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Abstract

Isolating users from the inevitable faults in large distributed systems is critical to Quality of Experience. We
formulate the problem of probe selection for fault prediction based on end-to-end probing as a Collaborative
Prediction (CP) problem. On an extensive experimental dataset from the EGI grid, the combination of the
Maximum Margin Matrix Factorization approach to CP and Active Learning shows excellent performance,
reducing the number of probes typically by 80% to 90%. Comparison with other Collaborative Prediction
strategies show that Active Probing is most efficient at dealing with the various sources of data variability.
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1. Introduction

The recent crash of the Amazon Cloud [1] highlighted the importance of timely discovery of failures in
large scale distributed systems: a local, limited error may result in a global catastrophe. Thus a significant
part of the software infrastructure of large scale distributed systems, grids or clouds, collects information
(monitoring) that will be exploited to discover (knowledge) if, where, and when the system is faulty.

This paper addresses the knowledge building step in the context of end-to-end probing as the class of
monitoring techniques. In the end-to-end probing approach, a probe is a program launched from a reliable
entry point (probe station), which tests the availability (and possibly performance, but this is outside the
scope of this paper) of the components on its path. The only observables are the outcomes of the probes,
which are binary: success or failure. For instance, a ping command would test the overall software stacks
and network connectivity from the probe station to the target computer.

The motivating application comes from operations management in the European Grid Initiative (EGI).
Challenged by a high fault rate, especially concerning data access, the Biomed Virtual Organization daily
runs end-to-end probes to test the availability of all relations between its endpoints, namely Computing
Elements (CEs) and Storage Elements (SEs). Our objective is to minimize the number of probes for a given
discovery performance target. The probe overhead budget can then be spent on more intelligible probes.

We address the probe minimization problem as an instance of Collaborative Prediction (CP): given a
small number of probe results, how to infer the capacities for other (CE, SE) pairs for which no probe is
launched. Srebro et al. [2] made a decisive advance in CP by proposing the Maximum Margin Matrix
Factorization (MMMF) method. This paper proposes three combinations of probe selection methods with
MMMF. Extensive experiments show that the number of probes can be reduced by more than 90%.
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This result goes well beyond the particular application: the fundamental hypothesis for CP is that a
limited number of common and hidden factors root the outcomes, here success or failure; this hypothesis
is reasonable in the context of large scale distributed systems, where the hidden causes are likely to be
related to hardware failures and misconfiguration of middleware services shared by clusters of users. Here
we extend the results of [3] in order to highlight in which directions the general CP framework should be
adapted to this new application area. The key point is that monitoring large scale distributed systems differ
from CP’s usual applications (personalized recommendation), in two major ways. On the bright side, while
users cannot be queried for specific recommendations, probes can be launched at will. On the downside, the
distribution of the probe results is highly skewed, faults being a small fraction of the total population. In
turn, the unbalanced distributions stem from two origins: firstly, fault causes are hopefully rare; and second,
some of the faults are transients. In the recent years, CP methods highlighting the role of various bias
have received a lot of attention, partially due to their success in the BellKor solution that won the Netflix
challenge [4], and specifically address time variability. In [3], we motivated the choice of MMMF amongst
numerous existing CP methods by the fact that it makes the optimization problem both well-defined and
tractable. While this is perfectly true, it turns out that the major advantage of MMMF is to be easily
amenable to active learning, which addresses fault sparsity both at the spatial (skewed distributions) and
temporal (transients) level.

Therefore , the main contributions of this paper are threefold:

• modelling probe-based fault prediction as a CP task;

• experimental evidence that MMMF is an extremely efficient strategy for fault prediction1;

• comparative analysis motivating the critical advantage of active learning.

The rest of this paper is organized as follows. Section 2 presents the motivating application and discusses the
general context of fault prediction and fault diagnosis; section 3 details the probe selection algorithms based
on MMMF; the data, evaluation methodology and experimental results for these algorithms are presented
is section 4; section 5 discusses related work; section 6 explores two CP methods that can be considered as
appealing alternatives to MMMF along the previous discussion; finally, section 7 gives the conclusion.

2. Problem Statement

2.1. Motivating application

The European Grid Infrastructure (EGI) enables access to computing resources for European researchers
from all fields of science, including high energy physics, humanities, biology and more. The infrastructure
federates some 350 sites world-wide, gathering more than 250,000 cores, which makes it the largest non-profit
distributed system in the world. Hardware and software failures are intrinsic to such large-scale systems.
Resource availability in production is about 90%, and middleware e.g. gLite [6] , Globus [7] or ARC [8]
cannot handle this without substantial human intervention. Access rights to EGI are primarily organized
along the concept of Virtual Organization (VO), and each of the 200 VOs has to be specifically configured
on its supporting sites, which adds complexity and introduces extra failures. User communities exploit two
strategies to cope with faults: overlay middleware e.g. dirac [9], diane [10], AliEn [11] and PaNDA [12]
implements specific fault-tolerance strategies to isolate users from the vagaries of the infrastructure; and
monitoring identifies problems and quantifies performance w.r.t. quality of service agreements.

The target system of this work is the Biomed VO. Biomed has access to 256 Computing Elements (CEs)
and 121 Storage Elements (SEs). CEs are shares of computing resources, implemented as queues of each
site manager (e.g. PBS), and SEs are shares of storage resources; the formal definition is part of the Glue
Information model [13]. Testing the availability of all CE-SE pairs is one of the most challenging issues

1The datasets are available online at the Grid Observatory [5] portal www.grid-observatory.org, making our experiments
reproducible
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encountered daily by monitoring operators. The current method is brute force: it periodically launches a
fully distributed all-pairs availability test, for a total of 29512 tests, multiplied by the number of capacities
to test at each run. Human operators cannot handle so many results; in practice, only a few issues are
reported, with questionable selection criteria. With CP, a massive reduction of the number of tests provides
nearly similar availability evaluation performance, creating opportunities for better frequency/intrusiveness
tradeoff and selection of reported incidents.

2.2. Fault prediction and fault diagnosis

Minimizing the number of probes can be addressed along three avenues: fault prediction, detection and
diagnosis. In all cases, the system under consideration is a set of hardware and software components, which
can be functioning correctly (up) or not (down). These components feature some dependencies – e.g. a
service certainly depends on the hardware it is running on, and possibly of other services. In the detection
problem, the goal is to discover if any of the components is down, while in the diagnosis problem, the
goal is to exhibit all down components. Both cases assume a priori knowledge of the components of the
system, as well as knowledge of the dependency matrix, which describes the outcome of each probe given the
status (up or down) of these components. For a given set of probes, diagnosis has linear complexity in the
number of components; however, optimal probe selection is NP-hard for detection and diagnosis, because it
is equivalent to the minimum cover set problem [14].

The obvious advantage of detection and diagnosis is that they provide an explanation of the failure, by
exhibiting culprits. On the other hand, it strongly relies on a priori knowledge – which components are
required for a probe to succeed – through the dependency matrix. For massively distributed systems, where
Lamport’s famous definition ”A distributed system is one in which the failure of a computer you didn’t even
know existed can render your own computer unusable” applies, assuming such knowledge might be hazardous
in principle. In our case, the very large scale of the dependency matrix, and its particular shape, mainly a
block-diagonal structure, calls for further research in order to explore the typical multi-faults configurations.

Instead, this paper focuses on fault prediction. In this case, the overall infrastructure is a black box,
with no a priori knowledge of its structure. The question is, given a small number of probe results, how to
infer the capacities for other (CE, SE) pairs for which no probe is launched. In this context, fault prediction
can be considered as a case for CP. CP is originally a technique for predicting unknown ratings of products
for a particular user, based on observed data from other users and products. It can be applied to various
domains such as online recommendation, link prediction and distributed system management applications
discussed in this paper. It is fundamentally a matrix completion task: given a very sparse user-by-product
matrix, whose non-zero entries represent known ratings, predict the unknown entries of the matrix. The
success of CP relies on the hypothesis of a factorial model: hidden and partially shared factors affect the
matrix entries. For example, two nodes (CE or SE) may share several hidden factors - e.g. location, with
the associated network connectivity issues, or use of a particular instance of any middleware service (e.g.
brokering, authentication), such that the availability of the CE-SE relation may be affected similarly.

Optimal probe selection for fault prediction is NP-hard too: assume that the hidden factors have been
identified by CP, and that we want to exhibit the optimal probe set, a posteriori. Then, the probe selection
problem is equivalent to diagnosis, but with the factors as components.

3. Goals and methods

From the previous description, minimizing the number of probes encompasses two distinct issues: probe
selection, i.e. which subset of the (CE,SE) pairs will actually be tested; and prediction of the availability of
all (CE,SE) pairs from the outcome of the previous selection.

3.1. Probe selection

We consider three probe selection methods.
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• Static-Uniform. The probes are selected uniformly at random amongst all (CE,SE) pairs. In this
setting, the probe selection and the prediction are completely independent: the prediction step has no
influence over the choice of the probes. This would be unrealistic in recommendation systems (users
do not select uniformly the products they rate amongst all proposed), but can be fully implemented in
probe selection. Moreover, for the subsequent prediction task, uniform sampling provides theoretical
bounds on the MMMF generalization error.

• Active Probing. With Active Probing, the set of probes is constructed dynamically, with an initial
set of probes selected for instance by the Static-Uniform method, and run through the system to
get basic information; then, additional probes are selected and launched with the goal of maximizing
some measure of information. Algorithm 1 illustrates the process: a predicted matrix is first given
by standard matrix completion based on some pre-selected samples, then some heuristics are used for
filtering the next subset of samples, which are labeled by actually running the probes and observing
their outcome. After several iterations, a final prediction is returned. In this setting, the CP method
impacts the probe selection. In this work, the min-margin heuristic [15] is used for selecting additional
probes. Min-margin favors exploration over exploitation: it choses the probe where the uncertainty of
the classification result is maximal, and has been demonstrated to be efficient for CP problems [16] .

• Differentiated costs. In the two previous methods, the same penalty is associated with both kinds
of mispredictions. It might be argued that a false negative (predicting success while the actual result is
a failure) is more harmful than a false positive (predicting failure while the actual result is a success),
because the federated nature the computational resources offers multiple options to users. Unbalanced
costs (in either direction) arise in many other contexts, e.g. medical testing [17], and can be integrated
in the core learning step, as shown in the next section.

input : Initial partially observed binary(-1/+1) matrix M0, threshold λ, max # of new samples
N , active-sampling heuristic h

output : Full binary-valued matrix MTi predicting unobserved entries of M0

initialize: Initialize the vars
1 S(T0) = S(M0) /*currently observed entries set*/ ;
2 i = 0 /*current iteration times*/ ;
3 n = 0 /*current number of new samples*/ ;
4 while (n < N) do
5 MTi = StandardMC(S(Ti)) /*Prediction based on observed entries via standard MC

procedure*/ ;

6 S′(Ti) = ActiveSampling(MTi , h, λ) /*Actively choose the next set of new samples and query
their labels*/ ;

7 S(Ti+1) = S(Ti) ∪ S′(Ti) ;
8 n = n+ #S′(Ti);
9 i = i+ 1 ;

10 end

Algorithm 1: Generic active probing algorithm

3.2. Collaborative Prediction with MMMF

This section sketches the motivations and technicalities of MMMF as proposed by Srebro et al. [2]. CP is
formalized as a matrix completion problem: if Y is the observed (sparse) matrix, the CP problem is to find
a full, real-valued, matrix X of the same size that approximates Y , i.e. that minimizes the “discrepancy“
between X and Y without any external information. Assuming a linear factor model, where k hidden factors
define the user preference through a linear combination of them, X is constrained to be of rank k. Bounding
k to small values (low-rank approximation) does not lead to feasible optimization problems for a partially
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Figure 1: Failure and rejection rates; the mean and standard deviation are computed over the experiments

observed matrix and for the binary setting. The key insight in MMMF is to replace rank minimization
with trace norm (‖X‖Σ) minimization, under the constraint of no (hard-margin), or small (soft-margin),
discrepancy. Let S be the set of known entries in Y . Two objective functions can be considered.

• Hard-margin: minimize ‖X‖Σ under the constraints

YijXij ≥ 1 for all ij ∈ S;

• Soft-margin: minimize

|X‖Σ + C
∑
ij∈S

max(0, 1−XijYij). (1)

As the minimization procedure produces a real-valued matrix, a decision threshold (e.g. positives values
give +1, negatives give -1) gives the final predicted binary matrix

The soft-margin factorization can be extended with the general robust strategy described by [18] for in-
tegrating differentiated costs (or unbalanced positives and negatives examples) in Support Vector Machines:
the regularization parameter C in eq. 1 is split in two, C+ (resp. C−) for positive (resp. negative) examples.
The only important parameter is the ratio C+/C−.

4. Experimental results

4.1. The data sets

Different capabilities have to be tested; in the following, we consider three of them: probe srm-ls tests the
list ability from a CE to a SE, probe lcg-cr tests the read ability from a CE to a SE, and probe lcg-cp tests
the write ability alike. Thus, each CE works as a probe station, launching probes to test the functionalities
between itself and each SE. For the Biomed grid a whole set of testing transactions (as we mentioned
before: 29512) were launched each day for each of the three probe classes. After nearly two months running,
information for 51 validated days were collected. In other words, 51 fully observed SE-by-CE result matrices
were obtained for each probe. Figure 1 shows the statistical profile of the probe outcomes2. Failure rates
of lcg-cp and lcg-cr are almost identical (ranges from 10% to 25%), while failure of srm-ls is significantly
higher (ranges from 40% to 50%).

The probes themselves are gLite jobs, run by a regular Biomed user. Some of them fail (rejection) in
the sense that gLite is not able to complete the job, denoting that some job management services may be
down or misconfigured (e.g. authentication, brokering etc.). The rejected probes entries in figure 1 shows
the ratio of unsuccessful probes over all launched probes in this sense. In the following, we consider only

2Note that here and on Fig. 5 and 6(b), only the points associated to each experiment are meaningful; the lines between
the experiments are added only for readability purpose.
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the accepted probes, i.e. those which run to completion, reporting success or failure; this approach amounts
to consider that the data access capacities are independent from job management. This is a reasonable
hypothesis in a gLite infrastructure because file transfers involved in job management use dedicated storage
space independent from the one tested by our probes. Separate testing is good practice in general; in this
specific case, the high rejection rate (average 40%) and the high failure rate would act as a massive noise on
each other, and would make CP more difficult if we tried a global approach.

Table 1: Five example datasets

Name Date Probe Failed Failed
Native Curated

lcg-cp 0.15 0.04
1 04.21.2011 lcg-cr 0.16 0.05

srm-ls 0.45 0.02

lcg-cp 0.14 0.03
2 05.14.2011 lcg-cr 0.15 0.03

srm-ls 0.43 0.01

lcg-cp 0.16 0.03
3 05.25.2011 lcg-cr 0.15 0.03

srm-ls 0.43 0.02

lcg-cp 0.16 0.05
4 06.09.2011 lcg-cr 0.16 0.05

srm-ls 0.42 0.01

lcg-cp 0.16 0.06
5 07.05.2011 lcg-cr 0.16 0.07

srm-ls 0.45 0.04

We selected five days for detailed performance analysis, refereed afterwards as the benchmarks. Table 1
shows some basic characteristics of the fully observed entries; the fourth column gives the failure rate when
all probes are considered and exemplifies the need for inferring the structure of the apparently massive
randomness. Figure 2 illustrates the structure for lcg-cr and srm-ls on day 5 (’07-05-2011’), where rows
represent CEs and columns stand for SEs. Each entry is the probe result between the corresponding CE
and SE. Black columns correspond to prolonged SE downtimes while black lines are CE failures leading to
complete inability to communicate with any SE (e.g. network downtime or configuration issue). These are
usually easily detected and reported by human operators with only a few incident reports. The scattered
points correspond to local or transient issues, which are very difficult to handle due to the amount of
incident reports independently generated. The higher failure rate of srm-ls compared to lcg-cr appears to be
associated with an inadequate port number in some probes, and may be considered as an example of user
error.

It could be argued that other, global (EGI-wide) monitoring tools should report on these systematic
failures, and that the probe selection and prediction methods should be applied only to the more elusive
causes of errors. While this is disputable (remember that all probes succeed as jobs, thus at least the CEs
are up and running), it is worth assessing the performance of the methods when these systematic errors are
eliminated. Therefore, we designed a second set of experiments, with curated matrices as the reference fault
structure. A curated matrix is a new original matrix, where the lines and columns with only failed entries
(black ones in figure 2) have been removed prior to analysis. Their basic statistics are shown in the last
column of table 1. In this case, srm-ls shows a lower error rate than the other probes.

4.2. Evaluation Methodology

From this dataset, evaluating probe selection is straightforward. Figure 3 illustrates the general workflow
of the selection-prediction process. The Original matrix is the ground truth: a fully observed result matrix
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Figure 2: The CE-SE matrix. Black = failed, white= ok

Figure 3: Illustration of matrix recovery
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Figure 4: Accuracy for the Static-Uniform probe selection.

obtained from the all-to-all monitoring runs (section 2.1). Value -1 stands for probe result ok (negative) and
1 means failed (positive). The Selected matrix is generated by deleting a proper proportion of entries in
the Original one. In a real-world, probe selection-based, monitoring, the remaining entries would be the only
actually launched probes. The Predicted matrix is the recovery result generated by the prediction algorithm
based on the known entries in Selected, where the X entries are now set to 1 or -1. In the real-world scenario
they would be delivered to users.

Contrary to the recommendation systems, where there is no ground truth (the users do not rate all
products), the collection of data presented in section 4.1 provides the true values. Thus, the classical
performance indicators for binary classification can be measured. They describe the various facets of the
discrepancy between the Original and the Predicted matrices.

• Accuracy: the ratio of correctly predicted entries over the total number of entries.

• Indicators associated with the risks (confusion matrix): sensitivity, the proportion of actual positives
that are correctly predicted; specificity, the proportion of actual negatives that are correctly predicted;
precision, the ratio of true positives over all predicted positives, and the MCC (Matthews Correlation
Coefficient), a correlation coefficient between the observed and predicted binary classifications that is
relatively insensitive to unbalanced positives and negatives.

• The AUC (Area Under ROC Curve), which summarizes the intrinsic quality of a binary classifier
independent of the decision threshold.

The interest of MCC and AUC comes from the fact that, in the optimization step of MMMF, the classification
error on the Selected matrix is a reasonable estimation of the prediction error, while this hypothesis is less
natural for estimating MCC and AUC [19]. Thus, MCC and AUC provide a comparison indicator of the
performance of the methods beyond their explicit optimization target.

In order to evaluate the contribution of the prediction (or coupled selection-prediction) methods, we
compare their results with a simple baseline, called Rand Guess in the following. Rand Guess predicts entries
following the distribution of the sample set (Selected matrix). For example if the ratio of positive:negative
entries in a sample set is 1:4, then Rand Guess would predict an unknown entry as failed or positive with a
probability of 20% and as ok or negative with a probability of 80%.

4.3. Static-Uniform

For each result matrix M different fractions of its entries are deleted uniformly and a series of partially
observed matrices M ′1, M

′
2, ... are generated. For these new matrices, the task is only to predict the deleted
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Figure 6: ROC-related metrics, Static-Uniform probe selection

entries from the selected ones by MMMF-based CP. Figure 4 shows the prediction accuracy as a function
of the fraction of launched probes, for the five benchmarks. The results are averages over ten experiments.
As lcg-cp and lcg-cr behave similarly, only one is shownThe first and striking result is that an excellent
performance can be reached with a tiny fraction of the original probes, typically 5%. The Rand Guess results
are plotted for comparison purpose, but can be approximated easily: if q is the fraction of positive entries
in the original matrix, then in the deleted part, P (True Positive) = P (Positive)P (Predicted Positive) = q2,
and similarly P (True Negative) = (1− q)2; overall, the accuracy is q2 + (1− q)2. With the values of q from
table 1, the accuracy of Rand Guess is in the order of 0.7 for lcg-cp and lcg-cr, and 0.5 for srm-ls.

In the CP interpretation, the rank of a result matrix corresponds to the hidden causes. Figure 5 shows
the ranks of the predicted and original matrices. The ranks of the predicted matrices are significantly lower
than the original ones, showing that a small number of causes dominates the overall behavior. The number
of hidden causes is much larger for lcg-cp and lcg-cr than for srm-ls, confirming the empirical evidence that
the srm-ls faults are more deterministic.

Figure 6(a) is the classical visualization of the confusion matrix in the ROC space for all the 51 days
at 90% deletion rate (keeping 10% of the probes). Note the range of the axes, which cover only the small
part of the ROC space where the results belong, thus the diagonal line is not visible on the plot. Perfect
prediction would yield a point in the upper left corner at coordinate (0,1) of the ROC space, representing
100% sensitivity (no false negatives) and 100% specificity (no false positives). The srm-ls dataset shows
excellent prediction performance, being mostly very close to (0,1); lcg-cp and lcg-cr exhibit close ROC
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Figure 8: Accuracy comparison between the Static-Uniform and Active probe selection, curated srm-ls for
the five benchmarks

value distributions, definitely much better than a random guess, which lies on the diagonal line. The other
indicators also show excellent performance: the AUC (fig. 6(b)) as well as the MCC are close to 1. The
case is closed for the initial problem.

The problem becomes much more difficult when the systematic faults are excluded, thus taking the
curated matrices as inputs. Figure 7 shows the prediction accuracy on the curated srm-ls example (figures
for the other probes are equally excellent, and are omitted; note that, from table 1, this probe is the most
challenging one). As before, at most 10% of the whole probes is needed to reach a promising accuracy,
greater than 98%. However, as the number of failed entries left in the curated matrices is much less than
in the un-curated ones, e.g. the fraction of failed entries on day 1 (srm-ls, 04-21-2011) drops from 45.37%
to 2.25%, accuracy is not meaningful: predicting all entries as negative would give a similar result. The
ability of making good prediction on the failed entries should be valued more. And the relevant performance
indicators are not so good, except for day 5, as shown in figure 8: for the same example, at 10% deletion rate,
sensitivity is 0.32, meaning that 68% of the failures are not predicted, and precision is 0.49, meaning that
amongst the predicted failures, 51% are spurious. The first strategy to tackle this issue is Active Probing.

4.4. Active Probing

In this experiment, we compare the Active Probing strategy with the Static one at equal probing cost:
first, a Static-Uniform method is applied, in order to get the reference information, then more probes are
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selected with the min-margin heuristic for Active Probing, while for the Static-Uniform method, the same
number of probes are selected uniformly at random.

Active Probing does improve accuracy over Static-Uniform, as shown in figure 8. However, as explained
in the previous section, the quality of failure prediction is the most important goal in this context. Figure 9
compares the relevant indicators: sensitivity, precision and the MCC. They are detailed for the initial probe
fraction equal to 5%, then adding probes by step of 5% fractions. The results as given for a total of 10% and
15% probes. The first result is that Active Probing always outperforms Static-Uniform. More importantly,
acceptable results can be obtained with a relatively small number of probes (15%), albeit larger than in the
much easier un-curated case: in all cases, more than 90% of predicted failures are actual ones (figure 9(b)),
even for the very difficult day 2; the probability of predicting an actual failure (figure 9(a)) increases from
43% to 67% on day 1, from 39% to 62% on day 3 and from 14% to 48% on day 4. In other words, and as
expected, Active Probing singled out the failures as the most uncertain data, adaptively building its own
training set.

The performance greatly varies with the benchmark, and the variation is somehow related to the failure
rate of the benchmark (table 1): larger failure rates in the original curated matrix help uncovering the
structure of the faults, even at quite low levels: with 4% failure rate, the 07-05-2011 (day 5) benchmark
exhibits acceptable performance when keeping only 5% of the probes and the Static-Uniform strategy;
conversely, for day 2, with a low failure rate (1%), sensitivity remains bad, predicting at best 19% of the
actual faults, although active probing allows for a good precision. However, the failure rate does not tell the
full story: days 2 and 4 have the same low one, but the performance on day 4 is much better. The likely
explanation is that faults on day 2 do not present much correlation, while faults on day 4 derive from a
small number of shared causes.

4.5. Cost sensitive + Active probing

Finally, we sketch the results of the cost-sensitive MMMF. The C+/C− ratio is set equal to 10. The
optimization target being soft-margin, the results for the initial Static-Uniform at 5% probe fraction are
slightly different from the previous experiments. Figure 10 compares Active probing with and without
cost weighting. Higher penalization of false negatives almost always decreases the final mis-prediction costs
(Figure 10 (a)). Figure 10 (b) and (c) give the explanation: while sensitivity is indeed increased, the number
of false positives also increases, leading to slightly lower precision, but the overall impact is favorable.

4.6. Computational cost

CP methods have to be scalable, as they target enormous data sets such as the Netflix database. The
computational cost of the optimization problem of learning a MMMF essentially depends on the number of
known entries in the Selected matrix, or equivalently on the probe fraction. Technically, the optimization is
performed through a sparse dual semi-definite program (SDP), with the number of variables equal to the
number of observed entries. We used YALMIP [20] as the model tool and CSDP [21] as the SDP solver.
Empirically, the time needed for computing one MMMF increases exponentially with the number of entries
in the Selected matrix. In practice, computation time is not an issue: less than 30 seconds with 2000 entries
(15% probes) on a standard workstation.

5. Related Work

Collaborative Prediction associated with end-to-end probing, with the components structure considered
as a black box, participates in the general Quality of Experience approach [22]. More precisely, an important
ingredient separating QoE from QoS is binary (possibly extended to discrete) classification. Most work in
this area is devoted to network-based services (e.g. among many others [23]). Before QoE became a popular
keyword, Rish and Tesauro [16] explored the combination of MMMF and Active probing for the selection
of good servers in various distributed and P2P systems. Our work combines the goal of proposing fault-free
services to the user exemplified in [14, 24], and the CP approach of [16]. Z. Zheng and M.R. Lyu propose
explicit users collaboration for estimating failure probabilities [24]; while their end-to-end framework is
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related to ours, the goal is more in line with QoS (estimating the full distribution of probability instead of
binary classification), and the correlation amongst users or services is modeled by ad hoc methods. To our
knowledge, this paper is the first one to exemplify MMMF on fault prediction.

The state of the art methods in Collaborative Prediction follow two paths. Matrix Factorization meth-
ods [2, 25, 26], exemplified by MMMF, considers that all data are equally relevant to the prediction task:
the values are generated using the same factor vector. This approach, which assumes a strong homogeneity
of the data, has been termed continuous latent factor by [27]. The other approach considers that the data
should be contextualized, and bias terms included in the model. The most frequent justification for such
contextualization is temporal variation; in recommendation systems, the context can be the mood of the
user, or even the fact that two users share a common internet access.

Y. Koren and the BellKor team, winners of the highly published Netflix prize, proposed explicit modeling
of various contexts, including temporal drifts and spikes [28]. They remarked that a basic model, which
captures context effects but disregards user-item interactions, explains more of the data variability than the
commercial Netflix Cinematch recommender system. However, the model selection for bias is largely based
on the specificities of users behavior in movie recommendation, thus not easily extendable. Alternatively,
block models [29, 30] propose a fully generative model and leverage the older neighborhood method [31] based
onclustering. The specific application to CP is Bi-LDA [29]. Although LDA (Latent Dirichlet Allocation)
also embodies the discovery of latent (hidden) factors, the key difference between Bi-LDA and matrix
factorization is that the relationship (CE/SE in our case, user/product in recommendation systems) is
allowed to select a new topic (factor) for each interaction.

In our grid environment, transient failures are well attested, and the frequency of switching between
functioning/malfunctioning can be high; such context bias could be anything like a middleware installed on
a CE temporary down, or too many concurrent write requests issued to a SE, making context-awareness
appealing. However, Bi-LDA is known to exhibit relatively poor predictive performance, probably due to an
exclusive modeling of interaction of clusters (through topics); in other words, the expression of the specificity
of individual interactions (this particular user/CE with this particular movie/SE) is lost. Recently, Mackey
proposed a bayesian approach to reconcile Matrix Factorization and probabilistic topic selection with Mixed
Membership Factorization (M3F) [27], introducing context dependence in a more general way than the a
priori formulation of [32]. Moreover, in recommendation systems, the greatest performance improvements
with M3F occur for the high-variance, sparsely-rated objects, suggesting a good capacity at capturing the
transients that are a serious issue for VO operation managers.

6. The role of Active Learning

6.1. AUC optimization within MMMF

In section 4.4, we have exposed the intuitive motivation for Active Probing: we think that one important
issue of CP applied to fault prediction lies in the strong imbalance between positive and negative examples;
on the other hand, MMMF is theoretically grounded only for uniform random selection of examples, which
is just the opposite of the active learning approach. Thus, a first question is to which extent a more targeted
algorithm would not successfully compete with Active Probing. In order to evaluate its specific contribution,
we designed an algorithm which integrates MMMF and optimization of the area under the ROC curve (AUC),
a natural and useful performance measure for evaluating classifiers when the class distributions are heavily
skewed.

Reformulation of the objective function

Intuitively, AUC expresses the probability that a decision function f assigns a higher value to a randomly
selected positive example x+ than to a randomly selected negative example x−:

AUC(f) = Pr(f(x+) > f(x−)).

AUC refers to the true distribution of positive and negative instances, and can be estimated through sam-
pling. The normalized Wilcoxon-Mam-Whitney statistic gives the maximum likelihood estimate of the true
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AUC given n+ positive and n− negative examples [33] :

ÂUC(f) =

∑n+

i=1

∑n−

j=1 1f(x+
i )>f(x−

j )

n+n−
. (2)

The AUC score is determined by the number of correctly ranked sample pairs; therefore, to maximize the
AUC we could maximize the number of correctly ranked sample pairs, which meet f(x+) > f(x−)). Here we
extend the standard Maximum Margin Matrix Factorization (MMMF) with the object of AUC optimization.

In the MMMF problem, we use the partially observed sparse matrix Y to recover the target matrix X
under the constrain of a L2 norm discrepancy for each predicted and observed entry, i.e YijXij ≥ 1 − ξ.
However, this entry-wise constraint contains no order information between sample pairs, i.e. order between
the pair 〈Yi, Yj〉 where i 6= j and Yi ∈ S+, Yj ∈ S−. Here, in the aim of AUC score maximization, we add the
sample pairwise order constraints to the MMMF objective function and derive the following reformulation.

min ‖X‖Σ + λ1

∑
k∈S

ξk + λ2

∑
i∈S+,j∈S−

δij

s.t. YkXk ≥ 1− ξk
Y +
i X

+
i + Y −j X

−
j ≥ 1− δij

where S is the set of known entries in Y , S+ and S− are the positive and negative entry sets, ξk is the
entry-wise constraint on Xk, δij is the pairwise order constraint on 〈Xi, Xj〉, λ1 and λ2 are the regularization
terms. One thing to mention is that the number of constraints in the second regularization term is quadratic
with the sample size, thus leading to a more complex optimization problem. Inspired by the idea in [34],
instead of adding all constraints at once, we add the most important constraint iteratively, with the price of
iterative computation. However, in practice, the total number of added constraints on all test sets proved
to be quite limited, never exceeding 12, in accordance with a similar observation in [34].

Algorithm Framework

input : Initial partially observed binary(-1/+1) matrix M0, max number of iteration N
output : Full binary-valued matrix MTi predicting unobserved entries of M0

initialize: Initialize the vars
1 S(T0) = S(M0) /*current constraint set*/ ;
2 i = 0 /*current iteration times*/ ;
3 while (i < N) do
4 MTi = StandardMC(S(Ti)) /*Prediction based on observed entries via standard MC

procedure*/ ;

5 S′(Ti) = MostV iolatedAUC(MTi) /*Calculate and select the most violated AUC pair */ ;
6 if #S′(Ti) > 0 then
7 S(Ti+1) = S(Ti) ∪ S′(Ti) ;
8 i = i+ 1 ;

9 else
10 break /*No violated AUC pair*/ ;
11 end

12 end

Algorithm 2: AUC optimization within Matrix Factorization

Algorithm 2 illustrates the process of AUC-oriented MMMF (AUC-MMMF). We use a standard MMMF
procedure for the recovery of a partially observed matrix, then the AUC value on the training set is computed
according to equation 2 and the most violated AUC pair is added into the current constraint set for the
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next iteration. The loop terminates when there is no more violated pairs in the sample set or the maximum
number of iteration is reached.

Experimental Results

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Benchmark number

A
U

C

 

 

0.05−nopt 0.05−opt 0.1−nopt 0.1−opt

0.15−nopt 0.15−opt 0.2−nopt 0.2−opt

(a) Static vs AUC optimization

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Benchmark number

A
U

C

 

 

opt−0.1 act−0.1 opt−0.15 act−0.15

(b) Active vs AUC optimization

Figure 11: AUC optimization on srm-ls, with λ1 = 0.5, λ2 = 10.

The trade-off coefficients λ1 and λ2 are chosen via cross-validation. We ran each experiment 5 times
and average the results correspondingly. The performance of AUC-MMMF with static and active MMMF
are compared at different sample rate levels on the curated srm-ls benchmarks. Figure 11(a) shows that
AUC-MMMF always outperforms static MMMF, by about %3 − %6 on benchmarks 1, 2, 3, 4. However,
Active Probing outperforms or is equivalent to AUC-MMMF in most cases. In other words, the Active
Probing strategy actually discovers the violated constraints through focusing on the most uncertain -and
very often positive (failure)- cases.

6.2. Mixed Membership Matrix Factorization

This section compares the performance of one implementation of the Mixed Membership Matrix Fac-
torization with static and active MMMF on the curated probing dataset. For better understandability,
we describe the M3F Topic-Index Bias (TIB) model of [27] in recommendation terms. The model is an
implementation of M3F where the context bias can be additively decomposed into a user bias and a item
bias. Both bias are influenced by counterpart’s selected topic, i.e. the user bias is influenced by the item’s
topic and vice versa. In M3F-TIB each user and each item has its own latent factor vectors (au and bj) and
topic distribution parameters (θUu and θMj ). To rate an item, first both the involved user and item draw a

topic, zUuj for user side topic and zMuj for item side topic, from their distributions. Then, a rating bias, βik
uj ,

is jointly specified by the user and item topics, i and k, and the identity of the user and item, u and j. Last,
a complete rating is given by the sum of a user-item-specific static rating au · bj and a contextual bias βik

uj ,
along with some noise. For simplicity, a rating r can be expressed as following:

ruj ∼ N(βik
uj + au · bj , σ2)

βik
uj = χ0 + cku + dij

where σ is a Gaussian noise and χ0 is a fixed global bias, cku is the bias for user u under item topic j and dij
is the bias for item j under user topic i.

For M3F-TIB, we used a dynamic threshold for labeling the predicted real-valued matrix, as predicted
values provided by M3F-TIB are nearly always negative, which makes a fixed threshold like 0 unreasonable.
More precisely, we choose the threshold which assigns the final label of each predicted entry as following:
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Figure 12: M3F-TIB vs. static MMMF, m3f stands for M3F-TIB and st means static MMMF.
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Figure 13: M3F-TIB vs. active MMMF, m3f stands for M3F-TIB and act means active MMMF.
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first the proportion of positive samples, θ = S+/S, is calculated from the training set, then for all the
predicted values, we choose the first θ percent as positive entries and the other part as negative ones, in
other words assuming that the fraction of positive entries in the training set should approximate the one in
the whole set. For M3F-TIB, the model parameters are set as following: numFacs = 20, KU = 2, KM = 2,
the Gibbs sampler is initialized using a Maximum A Posteriori (MAP) estimator, and run 500 samples for
prediction, without any discarded samples for ’burn-in’. All results are averaged over 10 runs.

Figure 12 illustrates the comparison of different classifier measurements between M3F-TIB and static
MMMF. On benchmark 1 and 3, M3F-TIB shows a better performance than the static MMMF over all
three metrics, except that the precision of M3F-TIB on benchmark 3 is slightly lower than with static
MMMF when the size of training set increases. At the same time sensitivity is significantly better than
with MMMF, which implies that the dynamic threshold based M3F-TIB tends to have less false negative
than false positives. On the other hand, static MMMF performs better than M3F-TIB on benchmark 2, 4, 5.
Interestingly, on benchmark 4, both algorithm tend to have similar MCC values, but behave oppositely on
sensitivity and precision: M3F-TIB has better sensitivity while static MMMF has better precision.

Similar comparison of these metrics between M3F-TIB and active MMMF is demonstrated in figure 13,
showing that M3F-TIB is less competitive than active MMMF on all benchmarks. This was to be expected,
as M3F-TIB is essentially comparable to static MMMF in our case.

In conclusion, given the operational goal as they are - essentially low intrusiveness probing - the capacity
of actively selecting the most informative probes provides a much more efficient method to capture the time
variability than M3F.

7. Conclusion

The Achille’s heel of large scale production grids and clouds is reliability. At the scale of these systems,
classical detection or diagnosis would require a complete a priori knowledge of the software and hardware
infrastructures that might remain definitely inaccessible. Quality of Experience at reasonable human cost
requires extracting the hidden information from monitoring data whose intrusiveness should be limited.
Collaborative Prediction is one of the promising and scalable strategies that can address this new chal-
lenge. Compared with the recommendation context, monitoring enjoys a decisive advantage, being allowed
to adaptively build knowledge. Through experiments on a large dataset, this paper demonstrates the effec-
tiveness of combining Collaborative Prediction and Active Leaning. The min margin heuristic has shown to
be versatile enough to address two difficult issues quite specific to the fault prediction problem, and of very
different nature: the spatial one, the imbalance of positive and negative examples; and the temporal one,
the transients. Cleaning the data - eliminating the noise -, for instance through bias modeling, has been
shown essential for recommendation systems. In our active monitoring setting, things go in the reverse way,
to the same goal: instead of acquiring all data, then discarding the most noisy of them, which would be for
example the result of a fixed frequency probing strategy, Active Probing adaptively adjusts its acquisitions
and its the internal model. The next step would be to go for a fully personalized recommendation system,
taking into account not only the infrastructure, but the particular user, whose specificities may also create
failure risks.
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