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Abstract—This paper considers the scenario where multiple 
clusters of Virtual Machines (i.e., termed as Virtual Clusters) 
are hosted in a Cloud system consisting of a cluster of physical 
nodes. Multiple Virtual Clusters (VCs) cohabit in the physical 
cluster, with each VC offering a particular type of service for 
the incoming requests. In this context, VM consolidation, 
which strives to use a minimal number of nodes to 
accommodate all VMs in the system, plays an important role in 
saving resource consumption. Most existing consolidation 
methods proposed in literature regard VMs as “rigid” during 
consolidation, i.e., VMs’ resource capacities remain unchanged. 
In VC environments, QoS is usually delivered by a VC as a 
single entity. Therefore, there is no reason why VMs’ resource 
capacity cannot be adjusted as long as the whole VC is still 
able to maintain the desired QoS. Treating VMs as “moldable” 
during consolidation may be able to further consolidate VMs 
into an even fewer number of nodes. This paper investigates 
this issue and develops a Genetic Algorithm (GA) to 
consolidate moldable VMs. The GA is able to evolve an 
optimized system state, which represents the VM-to-node 
mapping and the resource capacity allocated to each VM.  
After the new system state is calculated by the GA, the Cloud 
will transit from the current system state to the new one. The 
transition time represents overhead and should be minimized. 
In this paper, a cost model is formalized to capture the 
transition overhead, and a reconfiguration algorithm is 
developed to transit the Cloud to the optimized system state at 
the low transition overhead. Experiments have been conducted 
in this paper to evaluate the performance of the GA and the 
reconfiguration algorithm. 
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I.  INTRODUCTION 

Cloud computing [13][14] has been attracting lots of 
attention recently. Cloud computing is driven by economies 
of scale, in which various services (such as Platform-as-a-
service, Software-as-a-service and Infrastructure-as-a-
Service) are delivered on demand to external customers. The 
advent of virtualization technology [1][2][3] provides 
dynamic resource partition within a single physical node, 
while the VM migration enables the on-demand and fine-
grained resource provisions in multiple-node environments. 
Therefore, a virtualization-based Cloud computing platform 
offers excellent capability and flexibility to meet customer’s 
changing demands. As the Clustering technology is a popular 
approach to building a reliable, scalable and cost-effective 
computing platform for scientific and e-business/commerce 
applications, a virtualization-based Cloud platform often 
creates multiple Virtual Clusters (VCs) in a physical cluster 
and each VC consists of multiple VMs located in different 

physical nodes. A VC then forms a service deployment or 
application execution environment for external customers. 
Some popular Cloud middleware, such as EUCALYPTUS 
[15], Nimbus [16] and so on, can facilitate the system 
managers and customers to deploy, manage and utilize VCs.  

Power consumptions have become a crucial concern in 
Cloud platforms due to the contradiction between the ever-
increasing scale of Cloud platforms and the energy shortage 
in the modern society. Therefore, reducing power 
consumptions or conducting “green computing” have 
become a popular research topic nowadays. Different power 
saving strategies have been proposed in the literature 
[27][28][29][30][34][35]. A popular approach among them 
strives to consolidate VMs to a fewer number of hosting 
nodes [34][35]. The work in this paper falls into this scope. 
Most existing consolidation methods proposed in literature 
regard VMs as “rigid” during consolidation, i.e., VMs’ 
resource capacities remain unchanged. Different from the 
work in literature, this paper treats VMs as “moldable” 
during consolidation. This is because in VC environments, 
QoS is usually delivered by a VC as a single entity. 
Therefore, as long as the whole VC can still maintain the 
desired QoS there is no reason why VMs’ resource capacity 
cannot be adjusted. Treating VMs as “moldable” may be 
able to consolidate VMs into an even fewer number of nodes. 
This paper investigates this issue and develops a Genetic 
Algorithm (GA) to consolidate moldable VMs. In a 
virtualization-based Cloud, two fundamental attributes of the 
system state are VM-to-node mapping and the resource 
capacity allocated to each VM. The developed GA performs 
the crossover and mutation operation on system states and is 
able to generate an optimized state. Moreover, the design of 
this GA is not limited to a particular type of resource, but is 
capable of consolidating multiple types of resource.  

After the optimized system state is calculated, the Cloud 
is reconfigured from the current state to the new one. During 
the reconfiguration, various VM operations may be 
performed, including VM creation, VM deletion, VM 
migration  as well as changing a VM’s resource capacities. 
The reconfiguration time represents management overhead 
and should be minimized. Another contribution of this paper 
is to formalize a cost model to capture the overhead of a 
reconfiguration plan, and then develop a reconfiguration 
algorithm to transit the Cloud to the optimized system state 
with the low overhead.  

Reference [43] presents the earlier version of this work. 
Compared with [43], this paper introduces new contributions 
as follows: i) an extension to the related work, ii) detailed 
discussions of case studies, iii) conducting more simulation 



experiments, iii) conducting real-life experiments on a 
cluster.  

The remainder of this paper is organized as follows. 
Section II discusses the related work. Section III presents the 
Cloud architecture and workload models considered in this 
paper. The GA is presented in Section IV to consolidate 
VMs. Section V presents the cost model to capture the 
transition overhead, and develops an algorithm to 
reconfigure the Cloud with the low overhead. Experiments 
are conducted in Section VI to evaluate the effectiveness of 
the developed consolidation framework. Finally, Section VII 
concludes this paper. 

II. RELATED WORK 

Existing Cloud middleware normally provides resource 
management components to meet the resource demands from 
the Cloud users. For example, the virtualized resources that 
comprise a EUCALYPTUS Cloud are exposed and managed 
by the Cloud Controller (CLC) whose resource services 
perform system-wide arbitration of resource allocations and 
monitor both system components and virtual resources [15]. 
However, the main objective of the Cloud middleware in 
literature is to provide the convenient management layer for 
the system managers and external customers to manage, 
deploy and utilize the underlying Cloud platform. The 
optimization strategies in terms of performance (e.g., 
resource utilization) and quality (e.g., QoS and energy 
consumption), especially the tradeoff between them, are 
typically limited and could be further strengthened.  

Server consolidation is a way to enhance Cloud 
middleware by improving resource utilization and reducing 
energy consumption [34][36]. The work in [36] addresses the 
issue of using the minimal number of nodes to handle the 
workload in a cluster consisting of multiple Virtual Clusters. 
The work develops the “squeeze” and “release” measures to 
dynamically redistribute the workloads in the cluster 
according to the workload level in each individual node. The 
workload redistribution is achieved by a sequence of live 
VM migrations. The idle nodes in the cluster can then be 
switched off to save energy. However, the work in [36] only 
considers a single resource: CPU. In our work, the design of 
the consolidation strategy is generic and can accommodate 
multiple types of resource. Moreover, the resource capability 
allocated to a VM remains unchanged in [36]. In this paper, 
the resource allocations to VMs may be adjusted to further 
improve the resource utilizations.  

The work in [40] proposes a dynamic optimization model 
for power and performance management of virtualized 
clusters. The work applies the mixed integer programming 
technique to find the minimized power consumptions in 
virtualized clusters. The objective of the work in [40] is 
similar as that in this paper. However, the work in [40] only 
considers a single type of resource, CPU. Moreover, in order 
to model the problem using mixed integer programming 
technique, it assumes that the CPU speed is selected from a 
set of discrete figures. In this paper, we consider multiple 
types of resource (e.g., CPU and Memory), and the resource 
capability allocated to a VM can be any figure that is no 
more than the total capacity of the physical node. Therefore, 

the problem that this paper aims to address cannot be 
modeled by the mixed integer programming technique.  

The work in [41] proposes a rule-based knowledge 
management approach to addressing the resource allocation 
problem for Cloud infrastructure. The rule-based approach 
sets a target value for resource utilization, and adjusts the 
allocated resources when the utilization deviates from the 
target value by a certain threshold. The work in [41] aims to 
adjust resource allocations so as to achieve SLA (Service 
Level Agreement) and high resource utilization with low 
adjustment overheads. The SLA and the resource utilization 
introduced in [41] are oriented toward a single VM. 
However, the work presented in this paper endeavors to 
reduce the number of nodes (i.e., resource consumption) 
used to host all VMs while maintaining the QoS of all VCs. 
The QoS requirement in this paper is for a VC as a whole 
(not an individual VM), and the resource consumption also 
refers to the consumptions made by all VMs collectively. 
Therefore, the rule-based approach in [41] cannot be used to 
solve the problem in this paper either. Another difference 
between the work in [41] and this work is that in [41], 
resource allocations will be adjusted only when SLA cannot 
be met. In this paper, however, even if the current resource 
allocation can satisfy the QoS, resource allocations may still 
be adjusted if the VMs can be consolidated into a smaller 
number of nodes. 

The work in [34] develops a server consolidation scheme, 
called Entropy. Entropy strives to find the minimal number 
of nodes that can host a set of VMs, given the physical 
configurations of the system and resource requirements of 
the VMs. The objective is formalized as a multiple knapsack 
problem, which is then solved using a dynamic programming 
approach. In the implementation, a one-minute time window 
is set for the knapsack problem solver to find the solution. 
The solution obtained at the end of the one-minute time 
space is the new state (new VM-to-node mapping). Similarly 
to the work presented in this paper, the work searches for an 
optimal reconfiguration plan to minimize the cost of 
transiting the system from the current state to the new one. 
Our work differs from Entropy in the following two major 
aspects. First of all, the VMs considered in Entropy have to 
be rigid since the server consolidation is modeled as a 
knapsack problem. In our work, the VMs are “moldable”, 
which exposes a new dimension that should be addressed 
when designing consolidation strategies. Second, although 
Entropy also tries to find an optimal reconfiguration plan, 
only VM migrations are performed in the reconfiguration 
and the reconfiguration procedure is again modeled as a 
knapsack problem. In our work, however, various VM 
operations, including VM migration, VM deletion, VM 
creation and resource capability adjustment, may be 
performed in the reconfiguration as long as the 
reconfiguration cost can be further reduced without 
jeopardizing QoS. Therefore, the cost model for the 
reconfiguration procedure in our paper is much more 
complicated and the reconfiguration cannot be modeled as a 
knapsack problem anymore. The experiments are presented 
in Section VI to compare our work with Entropy in term of 
saving nodes.  



As discussed above, the methods presented in literature, 
including the mixed integer programming technique [40], the 
rule-based knowledge management approach [41], and 
knapsack modeling method [34], cannot be applied to 
address the problems in this paper. In this work, we apply the 
Genetic Algorithm (GA) to optimize the resource 
consumptions by moldable VMs, because the crossover 
operation of the GA can help look for a better way of 
packing VMs into physical nodes while the mutation 
operation can be used to adjust the resource capacity 
allocated to VMs (the details of GA will be presented in 
Section IV). 

Server consolidation components normally function 
below the Cloud middleware. Research work has also been 
carried out to develop workload management mechanisms 
sitting on top of the Cloud middleware to improve 
performance. Various workload management methods, 
including the control theory [6], SLA-Driven models [8][9], 
queuing models [10], Lease Scheduling [12] and so on, have 
been proposed. Many workload managers adopt a two-level 
management mechanism. The most notable example is 
Eucalyptus [15][42]. In Eucalyptus, a Cloud Controller acts 
as a top-level manager responsible for managing multiple 
clusters in the Cloud while a Cluster Controller sits in each 
cluster, managing the nodes in the local cluster. There are 
also other examples of two-level management mechanism in 
literature. For example, Maestro-VC [8] adopts a two-level 
scheduling mechanism based on Virtual Clusters, including a 
Virtual Cluster scheduler running on the front-end node and 
a local scheduler inside a virtual cluster, to improve the 
resource utilization. In [9], a Client Manager is a top level of 
manager and manages the client’s task execution, while the 
semantic scheduler works as a lower-level manager and 
allocates physical resources to each task. The work in [30] 
organizes the VMs into a multilayer rings. Each layer has a 
leader to balance the workload among the nodes belonging to 
this layer.  

Workload management components mainly focus on 
designing request scheduling strategies given the Cloud 
settings. Server consolidation proposed in our work 
compliments these workload management components. It 
can work underneath the Cloud middleware and be 
conducted transparently from external clients to further 
improve system-oriented performance (such as resource 
utilization) while maintaining the client-oriented 
performance (such as QoS).  

Our consolidation scheme requires that the virtualization 
system is able to specify resource utilization consumed by 
each VM. The requirement can be realized by the advance of 
the virtualization technology. In a typical virtualized system, 
the resources such as processors, memory and network 
interfaces can be assigned to and reclaimed from a VM 
according to demands [1]. Moreover, the VM technology 
allows the system to specify the CPU percentage and 
memory size utilized by each VM. For example, Xen [2] and 
VMware [3] provide a ballooning driver to dynamically 
adjust host memory allocation among VMs, and allow the 
VMM (Virtual Machine Monitor) to dynamically adjust 
VCPU (Virtual CPU) capability of a VM. Although it is 

more challenging to accurately specify utilization of other 
resources, such as I/O, there has been active research work in 
this area [39].  

The consolidation scheme presented in this paper needs 
to know the performance model of running requests in a VM, 
i.e., being able to predict the response time of the requests 
running on a VM given the VM’s resource capability. 
Various methodologies have been proposed to address this 
issue [38][39]. For instance, the work in [39] used layered 
queuing network to model the response time of a request in a 
multi-tiered web service hosted in VM environments, while 
hardware resources (e.g., CPU and disk) are modeled as 
processor sharing (PS) queues. The work in [38] modeled the 
contention of visible resources (e.g., CPU, memory, I/O) and 
invisible resources (e.g., shared cache, shared memory 
bandwidth) as well as the overheads of the VM hypervisor 
implementation. Our work utilizes the methods in [39] to 
obtain the performance model required by our consolidation 
scheme.    

Our consolidation scheme also needs to know the time 
cost of VM operations, such as VM deletion, creation, 
migration and resource capacity adjustment. Various studies 
in literature [34][39] have presented the methods to measure 
the time spent in executing these VM operations, and also 
established the relation between the cost and other VM 
attributes. For example, the VM migration cost is 
investigated in [34]. The work first experimentally measures 
the cost and duration of a single VM migration, and then 
develops a model to estimate the costs of a set of correlated 
VM migrations in a Virtual Cluster. The work also 
established the relation between migration cost of a VM and 
it memory size. The work in [39] measured the costs of 
conducting VM deletion, creation, resource capacity 
adjustments. Our work makes use of these methods to obtain 
the execution times of the VM operations involved in 
reconfiguration. 

III. SYSTEM HIERARCHY AND WORKLOAD MODELS 

The consolidation scheme proposed in this paper assumes 
that the Cloud adopts the architecture illustrated in Fig.1. 
Multiple VCs, denoted as VC1, VC2, …, and VCM, coexist in 
the Cloud system. The Cloud system consists of a cluster of 
N physical nodes, n1, n2, …nN. Creating a VM needs to 
consume R types of resources, r1, r2, …rR, in a node. Each 
VC hosts a particular type of service, service certain types of 
incoming request. The Cloud system aims to maintain a 
steady level of Quality of Service (QoS) delivered by every 
VC. The desired QoS is expressed as the total service rate of 
all VMs in a VC cannot be less than a certain figure. There 
are two levels of managers in the Cloud system: Local 
Manager (LM) and Global Manager (GM). Every VC has its 
LM, while there is only one GM in the Cloud. The GM 
dispatches the requests, as they arrive, to the LMs of the 
corresponding VCs. A VC’s LM further dispatches the 
requests, as they are received, to individual VMs in the VC, 
where the requests are placed in the VM’s local waiting 
queue and executed on the First-Come-First-Served (FCFS) 
basis. This two-level workload management framework is 



also often adopted in literature [8][9][12][30][42], in which 
the most notable example is Eucalyptus [15][42].  

Each node has at most one VM of each VC. The reason 
for limiting this is because the consolidation framework in 
this paper can adjust the resource capacity allocated to VMs. 
Therefore, if there is the need to map two VMs from the 
same VC to the same physical node, it is very likely that we 
can increase the resource allocation of one VM (according to 
the performance model) so that the upsized VM has the same 
processing capability as the total processing capability of 
these two VMs. VMij denotes VCj’s VM in node ni. Assume 
the capacity of resource ri allocated to a VM in VCj have to 
be in the range of [mincij, maxcij]. mincij is the minimal 
requirement for resource rj when generating a VM for VCi, 
and maxcij is the capacity beyond which the VM will not 
gain further performance improvement. For example, 
minimal memory requirement for generating a VM in VCj is 
50 Megabytes, while the VM will not benefit further by 
allocating more than 1 Gigabytes of memory. We assume 
that the physical nodes are homogeneous. mincij and maxcij is 
normalized as a percentage of the total resource capacity in a 
physical node. It is straightforward to extend our work to a 
heterogeneous platform.  

A VC’s LM can use the existing VM management 
strategy in literature to create VMs in physical nodes [30], 
and use existing request scheduling strategy to determine a 
suitable VM for running an incoming request [30]. The 
server consolidation scheme is deployed in GM and works 
with the VM management strategy and the request 
scheduling strategy in LMs to achieve optimized 
performance for the Cloud. The server consolidation 
procedure will be invoked when necessary (the invocation 
timing will be discussed in Section IV). After the server 
consolidation is completed, the consolidation procedure will 
inform LMs of the new system state, i.e., VM-to-node 
mapping and resource capacities allocated to each VM. LMs 
can then adjust the dispatching of requests to VMs 
accordingly. 

 
Figure 1.  The hierarchy of the Cloud System 

IV. THE GENETIC ALGORITHM 

In this work, a VM may consume multiple types of 
resources. For example, the VC serving CPU-intensive 
requests will mainly consume CPU cycles while the VC 
processing I/O-intensive requests needs to consume a large 

amount of I/O capacity. It is a NP-hard problem to optimize 
the consumptions of multiple types of resources. A Genetic 
Algorithm (GA) has been designed and implemented in this 
work to compute the optimized system state, i.e., VM-to-
node mapping and the resource capacity allocated to each 
VM, so as to optimize resource consumptions in the Cloud. 
The GA can work with the existing request schedulers in 
literature [30], which is deployed in the GM and LMs.  

The increase in the arrival rates of the incoming requests 
may cause the current VMs in the VC cannot satisfy the 
desired QoS level, and therefore a new VM needs to be 
created with desired resource capacity.  

The invocation of the GA will be triggered if the 
following situations occur, which are termed as resource 
fragmentation:  

1) There are spare resource capabilities in active nodes. 
An active node is a node in which the VMs are serving 
requests. Denoting the spare capability of resource rj in node 
ni as scij;  

2) The spare resource capabilities in every node are less 
than the capacity requirements of the new VM in VCk, 
denoted as ckj, i.e., 

For i (1≤i≤N), there exists such j (1≤j≤R), so that  
scij < ckj 

3) The total spare resource capabilities across all used 
physical nodes are greater than the capacities required by the 
new VM, i.e.,  

For j (1≤j≤R), the following inequality holds, where  
is no less than one and used to control the level of spare 
capability in the Cloud that can trigger the GA. The bigger  
is, less frequently the GA will be invoked and to greater 
extent the resources will be consolidated. The value of  is 
determined empirically.  

kj

N

i ij csc  


1
 

The motivation of invoking the GA is to converge the 
spare capacity to as few number of nodes as possible so that 
we can create the new VM in one of the active nodes, and 
therefore avoid waking up an inactive node.  

If the arrival rates of requests decrease, the resource 
capacity allocated to VMs will become excessive. The 
deployed request scheduler will re-distribute the requests 
among VMs. If this redistribution causes a VM becomes idle, 
the VM may be deleted. If all VMs in a node are deleted, the 
node can be switched off or enter the sleep mode to save 
energy. So the decrease in the requests’ arrival rates will not 
trigger the invocation of the GA. But note the deletion of 
VMs will generate spare resource capacity in nodes.  

Typically, a GA needs to encode the evolving solutions, 
and then perform the crossover and the mutation operation 
on the encoded solutions. Moreover, a fitness function needs 
to be defined to guide the evolution direction of the solutions. 
In this work, the solution that the GA strives to optimize is 
the system state, which consists of two aspects: the VM-to-
node mapping and the resource capacity allocated to each 
VM. In this work, a system state is represented using a three 
dimensional array, S. An element S[i, j, k] in the array is the 
percentage of total capacity of resource rk in node ni that is 
allocated to VMij of VCj. The rest of this subsection discusses 



the crossover and mutation operation as well as the fitness 
function developed in this work. 

A. The Crossover Operation 

Given a generation of solutions, represented in the S 
array, the crossover and mutation operations will be 
performed in the GA to generate the next generation of 
solution. The crossover operation takes as input two 
solutions, called parent solutions, in the current generation of 
solution set and generates two children solutions using the 
following method.  

Assume there are M VCs in the Cloud, VC1, VC2, ..., VCM. 
The resource capacity allocated to VCj is recorded in S[*, j, 
*], which is a two dimensional array. Assume that the 
resource capacity allocated to VCj in two parent solutions are 
S1[*, j, *] and S2[*, j, *] (1≤j≤M), respectively. In the 
crossover operation, a VC index p is randomly selected from 
the range of 1 to M, and then both of the two parent solutions 
are partitioned into two portions at the position of the index p. 
Subsequently, the crossover operation merges the head (and 
tail) portion of parent solution 1 with the tail (and head) 
portion of parent solution 2, and generates child solution 1 
(and 2).  

The validity check will be performed in both children 
solutions to ensure that the total resource capacity allocated 
to the VMs in a node is not more than the physical resource 
capacity of that node. This constraint can be expressed as 
follows, where R is the number of resource types.  

For i, k: 1≤i≤N, 1≤k≤R, 1],,[
1

 

M

j
kjiS  (1) 

If there exists q (1≤q≤N) such that Eq.1 does not hold, then 
the crossover operation is not performed for node nq.  

The crossover operation is designed to consolidate VMs 
into a smaller number of nodes without adjusting the 
resource capacities allocated to VMs. 

B. The Mutation Operation 

After the crossover operation, the mutation operation is 
then performed over the generated children solutions, aiming 
to adjust the resource capacity allocated to the VMs to 
further converge the spare capabilities to a smaller number of 
nodes. In the mutation operation, the quantity of an element 
in the matrix S[i, j, k] will be adjusted. So the GA needs to 
determine which element is adjusted (i.e., determining index 
i, j, k). The procedure is as follows. 

i) Determining index i, j, k 
A VC is first randomly selected (j is determined). Then a 

node is selected (i is determined) with the probability 
proportional to the capacity of the major resource type 
consumed by the selected VC in that node (for the VC which 
serves CPU-intensive requests, the major resource type is 
CPU). After that, a resource type is selected (k is determined) 
with the major resource type having a higher probability of 
being selected than other resource types. The ratio 
probability of selecting the major resource type to other 
resource types are set to be R and 1, respectively (R is the 
number of resource types in the system). Assume VCi is 
selected, VCi consumes three types of resources and resource 
r1 is the major resource type. Then the relative selection 

probability for resource r1, r2, and r3 is 3:1:1. The reason of 
giving a higher probability to select the major resource type 
is because the major resource type has greater impact on the 
VM’s processing capability.  

ii) Adjusting resource capacities 
After determining i, j and k, S[i, j, k] is increased by a 

quantity randomly chosen from [0, min(maxcjk−S[i, j, k], scik)] 
(scik is the spare capability of resource rk in node ni). After 
the adjustment, the GA calculates the increased service rate 
in node ni, denoted as .  is the service rate that can be 
reduced in another VM, say VMqj (qi) and the desired QoS 
for VCj can still be satisfied. If there is a VM whose current 
service rate is less than , then the resources allocated to 
that VM can be reclaimed. If such a VM does not exist, the 
capacity of resource rk allocated to VMkj is reduced by a 
quantity calculated from the performance model. VMqj is not 
randomly selected, but with the probability proportional to 
1/S[q, j, k]. The reason for this is that the node with less 
capacity being allocated to its VM will have higher 
probability of being selected.  

C. The Fitness Function 

The fitness function in a GA is used to evaluate the 
quality of the solutions. In this work, the fitness function is 
constructed as follows. 

Assume the number of active nodes is N and the spare 
capacity of a type of resource rk in node ni is scik. Resource 
fragmentation can be reduced when the spare capacities 
converge to a smaller number of nodes. Therefore, the 
standard deviation of the variables, scik (1iN), can reflect 
the convergence level rk’s spare capability across N nodes. 
The bigger the standard deviation is, the higher convergence 
level.  

Since multiple types of resources are taken into account 
in this work, it is desired that the spare capacity of different 
types of resources converges to the same node. For example, 
we prefer the case where a node has balanced spare CPU 
cycles and memory, rather than the case where there is a 
large amount of spare memory but fully utilized CPU in one 
node, while a large amount of spare CPU cycles but fully 
utilized memory in another. The standard deviation of the 
variables, scik (1kR), can reflect to what extent there are 
balanced spare capacities across different types of resource 
in node ni. The smaller the standard deviation is, the more 
balanced capabilities. The standard deviation of the variables, 
scik (1kR), in node ni can be calculated using Eq.2, where 

s
isc is the average of scik (1kR) and can be calculated in 

Eq.3. 

R

scsc
R
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The above two factors are combined together to construct 

the fitness function for the GA, which is shown in Eq.4, 

where a
ksc is the average of scik (1iN) for resource rk over 



N active nodes and can be calculated in Eq.5. In Eq.4, 

),( s
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After a population of solutions is generated, each solution 
is evaluated by calculating the fitness function. The solution 
with higher value of the fitness function has higher 
probability to be selected to generate the next generation of 
solutions. The GA is stopped after it runs for a predefined 
time duration or the solutions have stabilized (i.e., does not 
improve over a certain number of generations). 

V. RECONFIGURATING VIRTUAL CLUSTERS 

Assume S and S′ are the matrixes representing the system 
states before and after running the GA, respectively. The 
Cloud system needs to reconfigure the Virtual Clusters by 
transiting the system state from S to S′. During the transition, 
various VM operations will be performed, such as VM 
creation, VM deletion, VM migration  as well as changing a 
VM’s resource capacities. This section analyzes the 
transition time and presents a cost model for the Cloud 
reconfiguration. A reconfiguration algorithm is then 
presented to determine the reconfiguration plan that has low 
transition time, therefore imposes the low overhead. 

A. Categorizing Changes in System States 

The differences between S[i, j, k] and S′[i, j, k] can be 
categorized into the following cases, which will be handled 
in different ways. 

Case 1: Both S[i, j, *] and S′[i, j, *] are non-zero, but 
have different values: this means that the resource capacity 
allocated to VMij needs to be adjusted. It can be further 
divided into two  subcases: 1.1) S[i, j, *] is greater than S′[i, 
j, *], which means that VMij needs to reduce its resource 
capacity, and 1.2) S′[i, j, *] is greater than S[i, j, *], which 
means that VMij needs to increase its resource capacity; 

Case 2: S[i, j, *]  is non-zero, while S′[i, j, *] is zero: this 
means that node ni is allocated to host VCj (i.e., VMij) before 
running the GA, but is not allocated to host VCj after. In this 
case, there are two options to transit the current system state 
to the new one: 2.1) Deleting VMij, and 2.2) Migrating VMij 
to another node which is allocated to run VCj after running 
the GA; 

Case 3: S[i, j, *]  is zero, while S′[i, j, *] is non-zero: this 
case is opposite to case 2). In this case, the system can either 
3.1) Create VMij, or 3.2) accept the migration of VCj’s VM 
from another node. 

B. Transiting System States 

1) VM Operations during the Transition 
DL(VMij), CR(VMij), CH(VMij) denote the time spent in 

completing deletion, creation, and capacity adjustment 
operation for VMij, respectively. MG(VMij, nk) denotes the 
time needed to migrate VMij from node ni to nk (i≠k). Note 
one difference between VM deletion and VM migration. A 
VM can be deleted only after the existing requests scheduled 
to run on the VM have been completed, while the VM can 
continue the service during live migration. The average time 
needed for VMij to complete the existing requests, denoted as 
RR(VMij), can be calculated as follows. 

Assume that the number of requests in VMij is mij, 
including the request running in the VM and the requests 
waiting in the VM’s local queue. mij can be obtained by 
monitoring the status of the queue in the VM. 

Assume the average execution time of a request is e, and 
the request which is running in the VM has been running for 
the duration of e0. Then RR(VMij) can be calculated in Eq.7.  

RR(VMij)=(mij−1)×e + (e−e0)   (7) 
These four types of VM operations can be divided into 

two broad categories: 1) resource releasing operation, 
including deleting a VM, migrating a VM to another node, 
and reducing the resource capacity allocated to a VM; 2) 
resource allocation operation, including creating a VM, 
accepting the migration of a VM from another node, and 
increasing the resource capacity allocated to a VM. When 
both categories of VM operations need to be performed 
when reconfiguring a node, careful considerations have to be 
given to the execution order of the VM operations, because 
the node may not have enough resource capacity so that 
resource releasing operations have to be performed first 
before resource allocation operations can be conducted. 
Therefore, there may be execution dependencies among VM 
operations. Below, we first discuss the condition under 
which there are no execution dependencies among VM 
operations when reconfiguring a node, and then analyze how 
to perform VM operations when the condition is or is not 
satisfied. We also analyze the time spent in completing these 
operations. 

2) Performing VM Operations without Dependency 
If total resource capacities of the VMs in a node do not 

exceed the total physical resource capacity of the node at any 
time point during the transition, the VM operations in the 
same node do not have dependency. This condition can be 
formalized in Eq.8.  

For k: 1≤k≤R, 1]),,['],,,[max(
1
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We now analyze the time spent in completing the VM 
operations in a node when Eq.8 holds. The existence of VM 
migrations will complicate the analysis. Therefore, we first 
consider the case where there is no VM migration in the 
reconfiguration of the node, and then extend the analysis to 
incorporate migration operations.  



i) time for reconfiguring a node without VM migrations 
The transition time for reconfiguring node ni, denoted as 

TR(ni), can be calculated using Eq.9, where Sdl, Scr and Sch 
denote the set of VMs in node ni that are deleted, created and 
adjust their resource allocations during the reconfiguration, 
respectively; The second term in the equation (i.e. the term 
within the min operator) reflects the reality that the activities 
of creating a new VM and adjusting a VM’s resource 
capacity can be conducted at the same time as executing the 
existing requests in the VMs to be deleted.  
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ii) time for reconfiguring a node with VM migrations 
If the reconfiguration of node ni involves VM migrations, 

including ni migrating a VM to another node and ni accepting 
a VM migrated from another node, we introduce a concept of 
mapping node of ni, which is further divided into mapping 
destination node, which is the node that the VM in ni 
migrates to, and mapping source node, which is the node that 
migrates a VM to ni. When handling VM migrations in ni, 
ni’s mapping node will be first identified as follows. If the 
following two conditions are satisfied, node nq (i≠q) can be a 
mapping destination node of node ni, and node ni is called 
nq’s mapping source node.  
 k, 1≤k≤R, S[i, j, k] > 0, but for k, 1≤k≤R, S[i, j, k]=0 
 For k, 1≤k≤R, S[q, j, k]=0, but k, 1≤k≤R, S[q, j, k] > 0 

Note that a node can have multiple mapping nodes. 
Which mapping node is finally selected by the 
reconfiguration procedure will have impact on the transition 
time.  

If ni accepts a VM migration from nq during the 
reconfiguration of ni, then the time for reconfiguring ni can 
be calculated from Eq.10, where Smg denotes the set of VMs 
in node ni that are migrated from another node.  
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(10) 
If ni migrates a VM to another node, the reconfiguration 

procedure will check whether Eq.8 holds for ni’s mapping 
destination node. If Eq.8 holds, then the VM can be migrated 
to that node at any time point. Otherwise, the VM migration 
will be handled in a different way, which is presented in 
Section V.B.3. 

When Eq.8 holds for ni, the reconfiguration procedure of 
ni is outlined in Algorithm 1. Step 5-7 of the algorithm deal 
with VM migrations, which will be discussed in detail in 
Section V.B.3. Note that Case 3 is not handled in this 
algorithm. The reason for this will be explained when 
Algorithm 4 is introduced.  
Algorithm 1. Reconfiguration_without_dependency(ni);  
1.    for each VMij in Case 1 do 
2.         Adjust the resource capacity of VMij; 
3.    for each VMij in Case 2.1 do 
4.         Delete VMij; 

5.    for each VMij in Case 2.2 do 
6.     Find a mapping destination node, nk, for the VM, 

denoted as VMij; 
7.         Call migration(VMij, nk); 
8.    return; 

3) Performing VM Operations with Dependency 
If Eq.8 does not hold, there must be at least one VM in 

the node which releases resources during the reconfiguration. 
Otherwise, if all VMs in the node only acquire resources and 
Eq.8 does not hold, the resource capacity allocated to the 
VMs in the node will exceed the node’s physical resource 
capacity after the reconfiguration. 

A VM can release resources by the following three 
possible operations during the reconfiguration: 

 Reducing the resource capacity allocated to the VM, 
 Deleting the VM, 
 Migrating the VM to another node. 
If there are multiple VMs releasing their resources in 

node ni, the reconfiguration procedure will release resources 
in the above precedence, until Eq.5.3 satisfies, where S[i,j,k] 
is now the current resource capacity allocated to the VMs in 
the node after the resources have been released so far. Once 
Eq.8 holds, it indicates the remaining reconfiguration process 
can be conducted using the way discussed in Subsection 
V.B.2. If multiple VMs perform the same type of resource 
releasing operations, a VM with the greatest amount of 
capacity to be released will be selected.  

The end of Subsection V.B.2 mentioned the situation 
where ni tries to migrate a VM to a mapping node, but Eq.8 
may or may not hold for that node. The procedure of 
migrating VMij to node nk is outlined in Algorithm 2, which 
is called in Algorithm 1 (Step 7). The algorithm will first 
check whether Eq.8 holds for the mapping node (Step 1). If it 
holds, the VM migrates to the mapping node straightway 
(Step 21). If it does not hold, the VM migration operation 
does have dependency and some resource releasing 
operations have to be completed in the listed precedence 
(Step 2-19) until Eq. 8 holds. Under this circumstance, the 
algorithm becomes an iterative procedure (Step 16) and 
resource releasing operations will be performed in a chain of 
nodes.  
Algorithm 2. migration(VMij, nk) //migrating VMij to nk 
1. if Eq.5.3 does not hold for nk then //with dependency 
2. for each VMkj in Case 1.1 do 
3. reduce VMkj’s  resource allocations and update 

S[k, j, *] accordingly; 
4. if Eq.5.3 holds then  
5.     migrate VMij to nk and update S[k, j, *] 

and S[i, j, *] accordingly; 
6.         return; 
7. end for 
8. for each VMkj in Case 2.1 do 
9. delete VMkj and update S[k, j, *] accordingly; 
10. if Eq.5.3 holds then  
11. Migrate VMij to nk and update S[k, j, *] 

and S[i, j, *] accordingly; 
12.        return; 
13. end for 



14. for each VMkj in Case 2.2 do 
15. Obtain a mapping node, nq; 
16. Call migration(VMkj, nq); 
17. If Eq.5.3 holds then 
18. Migrate VMij to nk and update S[k, j, *] and S[i, 

j, *] accordingly; 
19. return; 
20. else //without dependency 
21.         migrate VMij to nk and update S[k, j, *] and S[i, 

j, *] accordingly; 
22.         return; 

Algorithm 3 is used to reconfigure node ni. In the 
algorithm, if Eq.5.3 does not hold for ni, the resources will be 
released until Eq.5.3 satisfies. Then Algorithm 1 is called to 
reconfigure the node (Step 16). 
Algorithm 3. Reconfiguration(ni)  
1. if Eq.5.3 does not hold  then  //with dependency 
2. for each VMij in Case 1.1 do 
3.     reduce VMij’s  resource allocations and update 

S[i, j, *] accordingly; 
4.     if Eq.5.3 holds then break; 
5. end for 
6. for each VMij in Case 2.1 do 
7.     delete VMij and update S[i, j, *] accordingly; 
8.     if Eq.5.3 holds then break; 
9. end for 
10. for each VMij in Case 2.2 do 
11.     Obtaining the mapping node, nk; 
12.     Call migration(VMij, nk); 
13.     if Eq.5.3 holds then break; 
14. End for     
15. End if 
16. call Reconfiguration_without_dependency(ni);  
17. return;  

Algorithm 4 is used to construct the reconfiguration plan 
for the Cloud. Note that the VMs in Case 3 are handled in 
this algorithm (Step 7-9) by creating the VMs. This is 
because when migrating VMij from node ni to the mapping 
node nk, Case 3 has been handled for VMkj in node nk (Case 
3.1). Therefore, when Algorithm 4 completes Step 2-6, the 
VMs that are left unattended are those which were not used 
as the mapping destination nodes for VM migrations. The 
only option to deal with those VMs now is to create them.  
Algorithm 4. Reconfiguring the Cloud 
Input: S[i, j, k]  

1.  = the set of all nodes in the Cloud; 
2. while ( ≠ ) 
3.     Obtain node ni (1≤ i ≤N) from ; 
4.     Call Reconfiguration (ni); 
5.      =   ni; 
6. end while 
7. for each node, ni do,  
8.      for each VMij in Case 3 that has not been  

       handled do 
9.           Create VMij;     

C. Calculating Transition Time 

A DAG graph can be constructed based on the 
dependencies between the VM operations as well as between 
source nodes and mapping destination nodes. As can be seen 
in Algorithm 3, if Eq.8 does not hold for ni, the VM 
operations have to be performed in a particular order, which 
causes the dependency between VM operations. Also in 
Algorithm 2, if migration(VMkj, nq) is further invoked during 
the execution of migration(VMij, nk), then there is the 
dependency between node nq and nk. This is because nk 
depends on nq releasing resources before a VM in nk can 
migrate to nq.  

In this paper, a DAG graph is used to model the 
dependency between nodes. In the DAG graph, a node 
represents a physical node, and an arc from node ni to nk 
represents a VM migrating from nk to ni. A case study is 
illustrated in Fig.2. Assume there are four VCs (VCj, 1≤j≤4) 
in the Cloud. Each node has at most four VMs, each 
belonging to a different VC. Assume n1 has all four VMs and 
n2 has VM21 (the VM belonging to VC2) and VM24 (the VM 
belonging to VC4) before running the GA. After running the 
GA, n1 has VM11 and VM14 while n2 has VM22 and VM23. The 
resource capacity of VM11 after running the GA is less than 
that before running the GA, while the resource capacity of 
VM14 after running the GA is greater than that before. The 
VM distributions in node n1 and n2 before and after running 
the GA can be encoded as in Table I, where 1- and 1+ stand 
for the reduced and increased capacity, respectively, 
compared with before running the GA.   

TABLE I.  VM MAPPING BEFORE AND AFTER RUNNING THE GA  

 n1 n2 
Before  1 1 1 1 1 0 0 1 
After  1- 0 0 1+ 0 1 1 0 

The case study further assumes Eq.8 does not hold for n1.. 
Therefore n1 has to release the resources capacity of VM11, 
VM12 and VM13 before VM14 can increase its resource 
capacity. Assume in the current reconfiguration plan, VM12 is 
to be deleted and VM13 to be migrated to n2 (assume n2 is the 
mapping destination node). Assume Eq.8 does not hold for 
n2 either, and VM21 has to migrate to n3 and VM24 migrate to 
n4 before VM22 and VM23 can be created in n2. 

 
Figure 2.  A case study of node dependency during the reconfiguration 

Based on the above assumptions, VM operations in n1 
and n2 as well as their dependencies are as follows. 
According to the precedence of releasing resources, the 



sequence of the VM operations in n1 is: 1) VM11 reduces its 
resource capacity; 2) VM12 is deleted; 3) VM13 is migrated to 
n2. Operation 1) can occur anytime. Operation 2) can occur 
only after the existing requests in the VM have been 
completed. Operation 3) depends on VM21 and VM24 
releasing resources, since the creation of VM23 can only be 
performed after VM21 and VM24 have been migrated. The 
migrations of VM21 and VM24 further depend on resource 
releasing operations in n3 and n4, respectively. The chain of 
dependencies continues until Eq.8 holds for n5, which means 
that the VMs in n3 and n4 can migrates to n5 freely and do not 
depend on other VM operations in n5. The dependencies 
between the VM operations in different nodes can also be 
modeled as a DAG graph. The dependencies between VM 
operations in n1 and n2 can be illustrated in Fig.3. 

 
Figure 3.  The dependencies between the VM operations in n1 and n2  

If the VM operations in all nodes form a single DAG, 
calculating the transition time of the reconfiguration plan for 
the Cloud can be transformed to compute the critical path in 
the DAG. The VM operations involved in reconfiguring the 
Cloud may also form several disjoint DAG graphs. In this 
case, the critical paths of all these DAG graphs need to be 
computed. The time of the longest critical path is the 
transition time of the reconfiguration plan for the whole 
Cloud since the VM operations in different DAG graphs can 
be performed in parallel.  

There can be different reconfiguration plans and different 
plans may have different transition times. The uncertainty 
comes from two aspects: 1) which of the two VM operations, 
deletion or migration, should be performed for a VM in Case 
2, and 2) if a VM is to be migrated and it has multiple 
mapping destination nodes, which node should be selected to 
migrate the VM to. More specifically, before invoking 
Algorithm 3, we need to decide for all VMs in Case 2, which 
VMs should be classified into Case 2.1 (relating to Step 6 of 
Algorithm 3) and Case 2.2 (relating to Step 10). Moreover, 
in Step 11, the system needs to determine which mapping 
node should be selected. The objective is to obtain a 
reconfiguration plan which has the low transition cost. We 
now present the strategies to find such a plan. 

An approach to obtaining the optimal reconfiguration 
plan is to enumerate all possibilities for each VM falling into 
Case 2, i.e., to calculate the transition cost for both Case 2.1 
and Case 2.2. If there are k VMs which fall into Case 2, then 
there are 2k combinations of delete/migration choices and the 
transition cost for each combination needs to be calculated. 

After determining to migrate a VM, another uncertainty is 
that the VM may have multiple mapping nodes. Suppose 
VMij has pj mapping nodes. We need to enumerate all 
possibilities and calculate the transition cost pj times for 
migrating a VM to each of its pj mapping nodes. Each 
possibility corresponds to a DAG. Therefore, the 
enumeration approach will examine all these different DAGs. 
The DAG with the shortest critical path represents the 
optimal reconfiguration plan.  

Apparently, the time complexity of the enumeration 
approach is very high. We developed a heuristic approach to 
obtain a sub-optimal reconfiguration plan quickly. The 
strategies used in the heuristic approach are as follows.  

a) determining deletion or migration:  
D(VMij) denotes the time the system has to wait for 

completing the deletion of VMij. As discussed in subsection 
V.B.1, D(VMij)=DL(VMij)+RR(VMij). If the following two 
conditions are satisfied, VMij is migrated. Otherwise, VMij is 
deleted.  

i) VMij has at least one mapping node such that migrating 
VMij to that node will not trigger other VM deletion or 
migration operations.  

ii) For all mapping nodes satisfying the first condition, 
there exists such a node, nk, that D(VMij) > MR(VMij, nk) 

The two conditions try to compare the time involved in 
deleting and migrating a VM. Before invoking Algorithm 3 
in subsection V.B.3, these two conditions will be applied to 
determine whether a VM in Case 2 should be handled as 
Case 2.1 (Step 6) or Case 2.2 (Step 10)  

b) determining the mapping node 
If a VM is to be migrated and there are multiple mapping 

destination nodes which satisfy condition ii), then Step 11 of 
Algorithm 3 will select the node which offers the shortest 
migration time MR(VMij, nk).  

VI. EXPERIMENTAL STUDIES 

In this section, we first present the results of the 
simulation experiments to show the effectiveness of the GA 
and the Cloud reconfiguration method presented in this paper, 
and then we present the experimental results of deploying the 
implementation of CFMV on a real 16-node cluster. 

A. Simulation Experiments 

A discrete event simulator has been developed to 
evaluate 1) the performance of the developed GA in 
consolidating resources, 2) the time spent by the GA in 
obtaining the optimized system state, and 3) the transition 
time of the reconfiguration plan obtained by the enumeration 
approach and the heuristic approach.  

In the experiments, three types of resources are simulated: 
CPU, memory and I/O, and there are three types of VMs: 
CPU-intensive, Memory-intensive, and I/O-intensive VMs. 
A VC consists of the same type of VMs. For the CPU-
intensive VMs, the required CPU utilisation is selected from 
the range of [30%, 60%], while their memory and I/O 
utilisation are selected from the range of [1%, 15%]. The 
selection range represents [mincij, maxcij] discussed in 
Section II. Similarly, for the memory-intensive VMs, the 



allocated memory is selected from the range of [30%, 60%], 
while their CPU and I/O utilisation are selected from the 
range of [1%, 15%]. For the I/O-intensive VMs, the required 
I/O utilisation is selected from [30%, 60%], while their CPU 
and the memory utilisation are from the range of [1%, 15%]. 

N is the number of physical nodes in the cluster, M is the 
number of virtual clusters in the Cloud, f is the percentage of 
the spare capability in a node.  

The initial VM-to-node mapping is generated in the 
following manner.  

i) Set the number of VMs in a node is b (b is set to be 3 
in the simulation experiments, unless otherwise stated); 

ii) Use the resource selection ranges above to generate 
b*N/3  computation-intensive VMs, b*N/3 for memory-
intensive VMs, and (b*N – 2*b*N/3) I/O-intensive VMs;  

iii) Calculate the average size of the VCs (i.e., the 
number of VMs in a VC) as b*N/M; 

iv) Use the first fit algorithm [34] to generate the initial 
VM-to-node mapping, i.e, for VMij, search the nodes starting 
from n1, if the node has enough capacity (after deducting the 
f spare capability) to accommodate VMij, then map VMij to 
the node.  

GA takes as input the initial system state generated as 
above and calculates an optimized state.  

Other experimental settings are detailed in individual 
experiments.  

Representative times in the literature [34][39] were 
assumed in our simulation experiments. The average time for 
deleting and creating a VM is 20 and 14 seconds, 
respectively. The migration time depends on the size of VM 
image and the number of active VMs in the mapping nodes 
[34][39]. The migration time in our experiments is in the 
range of 10 to 32 seconds. 

1) Performance of the GA 

a) Impact of the Number of Physical Nodes 

Fig.4 shows the number of nodes saved as the GA 
progresses. In the experiments in Fig.4, the number of nodes 
with active VMs varies from 50 to 200. The experiments aim 
to investigate the time that the GA needs to find an 
optimized system state, and also investigate how many nodes 
the GA can save by converging spare resource capacities. 
The free capacity of each type of resource in the nodes is 
selected randomly from the range [10%, 30%] with the 
average of 20%. The number of the VMs in a physical node 
is 3. The number of the VCs in the system is 30. As can be 
observed from Fig.4, the percentage of nodes saved increases 
as the GA runs for longer, as to be expected. Further 
observations show that under all three cases, the number of 
nodes saved increases sharply after the GA starts running. It 
suggests the GA implemented in this paper is very effective 
in evolving optimized states. When the GA runs for longer, 
the increasing trend tides off. This is because that the VM-to-
node mapping and resource allocations calculated by the GA 
approaches the optimal solutions. Moreover, by observing 
the difference of the curve trends under different number of 
nodes, it can be seen that as the number of nodes increases, it 
takes the GA longer to approach the optimized state. For 
example, when the number of nodes is 50, the optimized 

solution is almost reached after the GA runs for about 13 
seconds, while it takes the GA about 53 seconds to reach the 
optimized solution when the number of nodes is 200.  

 

 
Figure 4.  The quantity of nodes saved as the GA progresses 
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Figure 5.  Resource consolidation by the GA with only mutation 
operations; the experimental settings are the same as in Fig.4.  
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Figure 6.  The comparison between the GA and entropy; the average free 
resource capacity is 20% 

In the GA, the crossover operation is used to consolidate 
resources without adjusting the resource capacities allocated 
to VMs, while the mutation operation is performed to further 
converge the spare capabilities to a smaller number of nodes. 
In order to give insights into the effects of these two 
operations, we conducted the experiments in which the 
resources were consolidated by the GA performing only 
mutation operations. In these experiments, we found that 
although the GA only performed mutation operations, it 



could still find optimized system states. However, the GA 
performing only mutation operations had to spend much 
longer time to reach the optimized states. Fig.5 compares the 
time spent by the GA performing both crossover and 
mutation operations with the time by the GA only 
performing mutations. The experimental settings are the 
same as in Fig.4. As can be seen from this figure, under all 
experimental settings, the time spent by the GA performing 
only mutations is significantly longer. These results can be 
explained as follows. The crossover operation essentially 
tries to find a better way to pack the VMs into physical nodes. 
Without the crossover operation, although mutation 
operation can also eventually achieve the same effect by 
adjusting resource capacities of individual VMs, the process 
would be much longer. This is because the mutation 
operation is performed on a single VM each time, while the 
crossover operation is performed on a set of VMs.  

Fig.6 compares the GA developed in this work with the 
Entropy consolidation scheme presented in [34]. It can be 
seen from this figure that the GA clearly outperforms 
Entropy in all cases. This is because the VMs’ resource 
allocations in Entropy remain unchanged, while the GA 
developed in this paper employs the mutation operation to 
adjust the VMs’ resource allocations. This flexibility makes 
the VMs “moldable” and therefore is able to squeeze VMs 
more tightly into fewer nodes. It can also been observed 
from this figure that there is no clear increasing or decreasing 
trend in terms of the proportion of nodes saved as the 
number nodes increases in our consolidation scheme. This 
suggests that the number of nodes does not have much 
impact on the GA’s capability of saving nodes. 

 
Figure 7.  The impact of free resource capacity in nodes on the 
performance of GA; the initial number of nodes used are 200; the number 
of the Virtual Clusters in the system is 30;  

b) Impact of Free Capacity 

Fig.7 demonstrates how the GA performs under different 
level of free capacity in the physical nodes. In the 
experiments presented in Fig.7, the number of the VCs in the 
system is 30 while the free capacity of the resources in each 
node varies from 10% to 20%. It can be observed from this 
figure that the number of nodes used to host the VCs 
decreases as the level of free capacity increases. This result 
demonstrates the effectiveness of the developed GA in 
exploiting the free resources to consolidate the VMs into a 
smaller number of nodes. It can also be seen from the figure 
that although the time that the GA spends to approach the 

optimal solution increases as the level of free capacity 
increases, the increase is moderate (not as big as when the 
number of nodes increases). When the level of free capacity 
increases from 10% to 20%, the time the GA takes to almost 
reach the optimized solution increases from 22 seconds to 27 
seconds. This result suggests that the level of free capacity in 
the nodes does not have big impact on the running time of 
the GA.  

c) Impact of the Number of VCs 

Fig.8 shows how the GA performs under different 
number of VCs. In this figure, the total number of VMs in 
the Cloud is fixed to be 600, while the number of VCs varies 
from 20 to 40. When the number of VCs in the Cloud is 20, 
30 and 40, the average number of VMs that each VC has is 
30, 20 and 15, respectively. As seen from this figure, the 
number of nodes used to host the VCs decreases in all cases 
as the GA progresses, which is to be expected. It can also be 
observed that the time that the GA spends to approach the 
optimized solution becomes longer as the number of VCs 
increases. When there are 20 and 40 VCs, for example, the 
GA takes 17 and 52 seconds, respectively, to achieve the 
near-optimal solution. Another observation is that although 
the free resource capacity is 20% in all cases, the final 
number of consumed nodes calculated by the GA is different 
under different number of VCs. As observed from the figure, 
the number of consumed nodes decreases as the number of 
VCs in the Cloud increases. This result can be explained as 
follows. According to the experimental settings in the figure, 
when there are more VCs, the granularity of a VC in terms of 
the number of VMs is smaller. Therefore, the GA has more 
opportunities to consolidate the VCs into a smaller number 
of nodes. This result shows that the number of VCs has the 
mixed impact on the GA’s performance. When more VCs 
are hosted, a longer time may be taken to reach the optimized 
solution, but potentially more resources may be saved. This 
gives the insight into how to determine a suitable number of 
VCs in a Cloud, given a certain number of underlying 
physical nodes.  

 
Figure 8.  The impact of the number of VCs on the performance of the GA; 
the number of physical nodes is 200; the average level of free resource 
capacity in nodes in 20%. 

2) Performance of the Cloud Reconfiguration  
Fig.9 shows the time it takes for the enumeration 

approach to find the optimal reconfiguration plan under 
different number of nodes and different number of VCs. The 



optimized system states are computed by the GA. The 
average spare capacity in nodes is 15%. 
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Figure 9.  the execution time of the reconfiguration algorithm for different 
number of nodes and VCs 

It can be seen from this figure that the time increases as 
the number of nodes increases and also as the number of 
VCs increases. When the number of nodes is 200 and the 
number of VCs is 4, the time is 450 seconds, which is 
unbearable in real systems. That is why a heuristic approach 
is necessary to quickly find the sub-optimal reconfiguration 
plan for the large scale of systems. Our experiments show 
that the time spent by the heuristic approach designed in this 
paper is negligible (less than 2 seconds even when the 
number of nodes is 200).  
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Figure 10.  the transition time of the optimal reconfiguration plan obtained 
by the enumeration approach as well as the sub-optimal plan obtained by 
the heuristic approach 

Fig.10 shows the transition time of the optimal 
reconfiguration plan obtained by the enumeration approach 
as well as the sub-optimal plan by the heuristic approach. As 
can be seen from this figure, the transition time increases in 
all cases as the number of nodes increases and also as the 
number of VCs increases. Further observations and analysis 
show that the number of nodes and the number of VCs have 
different impact on the transition time of the reconfiguration 
plan. In the enumeration approach, when the number of 
nodes increases from 10 to 200, the transition time increases 
by 20.4 seconds from 32 to 52.4 seconds, while the transition 
time increases by 22 seconds from 32 to 54 seconds when 
the number of VCs only increases by 2 from 2 to 4. This 

result can be explained as follows. When the number of VCs 
increases, the number of VMs in a node will also increase. 
Therefore, more VM operations will be performed in a node 
during the Cloud reconfiguration. Since the VM operations 
in the same node can only be performed in sequence, the 
time spent by the VM operations in a node will increase 
substantially. On the contrary, when the number of nodes 
increases, the VM operations in different nodes may be 
performed in parallel unless they have dependencies as 
analyzed in subsection V.C.  

It can also be observed from Fig.10 that the difference in 
the transition time between the enumeration approach and 
the heuristic approach is not prominent. According to our 
experiment data, when the number of VC is 2, 3 and 4, the 
average difference in transition time between these two 
approaches is 4.9, 4.6 and 6.6 seconds. The results suggest 
that the developed heuristic approach can efficiently find a 
fairly good reconfiguration plan.  

B. Experiments on a Real Cluster 

We implemented the resource Consolidation Framework 
for Moldable VMs (CFMV) developed in this paper. The 
framework is implemented by extending an existing 
consolidation manager, called Entropy, in literature [34]. In 
the implementation, new functions are added in the source 
code of Entropy to calculate a better system state (i.e., the 
VM-to-node mapping and the resource capacity allocated to 
each VM) and an optimized reconfiguration plan according 
to the methods presented in this paper. Entropy provides the 
mechanism to perform the actual VM operations in physical 
machines, including VM deletion, VM creation and VM 
migrations. CFMV implements the codes to perform the 
operation of adjusting resource capacities allocated to a VM, 
since Entropy only deals with rigid VMs. In CFMV, the 
newly added functions of finding an optimized 
reconfiguration plan interface with the mechanism of 
performing actual VM operations and instruct the 
mechanism to reconfigure the Cloud to the system state 
calculated by CFMV.  

In the experiments, CFMV is deployed on a cluster. The 
cluster consists of 16 physical machines. Each machine has a 
Pentium-4 3.2GHz CPU and 2GB of memory. The machines 
run on a 1Gbps Ethernet network. The 16 machines run the 
VMs using Xen 4.0.1.  

A VM hosts a RUBiS benchmark [10]. RUBiS is an 
auction site prototype modelled after eBay.com [10]. It 
handles the external transaction requests. In this experiment, 
the “browse only” transactions are used. Up to 4 RUBiS 
applications, called RUBiS1 to RUBiS4, are hosted in the 
cluster, and the VMs hosting RUBiSi form the Virtual 
Cluster i (VCi). In the experiments, we only consider two 
types of resource: CPU and memory.  

The work in [10] uses Layered the Queuing Network 
(LQN) models to construct the performance models for the 
RUBiS benchmark. These performance models are adopted 
in the experiment. According to the performance model, the 
service rate of a VM with certain resource capacities can be 
obtained. In the experiments, the desired QoS delivered by 
VCi is expressed as the total service rate of all VMs in the 



VC cannot be less than qosi. qosi is calculated as i/, where 
i is the arrival rate of the requests for RUBiSi, and  is the 
desired resource utilization of the system, which is set to be 
80% in the experiments. On the cluster, we also 
benchmarked the costs of VM operations that may be 
performed during the Cloud reconfiguration, including VM 
creation, VM deletion, VM migration and VM adjustment. 

One additional machine is used to emulate the clients and 
generate the transaction requests. During the experiment 
duration, the requests are submitted to the cluster following 
the Poisson process. In order to evaluate the consolidation 
ability of the framework, the initial resource allocation is 
conducted for given arrival rates of requests for RUBiS1-
RUBiS4 in the following manner: i) make sure that  there is f 
percentage of spare capacity in each physical node, ii) 
allocate 10% of a node’s resource capacity to run Dom0, iii) 
the remaining resource capacity is evenly divided among the 
VCs whose Qualities of Service have not been satisfied yet.   

The architecture in Figure 1 is adopted in the experiments. 
In the implementation of CFMV, the Global Manager (GM) 
and the Local Managers (LM) are situated in the head node 
of the cluster. They work in the following fashion.  
 LMi (the Local Manager of VCi) i) calls XenAPI to obtain 

the resource capacities allocated to the VMs in VCi, ii) 
uses the performance model in [10] to calculate the service 
rate of each VM for the RUBiS application (sij denotes the 
service rate of VMij), iii) search the nodes in the order 
from node 1 to node 16 to find such a set of VMs that the 
VMs’ total service rates is no less than qosi, iv) for a given 
arrival rate of the requests for VCi, calculates the 
proportion of the requests dispatched to VMij (denoted as 
αij), which is proportional to sij, i.e., αij/sij= αik/sik. 

 GM i) collects the system state of VCi from LMi, ii) 
records the number of physical nodes with active VMs (i.e., 
the VMs that serve the requests), iii) invokes CFMV to 
find an optimized system state and an optimized 
reconfiguration plan, iv) reconfigures the Cloud, and v) 
records the number of the physical nodes with active VMs 
after Cloud reconfiguration.  

For comparison, Entropy is also used to consolidate the 
resources in the experiments.  

Fig.11 shows the number of nodes saved by CFMV and 
Entropy, in which the spare capability of each node is set as 
30%. It can be seen from this figure that CFMV can save 
more nodes than Entropy after consolidation. This is because 
CFMV allows the VMs to adjust the resource capacities, and 
therefore offers more flexibility to “squeeze” the VMs into a 
smaller number of nodes.  

In order to evaluate the impact of the spare capacity on 
the number of saved nodes, we also conducted the 
experiments in which the spare capacity in each node is set 
as 10%. The results are shown in Fig.12. As can be observed 
from this figure, there are no nodes being saved except when 
the arrival rate is 400 under CFMV. This is because the spare 
capacity in each node is small and the total spare capacity in 
the cluster is not big enough to free physical nodes. This 
result suggests that the spare capacity in the nodes impacts 
on the number of nodes that can be saved by consolidation. 

The less spare capacity in the active nodes in the cluster, the 
less number of nodes can be saved.   

0

2

4

6

8

10

12

14

16

60 120 180 240 300

Arrival rate of total requests (req/sec.)

T
h

e
 n

u
m

b
e
r 

o
f 
n

o
d
e

s
 w

ith
 a

c
tiv

e
 V

M
s

before

Entropy

CFMV

 
Figure 11. The number of nodes saved under CFMV and Entropy under 
different arrival rates of requests; the proportions of the requests for 
RUBiS1-RUBiS4 are 10%, 20%, 30% and 40%, the spare resource capacity 
in each node is 30%. 
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Figure 12. The number of nodes saved under CFMV and Entropy under 
different arrival rates of requests; the proportions of the requests for 
RUBiS1-RUBiS4 are 10%, 20%, 30% and 40%, the spare resource capacity 
in each node is 10%. 
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Figure 13. Time spent in resource consolidation by CFMV and Entropy; the 
experimental settings are the same as in Fig.11; if the resources cannot be 
consolidated, the time data are not shown.  

Fig.13 shows the time spent by CFMV and Entropy to 
complete the consolidation computations in the experimental 
settings in Fig.11. In the figure, if no nodes can be saved, the 
time data are not depicted. As can be seen from the figure, 
CFMV spends less time in completing consolidation than 
Entropy. This may be because CFMV can adjust the VMs’ 
resource capacity to help consolidate resources, and therefore 
it can reach the optimized system state more quickly than 
Entropy, because Entropy may have to try more possibilities 



to see if the VMs can be packed into a smaller number of 
nodes.  

Fig.14 shows the reconfiguration cost (i.e., the transition 
time from the current system state to the state calculated by 
the consolidation framework) in the experimental settings in 
Fig.11. Again if no nodes can be saved, the data are not 
depicted in the figure. It can be seen from this figure that the 
reconfiguration cost in CFMV is less than that in Entropy. 
This can be explained as follows. Entropy only uses VM 
migrations to reconfigure the Cloud, while CFMV may 
delete and create VMs if the VM migration operation is 
likely to incur higher transition time.   
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Figure 14. Reconfiguration cost under CFMV and Entropy; the experimental 
settings are the same as in Fig.11; if the resources cannot be consolidated, 
the data are not shown.  

VII. CONCLUSIONS 

This paper aims to optimize the resource consumptions in 
the cluster-based Cloud systems. The Cloud system hosts 
multiple Virtual Clusters to server different types of 
incoming requests. A GA is developed to compute the 
optimized system state and consolidate resources. A Cloud 
reconfiguration algorithm is then developed to transfer the 
Cloud from the current state to the optimized one computed 
by the GA. In the experiments, the performance of the GA 
and the reconfiguration algorithm is evaluated and the 
developed scheme is also compared with a consolidation 
scheme developed in literature.  
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