GMonE: a Complete Approach to Cloud Monitoring

Jesis Montes®*, Alberto Sdnchez’, Bunjamin Memishi®, Maria S. Pérez®, Gabriel
Antoniu?

@CeSViMa, Universidad Politécnica de Madrid,
Parque Tecnolégico UPM, Pozuelo de Alarcon,
Madrid, Spain
bE.TS. de Ingenieria Informdtica, Universidad Rey Juan Carlos,
Campus de Mdstoles, Mdstoles,

Madrid, Spain
¢Facultad de Informdtica, Universidad Politécnica de Madrid,
Campus de Montegancedo, Boadilla del Monte,
Madrid, Spain
4INRIA Rennes
Bretagne Atlantique
Rennes, France

Abstract

The inherent complexity of modern cloud infrastructures has created the need for in-
novative monitoring approaches, as state-of-the-art solutions used for other large-scale
environments do not address specific cloud features. Although cloud monitoring is
nowadays an active research field, a comprehensive study covering all its aspects has
not been presented yet. This paper provides a deep insight into cloud monitoring.
It proposes a unified cloud monitoring taxonomy, based on which it defines a lay-
ered cloud monitoring architecture. To illustrate it, we have implemented GMonE, a
general-purpose cloud monitoring tool which covers all aspects of cloud monitoring
by specifically addressing the needs of modern cloud infrastructures. Furthermore,
we have evaluated the performance, scalability and overhead of GMonE with Yahoo
Cloud Serving Benchmark (YCSB), by using the OpenNebula cloud middleware on
the Grid’5000 experimental testbed. The results of this evaluation demonstrate the
benefits of our approach, surpassing the monitoring performance and capabilities of
cloud monitoring alternatives such as those present in state-of-the-art systems such as
Amazon EC2 and OpenNebula.

Keywords: Cloud computing, monitoring

*Corresponding author
Email addresses: jmontes@cesvima.upm.es (Jesis Montes), alberto.sanchezQurjc.es
(Alberto Sanchez), bmemishi@fi.upm.es (Bunjamin Memishi), mperez@fi.upm.es (Maria S.
Pérez), gabriel.antoniu@inria. fr (Gabriel Antoniu)

Preprint submitted to Elsevier February 15, 2013



1. Introduction

Clouds are inherently complex, due to the large number of resources involved and
the need to fulfill the SLAs (Service Level Agreements)! of different users among other
reasons. One of the key features of clouds is elasticity, which enables the adaptation
of resources to existing tasks at a given moment. Thus, allocating resources to tasks
must be agile and dynamic, which makes this activity even more complex. Among the
approaches addressing this complexity, autonomic computing is one of the best known.
In fact, the combination of cloud and autonomic computing fits very well, because of
the synergies between these two areas [6, 29].

One of the main stages of the autonomic computing process is monitoring. Indeed,
the rest of stages of the MAPE (Monitoring, Analysis, Planning and Execution) loop
[20] largely depends on this first step. According to the granularity and type of mon-
itored information, the efficiency and scope obtained by the application of autonomic
computing differ.

Compared to other large scale environments, clouds have some specific features
such as the use of SLAs, elasticity or virtualization. The monitoring needs of the cloud
user differ from those of the CSP (Cloud Service Provider). Moreover, monitoring
virtual systems and monitoring more traditional physical systems usually have different
requirements. Cloud monitoring strongly depends on the following aspects, among
others:

e The cloud service model, that is, the kind of services to be provided, i.e, In-
frastructure as a Service (laaS), Platform as a Service (PaaS) or Software as a
Service (SaasS).

e The intended use of the information produced, e.g. client side feedback, internal
system management, service provisioning accounting, etc.

e The initial source of monitoring, e.g. physical resources, virtual machines, soft-
ware applications, etc.

To address these cloud-specific features, in recent years different cloud monitoring
tools have been presented. These tools either adapt traditional distributed monitoring
techniques [44], extend existing cloud platforms [2, 35] or propose new alternatives
[25, 32]. However, each of these cloud monitoring tools is focused on certain specific
aspects of cloud operation, providing only a partial solution for the cloud monitoring
problem. In consequence, covering all aspects of cloud monitoring would require a
combination of several monitoring tools, often leading to undesired redundancy and
system overhead.

The main contribution of this paper is presenting a general-purpose cloud monitor-
ing framework, covering all different cloud monitoring scenarios. This is an important

TA SLA is the part of a service contract where the specific characteristics of the service being provided
are formally defined. In Cloud systems, a SLA determines the service requirements, i.e the service level, that
have to be guaranteed by the cloud service provider in order to fulfill a client’s cloud service provisioning
contract.



step forward in cloud monitoring, setting the basis for an optimal cloud monitoring
solution. To fulfill this objective we have performed the following steps:

1. We have designed a comprehensive cloud monitoring taxonomy. This allows us
to determine what cloud monitoring scenarios exist, and what are their character-
istics. The development of this taxonomy is based on the study of previous cloud
monitoring works, trying to combine all existing ideas in a unified proposal.

2. According to this taxonomy, we have defined a general-purpose, complete cloud
monitoring architecture. This serves as the architectural basis for the develop-
ment of advanced cloud monitoring tools, capable of addressing the needs of
modern cloud environments.

3. Finally, based on the defined architecture, we have developed a general-purpose
cloud monitoring tool called GMonE (Global Monitoring systEm), applicable
to all areas of cloud monitoring. The experimental validation, using Grid’5000
experimental testbed [1], proves the benefits of GMonE in a large-scale cloud
environment, including high performance, low overhead, scalability and elastic-
ity. Moreover, these results show that GMonE performs significantly better than
commonly used alternatives, such as Amazon EC2 [3] and OpenNebula [36]
monitoring tools [2, 35], in terms of monitoring flexibility and time resolution.

The subsequent sections of this paper are organized as follows: Section 2 discusses
related work. Section 3 represents our cloud monitoring taxonomy, discussing possible
types of cloud monitoring and their requirements. Section 4 introduces a layered cloud
monitoring architecture that fulfills the requirements detected in the previous section.
Section 5 describes the implementation of this architecture, called GMonE. Section 6
presents the evaluation of our proposal. Finally, Section 7 summarizes our conclusions
and describes future work.

2. Related Work

Several studies have attempted to analyze and define the basic concepts related to
large scale distributed systems monitoring in general, and cloud monitoring in particu-
lar. Spring [47, 48] proposes a top-down analysis of cloud monitoring: it distinguishes
seven cloud layers and identifies their respective monitoring requirements. However,
the analysis is presented mainly from the point of view of the CSP, without consid-
ering the specific needs of cloud clients. Gonzalez, Muifioz and Maifia [17] propose a
multi-layer monitoring architecture for clouds based on a similar analysis. Their study
is more focused on the virtualization aspects of common cloud systems and less con-
cerned with physical and low-level software resources and client requirements.

One of the most important uses of system monitoring in cloud environments is
SLA supervision. In most commercial cloud infrastructures service level agreements
determine the relationship between client and CSP, and system behavior has to be con-
tinuously monitored in order to assure these agreements are fulfilled. Several initiatives
have tried to define the mechanisms by which these agreements are established, such
as WS-Agreement [5] and WSLA [26]. The SLA@SOI project [46] has taken this a



step further, trying to research, engineer and demonstrate technologies that can embed
SLA-aware infrastructures into the service economy. When establishing and guaran-
teeing SLAs, monitoring tools play the key role of translating system-specific, often
low-level behavior metrics (CPU load, network traffic, storage usage and so on) into
SLA-related terms, i.e. information that can be understood in the same terms the SLA is
defined. Trying to bride this gap, Emeakaroha et al. [12] present a framework for man-
aging the mappings of the Low-level resource Metrics to High-level SLAs (LoM2HiS
framework). Also addressing the issue of SLA-oriented monitoring, in [11, 13] an
application-side cloud monitoring architecture is defined, designed to detect SLA vio-
lations.

From a technological point of view, monitoring information in distributed systems
has successfully been addressed through different approaches and tools. For instance,
Ganglia [28] is a widely used monitoring system for high-performance computing sys-
tems, such as heterogeneous clusters or grids, thanks to its robustness and successful
deployment on various combinations of hardware architectures and operating systems.
Ganglia is, however, not intended to be used for monitoring virtual resources, which is a
major limitation in the cloud context. Nevertheless, it can be combined with other tools
to this purpose. As an example, sFlow [44] provides an industry standard technology
for monitoring large scale data centers, including cloud environments with virtualiza-
tion features. sFlow has used Ganglia for monitoring both Java virtual machines and
virtual machine pools. Although such a setting is possible, the main goal of sFlow is
to support monitoring for high-speed switched networks.

Nagios [32] is an integral solution for monitoring an entire IT infrastructure. Al-
though its goal is to provide monitoring information for large-scale systems, this ap-
proach does not deal with the dynamism of virtual environments. The same limitation
is exhibited by other well known systems, such as MonALISA [33] or GridICE [4].
Both approaches provide good results on grid platforms, but do not address the dif-
ficulties raised by virtual resources. The TIMACS project [52] aims at reducing the
complexity of the manual administration of computing systems by realizing a frame-
work for management of very large computing systems, which includes efficient tools
for scalable low level system monitoring. This project incorporates data aggregation
and analysis, improving system behavior understanding, but it is focused on low level
resources and therefore is not designed to address high-level, cloud-specific monitoring
issues.

Some commercial tools have been widely used in large scale environments. Among
the most famous tools are IBM Tivoli Monitoring [22] and HP OpenView [19]. These
solutions are oriented to optimize the performance and availability of IT infrastructures,
focusing again only on the physical resources.

Closer to our approach is Lattice [8], a monitoring framework for virtual networks.
This framework uses data sources and probes to collect various monitoring data both
for physical and virtual machines. In our approach we also provide such a feature by
enabling the user to define plug-ins. However, we take a step further by providing a
double vision including both the client’s and the cloud provider’s respective visions.

Commercial cloud solutions often make use of their own monitoring systems. How-
ever, in general these systems have limited functionality, providing only a fraction of
the available information to cloud users. Examples of these monitoring systems are



Amazon CloudWatch [2] or OpenNebula Monitoring System [35]. A few other moni-
toring tools are described in http://www.monitortools.com/cloud/.

In contrast to these state-of-the-art approaches mostly focusing on specific issues
in cloud monitoring, our main goal is to present a general-purpose cloud monitoring
framework, covering all different cloud monitoring scenarios. After setting the theo-
retical basis of our problem analysis and proposal in Section 3, Section 6.1 (as a part of
our system evaluation) presents a thorough feature study where our proposed system is
compared to the above-mentioned cloud monitoring tools.

3. Cloud Monitoring

There are two main ways how system monitoring and monitoring information can
be studied: i) what is being monitored (i.e. what part of the system) and ii) what is
the monitoring information intended for. The former determines what the monitoring
information obtained describes (e.g. system load, application usage, etc.) and the
latter the way this information is provided (i.e. what specific parameters and how they
are presented). Concerning cloud monitoring, we call the first one monitoring level
and the second one monitoring vision. Our proposed cloud monitoring taxonomy
combines both monitoring level and vision in a unified, generic model. The different
aspects of this model are described in detail in the following Subsections.

3.1. Cloud monitoring level

Most cloud definitions include a series of system levels [14, 30, 53]. The exact
number of levels varies from definition to definition (usually between 3 and 5), but all
cloud models share the same basic characteristics. A typical cloud architecture would
include the following levels:

e Server: These are computer hardware and/or computer software products that
are specifically designed for the delivery of cloud services, including multi-core
processors, cloud-specific operating systems and combined offerings.

e Infrastructure: Cloud infrastructure services or Infrastructure as a Service (IaaS)
deliver computer infrastructure, typically a platform virtualization environment,
as a service.

e Platform: Cloud platform services or Platform as a Service (PaaS) deliver a
computing platform and/or solution stack as a service, often consuming cloud
infrastructure and sustaining cloud applications.

e Application: Cloud application services or Software as a Service (SaaS) deliver
software as a service over the Internet, eliminating the need to install and run the
application on the customer’s own computers and simplifying maintenance and
support.

On the one hand, the lowest level (server) contains the machines, network links
and other devices that the cloud is composed of. It contains the physical elements, and



it can be considered as the cloud’s physical system. On the other hand, the remain-
ing three levels (infrastructure, platform and application) contain the virtual resources
being provided to the user, and they can be considered as the cloud’s virtual sys-
tem. When considering monitoring, this differentiation between the cloud’s physical
and virtual systems is crucial, since the monitoring techniques required in each case
are radically different. Cloud physical systems are usually general purpose data cen-
ters made of clusters, and therefore they can be monitored using traditional distributed
system techniques. Virtual systems are, however, a completely different environment.
Since they are mostly based on virtualization and software abstraction, they require ad-
vanced software monitoring techniques, code instrumentation, etc. Therefore physical
system monitoring is basically a hardware and low-level software (operating system)
monitoring problem, and virtual system monitoring is a high-level software monitoring
issue. Additionally, each virtual system level (infrastructure, platform and application)
presents different characteristics, so monitoring techniques have to be adapted for each
case.

3.2. Cloud monitoring vision

Cloud monitoring can provide information about aspects of system performance,
behavior, evolution, etc. The way this information is understood, analyzed and used
depends not only on what level of the system is being monitored (server, infrastructure,
platform or application) but also who is obtaining this information and to what purpose.
For instance, in a typical laas$ cloud such as Amazon EC2, clients can monitor the state
of their virtual machine instances in order to know about system load, memory usage
and performance. In the same laaS infrastructure, the CSP would need to monitor
all VM instances, continuously making sure SLA restrictions are satisfied. The CSP
would also require monitoring information from the server level, in order to effectively
control overall system load, VM allocation and migration, etc. Therefore, the point of
view of the entity that obtains the monitoring information (client, management system,
CSP, etc.) and its role in the system determine what kind of information has to be
provided. Different entities require different monitoring data and have different visions
of the cloud. From a general perspective, two main cloud monitoring visions can be
distinguished:

e Client-side monitoring vision: From this point of view, the cloud is regarded as
an abstract entity, capable of providing a specific set of computational services
(the typical opaque cloud seen in most cloud computing illustrations). Monitor-
ing information of this type provides an abstract description of the cloud service,
expressed in the same terms as the service provisioning relationship is estab-
lished between the client and the cloud (SLAs, contracts, etc.). This monitoring
information helps the client to understand the characteristics of the services re-
ceived and optimize their use.

e Cloud-service-provider-side monitoring vision: From this point of view, the
cloud is regarded as a complex distributed infrastructure, with many hardware
and software elements combined together to provide a specific set of services.
Monitoring information of this type gives the CSP knowledge about the internal



CSP-side
monitoring

Client-side
monitoring

The Cloud

Virtual System

éCIient-orie ed Virtual systemé

Application

Clients

Monitoring level — »
3
o
3
=
o
=
3
(o]

Physical System Cloud

system Sovice
monitoring

Server

Monitoring vision

\/

The specific source of monitoring info. depends on whether the system
provides laaS, PaaS or SaaS

Figure 1: Cloud monitoring: level and vision.

functioning of the different cloud elements, its state, performance, etc. This
information serves as an internal status control in order to guarantee SLAs and
other service restrictions. It can be also used as behavior and performance log,
to optimize system management and use of resources.

These two complementary visions address different cloud monitoring requirements,
creating differentiated views of the system behavior and evolution. In order to clarify
the difference between these two visions, we can consider the following scenario: we
have a typical hybrid cloud, combining the use of a private cloud (for example an
OpenNebula-based cloud) together with a public cloud (for example an Amazon EC2-
based cloud). As cloud administrators, we need to monitor the entire infrastructure.
Monitoring the private cloud is performed from a cloud-services-provider-side mon-
itoring perspective, since we have total control of the private cloud. However, it is
not possible to monitor the public cloud in the same way. We can only monitor it as
clients, since we are just Amazon EC2 clients and we are limited to the use of the Ama-
zon monitoring tool. This tool provides only client-oriented monitoring information,
and therefore a client-side monitoring vision.

3.3. Combining cloud monitoring level and vision
As we have mentioned in previous sections, there are many aspects to consider
when you monitor a cloud. Usually cloud monitoring tools are not aware of these dif-



ferent types of monitoring than can be performed on a cloud system. Indeed, one of
our objectives is to provide an insight into cloud monitoring, defining a model combin-
ing both monitoring level and vision. Figure 1 shows our proposed cloud monitoring
model, combining these two aspects in a generic cloud monitoring scenario and includ-
ing all possible types and sources of monitoring information. In this model we have
identified three basic types of cloud monitoring, depending on the specific cloud level
and vision being considered: client-oriented monitoring, virtual system monitoring and
physical system monitoring.

First, client-oriented monitoring refers to all the monitoring information provided
to the cloud’s users. This is directly linked to the client-side monitoring vision, since
it is concerned with all aspects related to the client operation of the system. From
a monitoring level perspective, it relates to the virtual system levels, since these are
the virtual cloud resources being provided to the client, in the form of infrastructure
(Iaa¥), platform (PaaS) or application (SaaS). The specific virtual system level con-
cerned depends on the specific service being provided by the cloud, and this finally
determines the specific nature of the monitoring information generated. Examples of
client-oriented monitoring can be:

e In an JaaS cloud, clients can obtain information about the status (for instance
CPU or memory) of their VM instances, consumed time and cost per instance,
etc.

e In a PaaS cloud, clients can obtain information about the usage of platform re-
sources available (for instance hosting space, network traffic or development
tools), the impact of this usage in costs and billing, etc.

e In a SaaS cloud, clients can obtain information about the status and usage of
the cloud applications and associated resources, services costs, etc. The nature
of these parameters varies significantly depending on the actual software being
provided as a service. Some examples are: in a virtual disk service (e.g. Dropbox
[10]), clients can monitor storage capacity, file status, availability and synchro-
nization. In a collaborative office suite (e.g. Google Docs [18]), clients can
monitor file properties, authorship, access history, concurrent/sequential modifi-
cations and so on. In an on-line survey application (e.g. SurveyMonkey [51]),
clients can monitor their survey evolution, temporary results, etc.

Second, virtual system monitoring refers to all monitoring information provided
to the CSP related to the behavior, performance and evolution of the virtual system.
In terms of monitoring vision, this is cloud-service-provider-side monitoring, since it
deals with the internal information of the service being provided. From a cloud level
point of view, it refers to the virtual system levels. Virtual system monitoring and client-
oriented monitoring are strongly related, since they both refer to the behavior, status
and evolution of the cloud services. The main difference between them is the monitor-
ing vision, that is, what the monitoring information is intended for, determining what
kind of information is generated in each case. Examples of virtual system monitoring
can be:



e In an /aa$ cloud, the system manager can monitor the status of every VM in-
stance in the cloud and its internal resources.

e In a PaaS cloud, the system manager can monitor the use of platform resources,
such as hosting space used, simultaneous network connections, etc.

e In a SaasS cloud, the system manager can monitor the application usage patterns,
the resources sharing among applications, etc.

Regardless of the specific characteristics of a cloud, virtual system monitoring is
a source of critical information for the CSP. Virtual system monitoring provides infor-
mation in terms of the virtual system characteristics and cloud services, and therefore
it is the key element to control Quality of Service (QoS) and guarantee SLAs. The
CSP uses virtual system monitoring to determine the exact terms in which the cloud
services are being provided and calculate service costs and billing. Therefore, having
a comprehensive and efficient source of virfual system monitoring is one of the key
requirements of a successful cloud business model.

Finally, physical system monitoring refers to all monitoring information provided
to the CSP related to the behavior, performance and evolution of the physical system.
In terms of monitoring vision, this is cloud-service-provider-side monitoring, since it
deals with the internal information of the cloud resources. From a cloud level point of
view, it refers to the server level. Physical system monitoring is the basis for cloud sys-
tem management, as it is related to the physical computing infrastructure upon which
the cloud itself is built. It is strongly related to virtual system monitoring, since the
behavior of the virtual system has a direct impact on the physical resources and vice
versa. However, the parameters monitored are different in both types of monitoring.

3.4. Monitoring metrics, SLAs and Quality of Service

As it has been explained, each of the three main types of cloud monitoring pro-
duces different kinds of monitoring information, intended for different uses and ob-
tained from different hardware and/or software elements within the cloud. Regardless
of the specific scenario and type of monitoring being performed, the cloud computing
model is always strongly based on guaranteeing QoS (as specified in the SLAs), and
therefore useful monitoring data will almost always be related to the terms in which the
SLAs are specified. From a CSP-side vision, both physical and virtual systems have
to be monitored in order to detect, or even anticipate, system behavior changes that
could have an impact on QoS. From a client-side vision, meaningful monitoring infor-
mation must be provided, in order to let the client know the QoS being received and
its relationship with the established SLA. Therefore defining the appropriate monitor-
ing metrics for each type of cloud monitoring is a crucial aspect. There are, however,
several issues that need to be considered when defining these metrics.

In the case of client-oriented monitoring, metrics have to provide information in
the same terms the SLA is specified, i.e. using the same parameters. For example, in a
SaaS system that offers a cloud data storage, if the SLA indicates the maximum storage
space available for one client the system must provide up-to-date information about the
amount of space being used by each client, so that clients could monitor the provided

QoS.



Virtual system monitoring metrics have to be defined in a similar way, but probably
including additional internal information. Again, this is strongly dependent on the
terms in which SLAs are defined, and therefore strongly varies from one cloud service
to other. In the previous example about cloud data storage, the CSP needs also to
know, for instance, the total space being used by all clients. This data is specific to
virtual system monitoring because it shows the status of the entire virtual service (cloud
data storage) regardless of the physical back-end. Additionally, it is concerned with
information required only for internal management purposes, and therefore intended
for the CSP only and not the clients.

The case of physical system monitoring is somehow different, since it is related to
the low-level infrastructure that sustains the entire cloud. This means that most moni-
toring metrics required are those used in regular distributed systems, such as hardware
metrics (CPU, memory, physical storage, network traffic, etc.), operating system met-
rics (system load, virtual memory, etc.) and so on. This information is essentially used
for system management purposes. In this case, the connection with SLAs is rooted
in the inevitable relationship between the low-level physical system behavior and the
high-level virtual system behavior that it supports. Bridging the gap between these
two levels is never a trivial task, but it is crucial to effectively managing the cloud in-
frastructure. A physical system problem, for instance, can be more quickly detected
through physical system monitoring, but sometimes its specific impact in the virtual
system behavior is not clear. Finding the appropriate way to translate this information
from one level to another enables to improve performance, dependability, elasticity and
QoS.

Let us stress again that this paper aims to introduce general taxonomy of cloud
monitoring in order to provide a complete vision of the problem. Defining the appro-
priate monitoring metrics is an important aspect of this problem, because of its direct
relationship with SLAs and QoS. While some common metrics should probably always
be present in every cloud (e.g. low-level metrics related to the operating system, net-
work, etc.), they need to be related to the virtual system behavior. This process strongly
depends on the type of services being provided. Defining such specific system aspects
is out of the scope of this work.

3.5. Security considerations

Clouds propose an abstract service layer between clients and CSPs. The cloud
provider is responsible for the service it offers. Clients must establish trust relation-
ships with the CSP and understand risk in terms of how the provider implements, de-
ploys, and manages security on their behalf [21, 57]. The CSP must address the fun-
damentals of security and privacy, such as identity management, access control, data
control, network access, protected communication, and so on, agreed with the client by
means of the corresponding SLA as part of the service. Therefore, security and data
privacy monitoring must be provided in the same way CSP offers any other services:
our approach does not change this client-CSP interaction model. Of course, CSPs can
additionally use virtual and physical monitoring data in a private way. Clients can only
access monitoring data through the service interface in the way specified by the SLA.
Furthermore, clients can implement their own monitoring infrastructure on top of the
service as a part of the client-oriented monitoring to know the service behavior.

10



4. Cloud Monitoring Architecture

The section above has presented an in-depth analysis of the requirements and vi-
sions of cloud monitoring. This section presents a generic layered cloud monitoring
architecture adapted to the needs of any cloud infrastructure based on the previously
identified types of cloud monitoring. Two important needs related to cloud monitoring
have to be covered, namely:

o Efficient access to information, considering response times and data size sent.

e Coordination of the monitored information from the whole cloud (client-oriented,
virtual and physical system monitoring). Both clients and CSPs have to access
monitoring data according to its different vision of the system.

To achieve these goals, the architecture shown in Figure 2 is proposed. The archi-
tecture is divided into two main components: the first one, regarding the monitoring
access and the second one, regarding the data gathering and managing.

e Monitor Access provides an independent way to access the monitored informa-
tion from each different element of the cloud, both services and servers. It is an
abstraction layer that provides a unique view of both physical and virtual cloud
elements, regardless of its different objective, composition and structure. This
layer accesses both the virtual and physical system, monitoring their elements.

e Data gathering provides storage for the monitoring information obtained in the
previous layer. It includes an historical archive of the evolution of the different
cloud elements. Since each user has its own cloud vision and monitoring level,
this layer does not only store monitoring data but it coordinates the user queries.
This implies that every user has its own monitoring infrastructure providing a
distinguished vision. This way, each user can access the monitoring level and
vision required.

5. Cloud Monitoring Implementation: GMonE

GMonE is a cloud monitoring system that implements the proposed monitoring
architecture. Because the system is designed to provide information from the whole
cloud, its services are spread throughout the entire infrastructure. They have been
designed to cooperate in order to obtain and manage the monitored data from the whole
cloud.

Figure 3 illustrates the whole GMonE architecture. From a general perspective,
GMonE is composed of four distinct elements:

e The monitoring element GMonEMon: This module is present in every cloud
element that needs to be monitored. GMonEMon performs the functions of the
Monitor Access layer. Its function is to obtain the monitoring measurements at
regular time intervals and send them to one or more monitoring managers, hiding
the complexity of the monitoring stage itself.

11



Data gathering

Physical System
—

Figure 2: Proposed Cloud Monitoring Architecture.

e The monitoring Plug-ins: These are a set of specific software modules inside
GMonEMon in charge of the actual monitoring task.

e The monitoring manager GMonEDB: This program acts as manager and moni-
toring archive of monitoring data covering the functions of the Data Gathering
layer. It stores the monitoring information generated by GMonEMon in its own
database. GMonEDB is responsible for providing the monitoring level and vi-
sion of each single user.

e The data provider GMonEAccess: This library provides monitoring data to the
user in an easy way.

GMonE architecture is based on a typical publisher-subscriber paradigm. The
GMonEMon instances act as publishers, sending monitoring information to the G-
MonEDB subscribers at regular time intervals. At any moment there are one or more
GMonEDB instances running in the system. Each instance can be subscribed to a dif-
ferent set of GMonEMon instances, allowing different managers specialized in specific
subsets of cloud elements. Each user can be focused on its own interests, special-
izing its own GMonEDB according to its own vision and monitoring level required.
The monitoring information obtained from each element can also be extensively cus-
tomized. The GMonEMon elements are plug-in-based, enabling to extend its moni-
toring capabilities with personalized plug-ins. All these features aim at providing a
monitoring framework as much flexible as possible, which can be adapted to the spe-
cific needs of any modern cloud infrastructure. With this in mind, the entire GMonE
suite has been developed in the Java programming language and it is distributed as a
single jar file, in order to maximize its portability. Each of the GMonE modules and
services shown here are described in detail in the following Subsections.

12



Virtual System

GMonE(Status) (SLAs )GMonE

Mon

GMonEMon GMonEMon

g

Cloud Service
Provider

GMonEAccess

GMonEDB
——

% |

&

Clients

GMonEAccess

=)

GMonEDB 5
)

L pplication

~

“\

GMonE(Hosfing ) GMonE
9 ) (H
Mon Net Traffic_)Mon

GMonEMon GMonEMon
atfor|

Figure 3: GMonE architecture.

5.1. GMonEMon

The monitoring system must be capable of being adapted to different kinds of re-
sources, services and monitoring parameters. Thus, GMonE performs the monitoring
of each element by means of GMonEMon, which abstracts the type of resource (vir-
tual or physical). GMonEMon service monitors the required parameters and then it
communicates automatically with the monitoring manager (GMonEDB) to send it the
monitored data. This communication is done through a standard Java Remote Method
Invocation (RMI) process.

As a summary, the main features of GMonEMon are:

e It provides a scalable and customizable structure, based on monitoring plug-ins.

e It publishes monitored data to the monitoring managers. This is performed at

13



regular time intervals. The time spent by GMonEMon in obtaining the monitor-
ing measurements and sending them to the monitoring managers is called publish
time. The publish time period can be configured by both clients and CSPs, each
one according to their necessities.

Since GMonEMon has a modular structure, the set of monitored parameters is not
statically defined, and new plug-ins can be developed in order to fit specific require-
ments. Service providers can use monitoring plug-ins to get information about the
status of the VMs, simultaneous network connections, application usage patterns, etc.
Clients can use them to obtain information about consumed time and other parame-
ters of their own VM instances, hosting space, network traffic, service costs, etc. Its
modular structure is the key to provide the flexibility and adaptation required in clouds.
To satisfy this modularity, GMonEMon provides a simple Java interface that can be
implemented by developers in order to monitor specific parameters. Several plug-ins
can be simultaneously used, allowing the system to offer a fully customizable set of
monitored parameters. Developing a custom GMonEMon monitoring plug-in requires
just the creation of a Java class that implements the following two methods:

e parameter_list : get_parameters (): A simple method that returns
the list of names of the parameters monitored by the plug-in.

e value_list : get_values (parameter): A method that returns a list
of monitored values (if any) for the specified parameter. Each element of this list
is a monitored value object that includes also additional information (monitored
value, measurement units, host name, parameter name and time stamp).

GMonEMon uses the first method (get_parameters) to identify the list of parame-
ters provided by the plug-in and the second method (get_values) to read those parame-
ters at regular time intervals. The way the actual monitoring is performed depends on
the type of monitoring information being obtained, and it is carried out inside the plug-
in. This simple interface guarantees that the complexity of developing new monitoring
capabilities will always be related solely to the monitoring information that needs to
be measured. The GMonE suite remains as flexible as possible, providing the ideal
framework for developing custom made monitoring infrastructures.

Additionally, service providers can request monitoring information not only based
on each specific user, server, service, etc. of the cloud system but also an aggregated in-
formation about its operation. For instance, it can be useful an aggregated information
about the storage, workload, the compound use of the services, etc. of the whole system
instead of the workload, storage, use of services of each single user. When monitoring
compound systems, most monitoring tools provide a set of values as information re-
lated to each specific monitored parameter, e.g. the storage usage of 200 clients would
be a 200-element-long list instead of a single value. GMonEMon reduces the data sent,
aggregating monitoring data, regarding the needs of CSPs and clients. These values
can be aggregated in different ways, depending on parameter meaning, cloud vision
and monitoring level.

GMonEMon provides a mechanism that allows the system to specify the way
this aggregation is performed, depending on parameter characteristics: an aggrega-

14



tion function can be specified for each monitored parameter, which can be changed
and reset during execution time. The syntax of this function is the following:

e Basic arithmetic operators: +, —, *, /
e Real numerical constants: 1, 0,26, —-367. 2, etc.

e Special operators: they represent mathematical functions to apply to a set of
values, like:

:sum of all the values.

: multiplication of all the values.

: maximum value.

|
3 2 U »

: minimum value.

:number of values.

|
=]

— F:aggregation is not required.

Using this syntax, common statistical descriptors can be easily defined (e.g. the
arithmetical mean would simply be S/n). The aggregation function is invoked by the
GMonEMon core after requesting he monitoring information from the plug-in (through
the get_values method). By means of this customized aggregation, both cloud services
and servers can be abstracted according to user vision and monitoring level, regardless
of their internal characteristics.

5.2. GMonEDB

Once the monitored information has been obtained using the GMonEMon service,
it is necessary to gather and manage it. Each GMonEDB service collects monitored
information storing it in its own database. Each user, either client or CSP, has its
own GMonEDB for storing the required information regarding its needs. The CSP
maintains information about virtual and physical system whereas clients store only
client-oriented data. GMonEDB monitoring database relies on MySQL [31] as default
database management system. In addition, GMonEDB offers archiving flexibility, hav-
ing the possibility to rely on other storage back-end technologies such as SQLite [49],
RRD files [42] (through the rrd4j library [41]) or a key-value store (Apache Cassan-
dra [24]). All these alternatives are meant to be a choice of usage depending on the
particular monitoring scenario needs.

The main features of the GMonEDB service are:

e It provides monitored information from a set of GMonEMon monitoring ele-
ments regarding the user needs.

e It stores data from the different elements in its own database. This gives a fast
access to monitored information; it also provides data about the cloud’s past
behavior. This makes it possible to observe the cloud operation evolution. The
time spent by GMonEDB for storing the information in the database is called
archiving time.

15



e It manages relevant data. GMonEDB can be configured to subscribe to, store and
manage only the necessary information in each particular case. If at any time the
needed data should change, the service can be easily reconfigured on-line to start
obtaining the new required information.

5.3. GMonEAccess

The last part of the GMonE system is used to obtain monitored information from
the GMonEDB service. This final module is called GmonEAccess and works as a
programming library with the following features:

e It provides a common interface to access the GMonE system.

o It can be used to obtain monitored data, configure and manage the GMonE infras-
tructure on-line. Clients can manage their own virtual monitoring infrastructures
without depending on service providers, whereas service providers can manage
the whole infrastructure, both virtual and physical system. Each one can access
their own monitoring data according to their necessities.

6. Evaluation of GMonE

We have performed a series of analytical and experimental studies, in order to val-
idate our proposal. The first is a qualitative study, considering the different types of
cloud monitoring and comparing GMonE features and capabilities with the most rel-
evant state-of-the-art cloud monitoring alternatives. The rest are a set of experiments,
performed to asses GMonE’s performance, scalability, elasticity and the amount of
overhead it introduces in the system. All these studies are described in detail in the
following Subsections.

6.1. Cloud monitoring features

Nowadays there is a significant variety of state-of-the-art cloud monitoring tools,
either as ongoing scientific research projects or as commercial applications. The most
relevant are described in Section 2. As detailed in that section, some of them have been
developed based on previously existing distributed systems monitoring tools; others
have been created from scratch. In both cases the objective behind this development
is to address the specific needs of modern cloud environments. An effective way to
study all these alternatives, and compare them with our proposed tool GMonE, is to
analyze their capabilities in terms of the three basic types of cloud monitoring we have
identified in Section 3. Table 1 compares several monitoring approaches according to
these different aspects, namely:

e If the monitoring tool provides a solution for the different cloud deployment
models, i.e., SaaS, PaaS or IaaS.

o If the monitoring tool provides monitoring capabilities to clients and/or CSP.
e Focusing on the CSP, if the monitoring tool can provide information about the

virtual and/or physical resources.

16



Systems/ Client-oriented Virtual System Physical
Functionality Saa$ | PaaS | IaaS || SaaS | PaaS | IaaS | System
Ganglia [15] v
Ganglia+
sFlow [44] v
Nagios [32]
MonALISA [33]
GridICE [4]
Lattice [8] v
TIMACS [52]
IBM Tivoli
Monitoring [22]
HP

OpenView [19]
Amazon
CloudWatch [2] v
OpenNebula
Monitoring
System [35] v
OPNET [37] v v v
GFI MAX
Remote
Management [16] v
Intermapper
Cloud
Monitor [23] v
Logic
Monitor [25] v v
NMS [34] v v
PacketTrap
Perspective [38] v
Site24x7 [45] v
GMonE v v v v v v v

SNENENENENEN

(\

{\

SR ENENENEN
SNEEENENENEN

Table 1: Comparison of different cloud monitoring alternatives. SaaS: monitoring
information about applications. PaaS: monitoring information about platform. IaaS:
monitoring information about infrastructure.

17



Typical monitoring tools such as Ganglia [15], MonALISA [33] or Tivoli [22] are
focused exclusively on the physical level, and are not capable of providing informa-
tion about the virtual system. Modern commercial alternatives such as Logic Monitor
[25] and NMS [34] extend this functionality, but only from a CSP perspective. User
interfaces of most cloud infrastructures provide some client-side vision information,
such as Amazon CloudWatch [2] and the OpenNebula monitoring system [35]. Recent
research proposals such as Lattice [8] try to combine both visions, incorporating some
aspects of both client-side and CSP-side monitoring. To the best of our knowledge,
GMonE is so far the only monitoring alternative capable of providing monitoring in-
formation from all possible monitoring levels and visions. The key to this flexibility
is the capability to adapt the cloud monitoring element (the GMonEMon publisher)
and the topology of the cloud infrastructure itself (the relationships between different
GMonEMon publishers and GMonEDB consumers) to the specific needs of each type
of cloud monitoring. The possibility of extending GMonEMon functionality by means
of easily developed plug-ins guarantees that GMonE can be successfully used in every
possible cloud monitoring scenario.

Additionally, after analysing the most relevant architectures coming from academia
and industry, we can conclude that the proposed cloud monitoring architecture in this
paper is the most general-purpose, complete and representative at the same time. While
the monitoring layer of the architecture (see Figure 2) is being adjusted to physical or
virtual system based on the monitoring needs, the data gathering layer acts not only as
a storage information provider coming from the monitoring layer; moreover it coordi-
nates user queries while providing different vision to different user/provider requests.
This flexibility enables GMonE to provide more useful and rich monitoring data, de-
pending on the specific scenario. This flexibility is not found in other alternatives, as
we have seen in Table 1.

A set of experiments have been performed to validate GMonE’s features. These are
described thoroughly in the following Subsections.

6.2. Experimental testbed

In order to validate GMonE, we need to perform its experimental testing in a
cloud environment as much realistic as possible. We carried out our experiments on
Grid’5000. We used 45 nodes from the suno cluster on Sophia site. These nodes acted
as cloud physical resources, on top of which a series of cloud software layers were de-
ployed, in order to recreate a complete IaaS cloud system. The complete deployment
is depicted in Figure 4, and it presents the following elements:

e Physical resources: 45 cluster nodes outfitted with Debian GNU/Linux Lenny
with kernel 2.6.32, x86_64 Intel Xeon E5520 2.26Ghz CPUs, 32 GB of RAM
and 2 Gigabit Ethernet (Broadcom NetXtremell BCM5716) network interfaces.

e Cloud Infrastructure-as-a-Service: OpenNebula [36] installation, providing laaS
capabilities in the form of VMs. OpenNebula is an ideal solution for a private
cloud, given the high level of centralization and customization it provides for
CSPs and end users. It incorporates a shared file system, which is NFS [39] by
default. Using its default configuration with NFS, OpenNebula acts in a highly

18



centralized manner. We have chosen OpenNebula because of its flexibility and
suitability for research works [43].

e Virtual resources: From an laaS cloud client perspective, a total of 80 virtual
machines were deployed, each of them outfitted with Debian GNU/Linux Lenny
with kernel 2.6.32, a single virtual x86_64 CPU and 1GB of RAM. These VMs
were interconnected using a standard OpenNebula Ethernet virtual network.

e Client-side deployment: As an example of use of [aaS resources, Cassandra [24]
was deployed on the 80 VMs. Cassandra is a storage system developed as part
of the Apache project, designed to handle very large amounts of data, spread
out across multiple servers. The objective of Cassandra is to provide a highly
available data storage/access service for modern cloud-like applications. It is
a key-value store solution (not a traditional relational database) that it was ini-
tially developed by Facebook and powered their Inbox Search feature until late
2010. Facebook’s Cassandra was based on the combination of well known and
proven techniques. Tables are very important in Cassandra; a table represents a
distributed multi-dimensional map indexed by a key. While raw operations are
atomic, columns are grouped into sets called column families (Simple or Super).
Super column families can be visualized as a column family within a column
family; in principle, every column may be sorted either by name or time. Cas-
sandra is an ideal example of a state-of-the-art application that can be deployed
on modern cloud computing infrastructures.

e Benchmarking: To generate a realistic workload for this infrastructure and pro-
vide a complete cloud computing scenario, the Cassandra virtual deployment
was subjected to the Yahoo! Cloud Serving Benchmark (YCSB) [9]. One of
the main advantages of this benchmark is an extensible workload generator, the
YCSB Client, which can be used to load datasets and execute workloads across
a variety of data serving systems. All the core package workloads use the same
dataset, so it is possible to load the database once and then run all the workloads.
In the last version of YCSB (0.1.4) [56], there are six workload versions. Table 2
describes each one of these workloads in detail. Using these standard workloads
allows us to test our cloud infrastructure against a variety of access patterns and
client uses. This provides a comprehensive scenario where we can effectively
test the capabilities of our flexible monitoring system, GMonE.

This experimental testbed is just an example of a cloud configuration, and therefore
does not cover all possible scenarios. Our aim is to demonstrate GMonE’s monitoring
capabilities on all three major types of cloud monitoring. To that effect, we performed
the following tasks:

e Physical system monitoring: GMonE was deployed on the Grid’5000 physical
resources. Each node was monitored using the default GMonEMon Linux plug-
in, which provides information about CPU usage, memory usage and system
load. The monitoring information generated was gathered in a central GMonEDB
node, called the CSP monitoring manager.

19



Workload | Description Applications examples

A Read/update ratio: 50/50 Session store recording recent
actions.

B Read/update ratio: 95/5 Photo tagging; add a tag is an
update, but most operations are
to read tags.

C Read/update ratio: 100/0 User profile cache, where profiles
are constructed elsewhere
(e.g., Hadoop).

D Read/update/insert ratio: User status updates; people want

95/0/5 (read the latest) to read the latest.

E Scan/insert ratio: 95/5 Threaded conversations, where
each scan is for the posts in a
given thread (assumed to be
clustered by thread id).

F Read/read-modify-write ratio: | User database, where user records

50/50 are read and modified by the user
or to record user activity.

Table 2: YCSB workloads. Each workload generates a total of 100,000 operations,
accessing a total of 1000 Cassandra records. These records can be different in each
execution.

e Virtual system monitoring: An additional instance of GMonEMon was deployed

on the OpenNebula front-end node, to gather information about the OpenNebula
evolution from a CSP-side vision. To this particular purpose a custom GMonEMon
monitoring plug-in was developed, called OpenNebulaPlugin. This custom plug-
in takes advantage of the OpenNebula XMLRPC interface to provide monitoring
information about the total number of VMs in the system, physical node CPU
and memory usage of each VM, transferred/received network traffic of each VM
and number of VM disk images registered in the system. The plug-in consists
of a single Java 1.6 class, implemented in a single file with less than 250 lines
of code. This is a perfect example of how easy it is to extend and customize
the GMonEMon capabilities. The monitoring information obtained using this
GMonEMon instance was published to the CSP monitoring manager.

Client-oriented monitoring: All 80 VMs created for this testbed were also moni-
tored using GMonE. This provides the cloud users with live, detailed information
about the state of their resources. Each VM included an instance of GMonMon,
monitoring its CPU and memory usage by means of the GMonEMon basic Linux
plug-in. Additionally, a custom GMonEMon plug-in was developed, in order to
obtain more detailed information about Cassandra. This custom CassandraPlu-
gin measured the amount of disk space used by Cassandra in each virtual node.
As in the previous case, the entire plug-in is a single Java 1.6 class implemented
with less than 80 lines of code.

20



Cloud testbed M

OpenNebula

X ( Yahoo! Cloud Serving Benchmark

GMonE
DB
Client

- Cloud

Service
Provider

Figure 4: Experimental configuration.

Figure 4 depicts the entire experimental testbed, including all main hardware and
software layers and monitoring elements.

6.3. Monitoring performance

Using the cloud testbed described in Subsection 6.2, we performed a series of
experiments to demonstrate GMonE’s capabilities. The first of these tests was de-
signed to measure GMonE’s performance, that is, GMonE’s capability of efficiently
providing monitoring information in real time. GMonEMon and GmonEDB elements
were deployed as previously explained, and the 6 YCSB workloads were executed in
a sequenced, looped, round-robin fashion. This guaranteed a continuous and diverse
workload that occupied the system while the monitoring was being performed. Dur-
ing the experiment the publish time of all GMonEMon elements was measured. All
GMonEMon elements were configured to publish their information every 5 seconds.
Average publish time results are shown in Figure 5. Results show high performance
values, especially in the cases of client-oriented monitoring and physical system mon-
itoring.

Client-oriented monitoring presented an average value of 223ms. Given that a total
of 3 monitoring parameters were published (CPU usage, memory usage and Cassandra
disk space), this leaves us with an average of 74.3ms per parameter. It is important to
remember that this value includes both measurement and publishing (sending the value

21



1200 300

[
o
o
o

800

600

N
o
o

s -

i B
O__-O-_

Average publish time (ms)
Average publish time (ms)
G
o

Client Physical Virtual Client Physical Virtual
Type of monitoring Type of monitoring
(a) Aggregated publish time (b) Publish time per parameter

Figure 5: Monitoring performance. Column height indicates the average publish time
observed (in ms). Error bars show the standard deviation for each case. The client-
oriented monitoring columns show the results obtained by the VMs GMonEMon ele-
ments. The Physical monitoring columns show the results obtained by the Grid’5000
nodes GMonEMon elements. The virtual monitoring columns show the results ob-
tained by the OpenNebula front-end GMonEMon instance.

to the GMonEDB element). This result shows that GMonE is capable of efficiently
monitoring and propagating results.

Physical system monitoring presented almost identically good results, showing that
GMonE is an ideal solution for this type of monitoring as well. In this case the average
value observed was of 222ms, and the GMonEMon elements published 5 parameters
(CPU usage, memory usage, Imin system load, Smin system load and 15min system
load) for an average of 44.4ms per parameter.

Finally, virtual system monitoring presented an average publish time of 1062ms.
The GMonEMon element monitored 4 parameters (total number of VMs, CPU us-
age per VM, memory usage per VM, number of disk images), for an average value
of 265.5ms per parameter. The apparent difference with the other two types of mon-
itoring can be easily explained. In this case the GMonEMon plug-in has to access
OpenNebula through the XMLRPC interface, request the data and process its response.
Additionally, the monitoring parameters provided present more complex data, such as
lists of values (CPU usage for each VM, for example). In addition to data gathering
and publishing, GMonEMon performs data aggregation of these structures. This addi-
tional operation requires execution time, although it reduces the amount of information
transferred through the network and the data archived by GMonEDB. Nevertheless, all
required monitoring data is produced in approximately 1s.

This series of experiments provide insight on GMonE’s publish time and perfor-
mance. However, assessing GMonE’s final capabilities requires performing additional
studies concerning archiving times, scalability and elasticity. These studies are pre-
sented in the next Subsection. Afterwards, Subsection 6.5 combines all these results to
evaluate GMonE in comparison with other cloud monitoring alternatives.

22



6.4. Monitoring scalability and elasticity

Cloud systems are inherently dynamic. Physical resources can grow, virtual re-
sources can change depending on client use and SLAs, etc. As a general purpose cloud
monitoring tool, GMonE has to be able to adapt to these changes, both in terms of
scalability and elasticity. In order to asses these desirable features, a second type of
experiments was performed in the same cloud testbed. In this case, the objective was
to study how GMonE can react to a changing number of physical and virtual resources.
As we have seen in the previous experiment, on the one hand GMonE monitoring el-
ements (GMonEMon) present a high performance, and since they care about single
resources (virtual or physical) their performance should not change when the num-
ber of resources grows. The monitoring managers (GMonEDB), on the other hand,
gather information from all monitoring elements, so they are sensitive to changes in
the physical and virtual systems. To demonstrate GMonEDB scalability and elastic-
ity, we exposed both the client-oriented monitoring manager and the CSP monitoring
manager to an increasingly large number of monitoring elements publishing informa-
tion. During this process, we measured the time it took for these monitoring managers
to process the received data and store it in their respective databases. Figure 6 shows
the average data archiving times observed and its standard deviations. It also shows a
linear regression fit to the data presented, and the accuracy of this regression using the
R? coefficient'.

The results show very fast archiving time and a very desirable linear growth in the
narrow range of points we explored. In this experiment each GMonEMon monitoring
element published its information every 5s, and each GMonEDB element processed the
information received every 30s. This implies that, at each data archiving event (every
30s) each GMonEDB element had to process a total of 4 monitoring samples from
each GMonEMon. In this context (data archiving of physical resources), monitoring
took approximately 1.98ms per node regardless of the number of nodes. Given that
each node published its monitoring information 4 times between data archiving events,
this gives us a total of approximately 0.5ms per monitoring sample. In the case of
VM monitoring, data archiving took approximately 3.73ms per VM, again regardless
of the number of VMs. As in the physical system case, each GMonEMon published
its information 4 times between data archiving events, given a total of 0.93ms of data
archiving time per monitoring sample.

The observed linear growth is very clear and guarantees a very desirable feature:
the monitoring data archiving time depends linearly on the number of monitoring el-
ements, therefore it can be estimated before deploying the infrastructure. To further
validate this conclusion, we have to consider that the archiving process consists only on
a basic information processing stage (performed in constant time per monitoring sam-
ple) and database insertion. Since GMonEDB uses MySQL as its default monitoring
information storage back-end, this database insertion can be performed in linear time
[40], given the number of monitoring samples, and hence the linear growth observed
in Figures 6a and 6b. To safely extrapolate the results obtained for very large numbers

I'The coefficient of determination (R?) is a measurement of the degree of adjustment of a curve to a data
series. Its values range from O to 1, where 0 indicates no apparent fit to the data and 1 indicates a perfect fit.

23



10000 10000

y=3.7267x +8.9652
R?=0.99937

y=1.981x +5.1867

1000 1000

« )
£ £
[ 2 = [
g R?=0.99586 g
£ £
oo oo
£ £
3
£ 100 % 100
s ©
Q [
@ ®
S 10 S 109
3 o 3

1 1

1 10 100 1000 1 10 100 1000
Number of publishers Number of publishers
(a) Physical system average archiving time (b) Client-oriented average archiving time
100 100

y =0.0569x + 8.9611

2_
y=0.056x + 3.4389 R?=0.55927

R?=0.57206

10

Archiving time standard deviation
Archiving time standard deviation

1 10 100 1000 1 10 100 1000
Number of publishers Number of publishers

(c) Physical system archiving time standard dev. (d) Client-oriented archiving time standard dev.

Figure 6: Scalability and elasticity study. Dots show the average/standard deviation
archiving time observed. The black line shows the approximated linear regression
curve, obtained from the shown data. All axes are shown in logjq scale.

of monitored physical or virtual resources, we have also to consider the data dispersion
observed, that is, the archiving time standard deviation shown in Figures 6¢ and 6d.
This standard deviation can give us an estimation of how much the actual archiving
times will deviate from the average value. As it can be seen in the figures, in both cases
the standard deviation shows an apparent linear growth, indicating that archiving time
dispersion increases linearly with the number of publishers. Assuming that for large
numbers of publishers, the archiving time is normally distributed, then more than 95%
of the observed values would be in the [average —2 = stdev, average +2 = stdev] interval.
Using the linear regression models shown in Figure 6, we can extrapolate the average
and standard deviation archiving time values for numbers of publishers of increasing
orders of magnitude. Table 3 shows several examples of this extrapolation.

This statistical analysis and extrapolation allow the client or CSP to calculate the

24



Number Physical system monitoring | Client-oriented monitoring
of archiving time archiving time

publishers | Average (s) Stdev | Average (s) Stdev

10 0.025 0.004 0.046 0.010

100 0.203 0.009 0.382 0.017

1000 1.986 0.059 3.737 0.066

10000 19.815 0.563 37.276 0.578

100000 198.105 5.603 372.679 5.699

Table 3: Extrapolated average and standard deviation archiving time for physical sys-
tem and client oriented monitoring.

minimum database update period GMonE can be configured with, given the number of
monitoring elements and its publish period. For instance, in the extreme case of 100000
physical resources being monitored, the average monitoring data archiving time can
be estimated to 198.105s, that is 3.3min. If we incorporate the standard deviation
model created, assuming that the archiving time data is normally distributed, we can
estimate that more than 95% of archiving times will be in the [3.1,3.5]min interval.
Considering this is an extreme scenario (100K monitoring elements publishing to one
single manager), these results show the very desirable scalable nature of the GMonE
monitoring system.

This extrapolation is, however, based on the assumption that the linear regression
model constructed can realistically predict GMonE’s behavior for very large scenar-
ios. The question is: Can a model generated with data from less than 100 publishers
be still valid for 1000 o 10000 publishers? This linearity assumption is motivated, as
it has been explained, by the fact that the GMonDB archiving procedure is mainly a
database insertion operation. As the number of publishers grows, the size of this inser-
tion operation will grow accordingly. Previous work shows that, for a general purpose
DBMS like MySQL in such a scenario, linear growth can be expected for the time of
this insertion operation [40]. In addition, linear regression models have already been
successfully used in other scalability models in data center and large scale distributed
applications [54]. Nevertheless, every system has its own specific characteristics, and
GMonE introduces a small layer of software on top of the DBMS, which must be prop-
erly analyzed for large scenarios before fully accepting the linearity assumption. In
order to perform this analysis, we have carried out another experiment. As it has been
explained, as the number of publishers grows GMonEDB archiving process has to deal
with larger amounts of monitoring data. We have deployed a GMonEDB element in our
physical system experimental testbed, and subjected it to an increasingly large amount
of published monitoring information. We have generated this information syntheti-
cally, in order to achieve the expected data volume for a system composed of a number
of publishers ranging from few tens to several thousands. For the case of 1000 pub-
lishers, for instance, the total amount of monitoring information would be (following
the same model used in previous experiments): 1000 publishers X 4 records/(publisher
x update) X 4 updates/round = 16000 records/round. We have measured the observed
GMonEDB archiving time and compared it with the expected time predicted by our

25



@ Additional experimental data ~ —Extrapolation from previous model

1000000

=

£ 100000

£

& 10000

oo

£

>

Z 1000

o

©

o 100

[T

©

g 10

< ]
1
1 10 100 1000 10000 100000

Equivalent number of publishers

Figure 7: Study of the feasibility of the linear regression model. The expected values
predicted by the regression model are compared with experimental data obtained from a
real GMonEDB instance being subjected to increasingly large amounts of monitoring
information. Both axes are shown in log; scale. The extrapolation curve from the
previous model (Figure 6a) fits the new experimental data with R> = 0.961.

linear regression model. Results can be seen in Figure 7. These results clearly show
that our linearity assumption is valid, and the regression model previously generated is
a very accurate prediction mechanism to extrapolate GMonE’s behavior for very large
scenarios.

As it can be seen, in extremely large system the scalability of the underlying stor-
age back-end plays a decisive role. As time passes, the size of the stored monitoring
information can grow extremely quickly, becoming a potential cause of bottlenecks and
other performance problems. Even though MySQL scales linearly in our experiments,
other studies show that its performance can drop, depending on the underlying infras-
tructure characteristics [7]. Very large storage scenarios often require advanced solu-
tions, in order to achieve optimal scalability. As described in Section 5.2, GMonEDB
uses MySQL as default storage back-end, but can be configured to use other efficient
alternatives, such as RRD Tool or Cassandra. In terms of storage back-end, the ideal
GMonE configuration will depend on the characteristics of the system where it is de-
ployed. MySQL produces excellent results in our experiments, and we believe is best
suited for system sizes up to several hundred nodes. Selecting this alternative, however,
requires the presence of a MySQL database management system (DBMS) installation
and its proper configuration. This alternative is therefore specially adequate for CSP-
side monitoring in high performance scenarios where detailed monitoring information
is required (small monitoring period). The RRD configuration offers a good alterna-
tive to MySQL when a lightweight, system-independent storage back-end is required
(no other DBMS or services present), such as small systems and some types of client-
side monitoring. Although the RRD files do not facilitate a SQL interface, data is still
very easily accessible, especially for real-time queries and graphic representation (the
typical RRD Tool plots). The extremely light nature of this alternative makes it also

26



ideal in very complex and performance-demanding scenarios, such as very large sys-
tems (thousands of nodes or more). The main RRD drawback in this latter case, in
comparison with the other storage alternatives, is that its circular buffer nature reduces
its capabilities to store long-term historical data. Finally, Cassandra’s key-value store
approach offers a completely different alternative. This type of storage solutions have
been developed, among other reasons, to address the above mentioned limitations of
relational databases, such as MySQL, in certain scenarios. Cassandra is specifically de-
signed to efficiently operate while handling extremely large amounts of data. In terms
of GMonE, this means storing long-term historical information with the best possible
detail. It is therefore, best suited for very large systems (thousands of nodes or more)
where high monitoring resolution is necessary, as well as a comprehensive monitoring
archive.

In any distributed infrastructure the scalability of the entire system is also generally
dependent on the scalability of the network; this means that the network can become
a source of bottlenecks, again specially in very large systems. Monitoring tools intro-
duce a slight amount of network load and, as in the case of the storage back-end, they
are limited by the hardware and software elements underneath them. These external
limitations are not inherent to the monitoring system, but they have to be taken into ac-
count when configuring and deploying it, in order to avoid performance and scalability
issues. Additionally, modern large scale distributed systems are built using complex
techniques such as advanced network topologies and hierarchical organizations. In
such kind of environments, the placement of the monitoring and the data storing ele-
ments definitely affects its performance and scalability. In large and very large systems
specialized GMonEMon elements can be deployed in each system component, using
its flexible plug-in design to gather only the required information in each case. This
means that dedicated nodes (file servers, computing nodes, external front-ends, etc.)
can have specific information being monitored and published at optimized time peri-
ods. Analogously, multiple GMonEDB elements can be organized in different ways,
allowing hierarchical organization, dedicated monitoring information repositories (for
specific parameters, specific system components, etc.), redundancy, etc. This kind of
systems usually presents a partitioned network and hierarchical structure. In such a
case, GMonE can be deployed with several GMonEDB elements creating different
monitoring spaces. GMonE data aggregation and abstraction capabilities would facil-
itate a tier-like configuration, where only relevant information is propagated from one
level of the hierarchy to the next. This would guarantee an efficient use of resources
and avoid scalability issues due to network saturation.

6.5. Monitoring resolution

One of the best ways to asses the effectiveness and performance of a given monitor-
ing tool is to study its monitoring resolution, i.e. the level of temporal detail provided
or monitoring update period. Amazon CloudWatch, for instance, provides seven pre-
selected metrics updated at 5-minute intervals free of charge, or at 1-minute intervals
for an additional fee [2]. As another example, OpenNebula Monitoring Subsystem
presents a host monitoring interval of 10 minutes by default, although it is possible to
improve this resolution reducing this period down to 30 second intervals [35].

27



In GMonE the effective monitoring resolution depends on two parameters: the
publish period and the archive period. As it has been explained in Subsections 6.3
and 6.4, the publish period depends on the number of published parameters and the
archive period on the number of nodes being monitored. In order to generate adequate
monitoring information, both tasks (publishing and archiving) have to be performed.
These can be done concurrently, since they are performed by different parts of GMonE
(GMonEMon publishes the information and GMonEDB archives it). Therefore, the
minimum GMonE monitoring period can be estimated using the following equation:

mon_period = max(num_nodes X archive_time_per_node,

ey

num_parameters X publish_time_per_parameter)

If we now consider the results shown in Subsections 6.3 and 6.4, we can calculate
the best monitoring period for each cloud monitoring type, as shown in Table 4. These
results show that GMonE can be a significant improvement over commonly used tech-
niques. Considering the above mentioned monitoring tools update periods of common
cloud platforms, such as Amazon EC2 or OpenNebula, we see GMonE as an extremely
powerful alternative in this area.

Monitoring num_nodes X num_parameters X mon_period
type arch_time_per_node publish_time_per_param
Client-oriented | 80 % 3.73ms = 298.4ms 3 x74.3ms = 223ms 298.4ms
Physical 45 x 1.98ms = 89.1ms 5 x44.4ms = 222ms 222ms
Virtual *) 4 % 265.5ms = 1.062s 1.062s

Table 4: Minimum GMonE monitoring periods on the three types of cloud monitoring.
(*): Virtual system monitoring is performed globaly, using the OpenNebula XMLRPC
interface. Therefore, the num_nodes parameter does not make sense in this context,
since there is only one OpenNebula system.

6.6. Monitoring overhead

So far some of the most important features and capabilities of GMonE have been
studied. However, another crucial feature every monitoring system must present is
its ability to operate transparently, that is, adding as less overhead as possible to the
system being monitored. Although absolute transparency is, by principle, not possible
(all monitoring systems must consume at least a very small amount of computational
resources to operate), an efficient monitoring tool must maintain its overhead below
acceptable levels.

To measure GMonE’s overhead we executed a total of 200 repetitions of each
YCSB workload (A, B, C, D, E and F) in our cloud testbed, without any GMonE
element present. This execution gave us a set of reference measurements. Next, we
deployed GMonE at all levels of the infrastructure and we repeated the benchmark se-
ries. Using the entire set of YCSB workloads allowed us to measure GMonE overhead

28



" 700 1600
2 600 31400 B TR s
.g 500 5.1200 T — — — — — —
e £1000
] 1]
qg:_400 d_;‘( 800
300 % 600 -
£ 200 £ 400 -
2100 2 200 -

0 0 -

A B C D E F A B C D E F
Workload Workload
“ Without GMonE & With GMonE “ Without GMonE & With GMonE

(a) Standard cloud monitoring benchmark throughput  (b) Standard cloud monitoring benchmark latency

700

w
2 600
2 500
©
@ 400
&
gJ"300
& 200
2100

0

A B C D E F A B C D E F
Workload Workload
& Without GMonE & With GMonE & Without GMonE & With GMonE

(c) Intensive cloud monitoring benchmark throughput  (d) Intensive cloud monitoring benchmark latency

Figure 8: Monitoring overhead experiment. Column height show average values. Error
bars show the standard deviation for each case.

under different application conditions. The 200 repetitions of each workload guaran-
tees statistically meaningful results. We performed this experiment using two different
GMonE configurations, in order to determine GMonE’s overhead when different mon-
itoring requirements are present. These two GMonE configurations were:

e Standard cloud monitoring: this configuration represented typical monitoring
processes in cloud infrastructures. GMonEMon elements published their infor-
mation every 1min and GMonEDB elements archived it every Smin.

e Intensive cloud monitoring: this configuration represented an intensive monitor-
ing scenario where status info was required in short periods of time. GMonEMon
elements published their information every 5s and GMonEDB elements pro-
cessed it every 30s.

Figure 8 shows the YCSB benchmark throughput and latency for each workload
and GMonE configuration. Results show no apparent difference in the benchmark op-
eration descriptors (throughput and latency) when using a standard cloud monitoring
configuration (Figures 8a and 8b). This seems to indicate that GMonE generates neg-
ligible overhead in these conditions. To further validate this conclusion, we have ex-

29



tended our analysis for this case, performing statistical testing using the Kolmogorov-
Smirnov [50] and Wilcoxon [27, 55] statistical tests. These tests essentially take two
samples as input and output a p-value, looking for statistically significant differences
in the two samples. A p-value smaller than 0.01 can lead us to conclude that these dif-
ferences exist. Using these tests we have compared the throughput and latency values
obtained using the standard cloud monitoring configuration with the reference values;
p-value results can be seen in Tables 5a and 5b. As it can be noticed, both statistical
tests are able to identify differences only in the case of the latency values of workload
D. Differences are found by the Kolmogorov-Smirnov test only in workload D through-
put and workload A latency. These results show that GMonE overhead is present (as
we said, absolute transparency is impossible), but almost undetectable on most cases.
This guarantees effective transparency in standard cloud monitoring configurations.

Workload A B C D E F
Kolmogorov-Smirnov p-value | 0.088 | 0.711 | 0.393 | 0.009 | 0.465 | 0,964
Wilcoxon p-value 0.289 | 0.784 | 0.214 | 0.020 | 0.323 | 0,431
(a) Throughput
Workload A B C D E F
Kolmogorov-Smirnov p-value | 0.009 | 0.178 | 0.022 | 0.002 | 0.068 | 0.465
Wilcoxon p-value 0,054 | 0,296 | 0,012 | 0,001 | 0,109 | 0,176
(b) Latency

Table 5: Standard cloud monitoring statistical tests results.

Figures 8c and 8d show the benchmark operation descriptors obtained for an inten-
sive cloud monitoring scenario. In this case differences can be seen, both in throughput
and latency. This means that in intensive monitoring conditions GMonE overhead is
more intense, and can be effectively detected. Statistical testing with Kolmogorov-
Smirnov and Wilcoxon tests showed a p-value less than 0.01 in all cases, identifying
statistically significant differences in all workloads. However, results show that even
in this intensive conditions benchmark throughput is decreased by less than 3% and
latency is increased by less than 3.5% in all cases (workloads A to F). This shows
that even in these intensive monitoring conditions GMonE overhead has a very limited
impact in the infrastructure operation.

7. Conclusions and Future Work

Modern clouds are highly complex systems designed to efficiently provide in-
frastructure, platform and applications in the form of elastic, abstract services. In
order to control and optimize these services, cloud management systems can make
use of detailed monitoring information. Some of this information can be provided
as a service as well, presenting clients with a detailed description of their infrastruc-
ture/platform/application status and evolution. Cloud monitoring plays a key role, as it
provides the means to generate, process and distribute this status information. In this

30



context, the work described in this paper represents a step forward in the conceptual-
ization and implementation of cloud monitoring systems.

Firstly, we have shown a comprehensive analysis of the different types of cloud
monitoring, detailing its characteristics and highlighting the differences between them.
The main aspects considered in this case were called cloud monitoring level and cloud
monitoring vision. These two aspects are used as a basis to define a generalized cloud
monitoring model, that can be used to understand and study the specific requirements
of each cloud monitoring scenario. Based on this model, a generic cloud monitoring
architecture is proposed and a specific implementation of it is described.

Secondly, the paper demonstrates the qualitative and quantitative benefits of our
approach. As shown in Section 6, GMonE is the only tool which covers all the cloud
monitoring types identified. Additionally, the different experiments shown allow us to
conclude that GMonE presents a very good behavior according to important metrics:
performance, scalability, monitoring resolution and overhead.

As future work, we plan to research the behavior of GMonE in different scenar-
ios including multiple cloud services and applications, and especially in heterogeneous
environments as federated clouds. This last point will be of high importance to ser-
vice providers having private clouds, which in some cases need to play twofold roles:
providing resources to their end users, but also using resources from other CSPs. An-
other work that we intend to explore is the possibility of using GMonE information to
detect anomalies and failures in the cloud. The idea is using a failure detector on top
of a monitoring system, which requires that the processing data obtained from GMonE
should be even more detailed.

Acknowledgment

This work is partially supported by the Madrid Regional Authority (Comunidad de
Madrid) and the Universidad Rey Juan Carlos under the URJC-CM-2010-CET-5185
contract, the Spanish Ministry of Education under contract TIN2010-212889-C02-01
and the Marie Curie Initial Training Network (MCITN) “SCALing by means of Ubiq-
uitous Storage (SCALUS)” under contract 238808. Experiments presented in this pa-
per were carried out using the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from CNRS, RENATER and
several Universities as well as other funding bodies (see https://www.grid5000.fr). The
authors would like to thank also Eduardo Perez, who worked with us in the program-
ming of GMonE.

References
[1] Aladdin-Grid’5000, 2012. http://www.grid5000.fr.

[2] Amazon CloudWatch, 2012. http://aws.amazon.com/es/cloudwatch/.

[3] Amazon Elastic Compute Cloud (Amazon EC2), 2012.
http://aws.amazon.com/en/ec2/.

31



[4]

(6]

(8]

[10]
(11]

[12]

[13]

Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Rubini, G. L., Tortone,
G., Vistoli, M. C., Apr. 2005. GridICE: a monitoring service for Grid systems.
Future Gener. Comput. Syst. 21 (4), 559-571.

URL http://dx.doi.org/10.1016/7.future.2004.10.005

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M., 2007. Web Services Agreement Spec-
ification (WS-Agreement).

URL https://forge.gridforum.org/projects/graap—-wg/

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., Brandic, I., Jun. 2009. Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility.

URL http://dx.doi.org/10.1016/7j.future.2008.12.001

Cattell, R., May 2011. Scalable sql and nosql data stores. SIGMOD Rec. 39 (4),
12-27.
URL http://doi.acm.org/10.1145/1978915.1978919

Clayman, S., Galis, A., Mamatas, L., Apr. 2010. Monitoring virtual networks with
Lattice. In: Proceedings of Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP.

Cooper, B. F, Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R., 2010. Bench-
marking cloud serving systems with YCSB. In: Proceedings of the 1st ACM
symposium on Cloud computing. SoCC *10. ACM, New York, NY, USA, pp.
143-154.

URL http://doi.acm.org/10.1145/1807128.1807152

Dropbox - Simplify your life, 2012. http://www.dropbox.com.

Emeakaroha, V., Ferreto, T. C., Netto, M. A. S., Brandic, 1., Rose, C. A. F. D.,
2012. Casvid: Application level monitoring for sla violation detection in clouds.
In: IEEE Computer Software and Applications Conference (COMPSAC 2012),
July 16th-20th, 2012 in Izmir, Turkey.

Emeakaroha, V. C., Brandic, 1., Maurer, M., Dustdar, S., 2010. Low level metrics
to high level SLAs - LoM2HiS framework: Bridging the gap between monitored
metrics and SLA parameters in cloud environments. In: The 2010 High Perfor-
mance Computing and Simulation Conference (HPCS 2010) June 28July 2, 2010.

Emeakaroha, V. C., Netto, M. A., Calheiros, R. N., Brandic, I., Buyya, R., Rose,
C. A.D., 2012. Towards autonomic detection of sla violations in cloud infrastruc-
tures. Future Generation Computer Systems 28 (7), 1017 — 1029, jce:title; Special
section: Quality of Service in Grid and Cloud Computing;j/ce:title;,.

URL http://www.sciencedirect.com/science/article/pii/
S0167739X11002184

32



[14] Foster, 1., Zhao, Y., Raicu, I, Lu, S., 2008. Cloud Computing and Grid Com-
puting 360-Degree Compared. 2008 Grid Computing Environments Workshop
abs/0901.0 (5), 1-10.

URL http://arxiv.org/abs/0901.0131

[15] Ganglia Monitoring System, 2012. http://ganglia.sourceforge.nety/.

[16] GFI MAX RemoteManagement, 2012. http://landmaxrm.gfi.com/remote-server-
monitoring/.

[17] Gonzélez, J., Muifioz, A., Mafia, A., 2011. Multi-layer Monitoring for Cloud
Computing.
URL http://ieeexplore.ieee.org/xpl/freeabs_all. jsp?
arnumber=6113910

[18] Google Docs, 2012. http://docs.google.com.
[19] HPOpenView, 2012. http.//support.openview.hp.com/.

[20] Huebscher, M. C., McCann, J. A., Aug. 2008. A survey of autonomic computing
degrees, models, and applications. ACM Comput. Surv. 40 (3), 7:1-7:28.
URL http://doi.acm.org/10.1145/1380584.1380585

[21] IBM Global Technology Services, June 2011. Security and high availability in
cloud computing environments. Technical White Paper MSW03010-USEN-00,
IBM.

[22] IBM Tivoli Monitoring, 2012. http:/fwww-
01.ibm.com/software/tivoli/products/monitor/.

[23] InterMapper, 2012. http://www.intermapper.com/.

[24] Lakshman, A., Malik, P., Apr. 2010. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev. 44 (2), 35-40.
URL http://doi.acm.org/10.1145/1773912.1773922

[25] LogicMonitor, 2012. http://www.logicmonitor.com/.

[26] Ludwig, H., Keller, A., Dan, A., King, R. P, Franck, R., Jan. 2003. Web Service
Level Agreement (WSLA) Language Specification, v1.0.
URL http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf

[27] Mann, H. B., Whitney, D. R., 1947. On a test of whether one of two random vari-
ables is stochastically larger than the other. The Annals of Mathematical Statistics
18 (1), 50-60.
URL http://www. jstor.org/stable/2236101

[28] Massie, M. L., Chun, B. N., Culler, D. E., 2003. The Ganglia Distributed Moni-
toring System: Design, Implementation And Experience. Parallel Computing 30,
2004.

33



[29] Maurer, M., Breskovic, 1., Emeakaroha, V., Brandic, I., 28 2011-july 1 2011. Re-
vealing the MAPE loop for the autonomic management of Cloud infrastructures.
In: Computers and Communications (ISCC), 2011 IEEE Symposium on. pp. 147
-152.

[30] Mell, P., Grance, T., 2009. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology 53 (6), 50.
URL http://csrc.nist.gov/groups/SNS/cloud-computing/
cloud-def-vl5.doc

[31] mysql.www, 2012. Mysql - the world’s most popular open source database, ac-
cessed Nov 2012.
URL http://www.mysqgl.com/

[32] Nagios.org, 2012. http://www.nagios.org.

[33] Newman, H. B., Legrand, 1. C., Galvez, P., Voicu, R., Cirstoiu, C., Jun. 2003.
MonALISA : A Distributed Monitoring Service Architecture. In: Proceedings of
CHEPO3, La Jolla, California.

URL http://arxiv.org/abs/cs.DC/0306096

[34] Nimsoft Monitor Solution, 2012. http://www.nimsoft.com/solutions/nimsoft-
monitor/cloud.

[35] Open Nebula Monitoring Subsystem 34, 2012.
http://opennebula.org/documentation:rel3.4:img.

[36] OpenNebula: The Open Source Toolkit for Cloud Computing, 2012.
http://www.opennebula.org/.

[37] OPNET, 2012. www.opnet.com.
[38] PacketTrap, 2012. http://www.packettrap.com.

[39] Pawlowski, B., Noveck, D., Robinson, D., Thurlow, R., 2000. The NFS version 4
protocol. In: In Proceedings of the 2nd International System Administration and
Networking Conference (SANE 2000).

[40] Ramakrishnan, R., Gehrke, J., 2002. Database Management Systems. McGraw-
Hill international editions: Computer science series. McGraw-Hill Education.
URL http://books.google.es/books?id=JSVhe-WLGZ0OC

[41] rrd4j.www, 2012. Rrd4j - a high performance data logging and graphing system
for time series data. - google project hosting, accessed Nov 2012.
URL http://code.google.com/p/rrddj/

[42] rrdtool, 2012. Rrdtool, accessed Nov 2012.
URL http://oss.oetiker.ch/rrdtool/

34



[43]

[44]
[45]
[46]
[47]

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

Sempolinski, P, Thain, D., 30 2010-dec. 3 2010. A Comparison and Critique
of Eucalyptus, OpenNebula and Nimbus. In: Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Conference on. pp. 417
—426.

sFlow.org, 2012. http://www.sflow.org.
Site24x7, 2012. https://www.site24x7.com/.
SLA@SOI, 2012. http://http://sla-at-soi.eu/.

Spring, J., 2011. Monitoring Cloud Computing by Layer, Part 1. IEEE Security
& Privacy 9 (2), 66-68.

URL http://dblp.uni-trier.de/db/journals/ieeesp/
ieeesp9.html#Springll

Spring, J., 2011. Monitoring Cloud Computing by Layer, Part 2. IEEE Security
& Privacy 9 (3), 52-55.

URL http://dblp.uni-trier.de/db/journals/ieeesp/
ieeesp9.html#Springlla

sqlite.www, 2012. Sqlite home page, accessed Nov 2012.
URL http://www.sglite.org/

Stephens, M. A., 1974. EDF Statistics for Goodness of Fit and Some Compar-
isons. Journal of the American Statistical Association 69 (347), 730-737.

SurveyMonkey: Free online survey software & questionnaire tool, 2012.
www.surveymonkey.com.

TIMACS: Tools for Inteligent System Management of Very Large Computing
Systems, 2012. http://www.timacs.de.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., Lindner, M., 2009. A Break
in the Clouds : Towards a Cloud Definition. Computer Communication Review
39 (1), 50-55.

URL http://portal.acm.org/citation.cfm?id=1496100

Viswanathan, K., Lakshminarayan, C., Talwar, V., Wang, C., Macdonald, G.,
Satterfield, W., 2012. Ranking anomalies in data centers. In: NOMS. IEEE, pp.
79-87.

Wilcoxon, F.,, 1945. Individual comparisons by ranking methods. Biometrics Bul-
letin 1 (6), 80-83.
URL http://www. jstor.org/stable/3001968

Yahoo! Cloud Serving Benchmark (YCSB), 2012.
https://github.com/brianfrankcooper/YCSB/wiki.

35



[57] Zissis, D., Lekkas, D., 2012. Addressing cloud computing security issues. Future
Generation Computer Systems 28 (3), 583 — 592.

URL http://www.sciencedirect.com/science/article/pii/
S0167739X10002554

36



