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Abstract—Quantitative Structure-Activity Relationships 

(QSAR) is a method to create models that can predict certain 

properties of compounds. Because of the importance of QSAR 

in designing new drugs, ability to accelerate this process 

becomes crucial. One way to achieve that is to be able to 

quickly explore the QSAR model space in the search for the 

best models. The cloud computing paradigm very well fits such 

a scenario, thus we designed and implemented a tool for 

exploration of the model space using our e-Science Central 

platform supported by the cloud. We report on scalability 

achieved and experiences gained when designing this system. 

The acceleration obtained is much beyond what existing QSAR 

solutions can offer, which opens potential for new interesting 

research in this area. 

Quantitative Structure-Activity Relationships, machine 

learning, cloud computing, scalability, performance evaluation 

I.  INTRODUCTION 

In the search for new anti-cancer therapies, the family of 
kinase enzymes are important biological targets since many 
are intimately connected to cell division and other important 
maintenance functions. The scientists use a method known as 
Quantitative Structure-Activity Relationships (QSAR) [5] to 
mine experimental data for patterns that relate the chemical 
structure of a drug to its kinase activity. If a successful 
QSAR model can be derived from the experimental data then 
that model can be used to focus new chemical synthesis, and 
by creating QSAR models for more than one set of results, 
for different kinases, the new drugs can be designed to be 
selective. 

Because of the importance of QSAR, the Chemists 
behind our collaboration had developed the Discovery Bus 
[2] — an infrastructure to automatically create new and 
update existing QSAR models as new data or modeling 
techniques became available. The Discovery Bus could 
automatically generate hundreds of models for each property 
type, and select the best and most valid. This enabled 
creating a library of predictive models used to design better, 
safer, more environmentally benign drugs, while at the same 
time reducing the need for animal experimentation. 

In our previous work — project Junior — we used the 
Windows Azure cloud platform to support the Discovery 
Bus and reduce the time taken to generate QSAR models 
from years to weeks [11]. In total, 750,000 new QSAR 
models were generated and made freely available for anyone 
to use. Before this project it was thought that it would be 

impossible to generate these models: the chemists estimated 
that it would take 5 years to process the vast amounts of 
chemical activity data that had become available. 

Although the achieved acceleration in processing was 
satisfactory, the main problem we encountered was limited 
scalability of the system. We decided, therefore, to 
reengineer the approach adopted previously and build a 
QSAR modeling engine which can be scaled effectively to 
hundreds of machines. 

The main contribution of this paper is to report on 
scalability achieved and experiences gained with designing a 
system for fast prediction of chemical activity in the cloud. 
In particular, we would like to present a scalable workflow 
enactment system based on e-Science Central which allows 
us to use up to 200 processors with nearly 90% of ideal 
effectiveness. Also, we discuss the key steps that made 
running our system in the cloud effective. 

II. THE APPLICATION: QSAR AND THE DISCOVERY BUS 

The underlying theory of QSAR is that activity, such as 
reactivity or biological response, is related to molecular 
structure of compounds. Thus, molecules with similar 
structure will have similar activities. For example, as the 
number of carbons in alkanes increases, so does their boiling 
point; this rule can be used to predict the boiling points of 
higher alkanes. QSAR aims to build models that can 
correlate the structure with activity. Fig. 1 shows the general 
methodology of creating and using QSAR models [4]. 
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Figure 1.  The general process of creating and using QSAR models. 

The approach taken by the Discovery Bus to generating 
predictive models follows the process presented above. 
However, to optimize it and facilitate its extensibility of the 
framework some important details has been proposed. 
Therefore, the actual QSAR process adopted by the 
Discovery Bus is shown in Fig. 2. 



The main path of the process is initiated by a user that 
provides a number of datasets each of which consists of a set 
of compounds and their corresponding activity. In the first 
step each dataset is split into two: a training set that will be 
used to build models, and a test set used to validate them. 
Next, for each chemical structure, a set of molecular 
descriptors is calculated (an example is molecular weight). 
These are then filtered to remove redundant or irrelevant 
features so as to speed up learning and increase the 
generalisability of the results. Next, compounds with related 
activity and descriptors are used as input by a set of model-
building algorithms. The system implemented 4 algorithms 
for building models, including neural networks, partial least 
squares, multiple linear regression and classification trees. 
The best models from each algorithm are selected, based on 
their performance on the test data, and placed in the database 
for use by users wishing to predict properties of chemicals. 

Importantly, the loop presented in Fig. 1 has been 
unwound in the actual implementation of the Discovery Bus. 
The descriptor selection algorithm produces a number of 
descriptor sets at once. Then each of them is used to initiate a 
new processing branch with model building as the next step. 
Similarly, the ‗build models‘ block in the diagram starts a 
new processing branch for each model builder registered in 
the system. This branching in data processing can easily be 
exploited to parallelize the execution. 
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Figure 2.  The QSAR process as adopted by the Discovery Bus. 

As there are various methods of calculating and selecting 
descriptors, and building prediction models, the Discovery 
Bus allowed users to add new algorithms to the system (the 
‗algorithm inputs‘ in Fig. 2). Adding an algorithm would 
reinitiate the QSAR process starting from the intermediate 
step for which the algorithm was provided and using 
―historic‖ data collected in the preceding steps. 

III. CLOUD IMPLEMENTATION 

Whilst the Discovery Bus was the basis for the overall 
design of the QSAR modeling process, to implement it we 
used e-Science Central — a cloud-based workflow 

enactment system. e-SC uniquely combines three recent 
trends in computing science : (1) Software-as-a-Service — to 
allow scientists to use the system from a web browser, 
upload and analyse data and share data and services, all with 
no need for any installation and deployment by a user; (2) 
Cloud Computing — to provide resources that scale with the 
number of users, volume of data and complexity of analysis; 
(3) Social Networking — to support sharing of data and 
services and to facilitate user collaboration [12]. With this 
combination scientists can conveniently design, run and 
share their analyses on a large scale while being freed from 
most of the burden of software maintenance. 

The architecture of our cloud-based solution is presented 
in Fig. 3. For evaluation purposes we used Windows Azure 
to run a complete copy of the publicly available e-SC system 
(see http://www.esciencecentral.co.uk). The central server 
executes in two extra large Azure VM instances — one hosts 
e-SC frontend on top of a JEE application server while the 
other runs the database engine. 
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Figure 3.  The architecture of e-Science Central in the cloud. 

Separately, a number of e-SC workflow engines is 
running, each in its own Azure worker role node. The 
engines are connected with the server by a JMS message 
queue and the REST-based API. Despite Azure offers its 
own queuing service, to preserve as much consistency with 
the original e-SC implementation as possible we did not 
decide to switch the queue services. There is no obvious 
benefit for such a change. Conversely, as shown by Hill et al. 
[6], reading rates for the Azure queue service, when accessed 
by a large number of clients, can drop to as little as 2 
messages per second. 

A. Execution Model 

Users submit their workflows via a web browser or 
dedicated desktop application. The submission is accepted 
by the server which creates for it a workflow invocation. The 
invocation comprises a sequence of service (block) calls. 
These are either core services available within e-Science 
Central or custom blocks that the scientist has uploaded. 



e-SC supports execution of various service kinds such as 
Java, R and Octave. They can be as simple as downloading 
data from blob storage or as complex as building a QSAR 
model which can consume over one CPU-hour. 

System also offers control blocks that can initiate 
subsequent workflow invocations, and so create invocation 
chains, trees or even loops. Importantly, workflow 
invocations are completely independent of each other and 
may be processed by any of the workflow engines. 

1) Dispatch policy: All created workflow invocations 
are sent to a single message queue from which they are 
acquired by the engines. Adoption of the work-stealing 
approach rather than explicit task scheduling, better fits the 
cloud platforms for at least two reasons. First, worker nodes 
may be restarted or taken offline anytime during their 
operation. In Windows Azure this may be caused by service 
healing or automatic upgrade of the OS. Second, the global 
invocations queue facilitates adding nodes to and removing 
them from the resource pool. There is no need for 
rescheduling tasks when the pool size changes. 

2) Workflow execution: A workflow engine acquires 
one or more workflow invocation messages from the queue. 
The number of messages retrieved at once depends on the 
size of the client consumer window and the size of 
messages. The client-side buffering is a common 
mechanism implemented by JMS providers and an indirect 
method to achieve task bundling. 

When a workflow invocation is executed, the engine runs 
the included blocks one by one according to the structure of 
the flow of data. The definition of a block contains not only 
the declaration of input ports which the block requires to run 
but also software dependencies that must be met to start it. 
For example, a number of blocks in our QSAR scenario need 
the R runtime environment, and so this requirement is 
expressed in the block descriptor as a library dependency. 
Before running a service, any unavailable libraries are 
downloaded from the server on demand. 

Once all software dependencies are met, the engine starts 
executing a service. To improve security and reliability every 
block execution involves creation of a dedicated process in 
the operating system. In the case of Java blocks it is a JVM 
process, while for R blocks R runtime environment is started. 

The overall result of a workflow invocation is sent back 
to the server as a simple status message (success or failure). 
Additionally, the server creates for each invocation a 
dedicated folder where all invocation specific data may be 
stored; to transfer them e-SC offers a number of I/O blocks. 

3) Resource acquisition and release: At this stage work 
we assumed that engines are running in the cloud before 
users initiate their workflows. A mechanism for adaptive 
resource provisioning is left for the future work. 

B. Workflow Engines in the Cloud 

When moving the system to the cloud, our main concern 
was on improving its performance while increasing the 
number of running workflow engines. Three aspects of the 
engine operation were important in this respect. 

Firstly, as the engine is capable of resolving software 
dependencies automatically, we found that a lot of QSAR 

blocks‘ code can be extracted in the form of shared libraries. 
This helped to minimize the amount of data transferred 
between engines and the server, and increased capacity of the 
system, i.e. the number of engines the server could handle. 

To further limit communication between the engines and 
the server we altered the way progress data about workflow 
execution is reported. By design, the engines send back to 
the server progress and status information of each service 
invocation they process; users use this to follow the current 
state of workflow execution. However, with the growing 
number of engines the amount of data transferred grew 
quickly and caused overload of the server. To improve the 
capacity and performance of the system we added options to 
minimize the data transferred. Users can decide whether they 
need additional information from each block. They also can 
decide to remove the information completely after the 
successful completion of a workflow invocation. The former 
enables the number of engines running in parallel to be 
increased. The latter allows for high performance to be 
sustained even if a large number of invocations are flowing 
through the system. Still, if more information is needed, e.g. 
for debugging purposes, workflows can be configured to 
retain that for the cost of lower overall performance.  

Thirdly, we were able to improve processing speed by 
running many concurrent workflow invocations in the same 
engine. The workflow engine processes each invocation 
using a single execution thread that runs blocks one by one. 
This better fits a common structure of a dataflow as most of 
the services depend on just one predecessor or a very small 
number of preceding blocks. Nonetheless, sometimes the 
single-threaded execution might introduce underutilization of 
resources. We observed that in the case of workflows with 
many I/O-bound blocks. 

To overcome this limitation the engine has been extended 
to accept multiple workflow invocations at once, each 
running in a separate thread. For our QSAR scenario the best 
CPU utilization on a single-core worker node was achieved 
with engines running up to four invocations concurrently. 

C. Modeling QSAR Workflows 

To model our QSAR scenario we built 12 workflows 
combined in a graph structure shown in Fig. 4. The 
workflow design corresponds to the QSAR process presented 
earlier in Section 2. Once the input data is uploaded into the 
e-SC data repository, a user can initiate QSAR calculation by 
invoking the top level workflow. For every input dataset the 
workflow initiates a single invocation of the prepare 
descriptors workflow which includes splitting the data 
between the train and test sets, and calculating and selecting 
descriptors. Afterwards a number of build and cross-validate 
workflows is invoked. These workflows consist of model 
building and validation algorithms taken from the Discovery 
Bus. As the linear model builder may output one or two 
models, the cross-validation of linear models has been 
excluded to a separate workflow. Finally, analysis of cross-
validation and model testing are performed. The testing 
workflows store models together with their metrics in the 
Azure blob store, so they can be browsed and used for 
prediction by a separate application. 
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Figure 4.  The design of the QSAR scenario workflow. 

According to the workflow design, all invocations form a 
large tree; note that the quantifiers at the arrow ends are 1–1 
and 1–n, which means there is no merge step in this scenario. 
The number of nodes and leaves in the tree varies depending 
on the actual input data. For example, the prepare descriptors 
workflow may produce from four to seven feature sets each 
of which needs to be processed by the following model 
building workflows. Altogether a single input dataset 
generates from about 60 to 105 workflow invocations which 
result in around 1000–1700 block executions. 

When designing QSAR workflows, we considered the 
fact that the basic unit of work in e-SC is a workflow 
invocation rather than a block execution. Therefore, by 
combining many short running blocks into a single workflow 
we were able to reduce communication overheads in 
runtime. This seems to be one of the important 
improvements over the Discovery Bus. It is also unlike many 
other approaches such as Pegasus, Falcon and Hadoop, 
which operate on a task/operation level. To minimize 
overheads related with running many short tasks they need to 
group them together via task bundling [8] or task clustering 
[1]. Instead, a workflow, being a logical unit designed by 
user, creates a natural boundary for task collocation so the 
need for a separate clustering abstraction is reduced. 
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Figure 5.  Adding a new model building algorithm can use the enumerate 

descriptors workflow to reduce the amount of processing needed. 

To facilitate adding and experimenting with new models, 
an additional workflow was added to the system (Fig. 5). It 
implements one of the algorithm inputs discussed earlier in 
Section 2. By allowing model building to be started using 
intermediate data, users can avoid running the time 
consuming prepare descriptors workflow. 

IV. EVALUATION 

The evaluation of the presented system was run in the 
Windows Azure platform located in the Western Europe data 
centre. The server was hosted in two extra large Azure VM 
instances (2 quad-core AMD Opteron 2.1 GHz, 14 GB RAM 
each). Workflow engines were deployed in 1–200 small 
instance worker role nodes (a single core CPU, 1.75 GB 
RAM each). 

Input data for the evaluation purposes were selected from 
ChEMBLdb (http://www.ebi.ac.uk/chembl) — a database of 
bioactive drug-like molecules. Initially, the database was 
curated by using only molecules tested against a well 
specified biological target and by producing a consistent 
physical unit of biological activity. Following this, for 
models with the capacity to be highly predictive, only 
datasets that contained more than 22 structure-activity values 
were selected. In result, 11,351 input datasets comprising 
1,697,931 small molecules were prepared. Our future goal is 
to produce models for all these input data but for the purpose 
of the evaluation just a small subset was used. 

Fig. 6 presents the observed speed-up in data processing 
in relation to the number of workers. As shown, our QSAR 
scenario scales nearly linearly up to 200 worker nodes. The 
observed speed-up for 200 workers was 88.2% of the ideal 
linear speed-up when compared to 20 workers. 

 
Figure 6.  Speed-up in processing QSAR workflows in relation to the 

number of worker nodes. 

We estimate that the achieved processing speed-up will 
allow us to process the whole 8.5 CPU-months input dataset 
from ChEMBLdb in less than 35 hours. To the best of our 
knowledge, it is much beyond what existing QSAR solutions 
are able to provide. 

An important step in achieving the presented scalability 
was moving almost all data communication from the central 
e-SC data repository to the Azure blob store. Just this 
increased the limit on the number of nodes for about 50. 
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Switching workflow engines to use the Azure storage instead 
of e-SC was relatively straightforward. We implemented I/O 
blocks that can transfer data to/from the Azure blob store and 
changed all e-SC I/O services in the workflows. Importantly, 
the changes did not involve any part of the e-SC system but 
were merely limited to running new Azure I/O blocks. 

To better understand the performance of our system 
irrespective of the specific workflow design we conducted a 
set of additional tests. The tests were done using the sleep N 
workflow which included one or more ―sleep N‖ blocks that 
waited a certain number of seconds. We could use that to 
simulate workflows of various computational complexity. 

The first experiment measured the maximum workflow 
invocation rate. This is an important metric directly related to 
the maximum system throughput. To estimate the rate we ran 
up to 20 thousand ―sleep 0‖ workflows. The maximum rate 
achieved was 55 invocations per second with 200 engines. 
These results are comparable to systems like Condor, 
Condor-J2 and Boinc (2, 22 and 93 tasks per second 
respectively) as reported in [8], but below what Falcon can 
achieve (from 600 to over 3000 tasks per second with Java 
and C executors respectively). However, a natural way to 
improve overall processing performance of our system is to 
include more than 1 block in a workflow. This is what users 
almost always do when designing their analyses anyway. 

Therefore, despite the experiment with the ―sleep 0‖ 
workflow revealed a relatively low throughput, running 
workflows with multiple tasks increases that straightaway. 
Provided with a sufficiently fast workers and a workflow that 
consists of ten tasks, the system can potentially reach 550 
tasks per second; figure much closer to Falcon with a single 
dispatcher and the Java-based executor. 

An additional side-effect of combining tasks within a 
single workflow is increase in execution time of workflow 
invocations which very positively influences effectiveness of 
processing. Fig. 8 shows the effectiveness for different 
invocation lengths and different number of worker nodes. 
The relative processing effectiveness of n workers (RPEn) 
was calculated as: RPEn = T1/(nTn), where Tn denotes time 
needed to process workflow invocations by n workers. 

 
Figure 7.  Relative processing effectiveness as a function of the number of 

worker nodes and invocation length. 

As presented in Fig. 8, e-SC with 200 worker nodes 
exhibits good effectiveness for invocations at least 32 
seconds long. For running times below 8 seconds the 
effectiveness drops quickly at around 50 workers showing 

that for short invocations the system performs best with no 
more than 20 processors. 

V. RELATED WORK 

QSAR modeling is a well established research field with 
over 40 years of history [10]. A number of approaches and 
methods to support the modeling exist, yet it is difficult to 
find systems that consider processing QSAR on larger scale. 

QSAR Workbench [7] is a commercially available web-
based system developed by Accelrys. It can automate and 
accelerate QSAR model building by using cluster resources. 
The system offers a rich set of tools for data preprocessing, 
analysis, descriptor calculating and model building. Similarly 
to our use case, the tools can be assembled to build QSAR 
modeling workflows using a graphical interface. 

However, as there is not much information revealed 
regarding the performance of QSAR Workbench, we could 
only found that it is able to reduce modeling time from days 
to hours. In contrast, we report nearly 180 times processing 
speed-up, i.e. months to hours or years to days reduction. 

AutoQSAR [13] is a proprietary system developed at 
AstraZeneca in collaboration with Accelrys. Its main 
purpose is to automatically create, evaluate and maintain 
QSAR models. The main idea of the system is similar to the 
Discovery Bus — to improve prediction accuracy of models 
by updating them with newly acquired data. To calculate 
models AutoQSAR employs the Sun Grid Engine platform 
[14]. Unfortunately, very limited information about the 
design and performance of the system does not allow us to 
compare AutoQSAR with our solution. 

Apart from systems specialized in QSAR modeling, there 
exists a lot of workflow management systems, and high-
throughput, high-performance and many-task computing 
platforms which could potentially be used to implement the 
QSAR modeling pipeline (for an overview see e.g. [3] and 
[9]). The most prominent example of these is Falcon that 
implements the many-task computing (MTC) approach [8]. 
It has been used on systems in the range from clusters to 
supercomputers with up to 160 thousand processors, which 
proves its excellent processing and scaling capabilities. 

Although our system does not scale to the extent Falcon 
can do, we believe that it may be interesting for several 
reasons. The maximum service invocation rate we achieved 
was 300 blocks per second; a figure better than many other 
existing solutions. The system offers good effectiveness 
when running hundreds of nodes. It can run with over 80% 
of ideal effectiveness with 100 and 200 workers when 
workflow invocations are longer than 16 and 64 seconds 
respectively. And the effectiveness was confirmed running 
our QSAR modeling scenario — 88.2% for 200 nodes.  

Definitely, a valuable feature of the system is that as the 
basic unit of work it uses a workflow rather than task 
invocation. Not only does it increase the run time of an 
invocation, which improves effectiveness, but also it allows 
for fast data transfer between the subsequent services. Unlike 
Falcon and other solutions based on task scheduling, blocks 
in our system communicate using local disk rather than 
shared file system; an important property for cloud-based 
systems in which users also pay for network transactions. 
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VI. CONCLUSIONS AND FUTURE WORK 

We presented a fast and scalable way to perform the 
exploration of the QSAR model space. The acceleration 
achieved is much beyond what existing solutions can offer. 
Overall, the cloud computing model is a very good fit for the 
presented scenario. After processing of the 11 thousand input 
datasets from ChEMBLdb, further efforts with QSAR 
modeling will require much less resource. The database is 
regularly updated, thus we can extract several hundred new 
input datasets every three months. This is less than 10% of 
the current database size, and so we will need a fraction of 
the resources to process it effectively. Also, the development 
of new model building and descriptor selection algorithms 
can be tested on a relatively small part of the input sets and 
for only the most promising ones the whole input data will 
be applied. Importantly, introducing new model building 
algorithms can reuse data from previous invocations 
reducing the need for large computing resources even more.  

Using e-Science Central, we were able to migrate the 
existing QSAR modeling pipeline and run it effectively in 
the cloud. Meanwhile several important lessons were learnt. 

Reducing the amount of data transfers between the server 
and the engines was of major impact on scalability and 
processing effectiveness. We used the Azure blob store that 
proved to be scalable enough to overcome a bottleneck 
related to communication with the central e-SC data 
repository. Switching to the Azure storage was as simple as 
adding to the palette of existing e-SC blocks a few new I/O 
services (100–150 lines of Java code each) and changing the 
existing I/O blocks in all related workflows. 

Moreover, by expressing service software dependencies 
we could extract most of QSAR blocks‘ code in the form of 
shared libraries. This minimized overheads related to 
downloading service code by the engines. Further reductions 
in the amount of data transferred were possible by enabling 
users to turn off sending blocks‘ status data after completion 
of a workflow invocation. Users can decide whether they 
need faster execution or more detailed status information. 

Finally, e-Science Central uses workflow invocation as 
the basic unit of work. Workflows are usually designed to be 
a consistent and logical part of the whole scientific analysis. 
Therefore, they create a natural boundary for service 
collocation which allows improving processing throughput. 

The current design of the system reaches scalability 
limitation at about 200 worker nodes. Running more workers 
causes overload to the data store VM, results in execution 
failures and lowers overall system performance. Whilst, for 
the QSAR use case 200 nodes gave more than satisfactory 
results, in the future we would like to remove this limitation. 

The presented work may be further extended to address a 
number of interesting research venues. We plan to improve 
the process of QSAR modeling by employing more model 
building algorithms. Also, despite that for our QSAR use 
case the processing performance is more than sufficient, we 
want to further improve the scalability and effectiveness of 
the system. Finally, we want to investigate methods for 
adaptive allocation of cloud resources in order to decrease 

costs related to system operation while giving users ability to 
run their experiments with maximum speed if needed. 
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