

the problem that this paper aims to address cannot be
modeled by the mixed integer programming technique.

The work in [41] proposes a rule-based knowledge
management approach to addressing the resource allocation
problem for Cloud infrastructure. The rule-based approach
sets a target value for resource utilization, and adjusts the
allocated resources when the utilization deviates from the
target value by a certain threshold. The work in [41] aims to
adjust resource allocations so as to achieve SLA (Service
Level Agreement) and high resource utilization with low
adjustment overheads. The SLA and the resource utilization
introduced in [41] are oriented toward a single VM.
However, the work presented in this paper endeavors to
reduce the number of nodes (i.e., resource consumption)
used to host all VMs while maintaining the QoS of all VCs.
The QoS requirement in this paper is for a VC as a whole
(not an individual VM), and the resource consumption also
refers to the consumptions made by all VMs collectively.
Therefore, the rule-based approach in [41] cannot be used to
solve the problem in this paper either. Another difference
between the work in [41] and this work is that in [41],
resource allocations will be adjusted only when SLA cannot
be met. In this paper, however, even if the current resource
allocation can satisfy the QoS, resource allocations may still
be adjusted if the VMs can be consolidated into a smaller
number of nodes.

The work in [34] develops a server consolidation scheme,
called Entropy. Entropy strives to find the minimal number
of nodes that can host a set of VMs, given the physical
configurations of the system and resource requirements of
the VMs. The objective is formalized as a multiple knapsack
problem, which is then solved using a dynamic programming
approach. In the implementation, a one-minute time window
is set for the knapsack problem solver to find the solution.
The solution obtained at the end of the one-minute time
space is the new state (new VM-to-node mapping). Similarly
to the work presented in this paper, the work searches for an
optimal reconfiguration plan to minimize the cost of
transiting the system from the current state to the new one.
Our work differs from Entropy in the following two major
aspects. First of all, the VMs considered in Entropy have to
be rigid since the server consolidation is modeled as a
knapsack problem. In our work, the VMs are “moldable”,
which exposes a new dimension that should be addressed
when designing consolidation strategies. Second, although
Entropy also tries to find an optimal reconfiguration plan,
only VM migrations are performed in the reconfiguration
and the reconfiguration procedure is again modeled as a
knapsack problem. In our work, however, various VM
operations, including VM migration, VM deletion, VM
creation and resource capability adjustment, may be
performed in the reconfiguration as long as the
reconfiguration cost can be further reduced without
jeopardizing QoS. Therefore, the cost model for the
reconfiguration procedure in our paper is much more
complicated and the reconfiguration cannot be modeled as a
knapsack problem anymore. The experiments are presented
in Section VI to compare our work with Entropy in term of
saving nodes.

As discussed above, the methods presented in literature,
including the mixed integer programming technique [40], the
rule-based knowledge management approach [41], and
knapsack modeling method [34], cannot be applied to
address the problems in this paper. In this work, we apply the
Genetic Algorithm (GA) to optimize the resource
consumptions by moldable VMs, because the crossover
operation of the GA can help look for a better way of
packing VMs into physical nodes while the mutation
operation can be used to adjust the resource capacity
allocated to VMs (the details of GA will be presented in
Section IV).

Server consolidation components normally function
below the Cloud middleware. Research work has also been
carried out to develop workload management mechanisms
sitting on top of the Cloud middleware to improve
performance. Various workload management methods,
including the control theory [6], SLA-Driven models [8][9],
queuing models [10], Lease Scheduling [12] and so on, have
been proposed. Many workload managers adopt a two-level
management mechanism. The most notable example is
Eucalyptus [15][42]. In Eucalyptus, a Cloud Controller acts
as a top-level manager responsible for managing multiple
clusters in the Cloud while a Cluster Controller sits in each
cluster, managing the nodes in the local cluster. There are
also other examples of two-level management mechanism in
literature. For example, Maestro-VC [8] adopts a two-level
scheduling mechanism based on Virtual Clusters, including a
Virtual Cluster scheduler running on the front-end node and
a local scheduler inside a virtual cluster, to improve the
resource utilization. In [9], a Client Manager is a top level of
manager and manages the client’s task execution, while the
semantic scheduler works as a lower-level manager and
allocates physical resources to each task. The work in [30]
organizes the VMs into a multilayer rings. Each layer has a
leader to balance the workload among the nodes belonging to
this layer.

Workload management components mainly focus on
designing request scheduling strategies given the Cloud
settings. Server consolidation proposed in our work
compliments these workload management components. It
can work underneath the Cloud middleware and be
conducted transparently from external clients to further
improve system-oriented performance (such as resource
utilization) while maintaining the client-oriented
performance (such as QoS).

Our consolidation scheme requires that the virtualization
system is able to specify resource utilization consumed by
each VM. The requirement can be realized by the advance of
the virtualization technology. In a typical virtualized system,
the resources such as processors, memory and network
interfaces can be assigned to and reclaimed from a VM
according to demands [1]. Moreover, the VM technology
allows the system to specify the CPU percentage and
memory size utilized by each VM. For example, Xen [2] and
VMware [3] provide a ballooning driver to dynamically
adjust host memory allocation among VMs, and allow the
VMM (Virtual Machine Monitor) to dynamically adjust
VCPU (Virtual CPU) capability of a VM. Although it is

more challenging to accurately specify utilization of other
resources, such as I/O, there has been active research work in
this area [39].

The consolidation scheme presented in this paper needs
to know the performance model of running requests in a VM,
i.e., being able to predict the response time of the requests
running on a VM given the VM’s resource capability.
Various methodologies have been proposed to address this
issue [38][39]. For instance, the work in [39] used layered
queuing network to model the response time of a request in a
multi-tiered web service hosted in VM environments, while
hardware resources (e.g., CPU and disk) are modeled as
processor sharing (PS) queues. The work in [38] modeled the
contention of visible resources (e.g., CPU, memory, I/O) and
invisible resources (e.g., shared cache, shared memory
bandwidth) as well as the overheads of the VM hypervisor
implementation. Our work utilizes the methods in [39] to
obtain the performance model required by our consolidation
scheme.

Our consolidation scheme also needs to know the time
cost of VM operations, such as VM deletion, creation,
migration and resource capacity adjustment. Various studies
in literature [34][39] have presented the methods to measure
the time spent in executing these VM operations, and also
established the relation between the cost and other VM
attributes. For example, the VM migration cost is
investigated in [34]. The work first experimentally measures
the cost and duration of a single VM migration, and then
develops a model to estimate the costs of a set of correlated
VM migrations in a Virtual Cluster. The work also
established the relation between migration cost of a VM and
it memory size. The work in [39] measured the costs of
conducting VM deletion, creation, resource capacity
adjustments. Our work makes use of these methods to obtain
the execution times of the VM operations involved in
reconfiguration.

III. SYSTEM HIERARCHY AND WORKLOAD MODELS

The consolidation scheme proposed in this paper assumes
that the Cloud adopts the architecture illustrated in Fig.1.
Multiple VCs, denoted as VC1, VC2, …, and VCM, coexist in
the Cloud system. The Cloud system consists of a cluster of
N physical nodes, n1, n2, …nN. Creating a VM needs to
consume R types of resources, r1, r2, …rR, in a node. Each
VC hosts a particular type of service, service certain types of
incoming request. The Cloud system aims to maintain a
steady level of Quality of Service (QoS) delivered by every
VC. The desired QoS is expressed as the total service rate of
all VMs in a VC cannot be less than a certain figure. There
are two levels of managers in the Cloud system: Local
Manager (LM) and Global Manager (GM). Every VC has its
LM, while there is only one GM in the Cloud. The GM
dispatches the requests, as they arrive, to the LMs of the
corresponding VCs. A VC’s LM further dispatches the
requests, as they are received, to individual VMs in the VC,
where the requests are placed in the VM’s local waiting
queue and executed on the First-Come-First-Served (FCFS)
basis. This two-level workload management framework is

also often adopted in literature [8][9][12][30][42], in which
the most notable example is Eucalyptus [15][42].

Each node has at most one VM of each VC. The reason
for limiting this is because the consolidation framework in
this paper can adjust the resource capacity allocated to VMs.
Therefore, if there is the need to map two VMs from the
same VC to the same physical node, it is very likely that we
can increase the resource allocation of one VM (according to
the performance model) so that the upsized VM has the same
processing capability as the total processing capability of
these two VMs. VMij denotes VCj’s VM in node ni. Assume
the capacity of resource ri allocated to a VM in VCj have to
be in the range of [mincij, maxcij]. mincij is the minimal
requirement for resource rj when generating a VM for VCi,
and maxcij is the capacity beyond which the VM will not
gain further performance improvement. For example,
minimal memory requirement for generating a VM in VCj is
50 Megabytes, while the VM will not benefit further by
allocating more than 1 Gigabytes of memory. We assume
that the physical nodes are homogeneous. mincij and maxcij is
normalized as a percentage of the total resource capacity in a
physical node. It is straightforward to extend our work to a
heterogeneous platform.

A VC’s LM can use the existing VM management
strategy in literature to create VMs in physical nodes [30],
and use existing request scheduling strategy to determine a
suitable VM for running an incoming request [30]. The
server consolidation scheme is deployed in GM and works
with the VM management strategy and the request
scheduling strategy in LMs to achieve optimized
performance for the Cloud. The server consolidation
procedure will be invoked when necessary (the invocation
timing will be discussed in Section IV). After the server
consolidation is completed, the consolidation procedure will
inform LMs of the new system state, i.e., VM-to-node
mapping and resource capacities allocated to each VM. LMs
can then adjust the dispatching of requests to VMs
accordingly.

Figure 1. The hierarchy of the Cloud System

IV. THE GENETIC ALGORITHM

In this work, a VM may consume multiple types of
resources. For example, the VC serving CPU-intensive
requests will mainly consume CPU cycles while the VC
processing I/O-intensive requests needs to consume a large

amount of I/O capacity. It is a NP-hard problem to optimize
the consumptions of multiple types of resources. A Genetic
Algorithm (GA) has been designed and implemented in this
work to compute the optimized system state, i.e., VM-to-
node mapping and the resource capacity allocated to each
VM, so as to optimize resource consumptions in the Cloud.
The GA can work with the existing request schedulers in
literature [30], which is deployed in the GM and LMs.

The increase in the arrival rates of the incoming requests
may cause the current VMs in the VC cannot satisfy the
desired QoS level, and therefore a new VM needs to be
created with desired resource capacity.

The invocation of the GA will be triggered if the
following situations occur, which are termed as resource
fragmentation:

1) There are spare resource capabilities in active nodes.
An active node is a node in which the VMs are serving
requests. Denoting the spare capability of resource rj in node
ni as scij;

2) The spare resource capabilities in every node are less
than the capacity requirements of the new VM in VCk,
denoted as ckj, i.e.,

For i (1≤i≤N), there exists such j (1≤j≤R), so that
scij < ckj

3) The total spare resource capabilities across all used
physical nodes are greater than the capacities required by the
new VM, i.e.,

For j (1≤j≤R), the following inequality holds, where
is no less than one and used to control the level of spare
capability in the Cloud that can trigger the GA. The bigger
is, less frequently the GA will be invoked and to greater
extent the resources will be consolidated. The value of is
determined empirically.

kj

N

i ij csc

1

The motivation of invoking the GA is to converge the
spare capacity to as few number of nodes as possible so that
we can create the new VM in one of the active nodes, and
therefore avoid waking up an inactive node.

If the arrival rates of requests decrease, the resource
capacity allocated to VMs will become excessive. The
deployed request scheduler will re-distribute the requests
among VMs. If this redistribution causes a VM becomes idle,
the VM may be deleted. If all VMs in a node are deleted, the
node can be switched off or enter the sleep mode to save
energy. So the decrease in the requests’ arrival rates will not
trigger the invocation of the GA. But note the deletion of
VMs will generate spare resource capacity in nodes.

Typically, a GA needs to encode the evolving solutions,
and then perform the crossover and the mutation operation
on the encoded solutions. Moreover, a fitness function needs
to be defined to guide the evolution direction of the solutions.
In this work, the solution that the GA strives to optimize is
the system state, which consists of two aspects: the VM-to-
node mapping and the resource capacity allocated to each
VM. In this work, a system state is represented using a three
dimensional array, S. An element S[i, j, k] in the array is the
percentage of total capacity of resource rk in node ni that is
allocated to VMij of VCj. The rest of this subsection discusses

the crossover and mutation operation as well as the fitness
function developed in this work.

A. The Crossover Operation

Given a generation of solutions, represented in the S
array, the crossover and mutation operations will be
performed in the GA to generate the next generation of
solution. The crossover operation takes as input two
solutions, called parent solutions, in the current generation of
solution set and generates two children solutions using the
following method.

Assume there are M VCs in the Cloud, VC1, VC2, ..., VCM.
The resource capacity allocated to VCj is recorded in S[*, j,
*], which is a two dimensional array. Assume that the
resource capacity allocated to VCj in two parent solutions are
S1[*, j, *] and S2[*, j, *] (1≤j≤M), respectively. In the
crossover operation, a VC index p is randomly selected from
the range of 1 to M, and then both of the two parent solutions
are partitioned into two portions at the position of the index p.
Subsequently, the crossover operation merges the head (and
tail) portion of parent solution 1 with the tail (and head)
portion of parent solution 2, and generates child solution 1
(and 2).

The validity check will be performed in both children
solutions to ensure that the total resource capacity allocated
to the VMs in a node is not more than the physical resource
capacity of that node. This constraint can be expressed as
follows, where R is the number of resource types.

For i, k: 1≤i≤N, 1≤k≤R, 1],,[
1

M

j
kjiS (1)

If there exists q (1≤q≤N) such that Eq.1 does not hold, then
the crossover operation is not performed for node nq.

The crossover operation is designed to consolidate VMs
into a smaller number of nodes without adjusting the
resource capacities allocated to VMs.

B. The Mutation Operation

After the crossover operation, the mutation operation is
then performed over the generated children solutions, aiming
to adjust the resource capacity allocated to the VMs to
further converge the spare capabilities to a smaller number of
nodes. In the mutation operation, the quantity of an element
in the matrix S[i, j, k] will be adjusted. So the GA needs to
determine which element is adjusted (i.e., determining index
i, j, k). The procedure is as follows.

i) Determining index i, j, k
A VC is first randomly selected (j is determined). Then a

node is selected (i is determined) with the probability
proportional to the capacity of the major resource type
consumed by the selected VC in that node (for the VC which
serves CPU-intensive requests, the major resource type is
CPU). After that, a resource type is selected (k is determined)
with the major resource type having a higher probability of
being selected than other resource types. The ratio
probability of selecting the major resource type to other
resource types are set to be R and 1, respectively (R is the
number of resource types in the system). Assume VCi is
selected, VCi consumes three types of resources and resource
r1 is the major resource type. Then the relative selection

probability for resource r1, r2, and r3 is 3:1:1. The reason of
giving a higher probability to select the major resource type
is because the major resource type has greater impact on the
VM’s processing capability.

ii) Adjusting resource capacities
After determining i, j and k, S[i, j, k] is increased by a

quantity randomly chosen from [0, min(maxcjk−S[i, j, k], scik)]
(scik is the spare capability of resource rk in node ni). After
the adjustment, the GA calculates the increased service rate
in node ni, denoted as . is the service rate that can be
reduced in another VM, say VMqj (qi) and the desired QoS
for VCj can still be satisfied. If there is a VM whose current
service rate is less than , then the resources allocated to
that VM can be reclaimed. If such a VM does not exist, the
capacity of resource rk allocated to VMkj is reduced by a
quantity calculated from the performance model. VMqj is not
randomly selected, but with the probability proportional to
1/S[q, j, k]. The reason for this is that the node with less
capacity being allocated to its VM will have higher
probability of being selected.

C. The Fitness Function

The fitness function in a GA is used to evaluate the
quality of the solutions. In this work, the fitness function is
constructed as follows.

Assume the number of active nodes is N and the spare
capacity of a type of resource rk in node ni is scik. Resource
fragmentation can be reduced when the spare capacities
converge to a smaller number of nodes. Therefore, the
standard deviation of the variables, scik (1iN), can reflect
the convergence level rk’s spare capability across N nodes.
The bigger the standard deviation is, the higher convergence
level.

Since multiple types of resources are taken into account
in this work, it is desired that the spare capacity of different
types of resources converges to the same node. For example,
we prefer the case where a node has balanced spare CPU
cycles and memory, rather than the case where there is a
large amount of spare memory but fully utilized CPU in one
node, while a large amount of spare CPU cycles but fully
utilized memory in another. The standard deviation of the
variables, scik (1kR), can reflect to what extent there are
balanced spare capacities across different types of resource
in node ni. The smaller the standard deviation is, the more
balanced capabilities. The standard deviation of the variables,
scik (1kR), in node ni can be calculated using Eq.2, where

s
isc is the average of scik (1kR) and can be calculated in

Eq.3.

R

scsc
R

k

s
iik

i

 1

2)(
 (2)

R

sc
sc

R

k iks
i

 1 (3)

The above two factors are combined together to construct

the fitness function for the GA, which is shown in Eq.4,

where a
ksc is the average of scik (1iN) for resource rk over

N active nodes and can be calculated in Eq.5. In Eq.4,

),(s
ii scW is a weight function and used to calculate the

weighted sum of the deviation of resource rk’s spare capacity
in multiple nodes. The weight is determined based on the

relation between
i and s

isc , which is partitioned into six

bands. Each of the first five bands spans 20% of s
isc and the

weight function falls into the last band when
i is greater

than s
isc .

R

k

N

i s
ii

a
kik

scW

scsc
1 1

2

),(

)(

 (4)

N

sc
sc

N

i ika
k

 1

 (5)

s
ii

s
ii

s
iis

ii

scw

scisciw
scW

0

%20%20)1(
),(

(6)

After a population of solutions is generated, each solution
is evaluated by calculating the fitness function. The solution
with higher value of the fitness function has higher
probability to be selected to generate the next generation of
solutions. The GA is stopped after it runs for a predefined
time duration or the solutions have stabilized (i.e., does not
improve over a certain number of generations).

V. RECONFIGURATING VIRTUAL CLUSTERS

Assume S and S′ are the matrixes representing the system
states before and after running the GA, respectively. The
Cloud system needs to reconfigure the Virtual Clusters by
transiting the system state from S to S′. During the transition,
various VM operations will be performed, such as VM
creation, VM deletion, VM migration as well as changing a
VM’s resource capacities. This section analyzes the
transition time and presents a cost model for the Cloud
reconfiguration. A reconfiguration algorithm is then
presented to determine the reconfiguration plan that has low
transition time, therefore imposes the low overhead.

A. Categorizing Changes in System States

The differences between S[i, j, k] and S′[i, j, k] can be
categorized into the following cases, which will be handled
in different ways.

Case 1: Both S[i, j, *] and S′[i, j, *] are non-zero, but
have different values: this means that the resource capacity
allocated to VMij needs to be adjusted. It can be further
divided into two subcases: 1.1) S[i, j, *] is greater than S′[i,
j, *], which means that VMij needs to reduce its resource
capacity, and 1.2) S′[i, j, *] is greater than S[i, j, *], which
means that VMij needs to increase its resource capacity;

Case 2: S[i, j, *] is non-zero, while S′[i, j, *] is zero: this
means that node ni is allocated to host VCj (i.e., VMij) before
running the GA, but is not allocated to host VCj after. In this
case, there are two options to transit the current system state
to the new one: 2.1) Deleting VMij, and 2.2) Migrating VMij
to another node which is allocated to run VCj after running
the GA;

Case 3: S[i, j, *] is zero, while S′[i, j, *] is non-zero: this
case is opposite to case 2). In this case, the system can either
3.1) Create VMij, or 3.2) accept the migration of VCj’s VM
from another node.

B. Transiting System States

1) VM Operations during the Transition
DL(VMij), CR(VMij), CH(VMij) denote the time spent in

completing deletion, creation, and capacity adjustment
operation for VMij, respectively. MG(VMij, nk) denotes the
time needed to migrate VMij from node ni to nk (i≠k). Note
one difference between VM deletion and VM migration. A
VM can be deleted only after the existing requests scheduled
to run on the VM have been completed, while the VM can
continue the service during live migration. The average time
needed for VMij to complete the existing requests, denoted as
RR(VMij), can be calculated as follows.

Assume that the number of requests in VMij is mij,
including the request running in the VM and the requests
waiting in the VM’s local queue. mij can be obtained by
monitoring the status of the queue in the VM.

Assume the average execution time of a request is e, and
the request which is running in the VM has been running for
the duration of e0. Then RR(VMij) can be calculated in Eq.7.

RR(VMij)=(mij−1)×e + (e−e0) (7)
These four types of VM operations can be divided into

two broad categories: 1) resource releasing operation,
including deleting a VM, migrating a VM to another node,
and reducing the resource capacity allocated to a VM; 2)
resource allocation operation, including creating a VM,
accepting the migration of a VM from another node, and
increasing the resource capacity allocated to a VM. When
both categories of VM operations need to be performed
when reconfiguring a node, careful considerations have to be
given to the execution order of the VM operations, because
the node may not have enough resource capacity so that
resource releasing operations have to be performed first
before resource allocation operations can be conducted.
Therefore, there may be execution dependencies among VM
operations. Below, we first discuss the condition under
which there are no execution dependencies among VM
operations when reconfiguring a node, and then analyze how
to perform VM operations when the condition is or is not
satisfied. We also analyze the time spent in completing these
operations.

2) Performing VM Operations without Dependency
If total resource capacities of the VMs in a node do not

exceed the total physical resource capacity of the node at any
time point during the transition, the VM operations in the
same node do not have dependency. This condition can be
formalized in Eq.8.

For k: 1≤k≤R, 1]),,['],,,[max(
1

M

j
kjiSkjiS (8)

We now analyze the time spent in completing the VM
operations in a node when Eq.8 holds. The existence of VM
migrations will complicate the analysis. Therefore, we first
consider the case where there is no VM migration in the
reconfiguration of the node, and then extend the analysis to
incorporate migration operations.

i) time for reconfiguring a node without VM migrations
The transition time for reconfiguring node ni, denoted as

TR(ni), can be calculated using Eq.9, where Sdl, Scr and Sch
denote the set of VMs in node ni that are deleted, created and
adjust their resource allocations during the reconfiguration,
respectively; The second term in the equation (i.e. the term
within the min operator) reflects the reality that the activities
of creating a new VM and adjusting a VM’s resource
capacity can be conducted at the same time as executing the
existing requests in the VMs to be deleted.

chijcrij

dlij

SVM
dlijijij

SVM
ij

SVM
iji

SVMVMRRVMCHVMCR

VMDLnTR

}}|)(max{),()(min{

)()(

 (9)
ii) time for reconfiguring a node with VM migrations
If the reconfiguration of node ni involves VM migrations,

including ni migrating a VM to another node and ni accepting
a VM migrated from another node, we introduce a concept of
mapping node of ni, which is further divided into mapping
destination node, which is the node that the VM in ni
migrates to, and mapping source node, which is the node that
migrates a VM to ni. When handling VM migrations in ni,
ni’s mapping node will be first identified as follows. If the
following two conditions are satisfied, node nq (i≠q) can be a
mapping destination node of node ni, and node ni is called
nq’s mapping source node.
 k, 1≤k≤R, S[i, j, k] > 0, but for k, 1≤k≤R, S[i, j, k]=0
 For k, 1≤k≤R, S[q, j, k]=0, but k, 1≤k≤R, S[q, j, k] > 0

Note that a node can have multiple mapping nodes.
Which mapping node is finally selected by the
reconfiguration procedure will have impact on the transition
time.

If ni accepts a VM migration from nq during the
reconfiguration of ni, then the time for reconfiguring ni can
be calculated from Eq.10, where Smg denotes the set of VMs
in node ni that are migrated from another node.

}}|)(max{,)(

)(),(min{)()(

dlijij
SVM

ij

SVM
ij

SVM
kij

SVM
iji

SVMVMRRVMCH

VMCRnVMMGVMDLnTR

chij

crijmgijdlij

(10)
If ni migrates a VM to another node, the reconfiguration

procedure will check whether Eq.8 holds for ni’s mapping
destination node. If Eq.8 holds, then the VM can be migrated
to that node at any time point. Otherwise, the VM migration
will be handled in a different way, which is presented in
Section V.B.3.

When Eq.8 holds for ni, the reconfiguration procedure of
ni is outlined in Algorithm 1. Step 5-7 of the algorithm deal
with VM migrations, which will be discussed in detail in
Section V.B.3. Note that Case 3 is not handled in this
algorithm. The reason for this will be explained when
Algorithm 4 is introduced.
Algorithm 1. Reconfiguration_without_dependency(ni);
1. for each VMij in Case 1 do
2. Adjust the resource capacity of VMij;
3. for each VMij in Case 2.1 do
4. Delete VMij;

5. for each VMij in Case 2.2 do
6. Find a mapping destination node, nk, for the VM,

denoted as VMij;
7. Call migration(VMij, nk);
8. return;

3) Performing VM Operations with Dependency
If Eq.8 does not hold, there must be at least one VM in

the node which releases resources during the reconfiguration.
Otherwise, if all VMs in the node only acquire resources and
Eq.8 does not hold, the resource capacity allocated to the
VMs in the node will exceed the node’s physical resource
capacity after the reconfiguration.

A VM can release resources by the following three
possible operations during the reconfiguration:

 Reducing the resource capacity allocated to the VM,
 Deleting the VM,
 Migrating the VM to another node.
If there are multiple VMs releasing their resources in

node ni, the reconfiguration procedure will release resources
in the above precedence, until Eq.5.3 satisfies, where S[i,j,k]
is now the current resource capacity allocated to the VMs in
the node after the resources have been released so far. Once
Eq.8 holds, it indicates the remaining reconfiguration process
can be conducted using the way discussed in Subsection
V.B.2. If multiple VMs perform the same type of resource
releasing operations, a VM with the greatest amount of
capacity to be released will be selected.

The end of Subsection V.B.2 mentioned the situation
where ni tries to migrate a VM to a mapping node, but Eq.8
may or may not hold for that node. The procedure of
migrating VMij to node nk is outlined in Algorithm 2, which
is called in Algorithm 1 (Step 7). The algorithm will first
check whether Eq.8 holds for the mapping node (Step 1). If it
holds, the VM migrates to the mapping node straightway
(Step 21). If it does not hold, the VM migration operation
does have dependency and some resource releasing
operations have to be completed in the listed precedence
(Step 2-19) until Eq. 8 holds. Under this circumstance, the
algorithm becomes an iterative procedure (Step 16) and
resource releasing operations will be performed in a chain of
nodes.
Algorithm 2. migration(VMij, nk) //migrating VMij to nk
1. if Eq.5.3 does not hold for nk then //with dependency
2. for each VMkj in Case 1.1 do
3. reduce VMkj’s resource allocations and update

S[k, j, *] accordingly;
4. if Eq.5.3 holds then
5. migrate VMij to nk and update S[k, j, *]

and S[i, j, *] accordingly;
6. return;
7. end for
8. for each VMkj in Case 2.1 do
9. delete VMkj and update S[k, j, *] accordingly;
10. if Eq.5.3 holds then
11. Migrate VMij to nk and update S[k, j, *]

and S[i, j, *] accordingly;
12. return;
13. end for

14. for each VMkj in Case 2.2 do
15. Obtain a mapping node, nq;
16. Call migration(VMkj, nq);
17. If Eq.5.3 holds then
18. Migrate VMij to nk and update S[k, j, *] and S[i,

j, *] accordingly;
19. return;
20. else //without dependency
21. migrate VMij to nk and update S[k, j, *] and S[i,

j, *] accordingly;
22. return;

Algorithm 3 is used to reconfigure node ni. In the
algorithm, if Eq.5.3 does not hold for ni, the resources will be
released until Eq.5.3 satisfies. Then Algorithm 1 is called to
reconfigure the node (Step 16).
Algorithm 3. Reconfiguration(ni)
1. if Eq.5.3 does not hold then //with dependency
2. for each VMij in Case 1.1 do
3. reduce VMij’s resource allocations and update

S[i, j, *] accordingly;
4. if Eq.5.3 holds then break;
5. end for
6. for each VMij in Case 2.1 do
7. delete VMij and update S[i, j, *] accordingly;
8. if Eq.5.3 holds then break;
9. end for
10. for each VMij in Case 2.2 do
11. Obtaining the mapping node, nk;
12. Call migration(VMij, nk);
13. if Eq.5.3 holds then break;
14. End for
15. End if
16. call Reconfiguration_without_dependency(ni);
17. return;

Algorithm 4 is used to construct the reconfiguration plan
for the Cloud. Note that the VMs in Case 3 are handled in
this algorithm (Step 7-9) by creating the VMs. This is
because when migrating VMij from node ni to the mapping
node nk, Case 3 has been handled for VMkj in node nk (Case
3.1). Therefore, when Algorithm 4 completes Step 2-6, the
VMs that are left unattended are those which were not used
as the mapping destination nodes for VM migrations. The
only option to deal with those VMs now is to create them.
Algorithm 4. Reconfiguring the Cloud
Input: S[i, j, k]

1. = the set of all nodes in the Cloud;
2. while (≠)
3. Obtain node ni (1≤ i ≤N) from ;
4. Call Reconfiguration (ni);
5. = ni;
6. end while
7. for each node, ni do,
8. for each VMij in Case 3 that has not been

 handled do
9. Create VMij;

C. Calculating Transition Time

A DAG graph can be constructed based on the
dependencies between the VM operations as well as between
source nodes and mapping destination nodes. As can be seen
in Algorithm 3, if Eq.8 does not hold for ni, the VM
operations have to be performed in a particular order, which
causes the dependency between VM operations. Also in
Algorithm 2, if migration(VMkj, nq) is further invoked during
the execution of migration(VMij, nk), then there is the
dependency between node nq and nk. This is because nk
depends on nq releasing resources before a VM in nk can
migrate to nq.

In this paper, a DAG graph is used to model the
dependency between nodes. In the DAG graph, a node
represents a physical node, and an arc from node ni to nk
represents a VM migrating from nk to ni. A case study is
illustrated in Fig.2. Assume there are four VCs (VCj, 1≤j≤4)
in the Cloud. Each node has at most four VMs, each
belonging to a different VC. Assume n1 has all four VMs and
n2 has VM21 (the VM belonging to VC2) and VM24 (the VM
belonging to VC4) before running the GA. After running the
GA, n1 has VM11 and VM14 while n2 has VM22 and VM23. The
resource capacity of VM11 after running the GA is less than
that before running the GA, while the resource capacity of
VM14 after running the GA is greater than that before. The
VM distributions in node n1 and n2 before and after running
the GA can be encoded as in Table I, where 1- and 1+ stand
for the reduced and increased capacity, respectively,
compared with before running the GA.

TABLE I. VM MAPPING BEFORE AND AFTER RUNNING THE GA

 n1 n2
Before 1 1 1 1 1 0 0 1
After 1- 0 0 1+ 0 1 1 0

The case study further assumes Eq.8 does not hold for n1..
Therefore n1 has to release the resources capacity of VM11,
VM12 and VM13 before VM14 can increase its resource
capacity. Assume in the current reconfiguration plan, VM12 is
to be deleted and VM13 to be migrated to n2 (assume n2 is the
mapping destination node). Assume Eq.8 does not hold for
n2 either, and VM21 has to migrate to n3 and VM24 migrate to
n4 before VM22 and VM23 can be created in n2.

Figure 2. A case study of node dependency during the reconfiguration

Based on the above assumptions, VM operations in n1
and n2 as well as their dependencies are as follows.
According to the precedence of releasing resources, the

sequence of the VM operations in n1 is: 1) VM11 reduces its
resource capacity; 2) VM12 is deleted; 3) VM13 is migrated to
n2. Operation 1) can occur anytime. Operation 2) can occur
only after the existing requests in the VM have been
completed. Operation 3) depends on VM21 and VM24
releasing resources, since the creation of VM23 can only be
performed after VM21 and VM24 have been migrated. The
migrations of VM21 and VM24 further depend on resource
releasing operations in n3 and n4, respectively. The chain of
dependencies continues until Eq.8 holds for n5, which means
that the VMs in n3 and n4 can migrates to n5 freely and do not
depend on other VM operations in n5. The dependencies
between the VM operations in different nodes can also be
modeled as a DAG graph. The dependencies between VM
operations in n1 and n2 can be illustrated in Fig.3.

Figure 3. The dependencies between the VM operations in n1 and n2

If the VM operations in all nodes form a single DAG,
calculating the transition time of the reconfiguration plan for
the Cloud can be transformed to compute the critical path in
the DAG. The VM operations involved in reconfiguring the
Cloud may also form several disjoint DAG graphs. In this
case, the critical paths of all these DAG graphs need to be
computed. The time of the longest critical path is the
transition time of the reconfiguration plan for the whole
Cloud since the VM operations in different DAG graphs can
be performed in parallel.

There can be different reconfiguration plans and different
plans may have different transition times. The uncertainty
comes from two aspects: 1) which of the two VM operations,
deletion or migration, should be performed for a VM in Case
2, and 2) if a VM is to be migrated and it has multiple
mapping destination nodes, which node should be selected to
migrate the VM to. More specifically, before invoking
Algorithm 3, we need to decide for all VMs in Case 2, which
VMs should be classified into Case 2.1 (relating to Step 6 of
Algorithm 3) and Case 2.2 (relating to Step 10). Moreover,
in Step 11, the system needs to determine which mapping
node should be selected. The objective is to obtain a
reconfiguration plan which has the low transition cost. We
now present the strategies to find such a plan.

An approach to obtaining the optimal reconfiguration
plan is to enumerate all possibilities for each VM falling into
Case 2, i.e., to calculate the transition cost for both Case 2.1
and Case 2.2. If there are k VMs which fall into Case 2, then
there are 2k combinations of delete/migration choices and the
transition cost for each combination needs to be calculated.

After determining to migrate a VM, another uncertainty is
that the VM may have multiple mapping nodes. Suppose
VMij has pj mapping nodes. We need to enumerate all
possibilities and calculate the transition cost pj times for
migrating a VM to each of its pj mapping nodes. Each
possibility corresponds to a DAG. Therefore, the
enumeration approach will examine all these different DAGs.
The DAG with the shortest critical path represents the
optimal reconfiguration plan.

Apparently, the time complexity of the enumeration
approach is very high. We developed a heuristic approach to
obtain a sub-optimal reconfiguration plan quickly. The
strategies used in the heuristic approach are as follows.

a) determining deletion or migration:
D(VMij) denotes the time the system has to wait for

completing the deletion of VMij. As discussed in subsection
V.B.1, D(VMij)=DL(VMij)+RR(VMij). If the following two
conditions are satisfied, VMij is migrated. Otherwise, VMij is
deleted.

i) VMij has at least one mapping node such that migrating
VMij to that node will not trigger other VM deletion or
migration operations.

ii) For all mapping nodes satisfying the first condition,
there exists such a node, nk, that D(VMij) > MR(VMij, nk)

The two conditions try to compare the time involved in
deleting and migrating a VM. Before invoking Algorithm 3
in subsection V.B.3, these two conditions will be applied to
determine whether a VM in Case 2 should be handled as
Case 2.1 (Step 6) or Case 2.2 (Step 10)

b) determining the mapping node
If a VM is to be migrated and there are multiple mapping

destination nodes which satisfy condition ii), then Step 11 of
Algorithm 3 will select the node which offers the shortest
migration time MR(VMij, nk).

VI. EXPERIMENTAL STUDIES

In this section, we first present the results of the
simulation experiments to show the effectiveness of the GA
and the Cloud reconfiguration method presented in this paper,
and then we present the experimental results of deploying the
implementation of CFMV on a real 16-node cluster.

A. Simulation Experiments

A discrete event simulator has been developed to
evaluate 1) the performance of the developed GA in
consolidating resources, 2) the time spent by the GA in
obtaining the optimized system state, and 3) the transition
time of the reconfiguration plan obtained by the enumeration
approach and the heuristic approach.

In the experiments, three types of resources are simulated:
CPU, memory and I/O, and there are three types of VMs:
CPU-intensive, Memory-intensive, and I/O-intensive VMs.
A VC consists of the same type of VMs. For the CPU-
intensive VMs, the required CPU utilisation is selected from
the range of [30%, 60%], while their memory and I/O
utilisation are selected from the range of [1%, 15%]. The
selection range represents [mincij, maxcij] discussed in
Section II. Similarly, for the memory-intensive VMs, the

allocated memory is selected from the range of [30%, 60%],
while their CPU and I/O utilisation are selected from the
range of [1%, 15%]. For the I/O-intensive VMs, the required
I/O utilisation is selected from [30%, 60%], while their CPU
and the memory utilisation are from the range of [1%, 15%].

N is the number of physical nodes in the cluster, M is the
number of virtual clusters in the Cloud, f is the percentage of
the spare capability in a node.

The initial VM-to-node mapping is generated in the
following manner.

i) Set the number of VMs in a node is b (b is set to be 3
in the simulation experiments, unless otherwise stated);

ii) Use the resource selection ranges above to generate
b*N/3 computation-intensive VMs, b*N/3 for memory-
intensive VMs, and (b*N – 2*b*N/3) I/O-intensive VMs;

iii) Calculate the average size of the VCs (i.e., the
number of VMs in a VC) as b*N/M;

iv) Use the first fit algorithm [34] to generate the initial
VM-to-node mapping, i.e, for VMij, search the nodes starting
from n1, if the node has enough capacity (after deducting the
f spare capability) to accommodate VMij, then map VMij to
the node.

GA takes as input the initial system state generated as
above and calculates an optimized state.

Other experimental settings are detailed in individual
experiments.

Representative times in the literature [34][39] were
assumed in our simulation experiments. The average time for
deleting and creating a VM is 20 and 14 seconds,
respectively. The migration time depends on the size of VM
image and the number of active VMs in the mapping nodes
[34][39]. The migration time in our experiments is in the
range of 10 to 32 seconds.

1) Performance of the GA

a) Impact of the Number of Physical Nodes

Fig.4 shows the number of nodes saved as the GA
progresses. In the experiments in Fig.4, the number of nodes
with active VMs varies from 50 to 200. The experiments aim
to investigate the time that the GA needs to find an
optimized system state, and also investigate how many nodes
the GA can save by converging spare resource capacities.
The free capacity of each type of resource in the nodes is
selected randomly from the range [10%, 30%] with the
average of 20%. The number of the VMs in a physical node
is 3. The number of the VCs in the system is 30. As can be
observed from Fig.4, the percentage of nodes saved increases
as the GA runs for longer, as to be expected. Further
observations show that under all three cases, the number of
nodes saved increases sharply after the GA starts running. It
suggests the GA implemented in this paper is very effective
in evolving optimized states. When the GA runs for longer,
the increasing trend tides off. This is because that the VM-to-
node mapping and resource allocations calculated by the GA
approaches the optimal solutions. Moreover, by observing
the difference of the curve trends under different number of
nodes, it can be seen that as the number of nodes increases, it
takes the GA longer to approach the optimized state. For
example, when the number of nodes is 50, the optimized

solution is almost reached after the GA runs for about 13
seconds, while it takes the GA about 53 seconds to reach the
optimized solution when the number of nodes is 200.

Figure 4. The quantity of nodes saved as the GA progresses

0

8

16

24

32

40

48

56

64

72

80

50 100 200

The number of active nodes

T
im

e
 s

p
e
n
t
in

 f
in

d
in

g
 o

p
tim

iz
e
d
 s

y
s
te

m
 s

ta
te

s

(s
e
c

.)

GA

GA w ith only mutation

Figure 5. Resource consolidation by the GA with only mutation
operations; the experimental settings are the same as in Fig.4.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 30 50 70 90 110 130 150 170 190

the number of nodes

t
h
e

p
r
o
p
o
r
t
i
o
n

o
f

n
o
d
e
s

s
a
v
e
d

GA

entropy

Figure 6. The comparison between the GA and entropy; the average free
resource capacity is 20%

In the GA, the crossover operation is used to consolidate
resources without adjusting the resource capacities allocated
to VMs, while the mutation operation is performed to further
converge the spare capabilities to a smaller number of nodes.
In order to give insights into the effects of these two
operations, we conducted the experiments in which the
resources were consolidated by the GA performing only
mutation operations. In these experiments, we found that
although the GA only performed mutation operations, it

could still find optimized system states. However, the GA
performing only mutation operations had to spend much
longer time to reach the optimized states. Fig.5 compares the
time spent by the GA performing both crossover and
mutation operations with the time by the GA only
performing mutations. The experimental settings are the
same as in Fig.4. As can be seen from this figure, under all
experimental settings, the time spent by the GA performing
only mutations is significantly longer. These results can be
explained as follows. The crossover operation essentially
tries to find a better way to pack the VMs into physical nodes.
Without the crossover operation, although mutation
operation can also eventually achieve the same effect by
adjusting resource capacities of individual VMs, the process
would be much longer. This is because the mutation
operation is performed on a single VM each time, while the
crossover operation is performed on a set of VMs.

Fig.6 compares the GA developed in this work with the
Entropy consolidation scheme presented in [34]. It can be
seen from this figure that the GA clearly outperforms
Entropy in all cases. This is because the VMs’ resource
allocations in Entropy remain unchanged, while the GA
developed in this paper employs the mutation operation to
adjust the VMs’ resource allocations. This flexibility makes
the VMs “moldable” and therefore is able to squeeze VMs
more tightly into fewer nodes. It can also been observed
from this figure that there is no clear increasing or decreasing
trend in terms of the proportion of nodes saved as the
number nodes increases in our consolidation scheme. This
suggests that the number of nodes does not have much
impact on the GA’s capability of saving nodes.

Figure 7. The impact of free resource capacity in nodes on the
performance of GA; the initial number of nodes used are 200; the number
of the Virtual Clusters in the system is 30;

b) Impact of Free Capacity

Fig.7 demonstrates how the GA performs under different
level of free capacity in the physical nodes. In the
experiments presented in Fig.7, the number of the VCs in the
system is 30 while the free capacity of the resources in each
node varies from 10% to 20%. It can be observed from this
figure that the number of nodes used to host the VCs
decreases as the level of free capacity increases. This result
demonstrates the effectiveness of the developed GA in
exploiting the free resources to consolidate the VMs into a
smaller number of nodes. It can also be seen from the figure
that although the time that the GA spends to approach the

optimal solution increases as the level of free capacity
increases, the increase is moderate (not as big as when the
number of nodes increases). When the level of free capacity
increases from 10% to 20%, the time the GA takes to almost
reach the optimized solution increases from 22 seconds to 27
seconds. This result suggests that the level of free capacity in
the nodes does not have big impact on the running time of
the GA.

c) Impact of the Number of VCs

Fig.8 shows how the GA performs under different
number of VCs. In this figure, the total number of VMs in
the Cloud is fixed to be 600, while the number of VCs varies
from 20 to 40. When the number of VCs in the Cloud is 20,
30 and 40, the average number of VMs that each VC has is
30, 20 and 15, respectively. As seen from this figure, the
number of nodes used to host the VCs decreases in all cases
as the GA progresses, which is to be expected. It can also be
observed that the time that the GA spends to approach the
optimized solution becomes longer as the number of VCs
increases. When there are 20 and 40 VCs, for example, the
GA takes 17 and 52 seconds, respectively, to achieve the
near-optimal solution. Another observation is that although
the free resource capacity is 20% in all cases, the final
number of consumed nodes calculated by the GA is different
under different number of VCs. As observed from the figure,
the number of consumed nodes decreases as the number of
VCs in the Cloud increases. This result can be explained as
follows. According to the experimental settings in the figure,
when there are more VCs, the granularity of a VC in terms of
the number of VMs is smaller. Therefore, the GA has more
opportunities to consolidate the VCs into a smaller number
of nodes. This result shows that the number of VCs has the
mixed impact on the GA’s performance. When more VCs
are hosted, a longer time may be taken to reach the optimized
solution, but potentially more resources may be saved. This
gives the insight into how to determine a suitable number of
VCs in a Cloud, given a certain number of underlying
physical nodes.

Figure 8. The impact of the number of VCs on the performance of the GA;
the number of physical nodes is 200; the average level of free resource
capacity in nodes in 20%.

2) Performance of the Cloud Reconfiguration
Fig.9 shows the time it takes for the enumeration

approach to find the optimal reconfiguration plan under
different number of nodes and different number of VCs. The

optimized system states are computed by the GA. The
average spare capacity in nodes is 15%.

0

50

100

150

200

250

300

350

400

450

500

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

The number of nodes

time (s)

2VC

3VC

4VC

Figure 9. the execution time of the reconfiguration algorithm for different
number of nodes and VCs

It can be seen from this figure that the time increases as
the number of nodes increases and also as the number of
VCs increases. When the number of nodes is 200 and the
number of VCs is 4, the time is 450 seconds, which is
unbearable in real systems. That is why a heuristic approach
is necessary to quickly find the sub-optimal reconfiguration
plan for the large scale of systems. Our experiments show
that the time spent by the heuristic approach designed in this
paper is negligible (less than 2 seconds even when the
number of nodes is 200).

10

20

30

40

50

60

70

80

90

100

110

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

The number of nodes

T
ra

n
si

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

2VC, enum
3VC, enum
4VC, enum
2VC, heur
3VC, heur
4VC, heur

Figure 10. the transition time of the optimal reconfiguration plan obtained
by the enumeration approach as well as the sub-optimal plan obtained by
the heuristic approach

Fig.10 shows the transition time of the optimal
reconfiguration plan obtained by the enumeration approach
as well as the sub-optimal plan by the heuristic approach. As
can be seen from this figure, the transition time increases in
all cases as the number of nodes increases and also as the
number of VCs increases. Further observations and analysis
show that the number of nodes and the number of VCs have
different impact on the transition time of the reconfiguration
plan. In the enumeration approach, when the number of
nodes increases from 10 to 200, the transition time increases
by 20.4 seconds from 32 to 52.4 seconds, while the transition
time increases by 22 seconds from 32 to 54 seconds when
the number of VCs only increases by 2 from 2 to 4. This

result can be explained as follows. When the number of VCs
increases, the number of VMs in a node will also increase.
Therefore, more VM operations will be performed in a node
during the Cloud reconfiguration. Since the VM operations
in the same node can only be performed in sequence, the
time spent by the VM operations in a node will increase
substantially. On the contrary, when the number of nodes
increases, the VM operations in different nodes may be
performed in parallel unless they have dependencies as
analyzed in subsection V.C.

It can also be observed from Fig.10 that the difference in
the transition time between the enumeration approach and
the heuristic approach is not prominent. According to our
experiment data, when the number of VC is 2, 3 and 4, the
average difference in transition time between these two
approaches is 4.9, 4.6 and 6.6 seconds. The results suggest
that the developed heuristic approach can efficiently find a
fairly good reconfiguration plan.

B. Experiments on a Real Cluster

We implemented the resource Consolidation Framework
for Moldable VMs (CFMV) developed in this paper. The
framework is implemented by extending an existing
consolidation manager, called Entropy, in literature [34]. In
the implementation, new functions are added in the source
code of Entropy to calculate a better system state (i.e., the
VM-to-node mapping and the resource capacity allocated to
each VM) and an optimized reconfiguration plan according
to the methods presented in this paper. Entropy provides the
mechanism to perform the actual VM operations in physical
machines, including VM deletion, VM creation and VM
migrations. CFMV implements the codes to perform the
operation of adjusting resource capacities allocated to a VM,
since Entropy only deals with rigid VMs. In CFMV, the
newly added functions of finding an optimized
reconfiguration plan interface with the mechanism of
performing actual VM operations and instruct the
mechanism to reconfigure the Cloud to the system state
calculated by CFMV.

In the experiments, CFMV is deployed on a cluster. The
cluster consists of 16 physical machines. Each machine has a
Pentium-4 3.2GHz CPU and 2GB of memory. The machines
run on a 1Gbps Ethernet network. The 16 machines run the
VMs using Xen 4.0.1.

A VM hosts a RUBiS benchmark [10]. RUBiS is an
auction site prototype modelled after eBay.com [10]. It
handles the external transaction requests. In this experiment,
the “browse only” transactions are used. Up to 4 RUBiS
applications, called RUBiS1 to RUBiS4, are hosted in the
cluster, and the VMs hosting RUBiSi form the Virtual
Cluster i (VCi). In the experiments, we only consider two
types of resource: CPU and memory.

The work in [10] uses Layered the Queuing Network
(LQN) models to construct the performance models for the
RUBiS benchmark. These performance models are adopted
in the experiment. According to the performance model, the
service rate of a VM with certain resource capacities can be
obtained. In the experiments, the desired QoS delivered by
VCi is expressed as the total service rate of all VMs in the

VC cannot be less than qosi. qosi is calculated as i/, where
i is the arrival rate of the requests for RUBiSi, and is the
desired resource utilization of the system, which is set to be
80% in the experiments. On the cluster, we also
benchmarked the costs of VM operations that may be
performed during the Cloud reconfiguration, including VM
creation, VM deletion, VM migration and VM adjustment.

One additional machine is used to emulate the clients and
generate the transaction requests. During the experiment
duration, the requests are submitted to the cluster following
the Poisson process. In order to evaluate the consolidation
ability of the framework, the initial resource allocation is
conducted for given arrival rates of requests for RUBiS1-
RUBiS4 in the following manner: i) make sure that there is f
percentage of spare capacity in each physical node, ii)
allocate 10% of a node’s resource capacity to run Dom0, iii)
the remaining resource capacity is evenly divided among the
VCs whose Qualities of Service have not been satisfied yet.

The architecture in Figure 1 is adopted in the experiments.
In the implementation of CFMV, the Global Manager (GM)
and the Local Managers (LM) are situated in the head node
of the cluster. They work in the following fashion.
 LMi (the Local Manager of VCi) i) calls XenAPI to obtain

the resource capacities allocated to the VMs in VCi, ii)
uses the performance model in [10] to calculate the service
rate of each VM for the RUBiS application (sij denotes the
service rate of VMij), iii) search the nodes in the order
from node 1 to node 16 to find such a set of VMs that the
VMs’ total service rates is no less than qosi, iv) for a given
arrival rate of the requests for VCi, calculates the
proportion of the requests dispatched to VMij (denoted as
αij), which is proportional to sij, i.e., αij/sij= αik/sik.

 GM i) collects the system state of VCi from LMi, ii)
records the number of physical nodes with active VMs (i.e.,
the VMs that serve the requests), iii) invokes CFMV to
find an optimized system state and an optimized
reconfiguration plan, iv) reconfigures the Cloud, and v)
records the number of the physical nodes with active VMs
after Cloud reconfiguration.

For comparison, Entropy is also used to consolidate the
resources in the experiments.

Fig.11 shows the number of nodes saved by CFMV and
Entropy, in which the spare capability of each node is set as
30%. It can be seen from this figure that CFMV can save
more nodes than Entropy after consolidation. This is because
CFMV allows the VMs to adjust the resource capacities, and
therefore offers more flexibility to “squeeze” the VMs into a
smaller number of nodes.

In order to evaluate the impact of the spare capacity on
the number of saved nodes, we also conducted the
experiments in which the spare capacity in each node is set
as 10%. The results are shown in Fig.12. As can be observed
from this figure, there are no nodes being saved except when
the arrival rate is 400 under CFMV. This is because the spare
capacity in each node is small and the total spare capacity in
the cluster is not big enough to free physical nodes. This
result suggests that the spare capacity in the nodes impacts
on the number of nodes that can be saved by consolidation.

The less spare capacity in the active nodes in the cluster, the
less number of nodes can be saved.

0

2

4

6

8

10

12

14

16

60 120 180 240 300

Arrival rate of total requests (req/sec.)

T
h

e
 n

u
m

b
e
r

o
f
n

o
d
e

s
 w

ith
 a

c
tiv

e
 V

M
s

before

Entropy

CFMV

Figure 11. The number of nodes saved under CFMV and Entropy under
different arrival rates of requests; the proportions of the requests for
RUBiS1-RUBiS4 are 10%, 20%, 30% and 40%, the spare resource capacity
in each node is 30%.

0

2

4

6

8

10

12

14

16

80 160 240 320 400

Arrival rate of total requests (req/sec.)

T
h

e
 n

u
m

b
e

r
o

f
n

o
d

e
s
 w

ith
 a

c
tiv

e
 V

M
s

before

Entropy

CFMV

Figure 12. The number of nodes saved under CFMV and Entropy under
different arrival rates of requests; the proportions of the requests for
RUBiS1-RUBiS4 are 10%, 20%, 30% and 40%, the spare resource capacity
in each node is 10%.

0

1

2

3

4

5

6

7

8

9

10

60 120 180 240 300

Arrival rate of total requests (req/sec.)

T
im

e
 s

p
e
n
t
in

 r
e
s
o
u
rc

e
 c

o
n
s
o
lid

a
tio

n
 (

s
e
c
.)

Entropy

CFMV

Figure 13. Time spent in resource consolidation by CFMV and Entropy; the
experimental settings are the same as in Fig.11; if the resources cannot be
consolidated, the time data are not shown.

Fig.13 shows the time spent by CFMV and Entropy to
complete the consolidation computations in the experimental
settings in Fig.11. In the figure, if no nodes can be saved, the
time data are not depicted. As can be seen from the figure,
CFMV spends less time in completing consolidation than
Entropy. This may be because CFMV can adjust the VMs’
resource capacity to help consolidate resources, and therefore
it can reach the optimized system state more quickly than
Entropy, because Entropy may have to try more possibilities

to see if the VMs can be packed into a smaller number of
nodes.

Fig.14 shows the reconfiguration cost (i.e., the transition
time from the current system state to the state calculated by
the consolidation framework) in the experimental settings in
Fig.11. Again if no nodes can be saved, the data are not
depicted in the figure. It can be seen from this figure that the
reconfiguration cost in CFMV is less than that in Entropy.
This can be explained as follows. Entropy only uses VM
migrations to reconfigure the Cloud, while CFMV may
delete and create VMs if the VM migration operation is
likely to incur higher transition time.

0

8

16

24

32

40

48

56

64

72

80

60 120 180 240 300

Arrival rate of total requests (req/sec.)

T
im

e
 s

p
e

n
t

in
 r

e
s
o
u

rc
e

 c
o
n

s
o
lid

a
tio

n

Entropy

CFMV

Figure 14. Reconfiguration cost under CFMV and Entropy; the experimental
settings are the same as in Fig.11; if the resources cannot be consolidated,
the data are not shown.

VII. CONCLUSIONS

This paper aims to optimize the resource consumptions in
the cluster-based Cloud systems. The Cloud system hosts
multiple Virtual Clusters to server different types of
incoming requests. A GA is developed to compute the
optimized system state and consolidate resources. A Cloud
reconfiguration algorithm is then developed to transfer the
Cloud from the current state to the optimized one computed
by the GA. In the experiments, the performance of the GA
and the reconfiguration algorithm is evaluated and the
developed scheme is also compared with a consolidation
scheme developed in literature.

REFERENCES

[1] S. Nanda, T. Chiueh. A survey on virtualization technologies.
Technical Report, TR-179, Stony Brook University, Feb 2005.
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf

[2] P. Barham, B. Dragovic, K. Fraser, and et al. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM symposium on
Operating Systems Principles, pages: 164-177, ACM Press, 2003.

[3] VMware Infrastructure:“Resource Management with VMware DRS”.
VMware Whitepaper 2006.

[4] W. Zhao and Z. Wang. Dynamic Memory Balancing for Virtual
Machines. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE),
ACM Press, pages 21- 30, March 11-13, 2009, Washington, DC,
USA..

[5] C. A. Waldspurger. Memory Resource Management in VMware ESX
Server. In Proceedings of the 5th Symposium on Operating System
Design and Implementation, pages: 181-194. Boston, MA, Dec. 2002.

[6] P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, K.
Salem, and K. G. Shin. Adaptive control of virtualized resources in

utility computing environments. In Proceedings of the European
Conference on Computer Systems(EuroSys), pages: 289-302, 2007

[7] P. Padala, K. Hou, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, K. Shin. Automated Control of Multiple Virtualized
Resources. In Proceedings of the European conference on Computer
systems (EuroSys), pages: 13-26, Mar 2009.

[8] I. Cunha, J. Almeida, V. Almeida, and M. Santos. Self-adaptive
capacity management for multitier virtualized environments. In
Proceedings 10th Symposium on Integrated Network Management,
pages: 129-138, 2007.

[9] J. Ejarque, M. D. Palol, I. Goiri, F. Julia, R. M. Gui-tart, J. Badia, and
J. Torres. SLA-Driven Semantically-Enhanced Dynamic Resource
Allocator for Virtualized Service Providers. In Proceedings of the 4th
IEEE Inter-national Conference on eScience(eScience 2008), Indi-
anapolis, Indiana, USA, pages: 8-15, Dec 2008.

[10] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu. Generating
Adaptation Policies for Multi-Tier Applications in Consolidated
Server Environments. IEEE International Conference on Autonomic
Computing, pages: 23-32, 2008.

[11] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Autonomic
live adaptation of virtual computational environments in a multi-
domain infrastructure. IEEE International Conference on Autonomic
Computing, pages: 5-14, 2006.

[12] B. Sotomayor, K. Keahey, I. Foster. Combining Batch Execution and
Leasing Using Virtual Machines. Proceedings of the 17th
international symposium on High performance distributed computing,
pages: 87-96, 2008.

[13] M. Armbrust, A. Fox, R. Griffith, and et al. Above the Clouds: A
berkeley view of Cloud computing. Technical Report, February 10,
2009.

[14] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented Cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities. CoRR, (abs/0808.3558), 2008.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, D. Zagorodnov. The eucalyptus open-source Cloud-
computing system. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages:
124-131, 2009.

[16] Nimbus, http://www.nimbusproject.org.

[17] K. Keahey, T. Freeman. Contextualization: Providing One-click
Virtual Clusters. In Proceedings of the 2008 4th IEEE International
Conference on eScience, pages: 301-308, 2008.

[18] Apache Tashi, http://incubator.apache.org/tashi/

[19] Enomaly: Elastic/Cloud Computing Platform,
http://www.enomalism.com.

[20] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, and et al. The
RESERVOIR Model and Architecture for Open Federated Cloud
Computing. IBM Journal of Research & Development, Volume 53,
Number 4, 2009.

[21] P. Ruth, P. McGachey, and D. Xu. VioCluster: Virtualization for
dynamic computational domains. In Proceedings of the IEEE
International Conference on Cluster Computing (Cluster), 2005.

[22] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, and et al. From
Virtualized Resources to Virtual Computing Grids: The In-VIGO
System. In Future Generation Computer Systems， pages: 896-909,
June 2005.

[23] I. Krsul, A. Ganguly, J. Zhang. VMPlants: Providing and Managing
Virtual Machine. Execution Environments for Grid Computing. In
Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page: 7, 2004.

[24] N. Kiyanclar, G. A. Koenig, and W. Yurcik. Maestro-VC: On-
Demand Secure Cluster Computing Using Virtualization. In 7th LCI
International Conference on Linux Clusters, 2006.

[25] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker. Usher: An
Extensible Framework for Managing Clusters of Virtual Machines. In

Proceedings of the USENIX Large Installation System
Administration Conference (LISA), 2007.

[26] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun. Multi-Tiered On-
Demand Resource Scheduling for VM-Based Data Center. In 9th
IEEE International Symposium on Cluster Computing and the Grid
(CCGrid), pages: 148-155, May 18-21, 2009.

[27] R. Nathuji, K. Schwan. Virtualpower: coordinated power
management in virtualized enterprise systems. In Proceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP),
pages: 265-278, October 2007.

[28] R. Nathuji and K. Schwan. VPM Tokens: Virtual Machine-Aware
Power Budgeting in Datacenters. In Proceedings of the ACM/IEEE
International Symposium on High Performance Distributed
Computing (HPDC), Boston, Massachusetts, USA June 2008, pages:
119-128, June 23–27, 2008.

[29] H. Chen, H. Jin, Z. Shao, K. Yu, K. Tian. ClientVisor: leverage
COTS OS functionalities for power management in virtualized
desktop environment. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments(VEE), pages: 131-140, 2009.

[30] L. Hu, H. Jin, X. Liao, X. Xiong, H. Liu. Magnet: A Novel
Scheduling Policy for Power Reduction in Cluster with Virtual
Machines. In Proceeding of 2008 IEEE International Conferenc on
Cluster Computing (Cluster 2008), IEEE Computer Society, Japan,
pages: 13- 22, Sept. 29 2008-Oct. 1 2008.

[31] S. Kumar, V. Talwar, P. Ranganathan, R. Nathuji, and K. Schwan.
M-Channels and M-Brokers: Coordinated Management in Virtualized
Systems. In Proceedings of the Workshop on Managed Many-Core
Systems (MMCS, in conjunction with HPDC), June 2008.

[32] H. Amur, R. Nathuji, M. Ghosh, K. Schwan, and H. S. Lee.
IdlePower: Application-Aware Management of Processor Idle States.
In Proceedings of the Workshop on Managed Many-Core Systems
(MMCS, in conjunction with HPDC), June 2008.

[33] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu.
No power struggles: Coordinated multi-level power management for
the data center. In Proceedings of the 13th international conference on
Architectural support for programming languages and operating
systems (ASPLOS), pages: 48-59, 2008.

[34] F. Hermenier, X. Lorca, J. Menaud, G. Muller, J. Lawall, “Entropy: a
consolidation manager for clusters”, Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments, pp. 41-50, 2009

[35] Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, “Multi-Tiered On-
Demand Resource Scheduling for VM-Based Data Center”, 9th
IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2009

[36] L. Hu, H. Jin, X. Liao, X. Xiong, H. Liu, “Magnet: A Novel
Scheduling Policy for Power Reduction in Cluster with Virtual
Machines”, 2008 IEEE International Conference on Cluster
Computing

[37] L. Kleinrock, Queueing system, John Wiley & Sons, 1975.

[38] O. Tickoo, R. Iyer, R. Illikkal, D. Newell, “Modelling Virtual
Machine Performance: Challenges and Approaches”, ACM
SIGMETRICS Performance Evaluation Review, 37(3), 2009.

[39] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, C. Pu, “mistral--
Dynamically Managing Power, Performance, and Adaptation Cost in
Cloud Infrastructures”, ICDCS 2010: 62-73

[40] V. Petrucci, O. Loques, D. Mosse “A dynamic optimization model for
power and performance management of virtualized clusters”, In: e-
Energy '10. pp. 225-233. ACM, New York, NY, USA (2010)

[41] M. Maurer, I. Brandic, and R. Sakellariou, “Enacting SLAs in Clouds
Using Rules”, Euro-Par 2011, Bordeaux August 29th - September
2nd 2011, France

[42] http://en.wikipedia.org/wiki/Eucalyptus_(computing)

[43] L. He, D. Zou, Z. Zhang, K. Yang, H. Jin and S. Jarvis, "Optimizing
Resource Consumptions in Clouds", The 12th IEEE/ACM
International Conference on Grid Computing (Grid 2011), 2011

