
Decentralized Orchestration of Data-centric Workflows

in Cloud Environments

Bahman Javadia,∗, Martin Tomkob, Richard Sinnottc

aSchool of Computing, Engineering and Mathematics
University of Western Sydney, Australia

bFaculty of Architecture, Building and Planning
The University of Melbourne, Australia

cDepartment of Computing and Information Systems
The University of Melbourne, Australia

Abstract

Data-centric and service-oriented workflows are commonly used in scientific
research to enable the composition and execution of complex analysis on
distributed resources. Although there are a plethora of orchestration frame-
works to implement workflows, most of them are unsuitable for executing (en-
acting) data-centric workflows since they are based on a centralized orchestra-
tion engine which can be a bottleneck when handling large data volumes. In
this paper, we propose a flexible and lightweight workflow framework based
on the Object Modeling Systems (OMS). Moreover, we take advantage of the
OMS architecture to deploy and execute data-centric workflows in a decen-
tralized manner across multiple distinct Cloud resources, avoiding limitations
of all data passing through a centralized engine. The proposed framework
is implemented in the context of the Australian Urban Research Infrastruc-
ture Network (AURIN) project which is an initiative aiming to develop an
e-Infrastructure supporting research in the urban and built environment do-
mains. Performance evaluation results using spatial data-centric workflows
show that we can reduce 20% of the workflows execution time when using
Cloud resources in the same network domain.

Keywords: Data-centric Workflows, Cloud Computing; Orchestration,
Object Modeling System;

∗Corresponding author. Telephone: +61-2-9685 9181; Fax: +61-2-9685 9245
Email address: b.javadi@uws.edu.au (Bahman Javadi)

Preprint submitted to Future Generation Computer Systems January 10, 2013

1. Introduction

Service-oriented architectures based on Web services are common archi-
tectural paradigms for developing software systems from loosely coupled dis-
tributed services. In order to coordinate a collection of services in this archi-
tecture to achieve a complex analysis, workflow technologies are frequently
used. A workflow can be considered as a template to define the sequence of
computational and/or data processing tasks needed to manage a business,
engineering or scientific process. Although the workflow concept was origi-
nally introduced for automation of business processes, there is a significant
interest from scientists to utilize these technologies to automate complex,
often distributed experiments.

Two popular architectural approaches to implement workflows are service
orchestration and service choreography [1]. In service orchestration, there is
a centralized engine that controls the whole process including control flow as
well as data flow. An example of this implementation is the Business Process
Execution Language (BPEL), which is the current defacto standard for or-
chestrating Web services [2]. On the other hand, service choreography refers
to a collaborative process between a group of services to achieve a common
goal without a centralized controller. The Web Services Choreography De-
scription Language (WS-CDL) is an example of this type of implementation
based on the XML language [3].

The main issue with service orchestration implementations is transferring
all data through a centralized orchestration engine, which can be a bottleneck
for the performance, especially for data-centric workflows. To tackle this
problem, we introduce a new framework to implement data-centric workflows
based on the Object Modeling System (OMS). OMS is a component-based
modeling framework that utilizes an open-source software approach to enable
users to design, develop, and evaluate loosely coupled cooperating service
models [4]. The framework provides an efficient and flexible way to create
and evaluate workflow models in a scalable manner with a good degree of
transparency for model developers1.

The OMS framework is currently being used to design and implement a
range of scientific models [6]. However, the support of this framework for

1This paper is an extended version of [5].

2

data-centric and service-oriented workflows has not been investigated, which
is the main goal of this paper. Although the OMS framework can be gen-
erally classified as a service orchestration model, we show how we can take
advantage of the OMS architecture to implement a decentralized service or-
chestration overcoming the limitations of centralized data flow enactments.
This feature is crucial for data-centric workflows that deal with large quan-
tities of data and data movement in situations where the use of a centralized
engine could decrease the performance of the workflow or indeed make certain
workflows impossible to enact.

The proposed framework is implemented in the context of the Australian
Urban Research Infrastructure Network (AURIN)2 project, which is an ini-
tiative aiming to develop an e-Infrastructure supporting research in the urban
and built environment research disciplines [7] as outlined in Figure 1. It will
deliver a lab in a browser infrastructure providing federated access to het-
erogeneous data sources and facilitate data analysis and visualization in a
collaborative environment to support multiple urban research activities.

We evaluate the proposed architecture through enactment of realistic
data-centric workflows exploiting data gathered from federated services com-
municating based on standardised protocols as defined by the Open Geospa-
tial Consortium (OGC)3. These data are then used for the computation of
topology graphs, a basic building block for many spatial analytical tasks.
The performance evaluation experiments have been conducted on different
Cloud infrastructures to assess the flexibility and scalability of the proposed
architecture. In summary, the contribution of this paper is as follows:

• We propose a flexible workflow environment for scientific workflows
based on the Object Modeling System;

• We propose a decentralized orchestration model to reduce the execution
of data-centric-workflows;

• We implement the proposed workflow environment in the context of
the AURIN project;

• We evaluate the proposed architecture using realistic workflows in the
urban research domain.

2http://aurin.org.au/
3http://www.opengeospatial.org/

3

Figure 1: The overview of the AURIN conceptual architecture.

The rest of the paper is organized as follows. We provide an overview
of the AURIN project in Section 2. In Section 3, we present the Object
Modeling System framework. Section 4 explains the implementation of data-
centric workflows using the OMS framework. The performance evaluation
of the proposed architecture is presented in Section 5. In Section 6, a case
study using the workflow environment in the AURIN project is presented.
The related work is also illustrated in Section 7. We finally conclude our
findings and discuss the future work in Section 8.

2. The Wide-area Context of AURIN

In this section, we provide an overview of the AURIN project and its
operational context, which directly motivates the research presented in this
paper.

2.1. AURIN System Overview

The AURIN project is tasked with developing an e-Infrastructure through
which a wide range of urban and built environment research activities will
be supported. The AURIN technical architecture approach is based on the

4

concept of a single sign-on point of entry portal4 (Figure 1). The sign-on ca-
pability is implemented through the integration of the Australian Access Fed-
eration (AAF)5, which provides the backbone for the Internet2 Shibboleth-
enabled6 decentralized identity provision (authentication) across the Aus-
tralian university sector. The portal facilitates access to a diverse set of data
interaction capabilities implemented as JSR-286 compliant portlets. These
portlets represent the user interface component of the capabilities integrated
within a loosely coupled service-oriented architecture, exposing data search
and discovery, filtering and analytical capabilities, coupled with mapping
services, and various visualization capabilities.

The federated datasets feeding into AURIN are typically accessed through
programmatic APIs. A rich library of local (e.g., Java) and federated (REST
or SOAP services) analytical tools is exposed through the workflow envi-
ronment based on the OMS framework. The dominantly spatial nature of
datasets used in the urban research domain requires the interfacing with ser-
vices implementing OGC standards for access to federated data resources.
In particular, the Web Feature Service (WFS) standard implementations [8]
represent one of the most common sources of urban spatial data, served
through spatial data infrastructures. Data acquired through such services
are analysed by analytical processes for advanced statistical analysis of spa-
tial and aspatial data, thus exposing a complex modeling environment for
urban researchers.

The workflow environment presents an important backbone of the AURIN
infrastructure, by supporting:

• complex data-centric workflows to be repeatedly executed, leading to
a better reproducibility of data analysis and scientific results;

• workflows that can be re-executed with altered parameters, thus effec-
tively supporting the generation of multiple version of scenarios;

• workflows that support the interruption of the analysis design process,
enabling research spanning across extended periods of time;

• workflows that can be shared with collaborators and used outside of

4http://portal.aurin.org.au
5http://www.aaf.edu.au/
6http://shibboleth.internet2.edu/

5

AURIN;

• workflows that are encoded in a human-readable manner, effectively
carrying metadata about the analytical process that can be scrutinized
by peers, thus supporting greater transparency and research quality.

The results of data selection and analysis can be fed in to a variety of
visual data analytics components, supporting visual exploration of spatio-
temporal phenomena. 2D (and 3D soon) visualization of spatial data, their
temporal filtering, and multidimensional data slicing and dicing are amongst
the most sought-after components of AURIN, that will be integrated with
a collaborative environment. This allows researchers from geographically
remote locations to collaborate and coordinate their efforts on joint research
problems.

AURIN is also leveraging the resources of other Australian-wide research
e-Infrastructures such as the National eResearch Collaboration Tools and
Resources (NeCTAR)7 project, which provides infrastructure services for the
research community, and the Research Data Storage Infrastructure (RDSI)8

project, which provides large-scale data storage. At the moment, the AURIN
portal is running on several virtual machines (VMs) within the NeCTAR NSP
(National Servers Program) while we utilize both the NeCTAR Research
Cloud and the Amazon’s EC2 public Cloud as the processing infrastructures
to execute complex workflows.

2.2. Wide-area Analytical Processing with Federated Data

At an abstract level, the required time to execute a given workflow W
is based on the time for workflow composition and orchestration (TWC

), the
time to retrieve the data at the (federated) data source (TWD

), the time for
processing the data (TWP

), and the time to transfer the data between the
data source and the processing infrastructures (TWX

). So, we have:

TW = TWC
+ TWP

+ TWD
+ TWX

(1)

The aim of this research is to devise a workflow environment to mini-
mize the workflow execution time (i.e., TW). This time is the summation of
the time intervals required to complete each of the aforementioned elements,

7http://nectar.org.au
8http://rdsi.uq.edu.au

6

which is directly proportional to the size of the messages passed, data pro-
cessed, and the computational complexity of the processing algorithm. To
do this, we focus on reducing the transfer time of the data to the processing
infrastructures (i.e., TWX

) by decentralized orchestration and execution of
the data-centric workflows.

Figure 2: Centralized workflow execution with data acquired from a federated
data source.

Consider a traditional centralized workflow execution as illustrated in
Figure 2, where the data is acquired from a federated data source and passed
thorough the workflow engine to be analyzed by the processing infrastruc-
tures. In this scenario, the transfer time required by the workflow is the sum
of the messaging time for passing the requests and responses to the feder-
ated data resource (Areq and Aresp), and the messages passed between the
workflow engine and the processing infrastructures (Creq and Cresp). So the
transfer time can be obtained as follows:

TWXc = TAreq + TAresp + TCreq + TCresp (2)

Assume a second scenario as depicted in Figure 3, where the data ac-
quired from a federated data source is directly transfered to the processing
infrastructure and only the results are sent to the workflow engine. Thus,
the time spent on the data transferring can be calculated as follows:

TWXd = TAreq + TAresp + TBreq + TBresp (3)

In this case, the time for transferring the data to the processing infras-
tructure will be decreased as we bypassed the workflow engine. In other
words, TBreq + TBresp is much lower than TCreq + TCresp due to the reduced
amount of transferred data. This advantage is further magnified when we
have a large volume of raw data in the data-centric workflows where sending

7

them to where they are required can cause considerable delays. These situ-
ations are all frequently met in the context of AURIN with the nationwide
federated data sources. To this end, we propose a framework to adopt the sec-
ond scenario to decentralize the orchestration and execution of data-centric
workflows.

Figure 3: Decentralized workflow execution with data acquired from a fed-
erated data source.

3. Object Modeling System

The Object Modeling System (OMS) is a pure Java and object-oriented
modeling framework that enables users to design, develop, and evaluate sci-
ence models [4]. OMS version 3.0 (OMS3) provides a general-purpose frame-
work to allow easier integration of such models in a transparent and scalable
manner. OMS3 is a highly interoperable and lightweight modeling framework
for component-based model and simulation development on different com-
puting platforms. The term component is a concept in software engineering
which extends the reusability of code from the source level to the binary ex-
ecutable. OMS3 simplifies the design and development of model components
through programming language annotations which capture metadata to be
used by the model.

The architecture of OMS3 is depicted in Figure 4. The core of OMS3 con-
tains two main foundations: the knowledge base of the system (e.g., metadata
and ontologies), and development tools and methods (e.g., science model).
Other modules in this architecture include modeling resources and different
modeling products. Interested readers can refer to [6, 4] for more information
about the OMS3 architecture.

The main features of the OMS3 framework are:

8

Figure 4: The Object Modeling System architecture [6].

• OMS3 adopts a non-invasive approach for model or component integra-
tion based on annotating ’existing’ languages. Existing legacy classes
are allowed to keep their identity, which means that once a component
has been introduces into OMS3 it is still usable outside of OMS3. In
other words, using and learning new data types and traditional ap-
plication programming interfaces (API) for model coupling is mostly
eliminated.

• The framework utilizes multi-threading as the default execution model
for defined components. Moreover, component-based parallelism is
handled by synchronizations on objects passed to and from compo-
nents. The execution of components is driven by data flow depen-
dencies. Therefore, without explicit programming by the developer,
the framework is able to be deployed on multi-core Cluster and Cloud
computing environments.

• OMS3 simplifies the complex structure for model development by lever-
aging recent advantages in Domain Specific Languages (DSL) provided
by the Groovy programming language. In fact, a DSL is a language
extension dealing with a design pattern such as building a hierarchy
of objects in a simple, descriptive way. This feature helps assembling
model applications or model calibration and optimization.

9

3.1. Components in the Object Modeling System

Components are basic elements in OMS3 which represent self-contained
software packages that are separated from the framework. A component can
be hierarchical, it may contains other, finer grained components contributing
to the larger goal. OMS3 takes advantage of language annotations for com-
ponent connectivity, data transformation, unit conversion, and automated
document generation. A sample OMS3 component to calculate the average
of a given vector is illustrated in Listing 1. All annotations start with a @

symbol.

Listing 1: A sample OMS3 component
package oms . components ;
import oms3 . annotat ions . ∗ ;

@Descr ipt ion (”Average o f a g iven vec to r . ”)
@Author (name = ”Bahman Javadi ”)
@Keywords (” S t a t i s t i c , Average”)
@Status (Status .CERTIFIED)
@Name(” average ”)
@License (”General Publ ic L i cense Vers ion 3 (GPLv3) ”)

publ ic c lass AverageVector {
@Descr ipt ion (”The input vec to r . ”)
@In
publ ic List<Double> inVec = nul l ;

@Descr ipt ion (”The average o f the g iven vec to r . ”)
@Out
publ ic Double outAvg = nul l ;

@Execute
publ ic void proce s s () {

Double sum ;
int c ;
sum = 0 . 0 ;
for (c = 0 ; c < inVec . s i z e () ; c++)

sum = sum + inVec . get (c) ;
outAvg = sum / inVec . s i z e () ;

}

As one can see, the only dependency on OMS3 packages is for annota-
tions (import oms3.annotations.*), which minimizes dependencies on the
framework. This enables multi-purposing of components, which is hard to
accomplish with the traditional APIs. In other words, components are plain
Java objects enriched with descriptive metadata by means of language anno-
tations. Annotations in OMS3 have the following features:

• Dataflow indications are provided by using @In and @Out annotations.

10

• The name of the computational method is not important and must be
only tagged with @Execute annotation.

• No explicit marshaling or un-marshaling of component variables is
needed.

• Annotations can be used for specification and documentation of the
component (e.g., @Description).

For the integration of the OMS3-based workflow environment in the AU-
RIN portal, we have developed a package to generate an html-based docu-
ments for each component automatically based on the component annota-
tions [9].

3.2. Model in the Object Modeling System

As mentioned, OMS3 leverages the power of a Domain Specific Language
(DSL) to provide a flexible integration layer above the modeling components.
To do this, OMS3 gets benefit from the builder design-pattern DSL, which
is expressed as a Simulation DSL provided by the Groovy programming lan-
guage. DSL elements are simple to define and use in development of model
applications, which is very useful to create complex workflows.

As illustrated in Listing 2, a model/workflow in OMS3 has three parts
that need to be specified:

• components: to declare the required components;

• parameter: to initialize the component parameters;

• connect: to connect the existing components.

Listing 2: Model/Workflow template in OMS3
// crea t i on o f the s imu la t ion o b j e c t
sim = new oms3 . SimBuilder (l ogg ing : ’OFF ’) . sim (name : ’ t e s t ’) {

// the model space
model {

// space f o r the d e f i n i t i o n o f the requ i red components
components {
}

// i n i t i a l i z a t i o n o f the parameters
parameter {
}

11

// connect ion o f the d i f f e r e n t components
connect {
}

}
}
// s t a r t o f the s imu la t ion to ob ta in the r e s u l t s
r e s u l t s = sim . run () ;

Since OMS3 supports component-based multi-threading, each component is
executed in its own separate thread managed by the framework runtime.
Each thread communicates to other threads through @Out and @In fields,
which are synchronized using a producer/consumer-like synchronization pat-
tern.

It is worth nothing that any object can be passed between components
at runtime. We can also send any Java object as a parameter to the model.
Although connecting OMS3 and Java environment is desirable for the AURIN
project, we need a method to do it at runtime rather than directly linking
Java and OMS3 scripts. Using GroovyShell is one way to realize that. In
this case, we can bind any object and pass it to the OMS3 scripts. Also,
the result of the script can be return as a Java object. More discussions and
examples can be found in [9].

4. OMS-based Data-Centric Workflows

In order to create an OMS workflow, basic components need to be pro-
vided. The most important components are the Web service clients needed
for different service standards; in the case of OGC service, this might be WFS
clients, or for statistical data this might be SDMX clients [10]. These clients
are used to programmatically access distributed data sets from data (ser-
vice) providers. To create OMS3 components, there are two main methods
to annotate existing codes:

• embedded metadata using annotations;

• attached metadata using annotations;

For the first method, it is necessary to modify the source code (see List-
ing 1) while for the second one, we can attach a separate file, e.g. a Java
class or an XML file for the annotations. Using the attached annotations,
we do not need to modify the source code, so the method is well suited for
annotation of existing libraries, e.g. common maths libraries can be used as
OMS3 components.

12

In our system, we have developed a package for OMS-based workflows
including several OMS3 components, mainly using embedded annotations
for the provided components. We also developed several Web service clients
with OMS3 annotations to access distributed data provider resources. In
the following, we illustrate how we can compose and enact a typical service-
oriented and data-centric workflow in the AURIN system.

4.1. Workflow Composition

To create a workflow, it is necessary to either write an OMS script (similar
to Listing 2) or save the workflow through the system portal. As users in
AURIN are looking for a simple way to compose a workflow, we focus on the
second method where users start making some queries through the portal. In
this case, they can choose as many datasets as they want and then make the
queries through Web service interfaces to get the data as shown in Figure 1.
The collected data can be analyzed in the provided portlets in the AURIN
portal. At this stage, we can save the current workflow as an OMS3 script.
To do this, we developed a package to collect the required parameters for the
Web service interfaces used to generate an OMS script. The workflow itself
is saved as a text file that can be easily share with other users through the
AURIN portal.

An example of an OMS workflow including one WFS client is illustrated in
Listing 3. Parameters of this component are automatically generated based
on the Web service invocations made through the portal. In this example, the
dataset is provided by Landgate WA9 through its SLIP services10. The bbox

parameter determines the geographical area filter (bounding box) applied
to the requested tables (i.e., datasetSelectedAttributes). As seen in this
example, DSL makes the workflow very descriptive, which provides flexibility
and scalability to generate and share complex workflows.

4.2. Workflow Enactment

To support workflow enactment, we developed a JSR-268 portlet available
through the AURIN portal (see Section 2.1). In this portlet, a list of existing
workflows is made available that can be executed by users. New workflows
can be composed and inserted in this list as well. When a user selects a
workflow to run, the execution will be handled by the OMS3 engine.

9The provided datasets are from Australian Bureau of Statistics (ABS)
10http://landgate.wa.gov.au

13

Listing 3: An OMS workflow with one WFS client
// t h i s i s an example f o r a wfs query
de f s imu la t i on = new oms3 . SimBuilder (l ogg ing : ’ALL ’) . sim (name : ’ w f s t e s t ’) {

model {

components {
’ w f s c l i e n t 0 ’ ’ w f s c l i e n t ’
}
parameter {
’ w f s c l i e n t 0 . datasetName ’ ’ABS−078 ’
’ w f s c l i e n t 0 . w f sPre f i x ’ ’ s l i p ’
’ w f s c l i e n t 0 . data se tRe f e r ence ’ ’ Landgate ABS ’
’ w f s c l i e n t 0 . datasetKeyName ’ ’ s s c c ode ’
’ w f s c l i e n t 0 . da t a s e tS e l e c t edAt t r i bu t e s ’ ’ s s c code , employed fu l l t ime ,

employed partt ime ’
’ w f s c l i e n t 0 . bbox ’

’ 129.001336896 ,−38.0626029895 ,141.002955616 ,−25.996146487500003 ’
}
connect {
}
}}
r e s u l t = s imu la t i on . run () ;

Figure 5: Centralized service orchestration using OMS3 engine.

A sample workflow enactment scenario is illustrated in Figure 5 where
WS stands for Web service and DB stands for database. The dashed lines

14

and solid lines show the control and data flow, respectively. As seen, in this
workflow three distributed datasets are accessed through Web services. The
workflow portlet then forwards the received data to the processing infras-
tructure. Finally, the output of processing is sent back to the visualization
portlet for user observation. Focusing on the architectural approach of the
OMS-based workflows, it can be seen that this model is based on service
orchestration, which can be a bottleneck to the performance of data-centric
workflows.

As we are dealing with data-centric workflows, the output of a service
invocation should be ideally directly passed to the processing infrastructure
rather than to the centralized engine. To address this, we take advantage
of the OMS3 architecture, which is deliberately designed to be flexible and
lightweight. To do this, we utilize the OMS3 core and a command-line inter-
face that includes a workflow script and libraries of annotated components to
execute a workflow. In many respects, workflow enactment can be thought of
as simple execution of a shell script on the command-line. Therefore, when
a user requests to enact a workflow from the AURIN portal, the workflow
script along with the OMS3 core is sent to the processing infrastructure. In
this case, the output of a service invocation can be sent directly to where it
is subsequently required in the workflow. This can be considered as a decen-
tralized service orchestration or a hybrid model of service orchestration and
service choreography. Using this approach, we can decrease the amount of
intermediate data and potentially improve the performance of workflows.

Figure 6 shows a decentralized architecture to execute the same workflow
as in Figure 5 utilizing a processing infrastructure offered through the Cloud.
Here, the data flow is not being passed through the workflow portlet. Rather
we delegate the OMS3 core to enact the workflows and receive the data in
a place where they are going to be analyzed with computational scalability.
Therefore, the decentralized service orchestration can decrease intermediate
data and as a result decrease network traffic.

4.3. Cloud-based Execution

Cloud computing environments provide easy access to scalable high-performance
computing and storage infrastructures through Web services. One particular
type of Cloud service, which is known as Infrastructure-as-a-Service (IaaS),
provides raw computing and storage in the form of virtual machines, which
can be customized and configured based on application demands [11]. We

15

Figure 6: Decentralized service orchestration using OMS3 core.

utilize Cloud resources as the processing infrastructure to execute the com-
plex workflows for both centralized and decentralized approaches.

As noted OMS3 supports parallelism at the component level without any
explicit knowledge of parallelization and threading patterns from a developer.
In addition to multi-threading, OMS3 can be scaled to run on any Cluster and
Cloud computing environment. Using Distributed Shared Objects (DSO) in
Terracotta11, created workflows can share data structures and process them
in parallel within a workflow. These features enable us to enact any OMS
workflow on Cloud infrastructures as illustrated in Figure 5 and Figure 6.

As discussed in Section 2, the AURIN project is also running in the con-
text of many major e-Infrastructure investment activities that are currently
taking place across Australia. One of these projects is the NeCTAR project
which has a specific focus on eResearch tools, collaborative research environ-
ments, and provisioning of Cloud infrastructures. The NeCTAR Research
Cloud [12] offers three types of VMs to Australian researchers:

• Small : 1 core, 4GB RAM, 30GB storage

• Medium: 2 cores, 8GB RAM, 60GB storage

11http://www.terracotta.org/

16

• Extra-Large: 8 cores, 32GB RAM, 240GB storage

At the moment, we use all types of NeCTAR instances as the processing
infrastructures based on complexity of the workflows. In addition to the
NeCTAR Cloud, we developed an interface to execute the OMS workflows
on Amazon’s EC2 Cloud offering [13]. This provides an opportunities to
utilize Cloud resources from other providers in case of unavailability of the
national research Cloud.

5. Performance Evaluation

In order to validate the proposed framework, a set of performance analysis
experiments have been conducted. We analyze the execution of some realistic
data-centric workflows in the urban research domain on two different Cloud
infrastructures.

5.1. Experimental Setup

The workflows that have been considered for the performance evaluation
are the initial part of a typical urban analysis task. Spatial data analysis
workflows typically start with a data intensive stage where multiple datasets
are gathered, and prepared for analysis by building computationally efficient
data structures. Most types of spatial analysis include the interrogation of
fundamental topological spatial relationships between the constituent spatial
objects, such as when two objects touch or overlap [14]. These relationships
fundamentally underpin applications in the spatial sciences, from spatial
autocorrelation analysis [15], trip planning [16] and route directions com-
munication [17]. Graph-based data structures are efficient representations
supporting the encoding of topological relationships and their computational
analysis (e.g., least-cost path algorithms [18]).

In our use case, the collection of suburb and LGA (Local Government
Area)12 boundaries for each of the major Australian states are considered
as the input datasets. Each boundary is presented as a geometry encoded
in the Geography Markup Language [19] (an XML encoding of geographic
features). The number of geometries for each state are listed in Table 1. The
datasets for each individual state originate from the Australian Bureau of

12Each LGA contains a number of suburbs.

17

Table 1: Number of geometries per state in Australia.

State No. of Geometries
Suburbs LGA

Western Australia (WA) 952 142
South Australia (SA) 946 136
Tasmania (TAS) 402 28
Queensland (QLD) 2112 160
Victoria (VIC) 1833 111
New South Wales (NSW) 3146 178

Table 2: Workflows for the experiments.

Workflow Data size (MB)
Geometries Graph

WA 33.02 2.97
WA, SA 66.44 5.90
WA, SA, TAS 119.75 6.30
WA, SA, TAS, QLD 170.35 21.53
WA, SA, TAS, QLD, VIC 244.97 33.90
WA, SA, TAS, QLD, VIC, NSW 399.04 69.43

18

Statistics (ABS)13 and are provided through a OGC WFS service provided
by Landgate WA (see Listing 3). The series of WFS getFeature queries
result in individual feature collections (records) for suburbs/LGAs of each
state. The result sets are combined into a single feature collection as part
of the workflow, and their topology, based on the spatial relationship (i.e.,
touch) have been computed. The result of the workflow is a topology graph
representing adjacencies between suburbs/LGAs with a computational task
with a complexity of O(n2) (unless optimized by a spatial index). This graph
then serves as a basic structure for further analysis by urban researchers.

Listing 4: An example of OMS3 workflow for the performance evaluation
// This i s the Scenario 1 (The f i r s t row in Table 2)

de f s imu la t i on = new oms3 . SimBuilder (l ogg ing : ’ALL ’) . sim (name : ’ scen1 ’) {
model {
components {

’ w f s c l i e n t 0 ’ ’ w f s c l i e n t ’
’ w f s c l i e n t 1 ’ ’ w f s c l i e n t ’
’ graph0 ’ ’ geograph ’
’ graph1 ’ ’ geograph ’

}
parameter {

// WA Suburbs
’ w f s c l i e n t 0 . datasetName ’ ’ABS−078 ’
’ w f s c l i e n t 0 . w f sPre f i x ’ ’ s l i p ’
’ w f s c l i e n t 0 . da ta se tRe f e r ence ’ ’ Landgate ABS ’
’ w f s c l i e n t 0 . datasetKeyName ’ ’ s s c c ode ’
’ w f s c l i e n t 0 . da t a s e tS e l e c t edAt t r i bu t e s ’

’ s s c code , the geom ’
’ w f s c l i e n t 0 . bbox ’ ’ 112 .921113952 ,

−35.134846436000004 , 129 .001930016 , −13.689492035 ’

// WA LGAs
’ w f s c l i e n t 1 . datasetName ’ ’ABS−079 ’
’ w f s c l i e n t 1 . w f sPre f i x ’ ’ s l i p ’
’ w f s c l i e n t 1 . da ta se tRe f e r ence ’ ’ Landgate ABS ’
’ w f s c l i e n t 1 . datasetKeyName ’ ’ l ga code ’
’ w f s c l i e n t 1 . da t a s e tS e l e c t edAt t r i bu t e s ’

’ l ga code , the geom ’
’ w f s c l i e n t 1 . bbox ’ ’ 112 .921113952 ,

−35.134846436000004 , 129 .001930016 , −13.689492035 ’

}
connect {

’ w f s c l i e n t 0 . outFC ’ ’ graph0 . inFC ’
’ w f s c l i e n t 1 . outFC ’ ’ graph1 . inFC ’

}
}}

13http://www.abs.gov.au/

19

r e s u l t = s imu la t i on . run () ;
return [r e s u l t . graph0 . outGraph , r e s u l t . graph1 . outGraph]

The series of test workflows based on the aforementioned scenarios is
listed in Table 2 where each workflow generates a topology graph for a dif-
ferent number of Australian states. Moreover, the size of input geometries
and output graph for these workflows reveal that they are good examples
of realistic data-centric workflows. The OMS-based workflow for the first
workflow of WA state is illustrated in Listing 4.

The AURIN portal has been deployed in VMs hosted by NeCTAR NSP,
and for each experiment, we enact the workflow on a Cloud infrastructure
through this portal. We utilize Extra-Large instances from NeCTAR Re-
search Cloud and Hi-CPU Extra-Large instances from Amazon’s EC2 [13]14.
The characteristics of these two instances in terms of CPU power, memory
size, and operating system (i.e., Linux) are similar (see Section 4.3). Each
workflow was executed 50 times on both Cloud infrastructures where results
are accurate within a confidence level of 95%.

5.2. Results and Discussions

The experimental results for the centralized and decentralized approach
for given workflows on the NeCTAR and EC2 Cloud are depicted in Figure 7.
In these figures, the y-axis and x-axis display execution time and the total
data transferred to the Cloud resources for each workflow listed in Table 2,
respectively. It should be noted that in both architectures, the result of the
workflow enactment (i.e., topology graph) must be returned to the AURIN
portal, so is not included in these figures.

These figures reveal that decentralized service orchestration reduces the
workflow execution time in all cases compared to centralized orchestration.
For the case of the EC2 Cloud (Figure 7(b)), we can observe a more sig-
nificant difference between the two architectures, due to limited network
bandwidth in Amazon instances. Therefore, decreasing the network traffic
using decentralized architecture substantially reduces the execution time of
the data-centric workflows. For the results in Figure 7(a), the system portal
and Cloud resources are in the same network domain (i.e., NeCTAR net-
work), so higher network traffic can be handled and less improvements are
observed.

14We choose Asia Pacific region (ap-southeast) to reduce the network latency.

20

(a) NeCTAR (b) Amazon’s EC2

Figure 7: Execution time of data-centric workflows on two Cloud infrastruc-
tures for centralized and decentralized orchestration (Each point corresponds
to a workflow).

It should be noted that in our experiments, the Web service provider (i.e.,
Landgate WA) and NeCTAR Cloud infrastructure are in Australia while
Amazon’s EC2 resources are in Singapore (ap-southeast region). So, the
larger network latency is another reason for the higher execution time for a
workflow on Amazon’s EC2 with respect to the NeCTAR Cloud while using
the same orchestration architecture.

To compare the effect of the proposed framework in each Cloud infrastruc-
ture, Figure 8 plots the average performance improvement for each workflow
enactment on the NeCTAR and EC2 Clouds. As expected, the performance
improvement for Amazon’s EC2 is much higher due to lower network band-
width. In addition, we execute theses workflows on EC2 instances in the
ap-southeast region. Using resources from other regions such as us-east or
us-west will increase this improvement. A decentralized architecture thus
provides more flexibility in terms of resource selection compared to the cen-
tralized service orchestration, which is highly dependent on the network ca-
pacity.

As illustrated in Figure 8, the average performance improvement of de-
centralized orchestration with respect to the centralized one, using NeCTAR
Cloud resources is about 20% when we have more than 150MB data to trans-
fer. This improvement can be more than 100% on Amazon’s EC2 for such
workflows. The reason for a reduced performance improvement for the case

21

Figure 8: The average performance improvement of decentralized orchestra-
tion with respect to centralized orchestration on two Cloud infrastructures
(Each point corresponds to a workflow).

of the biggest workflow (i.e., for all states) is the limitation of Web service
provider (i.e., Landgate WA) for parallel queries, so the OMS3 engine can not
utilize available parallelism in the workflow. This issue disappears if datasets
from different data providers are requested in parallel.

Finally, Figure 9 shows the Computation to Communication Ratio (CCR)
of the workflows in our experiments. This ratio is commonly used to charac-
terize the distinction between data-intensive and compute-intensive applica-
tions [20]. Applications with lower values of this ratio are more data-intensive
in nature. As one can see, the value of CCR in our experiments is less than
0.2 for the NeCTAR Cloud and less than 0.1 for EC2. Hence, the workflows
are indeed data-centric.

6. Case Study

The AURIN e-Infrastructure currently allows access to a wide range of
distributed data sets from a variety of agencies with associated and ana-
lytic processing systems. The data providers currently include health related
data sets from organisations such as the Public Health Information Develop-
ment Unit (PHIDU - www.publichealth.gov.au); population statistics data
from organisations such as the ABS and delivered by Landgate in Western
Australia; econometric data from organisations such as the Centre of Full

22

Figure 9: The Computation to Communication Ratio (CCR) on two Cloud
infrastructures where each point corresponds to a workflow instance.

Employment and Equity (CofFEE - e1.newcastle.edu.au/coffee); geospatial
data from the Public Sector Mapping Agency (PSMA - www.psma.gov.au) -
the definitive geospatial information resource for Australia; voting and social
demographic data from the Centre for Spatially Integrated Social Science
at the University of Queensland through to social media resources such as
Twitter feeds.

The typical scenario in accessing data sets in AURIN is to drill into
the particular regions of interest, e.g. Melbourne. Through the metadata
management systems available in the AURIN infrastructure, filtering of po-
tential data to the site of interest is supported. Researchers typically wish
to compare data sets at a variety of aggregation levels, e.g. states, cities,
government authorities, statistical local authorities right down to individual
cadastre-level (houses). A common phenomenon in AURIN is to support the
access to and analysis of data between hitherto separate disciplines. One
example of this is the linkage of health data with wider societal data sets.
Figure 10 shows the result of searching for data sets associated with acci-
dental deaths in the suburbs of Melbourne and the associated population of
those suburbs.

Figure 11 shows the analytical capabilities offered through the AURIN
portal including charting and analysis - here showing the correlation between
accidental deaths and suicide and the number of accidental deaths for the

23

Figure 10: AURIN Portal and Accidental Deaths vs Population Statistics.

various suburbs of Melbourne.
Figure 12 shows a primary driver of the focus of the workflow efforts in

AURIN. Specifically establishing a walkability index for particular locations,
i.e. how walkable are certain urban locations. This is achieved by firstly se-
lecting points (latitude/longitudes or addresses) of interest (left Figure 12),
which when geo-coded using addressing services from PSMA are used to cre-
ate a network graph based on the street network (centre Figure 12). Using
algorithms to calculate the connectivity, the land use mix and the popula-
tion density, Z-scores are established to give a particular walkability score a
given location (right Figure 12). Each of these activities: address/location
geo-coding; creating the network buffer; the connectivity/land-use mix/pop-
ulation density establishment, and the final Z-score calculation represent a
workflow processing step. In principle, it is possible for the walkability index
to be used to create thousands of scores for multiple locations, hence decen-
tralised enactment of processing steps and use of multi-Cloud environments
is essential.

7. Related Work

In this section, we present an overview on the related work in orchestra-
tion of data-centric workflows. In addition, we compare the OMS framework
with the other workflow systems used in the scientific communities.

24

Figure 11: AURIN Portal and Accidental Deaths Analytics.

Figure 12: Results of Workflow-oriented Walkability Index.

25

The most relevant work is from Barker et al. [21, 22], where a proxy-based
architecture for orchestration of data-centric workflows is proposed. In this
architecture, the response to the Web service queries can be redirected by
proxies to the place that they are needed for analysis. Although the pro-
posed architecture can reduce data transfer through a centralized engine, it
involves deploying proxies in the vicinity of Web services. Moreover, proxy
APIs must be invoked by an orchestration engine to take advantage of the
deployed proxies. In contrast, our approach does not need any additional
component or API calls and can be deployed in any high-performance com-
puting environment as well.

Wieland et al. [23] provide a concept of pointers in service-oriented archi-
tectures to pass data by reference rather than by value from Web services.
This can reduce the data load on the centralized engine and reduce the net-
work traffic. Service Invocation Trigger [24] is a decentralized architecture
for workflows dealing with large-scale datasets. To utilize this architecture,
the input workflow must be first decomposed into sequential fragments with-
out a loop or conditional statement. Moreover, data dependencies must be
encoded with the triggers to allow collection of input data before service in-
vocation. In the approach proposed in this paper, a workflow can contain
any structure and does not need to be modified prior to execution.

An architecture for decentralized orchestration of composite Web services
defined in BPEL is proposed by Chafle et al. [25]. In contrast to our approach,
this architecture is very complex and requires code partitioning and synchro-
nization analysis. Moreover, they do not address how these concepts operate
in Internet-based Web services.

Other approaches rely on a shared space to exchange information between
nodes of a decentralized architecture, more specifically called a tuplespace.
In [26], authors transform a centralized BPEL definition into a set of coordi-
nated processes. Through a shared tuplespace working as a communication
infrastructure, the control and data dependencies exchange among processes
to make the different nodes interact between them. In [27] an alternative
approach is presented, based on a chemical analogy. The proposed architec-
ture is composed on nodes communicating through a shared space containing
both control and data flows, called the multiset. In contrast, we do not use
any shared memory in our proposed framework.

To complete this section, we provide a brief review and comparison of
other workflow systems to the OMS framework. Existing workflow systems
are designed to utilize the global Grid resources that typically are available for

26

Table 3: Comparison of workflow languages

Language Extensibility
Language
strength Popularity Libraries

GSFL + - - -
GWorkflowDL + - - +
SCUFL (Taverna) + - - +
MoML (Kepler) + ++ ++ ++
OMS + ++ + ++

only some specific institutes [28]. Examples are GridFlow [29], Kepler [30],
and Pegasus [31]. An overview of these workflow systems is presented in [28].
Although some new projects are started that target the orchestration of work-
flows using Cloud services, still their applications and overall performance
over Cloud infrastructures has not been explored to any great depth. As an
example, Cloudbus Toolkit has proposed an architecture for a Cloud-based
workflow engine with a centralized orchestration [32]. In contrast, we pro-
pose and realize a new framework to implement data-centric workflows with
decentralized service orchestration. Some features of the proposed system
such as architecture flexibility and multi-threading are unique, which make
it a useful Cloud-based workflow engine.

In the following, we also present a comparison of the OMS language with
different workflow languages. We considered a set of well-know workflow
languages developed for Grid or scientific usage communities. We used the
metrics and results of a similar comparison presented in [33]. The results
of the comparison is presented in Table 3. Extensibility refers to possibility
of adding new features to the language. Language strength refers to loops
and conditions support, data types, and subworkflows. Popularity refers to
the usage in other projects, available technical support, automatic transfor-
mation to other workflow description languages. Libraries refers to parsers,
graphical representation of workflow.

The list of most common workflow languages are given in the first column
of Table 3. As one can see in this table, OMS has many desireable features
compared to other languages. The only weakness of the OMS language when
compared to MoML and its use in Kepler is in terms of popularity. We hope
this paper can encourage researchers to utilize OMS in their projects and
thereby rectify this.

27

8. Conclusions

In this paper, we proposed a new framework to implement data-centric
workflows based on the Object Modeling System (OMS). We take advantage
of the flexibility of the OMS architecture to implement decentralized service
orchestration and thereby bypass the potential bottleneck caused by data
flow through a centralized engine. We designed and implemented our pro-
posed framework in the context of the AURIN project to provide a workflow
environment for urban researchers across Australia.

Using realistic data-centric workflows from the urban research domain, we
evaluated the performance improvement of the proposed architecture whilst
utilizing resources from two different Cloud infrastructures: NeCTAR and
Amazon’s EC2. Performance evaluation results reveal that decentralize ser-
vice orchestration can substantially improve the performance of data-centric
workflows, especially in the presence of network capacity limitations. This
work has broad relevance and application to many other disciplines requiring
data-intensive research over Cloud infrastructures.

For future work, we intend to extend the evaluation of this architecture
using various Web services and network environments to assess the impact
of network distance and network configuration. Moreover, we are working
on an algorithm to automate provisioning of Cloud resources for data-centric
workflows using the OMS framework based on dynamic user demand.

Acknowledgments

We would like to thank the AURIN architecture group for their support.
The AURIN project is funded through the Australian Education Investment
Fund SuperScience initiative.

References

[1] A. Barker, J. van Hemert, Scientific Workflow: A Survey and Research
Directions, in: Seventh International Conference on Parallel Processing
and Applied Mathematics, Revised Selected Papers, Vol. 4967 of LNCS,
Springer, 2008, pp. 746–753.

[2] T. O. Committee, Web services business process execution language
(WS-BPEL), Tech. Rep. Version 2.0 (2007).

28

[3] N. Kavantzas, et al., Web services choreography description language
(WS-CDL), Tech. Rep. Version 1.0 (November 2005).

[4] O. David, J. Ascough II, G. Leavesley, L. Ahuja, Rethinking model-
ing framework design: Object Modeling System 3.0, in: International
Congress on Environmental Modeling and Software, 2010.

[5] B. Javadi, M. Tomko, R. O. Sinnott, Decentralized orchestration of data-
centric workflows using the object modeling system, in: CCGRID, 2012,
pp. 73–80.

[6] J. Ascough II, O. David, P. Krause, M. Fink, S. Kralisch, H. Kipka,
M. Wetzel, Integrated agricultural system modeling using OMS 3: com-
ponent driven stream flow and nutrient dynamics simulations, in: Inter-
national Congress on Environmental Modeling and Software, 2010.

[7] R. O. Sinnott, G. Galang, M. Tomko, R. Stimson, Towards an e-
infrastructure for urban research across Australia, in: 7th IEEE In-
ternational Conference on e-Science, 2011, pp. 295 – 302.

[8] A. Panagiotis, Web feature service (WFS) implementation specification,
OGC document (2005) 04–094.

[9] B. Javadi, M. Tomko, R. O. Sinnott, AURIN workflows environment
using the Object Modeling System, Technical report, Melbourne eRe-
search Group, The University of Melbourne, Australia (Jan. 2011).

[10] The SDMX technical specification, Tech. Rep. Version 2.1 (2011).
URL http://sdmx.org/

[11] J. Varia, Cloud Computing: Principles and Paradigms, Wiley Press,
2011, Ch. 18: Best Practices in Architecting Cloud Applications in the
AWS Cloud, pp. 459–490.

[12] T. Fifield, NeCTAR research Cloud node implementation plan, Research
Report Draft-2.5, Melbourne eResearch Group, The University of Mel-
bourne (October 2011).

[13] Amazon Inc., Amazon Elastic Compute Cloud (Amazon EC2), http:
//aws.amazon.com/ec2.

29

[14] M. J. Egenhofer, A formal definition of binary topological relationships,
in: W. Litwin, H. Schek (Eds.), 3rd International Conference on Foun-
dations of Data Organization and Algorithms, Vol. 367, Springer-Verlag,
1989, pp. 457–472.

[15] A. Can, Weight matrices and spatial autocorrelation statistics using a
topological vector data model, International Journal of Geographical
Information Systems 10 (8) (1996) 1009–1017.

[16] M. Duckham, L. Kulik, ”simplest paths”: Automated route selection for
navigation, in: Spatial Information Theory (COSIT 2003), Vol. 2825 of
LNCS, Springer-Verlag, 2003, pp. 169–185.

[17] M. Tomko, S. Winter, Pragmatic construction of destination descrip-
tions for urban environments, Spatial Cognition and Computation 9 (1)
(2009) 1–29.

[18] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic
determination of minimum cost paths, IEEE Transactions on Systems
Science and Cybernetics 4 (1968) 100–107.

[19] C. Portele, Geography markup language (gml3.2.1) encoding standard,
specification, Open Geospatial Consortium, Inc. (2007).

[20] S. Pandey, R. Buyya, A survey of scheduling and management tech-
niques for data-intensive application workflows, in: T. Kosar (Ed.), Data
Intensive Distributed Computing: Challenges and Solutions for Large-
scale Information Management, IGI Global, USA, 2012.

[21] A. Barker, J. B. Weissman, J. van Hemert, Orchestrating Data-Centric
Workflows, in: 8th IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid), IEEE Computer Society, 2008, pp. 210–217.

[22] A. Barker, R. Buyya, Decentralised orchestration of service-oriented sci-
entific workflows, in: CLOSER, 2011, pp. 222–231.

[23] M. Wieland, K. Grlach, D. Schumm, F. Leymann, Towards reference
passing in web service and workflow-based applications., in: EDOC’09,
2009, pp. 109–118.

30

[24] W. Binder, I. Constantinescu, B. Faltings, Decentralized orchestration
of composite web services, in: International Conference on Web Services,
2006, pp. 869 –876. doi:10.1109/ICWS.2006.48.

[25] G. B. Chafle, S. Chandra, V. Mann, M. G. Nanda, Decentralized orches-
tration of composite web services, in: Proceedings of the 13th interna-
tional World Wide Web conference on Alternate track papers & posters,
New York, NY, USA, 2004, pp. 134–143.

[26] M. Sonntag, K. Grlach, D. Karastoyanova, F. Leymann, M. Reiter, Pro-
cess space-based scientific workflow enactment, International Journal of
Business Process Integration and Management IJBPIM Special Issue on
Scientific Workflows 5 (1) (2010) 32–44.

[27] H. Fernandndez, T. Priol, C. Tedeschi, Decentralized approach for exe-
cution of composite web services using the chemical paradigm, in: 2010
IEEE International Conference on Web Services (ICWS), 2010, pp. 139
–146. doi:10.1109/ICWS.2010.46.

[28] J. Yu, R. Buyya, A taxonomy of scientific workflow systems
for grid computing, ACM SIGMOD Record 34 (3) (2005) 44–49.
doi:10.1145/1084805.1084814.

[29] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd, Gridflow: Workflow man-
agement for grid computing, in: 3rd IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2003), 12-15 May 2003,
Tokyo, Japan, IEEE Computer Society, 2003, pp. 198–205.

[30] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the
kepler system, Concurrency and Computation: Practice and Experience
18 (10) (2006) 1039–1065.

[31] E. Deelman, G. Singh, M. hui Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, D. S.
Katz, Pegasus: a framework for mapping complex scientific workflows
onto distributed systems, Scientific Programming Journal 13 (2005) 219–
237.

31

[32] S. Pandey, D. Karunamoorthy, R. Buyya, Workflow engine for Clouds,
in: R. Buyya, J. Broberg, A.Goscinski (Eds.), Cloud Computing: Prin-
ciples and Paradigms, Wiley Press, USA, 2011.

[33] NEXPReS, Workflow description language research results, Technical
report, Poznan Supercomputing and Networking Center, Poland (2011).

32

