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Abstract

Workflow applications are a popular paradigm used by scientists for modeling
applications to be run on distributed computing systems for obtaining high-
performance. Nowadays, the increase in the number and type of different dis-
tributed systems facilitated the access to high-performance computing to al-
most any scientist, yet entailing additional challenges to be addressed. One
of the critical problems today is the power required for operating these sys-
tems for both environmental and financial reasons. In order to decrease the
energy consumption in distributed systems, different methods have been pro-
posed. Among them, energy-efficient scheduling is receiving increasing attention
today. Current schedulers are, however, either based on simplistic energy con-
sumption models which do not match the reality, or use techniques like DVFS
available on all the types of distributed systems. In this paper, we present a
multi-objective workflow scheduler able to compute a a set of tradeoff optimal
solutions in terms of makespan and energy efficiency. Our approach is based
on empirical models which capture the real behaviour of energy consumption
in real distributed systems. We compare our algorithm two classical mono-
objective scheduling algorithms and show that our approach computes better
or similar results in different scenarios. Furthermore, we analyse the different
tradeoff solutions computed by our algorithm under different experimental con-
figurations and we observe that in some cases MOHEFT finds solutions which
reduce the energy consumption by up to 34.5% by just increasing the makespan
by 2% versus the optimal solution.

1. Introduction

Precedence-constrained parallel applications, also known as workflows, are
one of the most popular paradigms used by scientists for modelling large applica-
tions. Most of these applications have to deliver results under certain hard time
constraints requiring executions in distributed systems. The challenge stem-
ming from these requirements is achieving an efficient task-to-resource machine
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mapping, also called schedule, in order to minimize the execution time of the
workflow – an NP-complete problem.

Nowadays, high performance parallel computing is available to almost any
scientist or researcher. Besides expensive supercomputers, we have experienced
in the last decade a proliferation of other distributed systems such as commodity
clusters and grids. Furthermore, the new cloud computing distributed systems
paradigm that arose in the recent years introduces a new operational model
where resources are managed by specialized data centres and rented only on
demand and for the period of time they need to be used. High performance
computing can be viewed under this paradigm as a service which hides most of
the complexity of operating a large number of distributed resources.

Along with its many advantages, cloud computing introduces several new
challenges. For example, a critical problem in distributed systems is the consid-
erable amount of energy that data centres require. Besides the green implica-
tions of energy-savings, Hamilton [12] reported that the financial expenditure for
the energy consumption of Amazon.com data centres in a period of fifteen years
accounts 19% of its total budget, and that 23% of the same budget represents
the cost of maintaining the cooling infrastructure (which depends on the energy
consumption too). Under these circumstances, energy efficiency is presently be-
coming an important objective for computing infrastructure providers due to
its environmental implications and high financial impact.

Reducing the energy required by a distributed system can be accomplished
through two non-orthogonal approaches: hardware and software. The hard-
ware approach implies the design of more energy-efficient components, manly
processors which represent the main energy consumers in computing systems.
Advances in hardware energy efficiency are, however, difficult to achieve and
are characterised by a long delay (sometimes even years) between the initial
proposal and the final commercial product due to the long, multi-phased manu-
facturing process (design, prototyping, testing, mass production). Thus, relying
on hardware advantages may not be a satisfactory solution for short term energy
savings.

Concerning the software approach, existing techniques try to reduce the
energy consumption (when possible) through the use of Dynamic Voltage and
Frequency Scaling (DVFS), which enables on-line adjustments to voltage and
frequency in CMOS circuits [13, 4, 6]. By applying this technique to different
CPUs in a distributed system, it is possible to have resources working at their
highest speed and implicitly at peak energy consumption while executing time-
critical tasks. Conversely, they will be tuned to work at a lower speed with
lower energy consumption while executing non-critical tasks.

Extrapolating this idea to heterogeneous distributed systems, the energy
efficiency of workflow executions might be increased by scheduling critical tasks
on fast but probably energy-expensive resources, and non-critical tasks on slower
less energy consuming ones. In such systems, the user is confronted with a set
of resources working at different speeds and with different characteristic energy
consumptions.

Scheduling workflows in these circumstances can be formulated as a multi-
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objective optimization problem (MOP) which aims at optimising two possibly
conflicting criteria: makespan and entailed energy consumption of executing
the workflow. The main characteristic of MOPs is that no single solution exists
that is optimal with respect to all objectives, but a set of tradeoff solutions
known as Pareto set or Pareto front, depending if we refer to the domain or co-
domain of the functions to be optimized. The property of the solutions on the
Pareto set/front is that they cannot be simultaneously improved with respect
to all objectives. Concretely in our case, there is likely that no single workflow
schedule that simultaneously minimises its makespan and energy consumption
exists, but rather a set of Pareto-optimal tradeoff solutions.

Although several energy-efficient approaches to workflow scheduling have
been proposed so far, they present several disadvantages which hinder or even
prevent their wider adoption in distributed systems:

1. DVFS technology is limited to adjusting the frequency and voltage of
the entire CPU1. This limits the applicability of DVFS for scheduling at
the single resource level since it is not possible to execute tasks requiring
different DVFS levels on the same multi-core machine.

2. DVFS is most of the times not available to the guest operating systems
in virtualised environments and is managed only by the hypervisors. This
directly affects scheduling on cloud resources, where virtual machines of
different users may run on different cores of the same physical CPU where
exposing DVFS functionality is infeasible.

3. Most of the available energy consumption models are theoretical and have
not been thoroughly validated with realistic experiments.

4. Most of the existing models simplify the machine energy consumption to
two distinct levels corresponding to its idle and fully-loaded state. In
reality, the energy consumption greatly varies and in continuous fashion
with the level of CPU utilisation which, in turn, is dependent on the
executed task’s characteristics. This behaviour is even more evident in
multi-core CPUs with individual cores having different levels of utilisation.

5. Existing multi-objective approaches requires the user indicate a-priori
preferences in order to reduce the search space. One technique is to com-
bines the multiple objectives in a single objective, for example by assign-
ing different a-priori weights to the different objectives and optimizing the
resulting aggregation function. The disadvantage is that the computed
solution depends on the combination of the multiple objectives, which
is made a priori and without any information about the problem being
solved and may not capture the user preferences in an accurate way. An-
other approach is optimise a single preferred objective and keep the others
within user-defined constraints [21]. The main weakness is that it requires
a predefined order in which to optimise the objectives, hence including

1Intel scheduled the release of their newest Haswell architecture in 2013 which promises
“more fine grained control” of the CPU sub-components for energy efficiency, but no concrete
details have been released so far.
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some sort of preference information. Finally, reasonable a-priori values for
the constraints are often unknown until the first schedule is computed.

In this paper, we present a holistic approach towards the design of an energy-
efficient workflow scheduler able to compute a set of trade-off solutions. Our
scheduler, called MOHEFT, is an extension of the popular Heterogeneous Ear-
liest Finish Time (HEFT) algorithm. MOHEFT relies on empirical models for
the energy consumption and execution time of workflow tasks. These models
are based on the knowledge extracted from historical real task executions, and
reflect the behaviour of real multi-core CPUs with different levels of energy
consumption depending on the number of cores used and their individual level
of utilisation. The complete list of contributions of this paper in the area of
energy-efficient scheduling are:

1. Identification of fine-grained levels of energy consumption in a multi-core
CPU. Thorough extensive experimentation, we measure the energy con-
sumption and performance of different multi-core CPUs with different
number of cores used. The experiments show that the performance of in-
dividual cores decreases with the concurrent number of cores used, while
the energy efficiency increases.

2. Use of empirical models for energy consumption and performance based
on real data. We build an empirical model based on historical execution
time and energy consumption measurements of real workflow tasks on a
heterogeneous set of machines.

3. A multi-objective energy-efficient scheduling algorithm. We present an
algorithm capable of approximating different Paretio-optimal workflow
scheduling solutions as a trade-off between energy consumption and makespan.
We validate the algorithm through comparisons to with the popular HEFT
algorithm for minimizing makespan and greenHEFT, a extension of the
former for optimising energy comsumption.

4. Analysis of the impact of different workflow characteristics and different
resources on the trade-off solutions. We cover a multi-dimensional ex-
perimental space, analysing the impact of multiple activity, workflow and
resource properties on the trade-off solutions of our algorithm.

The rest of this paper is structured as follows. Next formally describes our
problem and introduces some background on multi-objective optimization. Sec-
tion 3 reviews existing models for tasks energy consumption and execution time,
and describes the modelling approach followed in this paper. Section 4 presents
MOHEFT. The evaluation of our algorithm and the analysis of the obtained
results is included in Section 5. The next section is aimed at reviwing existing
works on multi-objective workflow and energy-efficient scheduling. Finally, we
presents the main conclusions and future work in Section 7.

2. Formalism

Our problem consists of scheduling the workflow tasks on the available re-
sources in such a way that the makespan and the energy consumption of its
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Table 1: Resource characteristics.
Characteristic Description
Technology [nm] Dimension of the CPU lithography (e.g. 32nm)
Architecture [bits] CPU architecture (e.g. 32 or 64 bits)
Min frequency [GHz] Minimum processor frequency
Frequency [GHz] Nominal processor frequency
Cache size [KB] Level of cache memory size
Cache sharing Number of cores sharing the last level cache
Cores Number of cores on the CPU
Threads Number of concurrent hardware threadsi

TDP CPU Thermal Design Pointii

i Twice the number of phisical cores for hyper-threading. ii Theoretical maximum heat
dissipation requirement for not exceeding the maximum junction temperature; also a rough

indicator of the power consumption class of the CPU

execution are minimized. We introduce in the remainder of this section a sim-
ple but realistic formalism that defines the workflow, resource environment, and
the metrics targetted.

2.1. Workflow Application

We model a workflow application as a directed acyclic graph (DAG), W =
(A,D) consisting of n tasks or activities: A =

⋃n
i=1 {Ai}, interconnected through

control flow and data flow dependencies, D, defined as:

D = {(Ai, Aj ,Dataij) | (Ai, Aj) ∈ A×A} ,

where Dataij represents the size of the data needed to be transferred from activ-
ity Ai to activity Aj . In the remainder of this paper, we use the terms activity
and task interchangeably. We use pred (Ai) = {Ak| (Ak, Ai,Dataki) ∈ D} to de-
note the set of predecessors of activity Ai (i.e. activities to be completed before
starting Ai). Every activity Ai ∈ A is characterised by its length (or workload)
measured for example in total number of instructions. The execution time and
the energy consumption entailed by the activity execution depends on its length
and the resource on which it executes.

2.2. Resource Environment

We assume that our hardware platform consists of a set of m heteroge-
neous resources R = ∪mj=1Rj . Each resource Rj ∈ R is described by a set of
nine different characteristics which influence the number of machine instruc-
tions per second it is able to process, and the energy it consumes during this.
A brief description of these nine characteristics is summarised in Table 1. We
use sched(Ai) to denote the resource on which activity Ai is scheduled to be
executed.
2.3. Makespan

For computing the workflow makespan, we first define the completion time

T
(Ai)
c of an activity Ai on resource Rj = sched (Ai) as the maximum completion
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time of its predecessors, including their data transfers to Rj , plus its own total
execution time t(Ai,Rj):

T (Ai)
c =

 t(Ai,Rj), pred (Ai) = ∅;
max

Ap∈pred(Ai)

{
T

(Ap)
c +

Datapi

bpj

}
+ t(Ai,Rj), pred (Ai) 6= ∅, (1)

where t(Ai,Rj) is the computation time of activity Ai on Rj , Datapi is the number
of bytes transferred between Ap and Ai, and bpj is the bandwidth of one TCP
stream between sched(Ap) and Rj (bpj =∞, if sched(Ap) = Rj).

Finally, we compute the workflow makespan as the maximum completion
time of all its n activities:

TW = max
i∈[1,n]

{
T (Ai,sched(Ai))
c

}
. (2)

2.4. Energy Consumption

We represent the total energy EW consumed by a workflow execution as the
sum between the energy ED consumed for all data transfers and the energy EC

consumed for executing all its computational activities:

EW = ED + EC . (3)

Given a workflow schedule, we define ED as follows:

ED =
∑

(Ai, Aj ,Dataij ) ∈ D∧
sched (Ai) 6= sched (Aj)

Eij ·Dataij , (4)

where Dataij is the number of bytes transferred between Ai and Aj , and Eij is a
characteristic value representing the energy expended for transferring one byte
of data between sched(Ai) and sched(Aj), which neglects the energy consumed
by the external networking equipment.

Similarly, we define the energy EC consumed by the computational activities

of a workflow as the sum of the energy E
(Ai)
Rj

consumed by resource Rj =

sched (Ai) for executing activity Ai:

EC =

n∑
i=1

E
(Ai)
Rj

, (5)

where n is the total number of workflow activities.
We further define the energy E

(Ai)
Rj

consumed by resource Rj = sched (Ai)
for executing each activity Ai as follows:

E
(Ai)
Rj

= P
(s)
Rj
· t(Ai,Rj) +

∫ T
(Ai)
c

T
(Ai)
s

P
(d)
Rj

(t) dt, (6)
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where P
(s)
Rj

refers to the static power consumption of the resource Rj in idle

state, P
(d)
Rj

(t) represents the additional dynamic power consumption of the same
resource stemming from the computations scheduled at time instance t, t(Ai,Rj)

is the computation time of Ai on Rj , T
(Ai)
c its completion time, and T

(Ai)
s =

T
(Ai)
c − t(Ai,Rj) its start time.

2.5. Problem Definition

Given a workflow W = (A,D), our goal is to approximate the Pareto-optimal
workflow schedules sched(W ) =

⋃n
i=1 sched (Ai) with respect to makespan and

energy consumption, where n is the total number of activities.

2.6. Multi-Objective Optimization

In this section, we introduce a few concepts from the multi-objective opti-
mization theory for a better understanding of this work. We assume without
loss of generality that minimisation is the goal for all the objectives, as any
maximisation problem can be defined in terms of a minimization too.

A general, multi-objective optimisation problem can be formally defined as
finding all the vectors ~x = [x1, x2, . . . , xn] which minimise the vector function
~f (~x) = [f1(~x), f2(~x), . . . , ft(~x)]

T
. For our particular problem, n = |A| repre-

sents the cardinality of the task set A and the i-th component of a solution ~x
represents the resource where task Ai is scheduled: sched (Ai) = xi, xi ∈ R. For
our bi-objective optimisation case, we have t = 2, where f1(~x) represents the
makespan and f2(~x) the energy consumption.
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Figure 1: Comparison of multi-
objective tradeoff solutions.

Multi-objective optimization introduces
the concept of dominance. A solution ~x1 dom-
inates a solution ~x2, if both the makespan
and the energy consumption entailed by the
schedule ~x1 are smaller than those of ~x2. Con-
versely, two solutions are said to be non-
dominated whenever none of them dominates
the other (i.e. one is better in makespan and
the other consumes less energy). In Figure 1
for example, the solution labelled a domi-
nates the one labelled b because it has better
makespan and consumes less energy. Simi-
larly, a dominates c too. Meanwhile, a and
d are non-dominated because a is better in
makespan, but d consumes less energy. A set of non-dominated solutions is
called Pareto set (the trend line containing the a, d, and e solutions) and repre-
sents a set of tradeoff solutions among the different objectives. Every solution in
this set represents a different schedule of the workflow with different makespans
and energy consumption.

A Pareto front can be seen as a tool for decision support and preference
discovery. Its shape can provide insight to researches or scientists (from now
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decision makers), allowing them in many cases to explore the possible space of
non-dominated solutions with certain properties, and possibly revealing regions
of particular interest which cannot be seen until the Pareto front is known.
In this way, the users does not have to set their preferences before finding a
solution, instead the preferences are discovered afterwards.

3. Energy and Execution Time Modelling

3.1. Background

The problem formulation presented in the previous section relies on two
models: one for the number of instructions a resource is able to process every
second, and a second one for the energy consumed by a resource at an instant t.
This section provides a concise background overview of existing models and
analyses their applicability to our problem.

Many existing approaches [22, 10, 14, 23, 2, 25] employ a simplified model
for determining the time required by a resource for completing an activity. This
model consists in assigning a fixed speed to every resource quantified as the
number of machine instructions executed per second. The time required for
computing an activity on a resource is then approximated as length of the task
divided by the speed of that resource. Although this model is valid for single core
machines, it does not properly describe current distributed systems composed of
heterogeneous multi-core machines which allow individual cores execute different
tasks (sometimes even belonging to different users). Due to various reasons such
as cache sharing between cores and data bus contention, such scenarios always
introduce a time overhead for concurrently executing multiple independent tasks
on a multi-core, multi-processor machine.

Regarding existing energy consumption models [19, 16, 17, 8, 18, 20], they
all consider only two levels of energy consumption in a machine corresponding
to its idle and full-load states. These models, however, do not properly reflect
the current energy-aware multi-core architectures, which exhibit a multitude
of distinct power consumption levels depending on the number of cores and
their level of utilisation. The problem of these simplified models is further
exacerbated by the recent advances in energy-aware hardware features of the
new CPU architectures. For example, some CPUs automatically switch between
different power modes according to the current load. It is also worth noting that,
as consequence of having shared subsystems between cores, these levels often do
not follow a linear utilisation – energy consumption model (i.e. the additional
energy incurred by using more cores diminishes with the total number of cores
used).

3.2. Applicability of Existing Models

In order to validate our claim that the existing models reviewed in Sec-
tion 3.1 are not applicable in the context of modern multi-core, multi-processor
architectures, we conduct an extensive number of experiments through which
we characterise the execution performance and energy consumption of workflow
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Table 2: Resource configuration for modelling time and energy consumption of the povray

workflow task (all machines are 64 bit architectures and the and the minimum operational
frequency is omitted).

CPU Model
Tech. Freq. Cache Cache

Cores Threads
TDP CPU

Instances
[nm] [GHz] size [KB] sharing [W] no.

AMD Opteron 8356 65 2.3 2048 1 4 4 95 8 2
AMD Opteron 6168 45 1.9 12288 6 12 12 115 2 2
Intel Xeon X5650 32 2.66 12288 6 6 12 95 2 2

Intel Xeon E7-4870 32 2.4 30720 1 10 20 130 4 1
AMD Opteron 880 90 2.4 2048 1 2 2 95 4 1
AMD Opteron 885 90 2.6 2048 1 2 2 95 8 1

tasks on such architectures. Specifically, through these experiments, we prove
that: (1) the performance of individual cores is impacted by the workload of the
other cores; (2) the energy consumption of a multi-core CPU may vary among
a multitude of different levels at any instant t; and (3) the energy consumption
overhead inherent to powering on a core decreases with the number of cores
already powered on.

We measure the execution time and the associated energy consumption of a
workflow activity called povray, belonging to a the Persistence Of Vision Ray-
tracer (POV-Ray), a real workflow thoroughly presented in Section 5. We focus
our analysis on this activity which renders a set of frames (i.e. images) from a
three-dimensional scene descriptor file as it is highly parallelisable and the most
time-consuming part of the workflow. We have measured the execution time
and energy consumption of the povray activity using different workload sizes
on a diverse pool of resources, as described in Table 2. The maximum activ-
ity concurrency level of the resource pool is 264, stemming from the cumulated
number of hardware threads available in our resource pool. We achieve the time
and energy instrumentation and measurement through a tool we developed in
Python and C which retrieves online measurements from multiple LAN-enabled
Voltech PM1000+2 power measurement devices connected to the machines.

Figure 2 shows the time required by two multi-core machines for rendering a
frame under increasing external load conditions. We observe on both machines
a significant performance overhead introduced by the external load. Concretely,
the time needed for computing one frame considerably increases when other
cores are concurrently utilised. For the Intel architecture, we compute a slow-
down of 34.2% in case of 39 threads of external load compared to no external
load. An additional slowdown of 38.1% from 39 to 79 threads of external load
is due to the additional overhead of the Hyper-Threading technology. For the
AMD architecture, we compute a slowdown of 36.9% between no and full ex-
ternal load conditions (i.e. zero and 31 external load threads).

Figure 3 presents the variation in energy consumption of one CPU core with
increasing external load (number of running threads) on the remaining CPU
cores. The decrease in energy consumption per core with increasing external

2http://www.voltech.com/products/poweranalyzers/PM1000.aspx

10



  

0 19 39 59 79
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Machine A: 4 x Intel Xeon E7-4870

(10 cores with HyperThreading)

External load [number of cores]

T
im

e
 [

se
co

n
d

s]

  

0 7 15 23 31
1200

1300

1400

1500

1600

1700

1800

Machine B: 8 x AMD Opteron 8356

 (4 cores)

External load [number of cores]

T
im

e
 [

se
co

n
d

s]

Figure 2: Time for rendering one frame on a single core of two multi-core machines (AMD and
Intel with Hyper-Threading) with gradually increasing external load until reaching machine
saturation.
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Figure 3: Energy consumption of a single core of two multi-core machines (AMD and Intel
with Hyper-Threading) with increasing external load until it reaches machine saturation.

load is due to the fact that the cores share a set of common subsystems (e.g.
cache memory, memory bus, memory controller) that consume relatively the
same amount of energy when utilised by any number of cores, as they quickly
reach saturation state. For clarification, we present a concise analytical for-
mulation of this statement. We measured the dynamic fraction of the energy
consumption introduced in Equation 6:

Edyn =

∫ T
(Ai)
c

T
(Ai)
s

P
(d)
Rj

(t) dt = c · Ecore + Eshared,

where c represents the number of active cores, Ecore represents the energy con-
sumption of the active core running Ai, and Eshared is the energy consumption
of all shared subsystems in their activated states. For computing the energy
expenditure per core, we normalised this metric by the number of active cores
(also by considering Hyper-Threading units):

E
(unitary)
dyn =

Edyn

c
= Ecore +

Eshared

c
.
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It is obvious that from this formulation that the per-core energy consumption
is a function generically expressed as:

E
(unitary)
dyn = f

(
1

c

)
+ C,

where C represents a constant. This very accurately describes the variation
in the energy consumption seen in Figure 3 and confirms our assumption that
multi-core systems exhibit more than two power consumption levels. In light
of these findings, we affirm that existing models for performance and energy
consumption of multi-core machines must be adjusted, or, alternatively, new
models more accurately reflecting the real behaviour of these types of resources
need to be researched.

3.3. Proposed Energy Consumption and Execution Time Models

Scientific workflows can be composed of a wide range of activities stressing
different subsystems of the resources running them: some CPU-centric (e.g. per-
forming mostly mathematical computations), others input/output-centric (e.g.
mostly reading and writing data to a disc or to the network). Depending on the
different operations they perform, and implicitly the subsystems they stress,
activities determine different levels of power consumption of a resource. In-
between the previously identified CPU-intensive and input/output-intensive ac-
tivities there exists additionally a wide spectrum of different types of activities,
stressing the resources’ subsystems in different proportions, having consequently
different energy consumptions and running times. Under these circumstances, it
is reasonable to affirm that the resource performance and the energy consump-
tion models should not only be based on the underlying hardware architecture,
but also on the activity type itself.

Currently there are two approaches to designing such models: theoretical and
empirical models. The main drawback of theoretical models is the complexity
to derive them. To the best of our knowledge, no valid theoretical model for
either energy prediction or execution time have been proposed so far. Empirical
models are based on modelling the knowledge extracted after measuring the
energy consumption and execution time of different tasks on different resources.
The main drawback of this latter approach is the difficulty of completely covering
the infinite configuration space defined by the activity types and resource types
(i.e. it is impossible to instrument the executions of all activity types on all
resource types). One alternative for overcoming this drawback is the use of
predictors for estimating execution time and energy consumption of workflow
activities on unknown (i.e. not previously evaluated) resources.

In this paper we investigate the use of neural network predictors [3] for
workflow activity execution time and energy consumption estimations. To each
activity type we associate two neural networks, one for estimating its execu-
tion time on any (activity configuration – input size – resource) combination,
the other for providing the corresponding energy consumption estimations. We
consider this approach to be a valid alternative in the context of scientific work-
flows, where the type and number of activities is limited and a priori known.

12



  

1 5 10 15 20 25 30 35 40
0

100

200

300

400

Measured Energy Consumption Predicted Energy Consumption

Configuration
E

n
e

rg
y 

[W
h

r]

Figure 4: Neural Network predictions vs real energy consumption data on several examples.

We designed a predictor based on a Multi-Layer Perceptron (MLP) with one
hidden layer, which requires as input the different characteristics of the machine
(as described in Table 1) the activity will be executed on, along with the input
size (e.g. the number of frames to render in the case of the povray task analysed
in Section 3.2) and the external load on the resource. The output is either the
estimated execution time t(Ai,Rj) of its associated task Ai on the given resource
Rj in the case of the execution time predictor, or the energy expended by the

resource to execute the activity E
(Ai)
Rj

in the case of the energy predictor. We
train the predictors with historical data from executions with configurations
uniformly sub-sampling the activity types – resource types evaluation space.

To validate this proposed approach we use the data collected from executions
of the real povray workflow task (analysed in Section 3.2) on our diverse set
of resources (shown in Table 2) for neural network training and, eventually, for
cross-validation. Concretely, we divide the available data into two subsets, the
training set comprising 85% of the data, utilised in the training process, and
the testing set (the remaining 15%) for validation which is realised by present-
ing the never encountered before input to the neural network and measuring
the deviation of the predicted value (energy or execution time) from the real,
measured value.

We conducted 20 experiments consisting of network training–testing cycles,
using in each instance a different selection of the training and testing sets, and
we measured an average prediction accuracy of 97% and a minimum of 95%.
Figure 4 presents a sample of a validation trace comprising real measured en-
ergy consumption values and the corresponding estimation values by the trained
neural network predictor. The values represent the energy expended for ren-
dering 1, 000 frames for different configurations consisting of various machines
with different external loads (in no particular order).

4. MOHEFT: Multi-Objective Heterogenous Earliest Finish Time Al-
gorithm

In this section we describe our proposed multi-objective scheduling algorithm
for computing a set of tradeoff solutions (instead of a single one) as an extension
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Algorithm 1 HEFT algorithm.
Require: W = (A,D), A =

⋃n
i=1 Ai . Workflow application

Require: R =
⋃m

i=1 Ri . Set of resources
Ensure: sched(W ) =

⋃n
i=1 sched (Ai) . Workflow schedule

1: function HEFT(W ,R)
2: B ← B-rank(A) . Order the tasks according to B-rank
3: sched(W )← ∅ . Initialize workflow schedule with empty set
4: for i← 1, n do . Iterate over the n ranked tasks in S

5: T (min)
c ←∞

6: for j ← 1,m do . Iterate over all m resources

7: T
(Si)
c ← max

Ap∈pred(Si)

{
T

(Ap)
c +

Datapi
bpj

}
+ t(Bi,Rj) . Compute completion time of Si

8: if T
(Bi)
c < T (min)

c then . Save the minimum completion time

9: T (min)
c ← T

(Bi)
c

10: Rmin ← Rj

11: end if
12: end for
13: sched(W )← schedW ∪ (Bi, Rmin) . Schedule the task on Rmin

14: end for
15: return sched(W )
16: end function

to the HEFT list scheduling algorithm. For a better understanding, we start by
describing the mono-objective version of the algorithm and extend it afterwards
for dealing with multiples objectives. Finally, we present also greenHEFT, heft-
like heuristic for minimising the energy consumption.

4.1. HEFT: Heterogeneous Earliest Finish Time Algorithm

The Heterogeneous Earliest Finish Time Algorithm (HEFT) [22] is a popular
list-based heuristic scheduling algorithm for optimizing the makespan [22] in
workflow applications, described in pseudocode in Algorithm 1. The method
consists of two phases: ranking and mapping. In the ranking phase (line 2),
we compute the order in which the activities are being mapped using the B-
rank metric representing the distance of the activity to the end of the workflow.
The idea of this ranking is to execute first the tasks with most number of
successors. Further details about how to sort the tasks can be found in [22].
Once the execution order is determined, the second phase assigns every task to
the resource where it completes earliest (lines 4–14) in the order computed in
the first phase. For every task (line 4), its completion time on every resource
(line 6) is computed (line 7), and is finally mapped onto the resource where
it finishes earliest (line 13). After all tasks have been mapped, the workflow
schedule is returned (line 15).

4.2. MOHEFT: Multi-Objective Heterogenous Earliest Finish Time Algorithm

As described before, HEFT builds a solution by iteratively mapping tasks
onto resources. That mapping is aimed at minimising the completion time of
every task, therefore it chooses in every iteration only the resource which min-
imises this goal. When multiple objectives are considered for computing a set
of tradeoff solutions, we must allow the creation of several solutions at the same
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Algorithm 2 MOHEFT algorithm.
Require: W = (A,D), A =

⋃n
i=1 Ai . Workflow application

Require: R =
⋃m

i=1 Ri . Set of resources
Require: K . Number of tradeoff solutions
Ensure: S =

⋃K
i=1 sched(W ) . Set of K tradeoff workflow schedules

1: function MOHEFT(W ,R,K)
2: B ← B-rank(A) . Order the tasks according to B-rank
3: for k ← 1, K do . Create K empty workflow schedules
4: Sk ← ∅
5: end for
6: for i← 1, n do . Iterate over the n ranked tasks
7: S′ ← ∅
8: for j ← 1,m do . Iterate over all m resources
9: for k ← 1, K do . Iterate over all K tradeoff schedules

10: S′ ← S′ ∪ {Sk ∪ (Bi, Rj)} . Add new mapping to all intermediate schedules
11: end for
12: end for
13: S′ ← sortCrowdDist(S′, K) . Sort according to crowding distance
14: S ← First(S′, K) . Choose K schedules with highest crowding distance
15: end for
16: return S
17: end function

time instead of approximating a single one. We achieve this by scheduling each
task to all resources that provide a tradeoff between the considered objectives.

The MOHEFT algorithm extends HEFT with these ideas, as depicted in
pseudocode in Algorithm 2. The only additional input parameter of MOHEFT
is the size of the set of tradeoff solutions K. Similar to HEFT, our method ranks
first the tasks using the B-rank (line 2). Then, instead of creating an empty
solution as HEFT does, it creates a set S of K empty solutions (lines 3–5).
Afterwards, the mapping phase begins (lines 6–15) in which MOHEFT iterates
first over the list of ranked tasks (line 6). The idea is to extend every solution in
S by mapping the next task onto all possible resources creating m new solutions
stored in a temporal set S′ which is initially empty (line 7). For creating these
new solutions, we iterate over the set of resources (line 8) and the set S (line 9),
and add the new extended intermediate schedules to the new set S′ (line 10).
This strategy results in an exhaustive search if we do not include any restrictions.
We therefore only saves the best K tradeoffs solutions from the temporary set
S′ to the set S (lines 13–14). We consider that a solution belongs to the best
tradeoff if it is not dominated by any other solution and if it contributes to the
diversity of the set. For this last criterion, we employ the crowding distance
defined in [7] and graphically depicted in Figure 1, which gives a measure of
the area surrounding a solution where no other tradeoff solution is placed. Our
criterion is to prefer solutions with a higher crowding distance, since the set
will represent a wider area of different tradeoff solutions. After assigning all the
tasks (line 16), the algorithm returns the set of K best tradeoff solutions.

4.3. greenHEFT: A List-based Heuristic for Minimizing Energy Consumption

For the sake of comparisons, we also designed a mono-objective heuristic
for optimising energy consumption only. called greenHEFT. The new heuristic
works in the same way as the original HEFT with the difference in the second
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phase every task in the ranking is assigned to the processor where it consumes
less energy.

5. Evaluation

We carried out extensive experiments to evaluate the solution delivered by
MOHEFT for makespan and energy-efficient workflow scheduling, aiming at:

• demonstrating that they at least as good as those obtained using the mono-
objective HEFT for optimising makespan and greenHEFT for optimising
energy;

• analysing the results of MOHEFT for:

– scheduling workflows with different shapes and number of activities;

– reduced number of resources;

– different types of resources (i.e. different clock frequency and different
levels of static energy consumption);

– workflows composed of different activity types.

5.1. Experimental Setup
In this section we describe the experimental setup used in our experiments

in terms of workflow applications and resource infrastructure.

5.1.1. Workflows

We conduct our evaluation using a real scientific workflow called the Per-
sistence Of Vision Raytracer (POV-Ray) workflow [1], which is a free tool for
creating three-dimensional graphics, known to be a time and resource consum-
ing process used not only by hobbyists and artists, but also in biochemistry
research, medicine, architecture and mathematical visualisation. The POV-Ray
workflow is composed of three different activities: povray which renders a set
of frames (i.e. images) from a three-dimensional scene descriptor file, png2yuv
which merges the resulting files into a raw YUV video, and ffmpeg which encodes
the raw video in the MPEG video format. Additionally, for a more complete eval-
uation of the proposed algorithm, we also generate synthetic workflows with two
variable characteristics: workflow shape and activity characteristics.

Workflow shape. We employ four types of synthetic workflows with different
shapes and lengths using the workflow generator described in [24]:

• Type-1 with high number of independent activities;

• Type-2 with high number of independent activities, each having one suc-
cessor and one predecessor;

• Type-3 with low number of independent activities such that at most two
activities can be run in parallel;

• Type-4 that alternates workflow regions with a high number of indepen-
dent activities with regions with a low number of independent activities.
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Table 3: The two-dimensional evaluation space, where the focus parameter of each evaluation
is highlighted.

Section
Resource setup Workflow type

Sizei Typeii Shape Size Characteristiciii

5.2 ∞ uniform all 20-200 (100%:0%)
5.3 ∞ uniform all 20-200 uniform
5.4 10%-75% uniform all 200 (100%:0%)
5.5 ∞ frequency all 200 (100%:0%)
5.6 ∞ static power all 200 (100%:0%)
5.7 ∞ uniform all 200 (100..10%:0..90%)

i∞ denotes more than ten times more cores than activities; x% represents a setup with only
x% of the resources utilised in Pareto-optimal solutions ii Focus parameter varied in three

classes: high, medium and low, or “uniform” for uniformly distributed parameters
iii (x%:y%) denotes activities with a ratio of x% computation to y% I/O operations

Activity characteristics. We further consider a wide range of synthetic activities
differentiated by the ratio between their CPU time (exclusively used) and their
I/O time (i.e. reading/writing from/to disc, or network). For example, a ratio
denoted as 80%:20% indicates that the activity spends 80% of its execution by
exclusively using the CPU and the remainder of 20% performing I/O opera-
tions. We generated these activities based on instrumentation data collected
from the real povray workflow activity, used as a template for activities with a
(100%:0%) CPU:I/O ratio, along with time and energy measurements we per-
formed for network transfers and disc operations. The POV-Ray workflow can
be accurately characterised through these two parameters as having a Type-1
shape and a (100%:0%)-type dominant activity. Thus, we present for simpli-
fication the POV-Ray executions results along with the synthetic workflows of
its corresponding type.
5.1.2. Resources

We developed a synthetic resource generator which takes as input CPU de-
scriptions and generates complete resource setups consisting of multiple clus-
ters comprising multiple nodes, each node being a multi-core machine. Each
synthetic machine is defined by the metrics presented in Table 1, along with

other characteristics such as the power consumption in idle state P
(s)
Rj

and the
amount of installed memory. The resource generator can be configured to gener-
ate values for any of the resulting machines’ characteristics according to a given
distribution. For example, in the case of a targeted distribution frequency with
1.8 GHz minimum, 2.0G Hz median, and 2.6 GHz maximum, it will generate
a set of resources whose CPU frequencies vary between 1.8 GHz and 2.6 GHz,
with a higher agglomeration around the 2.0GHz value. The degree of affinity
towards the median value is controlled through a fourth scale parameter. We
generated in our evaluation seven types of resource setups: one with all the val-
ues of the machine characteristics uniformly distributed, three with emphasis on
machines with high, medium and low CPU frequencies, and three with emphasis

on machines with high, medium, and low idle power consumption P
(s)
Rj

.
Table 3 summarises the coverage of our two-dimensional evaluation space,

consisting of various resource setups and workflow types. We define a resource
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setup through two parameters: the number of machines and the type of setup
described above. We define a workflow setup through the two characteristics
defined in Section 5.1.1: workflow shape, activity characteristics and number of
activities.

5.2. Experiment-1: MOHEFT versus HEFT and greenHEFT

In the first experiment, we compare the results computed by the MOHEFT
algorithm with the mono-objective versions for optimising makespan (HEFT)
and energy consumption (greenHEFT). We consider workflows having between
20 and 200 activities and different heterogeneous systems with 10 – 100 re-
sources. As MOHEFT, HEFT and greenHEFT are deterministic algorithms,
we only run once each algorithm per configuration and summarise the com-
parative results in terms of the makespan and the energy consumption of the
computed schedules in Tables 4 and 5. Each table cell shows the normalised
improvement of the schedule with lowest makespan/energy consumption com-
puted by MOHEFT over the schedule computed by HEFT/greenHEFT. The
symbol – means that the results obtained by both algorithms have been the
same.

Compared to HEFT, the results in Table 4 show that MOHEFT is at least as
good in a large number of cases, and often even better. For example, MOHEFT
reported a makespan 1.1% faster than the one computed by HEFT for Type-
1 workflows with 200 activities and 100 resources. The explanation is that
HEFT is a greedy heuristic and, hence, selects in every iteration the resource
that minimises the workflow makespan up to this task. Thus, HEFT takes the
best local decision, but does not consider its impact on the activities yet to be
scheduled. In contrast, MOHEFT builds several solutions in parallel achieving a
better exploration of the search space and leading to better solutions in several
cases. As expected, MOHEFT computed solutions with better makespan than
greenHEFT in all the evaluated cases. We observe the biggest differences for
Type-1 workflows with the highest number of independent activities, which also
increases with the number of activities. For the other three workflow types, the
improvements are not influenced by the number of workflow activities.

With respect to energy consumption, we observe in Table 5 that MOHEFT
also found workflow schedules with lower energy consumption than greenHEFT,
again due to better search space exploration. As expected, MOHEFT outper-
forms HEFT for this objective function too. The best improvements of MO-
HEFT over HEFT and greenHEFT can be observed again for Type-1 workflows,
emphasising the potential of our technique for scheduling many independent ac-
tivities. Similarly to the makespan objective, the improvements of MOHEFT
over the other techniques for Type-2 and Type-3 workflows are independent of
the number of activities and resources. For Type-4 workflows, however, MO-
HEFT achieves increasingly better results for a higher number of activities due
to a larger number of parallel activities in the workflow (similar to Type-1 ).

We conclude that mono-objective greedy mono-objective algorithms perform
poorly in terms of energy-efficiency in distributed system with multi-core proces-
sor architectures. Overall MOHEFT always provides the best solutions for both
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Table 4: Makespan comparison between MOHEFT, HEFT and greenHEFT.
Number of Resources

10 25 50 75 100
Workflow shape Type-1

Activities

2 – / 0.711 – / 0.649 – / 0.505 – / 0.659 – / 0.659
50 – / 0.873 – / 0.831 – / 0.691 – / 0.837 – / 0.838
100 0.001 / 0.932 – / 0.905 – / 0.805 – / 0.908 – / 0.909
150 – / 0.949 – / 0.926 – / 0.847 – / 0.932 – / 0.932
200 – / 0.954 0.030 / 0.930 – / 0.862 0.012 / 0.939 0.011 / 0.939

Workflow shape Type-2

Activities

20 – / 0.010 – / 0.291 – / 0.440 – / 0.343 – / 0.343
50 0.005 / 0.009 – / 0.290 – / 0.440 – / 0.343 – / 0.343
100 0.001 / 0.009 – / 0.289 – / 0.440 – / 0.343 – / 0.343
150 – / 0.008 – / 0.289 – / 0.439 – / 0.342 – / 0.342
200 0.001 / 0.008 – / 0.289 – / 0.439 – / 0.342 – / 0.342

Workflow shape Type-3

Activities

20 – / 0.017 – / 0.298 – / 0.444 – / 0.346 – / 0.346
50 – / 0.017 – / 0.298 – / 0.444 – / 0.346 – / 0.346
100 – / 0.017 – / 0.298 – / 0.444 – / 0.346 – / 0.346
150 – / 0.017 – / 0.298 – / 0.444 – / 0.346 – / 0.346
200 – / 0.017 – / 0.298 – / 0.444 – / 0.346 – / 0.346

Workflow shape Type-4

Activities

20 0.002 / 0.234 0.002 / 0.305 – / 0.438 0.004 / 0.347 0.004 / 0.347
50 – / 0.169 – / 0.297 – / 0.440 – / 0.343 – / 0.343
100 0.001 / 0.257 – / 0.323 – / 0.439 – / 0.355 – / 0.355
150 – / 0.285 – / 0.312 – / 0.437 – / 0.350 – / 0.350
200 – / 0.249 – / 0.315 – / 0.438 – / 0.349 – / 0.349

Table 5: Energy consumption comparison between MOHEFT, HEFT and greenHEFT.
Number of Resources

10 25 50 75 100
Workflow shape Type-1

Activities

20 0.488 / 0.961 0.787 / 0.326 0.933 / – 0.926 / 0.306 0.949 / 0.306
50 0.425 / 0.606 0.727 / 0.404 0.915 / – 0.896 / 0.398 0.931 / 0.398
100 0.421 / 0.621 0.696 / 0.319 0.927 / – 0.887 / 0.416 0.901 / 0.416
150 0.415 / 0.635 0.703 / 0.312 0.927 / – 0.882 / 0.426 0.886 / 0.426
200 0.401 / 0.644 0.693 / 0.295 0.933 / – 0.878 / 0.368 0.859 / 0.369

Workflow shape Type-2

Activities

20 0.353 / – 0.656 / – 0.845 / – 0.625 / – 0.625 / –
50 0.353 / – 0.657 / – 0.845 / – 0.626 / – 0.626 / –
100 0.354 / – 0.657 / – 0.846 / – 0.626 / – 0.626 / –
150 0.354 / – 0.657 / – 0.846 / – 0.626 / – 0.626 / –
200 0.354 / – 0.657 / – 0.846 / – 0.626 / – 0.626 / –

Workflow shape Type-3

Activities

20 0.348 / – 0.653 / – 0.844 / – 0.624 / – 0.624 / –
50 0.348 / – 0.653 / – 0.844 / – 0.624 / – 0.624 / –
100 0.348 / – 0.653 / – 0.844 / – 0.624 / – 0.624 / –
150 0.348 / – 0.653 / – 0.844 / – 0.624 / – 0.624 / –
200 0.348 / – 0.653 / – 0.844 / – 0.624 / – 0.624 / –

Workflow shape Type-4

Activities

20 0.230 / 0.094 0.651 / 0.006 0.846 / – 0.678 / – 0.678 / –
50 0.270 / 0.058 0.653 / – 0.845 / – 0.625 / – 0.625 / –
100 0.249 / 0.134 0.646 / 0.017 0.846 / – 0.903 / – 0.903 / –
150 0.276 / 0.196 0.649 / 0.009 0.846 / – 0.912 / – 0.912 / –
200 0.273 / 0.150 0.646 / 0.007 0.846 / – 0.901 / – 0.901 / –

makespan and energy objectives, matching the individual solutions provided by
HEFT and greenHEFT, and in many cases even improving on them.

19



  

0 20000 40000 60000 80000 100000
0

1000

2000

3000

4000

5000

6000

7000

8000

Workflows Type 1

Different Number of Activities

20 activities 50 activities 100 activities
150 activities 200 activities

Makespan

E
n

e
rg

y 
C

o
n

su
m

p
tio

n

  

0 50000 100000 150000 200000 250000 300000
0

2000

4000

6000

8000

10000

12000

14000

16000

Workflows Type 2

Different Number of Activities

20 activities 50 activities 100 activities
150 activities 200 activities

Makespan

E
n

e
rg

y 
C

o
n

su
m

p
tio

n

  

0 100000 200000 300000 400000 500000 600000
0

5000

10000

15000

20000

25000

30000

Workflows Type 3

Different Number of Activities

20 activities 50 activities 100 activities
150 activities 200 activities

Makespan

E
n

e
rg

y 
C

o
n

su
m

p
tio

n

  

0 50000 100000150000200000250000300000350000
0

2000

4000

6000

8000

10000

12000

Workflows Type 4

Different Number of Activities

20 activities 50 activities 100 activities
150 activities 200 activities

Makespan

E
n

e
rg

y 
C

o
n

su
m

p
tio

n

Figure 5: Pareto tradeoff solutions computed by MOHEFT for workflows of four types and
different number of activities.

5.3. Experiment-2: Impact of the Number of Activities and Workflow Shape

We now analyse the impact of the number of activities and workflow shape on
the scheduling results. For all experiments in this section, we considered that the
workflows are composed of 20 – 200 activities with the 100% : 0% characteristic.
We further considered that the number of heterogeneous resources is much larger
than the number of tasks.

The results in Figure 5 show that the shape of the workflow influences the
computed set of tradeoff solutions. For example, for workflows of Type-1 in a
highly heterogeneous resource setup, the Pareto set of tradeoff solutions has a
convex shape, which means that it will be possible to find schedules which signif-
icantly improve the energy consumption with only a minimally hit in makespan.
For example, for a workflow with 200 activities it is possible to reduce the energy
consumption by up to 34.5% with a resulting increase in makespan of only 2%
versus the best solution. For Type-2 and Type-3 workflows, the resulting set
of tradeoff solutions has a linear shape, meaning that diminishing the energy
consumption will result in a proportional increase the makespan. For Type-2
workflows, the slope of the computed Pareto front is approximately −0.5 and is
almost independent of the number of workflow activities. Concretely, this sig-
nifies that for every Whr saved, the workflow makespan will double. In the case
of Type-3 workflows, the slope is around −0.6. Finally, the shape of the fronts
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Figure 6: Pareto tradeoff solutions computed by MOHEFT for different number of resources.

computed for workflows of Type-4 are neither convex nor linear, but rather
jagged with constant fronts and sudden high jumps (not evident in Figure 5
due to the large scale of the horizontal axis). This Pareto front pattern denotes
that for this workflow type energy savings cannot be achieved with a gradual
increase in makespan (i.e. fine-grained tuning is not possible).

5.4. Experiment-3: Impact of the Number of Resources

This set of experiments is intended to analyse the influence of the number of
resources on the MOHEFT results. For each analysed workflow, we considered
the resources on which at least one activity has been scheduled by any of the
tradeoff solutions computed in the previous section. Then, we reduced this pool
to 75%, 50%, 25%, and 10% of its original size by randomly removing resources.
For these experiments, we consider that the number of activities is 200 in all
the cases and the number of resources is much larger than the number of tasks.
For some workflows we have omitted the results with 50%, 25% or 10% of the
resources because the obtained solutions had exactly the same values. The
results summarised in Figure 6 show that reducing the number of resources
also modifies the schedules computed by MOHEFT. In the case of the Type-
1 workflow, a reduction in the number of resources gradually transforms the
Pareto front from the initial convex shape towards a linear shape. For Type-
2 workflows the shape of the Pareto front is linear and does not change, but
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Figure 7: Pareto tradeoff solutions computed by MOHEFT for different low, medium and
high resource clock frequencies.

its slope increases, indicating an increasing difficulty in optimizing the energy
consumption. In the case of Type-3 workflows, reducing the resource setup size
results in the reduction of the Pareto front to just one solution. Finally, in
Type-4 workflows, a similar effect as with Type-2 workflows can be observed,
the Pareto front changing towards a higher difficulty for computing tradeoff
solutions as the the size of the resource setup decreases.

The main finding of this experiment is that the reduction in the number of
resources leads to schedules with a higher energy consumption and an increasing
difficulty in optimising for energy consumption. This is a consequence of the
smaller probability of finding energy-efficient resources in a limited resource
pool.

5.5. Experiment-4: Impact of the Resource Clock Frequency

As presented in the introduction, the clock frequency influences the energy
consumed by a CPU and the number of instructions per second processed. In
this section, we analyse the impact of resource clock frequency on the MOHEFT
Pareto solutions. We considered resources working at three different frequency
levels: low, medium, and high. In the low level, resources are homogeneous and
work at 1.6 GHz, in the medium level they are heterogeneous and work in the
range 2 – 2.5 GHz, and in the high level they are again homogeneous and work
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at 3.5 GHz. We set the number of workflow activities to 200 with the (100%:0%)
characteristic.

We observe in Figure 7 that the clock frequency influences the shape of the
Pareto fronts for some workflows. In the case of workflows of Type-1, the shape
of the Pareto front is maintained independently of the resource clock frequency.
With the increase in clock frequency, we notice a clear improvement in both
makespan and energy consumption for in all studied cases. Of particular inter-
est in these experiments are the solutions computed for the workflows Type-2
and Type-3. For resources with homogeneous clock frequencies, MOHEFT was
not able to find any tradeoff between makespan and energy consumption (see 7
for these workflow types). This stems from the fact that MOHEFT has very few
distinct alternatives in terms of resources, thus, little makespan improvement
potential. In case the resources are homogeneous and operate a low frequency,
a single solution with high makespan and high energy consumption has been
found. Conversely, with homogeneous resources operating at a high frequency,
only one solution with low makespan and energy consumption has been com-
puted. The energy consumption is strongly influenced by the workflow execution

time due to the static power consumption (P
(s)
Rj

). In complex Type-4 workflows,

an interesting observation can be made (based on Figure 7): the makespan of
the computed Pareto fronts is not proportional to the average frequency of the
available resources. More concretely, a higher frequency does not always guar-
antee better makespan solutions, as shown by the better makespan obtained in
some solutions for the medium frequency than for the high one.

5.6. Experiment-5: Impact of Static Energy Consumption at Idle State

As defined in Section 2, the energy consumption is composed of two terms:
static and dynamic. To analyse the impact of the static energy, we consider
resources with three different levels of energy consumption at idle status: low,
medium, and high. Resources operating at low level consume approximately 20
Watt per hour at idle state, at medium level around 120 Watts per hour, and
at high level around 400 Watts per hour. We consider in this new experiment
the same workflows as in the Experiment-4.

We observe in Figure 8 that the savings in total energy are really small com-
pared to makespan if the static energy consumed in idle state is homogeneous.
This pattern is common to almost all the workflows, except the Type-1 work-
flows for machines with high and medium static energy consumptions where the
computed fronts are again convex, like in Experiment-1. Thus, as happened in
that case, high improvements in energy consumption can be achieved by small
increases in the workflow makespan. In the rest of cases, the computed Pareto
fronts are linear with a slope close to zero. Obviously, optimising for energy
does not bring any benefit in these cases.

5.7. Experiment-6: Impact of CPU and I/O Utilisation

In the final experiment, we aim at analysing the impact of the activity type
on the MOHEFT results by considering activities which alternate periods of
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Figure 8: Pareto tradeoff solutions computed by MOHEFT for resource with different static
energy consumption at idle state.

computation with periods waiting for I/O operations. Specifically, we consider
activities using the CPU 25%, 50%, 75%, and 100% of their execution and
waiting for I/O operations the rest of the time. We used the same set of resources
as in Experiment-2.

The results in Figure 9 show that, the higher the CPU utilisation, the shorter
the makespan and the lower the energy consumption are. The explanation for
this behaviour lays in the same amount of instructions that has to be computed
by each task, which is obviously faster and more energy efficient for a higher
CPU utilisation. We also observe that the CPU and I/O utilisations changes the
shape of the Pareto fronts for all the workflows except Type-1. These changes
are mostly visible when the activities use the CPU only for a small fraction of
time. The shape of the computed fronts for the other workflow types consists
on two parts, as displayed in Figure 8. Both parts represent a linear depen-
dence between makespan and energy consumption. The first part allows for
high improvements on energy consumption with only small makespan overhead;
meanwhile, the second part involves higher makespan overheads for every Whr
saved.
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Figure 9: Pareto tradeoff solutions computed by MOHEFT for workflow activities with dif-
ferent CPU and I/O utilisations.

5.8. Summary

Table 6 summarises the main results of our experiments which targeted the
evaluation of the MOHEFT behaviour in different scenarios with the goal to
evaluate its response to changes in workflow type, activity characteristics and
underlying resources. For every experiment, we present our main finding and
classify the type of Pareto front computed for every type of workflow. In our
experiments we have identified three classes of Pareto fronts: convex, sloped
linear, and horizontal. Convex Pareto fronts, frequently obtained for Type-1
workflows, comprise highly energy efficient solutions with small makespan over-
heads. Sloped linear Pareto fronts, most frequently encountered for Type-2 and
Type-3 workflows, indicate a linear dependence between makespan and energy
consumption, hence constant, proportional tradeoffs between energy efficiency
and makespan. Horizontal Pareto fronts represent a particular case of the sloped
linear fronts with the slope very close to zero and denote situations in which
only minute improvements on energy efficiency can be obtained with a huge neg-
ative impact on makespan. The particular Pareto fronts which do not belong to
any of these generic classes are denoted “not classified” in the summary table
(Table 6), and were individually analysed when encountered in our evaluation.
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Table 6: Summary of results.
Exp. Type-1 Type-2 Type-3 Type-4 Conclusion

Exp.-2 convex linear linear not classi-
fied

Best energy-makespan tradeoffs obtained for work-
flows with high parallelism and large number of tasks

Exp.-3 convex to
linear

linear linear not classi-
fied

Reducing the number of available resources increases
makespan and energy consumption, but tradeoffs are
still possible

Exp.-4 convex horizontal horizontal not classi-
fied

Higher speed resources are preferred for both
makespan and energy consumption optimisation

Exp.-5 convex /
horizontal

horizontal horizontal horizontal Static power consumption of resources strongly in-
fluences the energy efficiency of the schedules and
presents higher energy-makespan tradeoff potential
than dynamic power consumption

Exp.-6 convex linear linear linear I/O-intensive workflows are expensive in terms of
both energy and makespan, but also present a wider
range of possible energy-makespan tradeoffs

6. Related Work

In this work, we empirically modelled the energy consumed by a distributed
system based on realistic data. Then, we presented a bi-objective workflow
scheduling algorithm for makespan and energy optimisation. As a consequence,
we made contributions three different fields: energy modelling, and multi-
objective workflow-scheduling, and energy-efficient scheduling. We analysed
the energy modelling related work in Section 3. We review in this section the
existing works in the areas of multi-objective and energy-efficient scheduling.

6.1. Multi-Objective Workflow Scheduling

Most of the existing works in multi-objective workflow scheduling combined
the different criteria in a single optimisation goal. Usually, this combination
consists of a weighted aggregation of the different optimization criteria, where
the weights are aimed at expressing user preferences over the objectives. The
main difference among existing works is in the way in which the preferences are
expressed. For example, in [10] reliability (in terms of resource failures) and
makespan are combined using a weight vector which is provided by the user.
The same objectives are optimised in [11] and [2]. In the former, both objectives
are given the same importance in the formulation (so the same preference for the
goals is assumed), while in the latter the preferences are introduced by means
of constraints over the different objectives.

The idea of imposing constraints over the different objectives has been ex-
ploited in other works, for example in [21] for optimising makespan and economic
cost in utility Grids. Constraints impose a desired quality of service that ev-
ery objective must satisfy. Once these constraints have been set, the idea is to
optimise one preferred objective within the established constrain. Afterwards,
several modifications are applied with the aim of improving the solution with
respect to a second preferred objective, as long as the constrains are not violated
for any of them. This last step is repeated for all objectives.

A general disadvantage of preference-based approaches is that the computed
solution depends on the combination of the multiple objectives, which is done
a-priori and without any information about the problem being solved. This
fact implies that, if the aggregation function does not capture the user prefer-
ences in an accurate way, the computed solution may not be satisfactory for the
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solved problem. Additionally, the objective functions require to be normalized
to the same interval in to properly capture these preferences, which requires
the optimal solutions in terms of each objective to be known. Concerning to
constraint-based approaches, the main drawback is that reasonable a-priori val-
ues for the constraints are often unknown until the first schedule is computed.

Only few approaches compute the whole set of tradeoff solution among the
different objectives. Among these approaches, we can distinguish two types of
techniques: genetic algorithms and list heuristic-based techniques. Example of
applications of genetic algorithm for multi-objective workflow scheduling are [25]
and [19]. The former optimises the makespan and cost of executing tasks in a
cloud system, while the latter optimises for makespan and energy consumption
using DVFS techniques, as will be commented later in this section. Genetic al-
gorithms are able of computing high quality solutions, but require significantly
higher computation time. One possible approach for overcoming these difficul-
ties to initialized the algorithms with known good solutions, as presented in [25].
List-based heuristics have been applied in [5] and [9] for optimising makespan
and cost of workflows.

6.2. Energy-Efficient Scheduling

There exists extensive literature in energy-efficient scheduling, most of them
applying DVFS for tuning the energy consumed. Among the different ap-
proaches, we identified different lines of research.

One line consists in the application of genetic algorithms [19, 16, 17]. While
applying different variants of genetic algorithms, these algorithms have in com-
mon the use of individuals representing the mapping of tasks onto machines,
and the voltage at which each machine should operate. Alongside genetic al-
gorithms, greedy heuristics have also been of interest [8, 18]. A disadvantage
of genetic and greedy heuristics is that the machines’ voltage is not changed
during the computations, but maintained for the whole execution once it has
been set to a specific level. From our point of view, there is room of research
in this area by proposing techniques able of dynamically changing the voltage
during the execution of applications.

A different line of research [20] is to analytically compute the minimum speed
at which every core of a system should operate in order to meet an imposed time
deadline. Then, a mapping of the tasks onto resources is found accordingly. Au-
thors showed that the energy consumption of the whole system can be reduced
by having processors working at the minimum required voltage.

Among the techniques which do no use DVFS, a common strategy is to
power-down or turn off resources to sleep mode resources which are not used [15],
which reduces the static energy consumed in idle mode.

To the best of our knowledge, our work is the first truly multi-objective
approach able to compute a set of tradeoff solutions for optimizing makespan
and energy consumption in distributed systems. Our method also incorporates
power-down techniques by accounting only for the energy consumed by the
machines doing real computation. Although we do not use DVFS for reducing
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the energy consumed by a CPU, these techniques can be combined in a hybrid
approach.

7. Conclusions and Future Work

This paper tackles the problem of energy-efficient workflow scheduling in
distributed heterogeneous systems. Our approach consists in a multi-objective
list-based heuristic, called MOHEFT, able to compute tradeoff solutions be-
tween makespan and energy consumption. This algorithm relies on empirical
models for predicting the energy consumption and execution time of workflow
activities. These empirical models have been designed based on historical data
collected from real workflow task executions.

We have compared MOHEFT with HEFT, the state-of-the-art, scheduling
algorithm for optimizing makespan, and greenHEFT, a customized version of
HEFT for optimizing energy that we introduce in this paper. Trough extensive
experiments, we have shown that our proposed algorithm is at least as good
as the other two algorithms in all evaluated scenarios, and performing better
in many cases. Furthermore, we have analysed how MOHEFT behaves in dif-
ferent conditions, namely its response to changes in different characteristics of
the workflows, activities and underlying resources. For each of the studied sce-
narios we evaluate the viability of energy efficiency optimisations as well as the
corresponding tradeoffs in makespan.

In future work we plan to further include other objectives in our multi-
objective scheduling algorithm, such as economical cost of workflow executions,
which is of particular interest in the context of the emerging commercial clouds.
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