

Newcastle University ePrints

Cała J, Hiden H, Woodman S, Watson P.

Cloud computing for fast prediction of chemical activity.

Future Generation Computer Systems 2013, 29(7), 1860-1869.

Copyright:

NOTICE: this is the authors’ version of a work that was accepted for publication in Future Generation

Computer Systems. Changes resulting from the publishing process, such as peer review, editing,

corrections, structural formatting, and other quality control mechanisms may not be reflected in this

document. Changes may have been made to this work since it was submitted for publication. A definitive

version was subsequently published in Future Generation Computer Systems, volume 29, issue 7,

September 2013. DOI: http://dx.doi.org/10.1016/j.future.2013.01.011

Always use the definitive version when citing.

Further information on publisher website: http://www.elsevier.com

Date deposited: 17th January 2014

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

 ePrints – Newcastle University ePrints

http://eprint.ncl.ac.uk

javascript:ViewPublication(196947);
http://dx.doi.org/10.1016/j.future.2013.01.011
http://www.elsevier.com/
http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/

Cloud computing for fast prediction of chemical activity

Jacek Cała, Hugo Hiden, Paul Watson, Simon Woodman

School of Computing Science

Newcastle University

Newcastle upon Tyne, UK

{jacek.cala | h.g.hiden | paul.watson | s.j.woodman}@ncl.ac.uk

Abstract—Quantitative Structure-Activity Relationships

(QSAR) is a method to create models that can predict certain

properties of compounds. Because of the importance of QSAR

in designing new drugs, ability to accelerate this process

becomes crucial. One way to achieve that is to be able to

quickly explore the QSAR model space in the search for the

best models. The cloud computing paradigm very well fits such

a scenario, thus we designed and implemented a tool for

exploration of the model space using our e-Science Central

platform supported by the cloud. We report on scalability

achieved and experiences gained when designing this system.

The acceleration obtained is much beyond what existing QSAR

solutions can offer, which opens potential for new interesting

research in this area.

Quantitative Structure-Activity Relationships, machine

learning, cloud computing, scalability, performance evaluation

I. INTRODUCTION

In the search for new anti-cancer therapies, the family of
kinase enzymes are important biological targets since many
are intimately connected to cell division and other important
maintenance functions. The scientists use a method known as
Quantitative Structure-Activity Relationships (QSAR) [5] to
mine experimental data for patterns that relate the chemical
structure of a drug to its kinase activity. If a successful
QSAR model can be derived from the experimental data then
that model can be used to focus new chemical synthesis, and
by creating QSAR models for more than one set of results,
for different kinases, the new drugs can be designed to be
selective.

Because of the importance of QSAR, the Chemists
behind our collaboration had developed the Discovery Bus
[2] — an infrastructure to automatically create new and
update existing QSAR models as new data or modeling
techniques became available. The Discovery Bus could
automatically generate hundreds of models for each property
type, and select the best and most valid. This enabled
creating a library of predictive models used to design better,
safer, more environmentally benign drugs, while at the same
time reducing the need for animal experimentation.

In our previous work — project Junior — we used the
Windows Azure cloud platform to support the Discovery
Bus and reduce the time taken to generate QSAR models
from years to weeks [11]. In total, 750,000 new QSAR
models were generated and made freely available for anyone
to use. Before this project it was thought that it would be

impossible to generate these models: the chemists estimated
that it would take 5 years to process the vast amounts of
chemical activity data that had become available.

Although the achieved acceleration in processing was
satisfactory, the main problem we encountered was limited
scalability of the system. We decided, therefore, to
reengineer the approach adopted previously and build a
QSAR modeling engine which can be scaled effectively to
hundreds of machines.

The main contribution of this paper is to report on
scalability achieved and experiences gained with designing a
system for fast prediction of chemical activity in the cloud.
In particular, we would like to present a scalable workflow
enactment system based on e-Science Central which allows
us to use up to 200 processors with nearly 90% of ideal
effectiveness. Also, we discuss the key steps that made
running our system in the cloud effective.

II. THE APPLICATION: QSAR AND THE DISCOVERY BUS

The underlying theory of QSAR is that activity, such as
reactivity or biological response, is related to molecular
structure of compounds. Thus, molecules with similar
structure will have similar activities. For example, as the
number of carbons in alkanes increases, so does their boiling
point; this rule can be used to predict the boiling points of
higher alkanes. QSAR aims to build models that can
correlate the structure with activity. Fig. 1 shows the general
methodology of creating and using QSAR models [4].

Calculate
descriptors for

a trial set of
compounds

Select
descriptors

Create a
QSAR model

Test the
model on a

test set

Use the
model in

predictionsGood
correlation

Bad
correlation

Figure 1. The general process of creating and using QSAR models.

The approach taken by the Discovery Bus to generating
predictive models follows the process presented above.
However, to optimize it and facilitate its extensibility of the
framework some important details has been proposed.
Therefore, the actual QSAR process adopted by the
Discovery Bus is shown in Fig. 2.

The main path of the process is initiated by a user that
provides a number of datasets each of which consists of a set
of compounds and their corresponding activity. In the first
step each dataset is split into two: a training set that will be
used to build models, and a test set used to validate them.
Next, for each chemical structure, a set of molecular
descriptors is calculated (an example is molecular weight).
These are then filtered to remove redundant or irrelevant
features so as to speed up learning and increase the
generalisability of the results. Next, compounds with related
activity and descriptors are used as input by a set of model-
building algorithms. The system implemented 4 algorithms
for building models, including neural networks, partial least
squares, multiple linear regression and classification trees.
The best models from each algorithm are selected, based on
their performance on the test data, and placed in the database
for use by users wishing to predict properties of chemicals.

Importantly, the loop presented in Fig. 1 has been
unwound in the actual implementation of the Discovery Bus.
The descriptor selection algorithm produces a number of
descriptor sets at once. Then each of them is used to initiate a
new processing branch with model building as the next step.
Similarly, the ‗build models‘ block in the diagram starts a
new processing branch for each model builder registered in
the system. This branching in data processing can easily be
exploited to parallelize the execution.

Split between a trial
and test set

Data input:
new chemical structures
and their activity

Calculate
descriptors

Select descriptors

Build models

Select good models

Algorithm input:
new model builders

training set

testing set

Algorithm input:
new descriptor calculators

Algorithm input:
new feature selectors

Model output:
new prediction models

Figure 2. The QSAR process as adopted by the Discovery Bus.

As there are various methods of calculating and selecting
descriptors, and building prediction models, the Discovery
Bus allowed users to add new algorithms to the system (the
‗algorithm inputs‘ in Fig. 2). Adding an algorithm would
reinitiate the QSAR process starting from the intermediate
step for which the algorithm was provided and using
―historic‖ data collected in the preceding steps.

III. CLOUD IMPLEMENTATION

Whilst the Discovery Bus was the basis for the overall
design of the QSAR modeling process, to implement it we
used e-Science Central — a cloud-based workflow

enactment system. e-SC uniquely combines three recent
trends in computing science : (1) Software-as-a-Service — to
allow scientists to use the system from a web browser,
upload and analyse data and share data and services, all with
no need for any installation and deployment by a user; (2)
Cloud Computing — to provide resources that scale with the
number of users, volume of data and complexity of analysis;
(3) Social Networking — to support sharing of data and
services and to facilitate user collaboration [12]. With this
combination scientists can conveniently design, run and
share their analyses on a large scale while being freed from
most of the burden of software maintenance.

The architecture of our cloud-based solution is presented
in Fig. 3. For evaluation purposes we used Windows Azure
to run a complete copy of the publicly available e-SC system
(see http://www.esciencecentral.co.uk). The central server
executes in two extra large Azure VM instances — one hosts
e-SC frontend on top of a JEE application server while the
other runs the database engine.

<<Azure VM>>
Azure Blob

store

e-SC db
backend

<<Azure VM>>

e-Science
Central

main server JMS queue

REST APIWeb UI

web
browser

rich client
app

workflow invocations

e-SC control data

workflow data

<<worker role>>

Workflow
engine

<<worker role>>

Workflow
engine

e-SC blob
store

<<worker role>>

Workflow
engine

Figure 3. The architecture of e-Science Central in the cloud.

Separately, a number of e-SC workflow engines is
running, each in its own Azure worker role node. The
engines are connected with the server by a JMS message
queue and the REST-based API. Despite Azure offers its
own queuing service, to preserve as much consistency with
the original e-SC implementation as possible we did not
decide to switch the queue services. There is no obvious
benefit for such a change. Conversely, as shown by Hill et al.
[6], reading rates for the Azure queue service, when accessed
by a large number of clients, can drop to as little as 2
messages per second.

A. Execution Model

Users submit their workflows via a web browser or
dedicated desktop application. The submission is accepted
by the server which creates for it a workflow invocation. The
invocation comprises a sequence of service (block) calls.
These are either core services available within e-Science
Central or custom blocks that the scientist has uploaded.

e-SC supports execution of various service kinds such as
Java, R and Octave. They can be as simple as downloading
data from blob storage or as complex as building a QSAR
model which can consume over one CPU-hour.

System also offers control blocks that can initiate
subsequent workflow invocations, and so create invocation
chains, trees or even loops. Importantly, workflow
invocations are completely independent of each other and
may be processed by any of the workflow engines.

1) Dispatch policy: All created workflow invocations
are sent to a single message queue from which they are
acquired by the engines. Adoption of the work-stealing
approach rather than explicit task scheduling, better fits the
cloud platforms for at least two reasons. First, worker nodes
may be restarted or taken offline anytime during their
operation. In Windows Azure this may be caused by service
healing or automatic upgrade of the OS. Second, the global
invocations queue facilitates adding nodes to and removing
them from the resource pool. There is no need for
rescheduling tasks when the pool size changes.

2) Workflow execution: A workflow engine acquires
one or more workflow invocation messages from the queue.
The number of messages retrieved at once depends on the
size of the client consumer window and the size of
messages. The client-side buffering is a common
mechanism implemented by JMS providers and an indirect
method to achieve task bundling.

When a workflow invocation is executed, the engine runs
the included blocks one by one according to the structure of
the flow of data. The definition of a block contains not only
the declaration of input ports which the block requires to run
but also software dependencies that must be met to start it.
For example, a number of blocks in our QSAR scenario need
the R runtime environment, and so this requirement is
expressed in the block descriptor as a library dependency.
Before running a service, any unavailable libraries are
downloaded from the server on demand.

Once all software dependencies are met, the engine starts
executing a service. To improve security and reliability every
block execution involves creation of a dedicated process in
the operating system. In the case of Java blocks it is a JVM
process, while for R blocks R runtime environment is started.

The overall result of a workflow invocation is sent back
to the server as a simple status message (success or failure).
Additionally, the server creates for each invocation a
dedicated folder where all invocation specific data may be
stored; to transfer them e-SC offers a number of I/O blocks.

3) Resource acquisition and release: At this stage work
we assumed that engines are running in the cloud before
users initiate their workflows. A mechanism for adaptive
resource provisioning is left for the future work.

B. Workflow Engines in the Cloud

When moving the system to the cloud, our main concern
was on improving its performance while increasing the
number of running workflow engines. Three aspects of the
engine operation were important in this respect.

Firstly, as the engine is capable of resolving software
dependencies automatically, we found that a lot of QSAR

blocks‘ code can be extracted in the form of shared libraries.
This helped to minimize the amount of data transferred
between engines and the server, and increased capacity of the
system, i.e. the number of engines the server could handle.

To further limit communication between the engines and
the server we altered the way progress data about workflow
execution is reported. By design, the engines send back to
the server progress and status information of each service
invocation they process; users use this to follow the current
state of workflow execution. However, with the growing
number of engines the amount of data transferred grew
quickly and caused overload of the server. To improve the
capacity and performance of the system we added options to
minimize the data transferred. Users can decide whether they
need additional information from each block. They also can
decide to remove the information completely after the
successful completion of a workflow invocation. The former
enables the number of engines running in parallel to be
increased. The latter allows for high performance to be
sustained even if a large number of invocations are flowing
through the system. Still, if more information is needed, e.g.
for debugging purposes, workflows can be configured to
retain that for the cost of lower overall performance.

Thirdly, we were able to improve processing speed by
running many concurrent workflow invocations in the same
engine. The workflow engine processes each invocation
using a single execution thread that runs blocks one by one.
This better fits a common structure of a dataflow as most of
the services depend on just one predecessor or a very small
number of preceding blocks. Nonetheless, sometimes the
single-threaded execution might introduce underutilization of
resources. We observed that in the case of workflows with
many I/O-bound blocks.

To overcome this limitation the engine has been extended
to accept multiple workflow invocations at once, each
running in a separate thread. For our QSAR scenario the best
CPU utilization on a single-core worker node was achieved
with engines running up to four invocations concurrently.

C. Modeling QSAR Workflows

To model our QSAR scenario we built 12 workflows
combined in a graph structure shown in Fig. 4. The
workflow design corresponds to the QSAR process presented
earlier in Section 2. Once the input data is uploaded into the
e-SC data repository, a user can initiate QSAR calculation by
invoking the top level workflow. For every input dataset the
workflow initiates a single invocation of the prepare
descriptors workflow which includes splitting the data
between the train and test sets, and calculating and selecting
descriptors. Afterwards a number of build and cross-validate
workflows is invoked. These workflows consist of model
building and validation algorithms taken from the Discovery
Bus. As the linear model builder may output one or two
models, the cross-validation of linear models has been
excluded to a separate workflow. Finally, analysis of cross-
validation and model testing are performed. The testing
workflows store models together with their metrics in the
Azure blob store, so they can be browsed and used for
prediction by a separate application.

Top level workflow

Prepare descriptors

Build
L-m

Build and
cross-validate

NN-m

Build and
cross-validate

PLS-m

Build and
cross-validate

RPart-m

Analyse cross-validation

cross-validate
L-m

Test L-m Test NN-m Test PLS-m Test RPart-m

1
n

1

n n n n

1
n

1 1 1

1

1

1 1 1 1

1

Figure 4. The design of the QSAR scenario workflow.

According to the workflow design, all invocations form a
large tree; note that the quantifiers at the arrow ends are 1–1
and 1–n, which means there is no merge step in this scenario.
The number of nodes and leaves in the tree varies depending
on the actual input data. For example, the prepare descriptors
workflow may produce from four to seven feature sets each
of which needs to be processed by the following model
building workflows. Altogether a single input dataset
generates from about 60 to 105 workflow invocations which
result in around 1000–1700 block executions.

When designing QSAR workflows, we considered the
fact that the basic unit of work in e-SC is a workflow
invocation rather than a block execution. Therefore, by
combining many short running blocks into a single workflow
we were able to reduce communication overheads in
runtime. This seems to be one of the important
improvements over the Discovery Bus. It is also unlike many
other approaches such as Pegasus, Falcon and Hadoop,
which operate on a task/operation level. To minimize
overheads related with running many short tasks they need to
group them together via task bundling [8] or task clustering
[1]. Instead, a workflow, being a logical unit designed by
user, creates a natural boundary for task collocation so the
need for a separate clustering abstraction is reduced.

Build and
cross-validate

RPart-m

cross-validation

Test RPart-m

n

1

1

1

1

Enumerate
descriptors

Build and cross-
validate a new
kind of model

1
n

Test ?-m

Figure 5. Adding a new model building algorithm can use the enumerate

descriptors workflow to reduce the amount of processing needed.

To facilitate adding and experimenting with new models,
an additional workflow was added to the system (Fig. 5). It
implements one of the algorithm inputs discussed earlier in
Section 2. By allowing model building to be started using
intermediate data, users can avoid running the time
consuming prepare descriptors workflow.

IV. EVALUATION

The evaluation of the presented system was run in the
Windows Azure platform located in the Western Europe data
centre. The server was hosted in two extra large Azure VM
instances (2 quad-core AMD Opteron 2.1 GHz, 14 GB RAM
each). Workflow engines were deployed in 1–200 small
instance worker role nodes (a single core CPU, 1.75 GB
RAM each).

Input data for the evaluation purposes were selected from
ChEMBLdb (http://www.ebi.ac.uk/chembl) — a database of
bioactive drug-like molecules. Initially, the database was
curated by using only molecules tested against a well
specified biological target and by producing a consistent
physical unit of biological activity. Following this, for
models with the capacity to be highly predictive, only
datasets that contained more than 22 structure-activity values
were selected. In result, 11,351 input datasets comprising
1,697,931 small molecules were prepared. Our future goal is
to produce models for all these input data but for the purpose
of the evaluation just a small subset was used.

Fig. 6 presents the observed speed-up in data processing
in relation to the number of workers. As shown, our QSAR
scenario scales nearly linearly up to 200 worker nodes. The
observed speed-up for 200 workers was 88.2% of the ideal
linear speed-up when compared to 20 workers.

Figure 6. Speed-up in processing QSAR workflows in relation to the

number of worker nodes.

We estimate that the achieved processing speed-up will
allow us to process the whole 8.5 CPU-months input dataset
from ChEMBLdb in less than 35 hours. To the best of our
knowledge, it is much beyond what existing QSAR solutions
are able to provide.

An important step in achieving the presented scalability
was moving almost all data communication from the central
e-SC data repository to the Azure blob store. Just this
increased the limit on the number of nodes for about 50.

100.0% (20)

96.7% (48)

93.6% (94)

93.7% (112)

88.2% (176)

0

50

100

150

200

250

0 50 100 150 200 250

R
el

at
iv

e
p

ro
ce

ss
in

g
ef

fe
ct

iv
en

es
s

Number of processors

ideal

actual

Switching workflow engines to use the Azure storage instead
of e-SC was relatively straightforward. We implemented I/O
blocks that can transfer data to/from the Azure blob store and
changed all e-SC I/O services in the workflows. Importantly,
the changes did not involve any part of the e-SC system but
were merely limited to running new Azure I/O blocks.

To better understand the performance of our system
irrespective of the specific workflow design we conducted a
set of additional tests. The tests were done using the sleep N
workflow which included one or more ―sleep N‖ blocks that
waited a certain number of seconds. We could use that to
simulate workflows of various computational complexity.

The first experiment measured the maximum workflow
invocation rate. This is an important metric directly related to
the maximum system throughput. To estimate the rate we ran
up to 20 thousand ―sleep 0‖ workflows. The maximum rate
achieved was 55 invocations per second with 200 engines.
These results are comparable to systems like Condor,
Condor-J2 and Boinc (2, 22 and 93 tasks per second
respectively) as reported in [8], but below what Falcon can
achieve (from 600 to over 3000 tasks per second with Java
and C executors respectively). However, a natural way to
improve overall processing performance of our system is to
include more than 1 block in a workflow. This is what users
almost always do when designing their analyses anyway.

Therefore, despite the experiment with the ―sleep 0‖
workflow revealed a relatively low throughput, running
workflows with multiple tasks increases that straightaway.
Provided with a sufficiently fast workers and a workflow that
consists of ten tasks, the system can potentially reach 550
tasks per second; figure much closer to Falcon with a single
dispatcher and the Java-based executor.

An additional side-effect of combining tasks within a
single workflow is increase in execution time of workflow
invocations which very positively influences effectiveness of
processing. Fig. 8 shows the effectiveness for different
invocation lengths and different number of worker nodes.
The relative processing effectiveness of n workers (RPEn)
was calculated as: RPEn = T1/(nTn), where Tn denotes time
needed to process workflow invocations by n workers.

Figure 7. Relative processing effectiveness as a function of the number of

worker nodes and invocation length.

As presented in Fig. 8, e-SC with 200 worker nodes
exhibits good effectiveness for invocations at least 32
seconds long. For running times below 8 seconds the
effectiveness drops quickly at around 50 workers showing

that for short invocations the system performs best with no
more than 20 processors.

V. RELATED WORK

QSAR modeling is a well established research field with
over 40 years of history [10]. A number of approaches and
methods to support the modeling exist, yet it is difficult to
find systems that consider processing QSAR on larger scale.

QSAR Workbench [7] is a commercially available web-
based system developed by Accelrys. It can automate and
accelerate QSAR model building by using cluster resources.
The system offers a rich set of tools for data preprocessing,
analysis, descriptor calculating and model building. Similarly
to our use case, the tools can be assembled to build QSAR
modeling workflows using a graphical interface.

However, as there is not much information revealed
regarding the performance of QSAR Workbench, we could
only found that it is able to reduce modeling time from days
to hours. In contrast, we report nearly 180 times processing
speed-up, i.e. months to hours or years to days reduction.

AutoQSAR [13] is a proprietary system developed at
AstraZeneca in collaboration with Accelrys. Its main
purpose is to automatically create, evaluate and maintain
QSAR models. The main idea of the system is similar to the
Discovery Bus — to improve prediction accuracy of models
by updating them with newly acquired data. To calculate
models AutoQSAR employs the Sun Grid Engine platform
[14]. Unfortunately, very limited information about the
design and performance of the system does not allow us to
compare AutoQSAR with our solution.

Apart from systems specialized in QSAR modeling, there
exists a lot of workflow management systems, and high-
throughput, high-performance and many-task computing
platforms which could potentially be used to implement the
QSAR modeling pipeline (for an overview see e.g. [3] and
[9]). The most prominent example of these is Falcon that
implements the many-task computing (MTC) approach [8].
It has been used on systems in the range from clusters to
supercomputers with up to 160 thousand processors, which
proves its excellent processing and scaling capabilities.

Although our system does not scale to the extent Falcon
can do, we believe that it may be interesting for several
reasons. The maximum service invocation rate we achieved
was 300 blocks per second; a figure better than many other
existing solutions. The system offers good effectiveness
when running hundreds of nodes. It can run with over 80%
of ideal effectiveness with 100 and 200 workers when
workflow invocations are longer than 16 and 64 seconds
respectively. And the effectiveness was confirmed running
our QSAR modeling scenario — 88.2% for 200 nodes.

Definitely, a valuable feature of the system is that as the
basic unit of work it uses a workflow rather than task
invocation. Not only does it increase the run time of an
invocation, which improves effectiveness, but also it allows
for fast data transfer between the subsequent services. Unlike
Falcon and other solutions based on task scheduling, blocks
in our system communicate using local disk rather than
shared file system; an important property for cloud-based
systems in which users also pay for network transactions.

0%

20%

40%

60%

80%

100%

1 10 20 50 100 200

R
el

at
iv

e
p

ro
ce

ss
in

g
ef

fe
ct

iv
en

es
s

Number of processors

64 s

16 s

4 s

1 s

VI. CONCLUSIONS AND FUTURE WORK

We presented a fast and scalable way to perform the
exploration of the QSAR model space. The acceleration
achieved is much beyond what existing solutions can offer.
Overall, the cloud computing model is a very good fit for the
presented scenario. After processing of the 11 thousand input
datasets from ChEMBLdb, further efforts with QSAR
modeling will require much less resource. The database is
regularly updated, thus we can extract several hundred new
input datasets every three months. This is less than 10% of
the current database size, and so we will need a fraction of
the resources to process it effectively. Also, the development
of new model building and descriptor selection algorithms
can be tested on a relatively small part of the input sets and
for only the most promising ones the whole input data will
be applied. Importantly, introducing new model building
algorithms can reuse data from previous invocations
reducing the need for large computing resources even more.

Using e-Science Central, we were able to migrate the
existing QSAR modeling pipeline and run it effectively in
the cloud. Meanwhile several important lessons were learnt.

Reducing the amount of data transfers between the server
and the engines was of major impact on scalability and
processing effectiveness. We used the Azure blob store that
proved to be scalable enough to overcome a bottleneck
related to communication with the central e-SC data
repository. Switching to the Azure storage was as simple as
adding to the palette of existing e-SC blocks a few new I/O
services (100–150 lines of Java code each) and changing the
existing I/O blocks in all related workflows.

Moreover, by expressing service software dependencies
we could extract most of QSAR blocks‘ code in the form of
shared libraries. This minimized overheads related to
downloading service code by the engines. Further reductions
in the amount of data transferred were possible by enabling
users to turn off sending blocks‘ status data after completion
of a workflow invocation. Users can decide whether they
need faster execution or more detailed status information.

Finally, e-Science Central uses workflow invocation as
the basic unit of work. Workflows are usually designed to be
a consistent and logical part of the whole scientific analysis.
Therefore, they create a natural boundary for service
collocation which allows improving processing throughput.

The current design of the system reaches scalability
limitation at about 200 worker nodes. Running more workers
causes overload to the data store VM, results in execution
failures and lowers overall system performance. Whilst, for
the QSAR use case 200 nodes gave more than satisfactory
results, in the future we would like to remove this limitation.

The presented work may be further extended to address a
number of interesting research venues. We plan to improve
the process of QSAR modeling by employing more model
building algorithms. Also, despite that for our QSAR use
case the processing performance is more than sufficient, we
want to further improve the scalability and effectiveness of
the system. Finally, we want to investigate methods for
adaptive allocation of cloud resources in order to decrease

costs related to system operation while giving users ability to
run their experiments with maximum speed if needed.

ACKNOWLEDGMENT

This work was supported by EU FP7 project VENUS-C.
We would particularly like to thank Juan Vargas and Dennis
Gannon and Stian Thorgersen for their support to the project.

REFERENCES

[1] S. Callaghan et al., ―Scaling up workflow-based
applications,‖ Journal of Computer and System Sciences, vol.
76, no. 6, pp. 428–446, Sep. 2010.

[2] J. Cartmell, S. Enoch, D. Krstajic, and D. E. Leahy,
―Automated QSPR through Competitive Workflow.,‖ Journal
of computer-aided molecular design, vol. 19, no. 11, pp. 821–
833, Nov. 2005.

[3] E. Deelman, D. Gannon, M. Shields, and I. Taylor,
―Workflows and e-Science: An overview of workflow system
features and capabilities,‖ Future Generation Computer
Systems, vol. 25, no. 5, pp. 528–540, May 2008.

[4] E. X. Esposito, A. J. Hopfinger, and J. D. Madura, ―Methods
for applying the quantitative structure-activity relationship
paradigm.,‖ Methods in molecular biology (Clifton, N.J.), vol.
275, pp. 131–214, Jan. 2004.

[5] C. Hansch, A. Leo, and D. H. Hoekman, Exploring QSAR:
Fundamentals and applications in chemistry and biology.
American Chemical Society, 1995.

[6] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey,
―Early Observations on the Performance of Windows Azure,‖
in High Performance Distributed Computing, 2010, pp. 367–
376.

[7] C. Luscombe, ―QSAR Workbench: Guided QSAR Model
Building for nonExperts.‖ The UKQSAR and
ChemoInformatics Group, Cambridge, UK, 2011,
presentation, available on-line: http://www.ukqsar.org/slides/
Nov2011_Luscombe.pdf (accessed 2/Mar/2012).

[8] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,
―Falkon: a Fast and Light-weight tasK executiON
framework,‖ in Proceedings of the 2007 ACM/IEEE
conference on Supercomputing — SC‘07, 2007, pp. 1–12.

[9] I. Raicu et al., ―Middleware support for many-task
computing,‖ Cluster Computing, vol. 13, no. 3, pp. 291–314,
Apr. 2010.

[10] A. Tropsha, ―QSAR Modeling and QSAR Based Virtual
Screening, Complexity and Challenges of Modern,‖ in
Encyclopedia of Complexity and Systems Science, R. A.
Meyers, Ed. 2009, pp. 7071–7088.

[11] P. Watson et al., ―Accelerating Chemical Property Prediction
with Cloud Computing.‖ Microsoft Research eScience
Workshop, Berkeley, CA, US, 2010, presentation, available
on-line: http://www.esciencecentral.co.uk/docs/2010-10.MSF
Te-Science-slides.pdf (accessed 2/Mar/2012).

[12] P. Watson, H. Hiden, and S. Woodman, ―e-Science Central
for CARMEN: science as a service,‖ Concurrency and
Computation: Practice and Experience, vol. 22, no. 17, pp.
2369–2380, Dec. 2010.

[13] D. J. Wood, D. Buttar, J. G. Cumming, A. M. Davis, U.
Norinder, and S. L. Rodgers, ―Automated QSAR with a
Hierarchy of Global and Local Models,‖ Molecular
Informatics, pp. 960–972, Nov. 2011.

[14] D. Wood, A. Davis, and S. Rodgers, ―AutoQSAR Automation
of the QSAR Modelling Process,‖ Presentation at UK-QSAR
– Autumn Meeting 2011. The UKQSAR and
ChemoInformatics Group, Cambridge, UK, 2011,
presentation, available on-line: http://www.ukqsar.org/slides/
Nov2011_Wood.pdf (accessed 2/Mar/2012).

