Mining Permission Patterns for Contrasting Clean and
Malicious Android Applications

Veelasha Moonsamy, Jia Rong, Shaowu Liu

School of Information Technology, Deakin University, 221 Burwood Highway, Vic 3125,
Australia.

Abstract

Android application uses permission system to regulate the access to sys-
tem resources and users’ privacy-relevant information. Existing work have
demonstrated several techniques to study the required permissions declared
by the developers, but few attention has been paid for used permissions.
Besides, no specific permission combination is identified to be effective for
malware detection. To fill these gaps, we have proposed a novel pattern
mining algorithm to identify a set of contrast permission patterns that aim
to detect the difference between clean and malicious applications. In addi-
tion, we used a benchmark malware dataset and collected a set of 1227 clean
applications to evaluate the performance of the proposed algorithm. Valu-
able findings are obtained by analyzing the returned contrast permission
patterns.

Keywords: Android Permission, Data Mining, Biclustering, Contrast
Mining, Permission Pattern

1. Introduction

Between 2010 and 2013, the global telephony industry has witnessed an
upsurge in the sales of smartphones. Smartphone is a term used to describe
a mobile device equipped with enhanced computing capability and connec-
tivity [I], such as Nexus by Google [2], iPhone by Apple [3], Blackberry by
RIM [4] and Windows Phone by Microsoft [5]. A smartphone is usually sold
with an in-built Operating System (OS) together with a number of applica-
tions pre-installed by the device manufacturer. Application, the equivalent

Email addresses: v.moonsamy@research.deakin.edu.au (Veelasha Moonsamy),
jiarong@acm.org (Jia Rong), swliu@deakin.edu.au (Shaowu Liu)

Preprint submitted to Elsevier July 12, 2013

of software on the PC platform, enhances the smartphone’s functionality and
supports interactions with the user to accomplish a set of tasks. Calendar,
address book, alarm clock, media player and web browser are the common
applications provided by the device manufacturers. More importantly, there
exists an application, commonly known as the “application store”, on every
smartphone that provides the smartphone user access to online application
markets in order to search and download additional applications on their
smartphones.

Every device manufacturer hosts an application market for its own smart-
phone OS, such as Apple’s App Store [6], Google’s Google Play [8], Black-
berry’s App World [7]. This type of application market is often referred
to as the official application market. However, the competitive nature and
regulations imposed by official application market have led to a surge in
the number of independent application markets, also known as third-party
application markets. Third-party application markets are till date a popu-
lar choice amongst smartphone users because of the availability of a large
variety of free/low-priced applications and the inexistence of application
vetting process. Nonetheless, one cannot guarantee the cleanliness of such
applications [9].

To effectively detect malicious applications (also known as malware),
many efforts have been contributed, in the last five years, into studying
the nature of smartphone platforms and their applications. In addition to
being the leading smartphone platform, Android is also the most infected
OS due to an exponential growth in the number of malware deployed on the
application markets. As one of its security measures, the Android platform
employs a permission system to restrict applications’ privileges in order to
secure user privacy-relevant resources [12]. An application needs to get
the user’s approval for the requested permissions to access these restricted
resources. Thus, the permission system was designed to protect a user from
applications with invasive behaviors, but its effectiveness highly depends on
the user’s comprehension of permission approval. We refer to the permissions
that are requested during application installation as required permissions.

Unfortunately, not all the users read or understand the warnings of re-
quired permissions shown during application installation. To improve this
situation, many researchers have tried to interpret Android permissions and
their combinations [I3HI6]. Frank et al. [I2] proposed a probability model
to identify the common required permission patterns for all Android applica-
tions. Zhou and Jiang [I1] listed the top required permissions for both clean
and malicious applications, but only individual permissions were considered
by frequency counting. The problem of identifying patterns in permission

combinations that can provide better performance for malware detection
still remains.

Furthermore, in the existing literature, only required permissions have
been considered in permission pattern mining and no work has incorporated
used permissions, which can be described as follows: Whenever an Appli-
cation Programming Interface (API) call is invoked during the execution of
an application, the smartphone OS will verify if the API call is permission-
protected before proceeding to execute the call; such permissions are referred
to as used permissions. To our knowledge, we are the first to consider both
the required and used permissions that are extracted from static analysis
by the Andrubis system (http://anubis.iseclab.org) [I7]. Accordingly, our
aim is to propose an efficient pattern mining method to identify a set of con-
trast permission patterns that effectively distinguish malware from the clean
applications.

In order to use pattern mining technique to identify the desired permis-
sion patterns, we utilized a clean dataset and a malicious one. In 2012,
Zhou and Jiang [IT] published the first benchmark dataset of malicious ap-
plications in 49 malware families and was collected from third-party markets
between August 2010 to October 2011. This is an ideal malware dataset for
our experiment as it includes an extensive list of malware families collected
over 14 months. On the other hand, due to the unavailability of a clean
dataset published during the same time period as Zhou and Jiang’s, we col-
lected our own set of clean applications. Those clean applications were down-
loaded from two popular third-party Android applications markets: SlideMFE
(http://slideme.org) and Pandaapp (http://android.pandaapp.com). We
sorted the clean applications based on their upload dates and the ratings
given by the users, and only the top ones were selected. Each application
was scanned by forty-three antivirus engines on VirusTotal [I8], and only
those that passed all virus tests were considered as “clean” and included in
our clean dataset. Similar to Zhou and Jiang, we represent applications in
the collected clean dataset using a vector of 130 binary values, each of which
is associated with one of the 130 official Android permissions. A value 1 is
assigned to a permission only if it is required or used by an application,
otherwise, 0 is given instead.

The novelty and contributions of this work can be summarized as follows:

e We proposed a Contrast Permission Pattern Mining algorithm to iden-
tify the interesting permission sets as the patterns can be used to
distinguish malicious applications from clean ones.

e Beyond the current studies that focused on required permissions only,

we also considered the wused permissions and our experimental work
showed that both required and used permissions were important to be
considered in late malware detection task.

e We collected a new dataset that contains 1227 clean applications that
were uploaded to third-party markets from August 2010 to October
2011.

e We utilized a hierarchical Biclustering method to initially analyze both
clean and malware datasets. The resulting figures provided a straight-
forward visualization of the data distribution, from which we built up
our model of mining a set of permissions rather than using individual
permissions as the patterns.

The rest of the paper is organized as follows: Section[2]briefly reviews the
concepts of the Android platform, its applications, the permission system
and the current research work in malware detection. In Section 3] we present
our initial analysis on the collected datasets using statistical method and
biclustering followed by our proposed contrast pattern mining algorithm.
The experiments and the empirical results are then reported in Section
followed by a further discussion on our findings. Finally, Section [f] concludes
the entire paper together with our future work.

2. Background and Related Work

2.1. Android

Android is a Linux-based OS, which was designed and developed by
the Open Handset Alliance in 2007 [19]. The Android platform is made
up of multiple layers consisting of the OS, Java libraries and basic built-in
applications [20]. Additional applications can be downloaded and installed
from either official or third-party markets.

Google provides the application developer community with a Software
Development Kit (SDK) [21] to build Android applications. The SDK in-
cludes a collection of Java libraries and classes, sample applications and
developer documentations. The SDK can be used as a plug-in for Eclipse
IDE [22] and therefore allows developers to code their applications in a rich
Java environment. One particularly useful feature of the SDK is the An-
droid emulator which allows developers to test their applications in virtual
devices supporting various versions of Android.

An Android application includes two folders and one file: (i) Class, (ii)
Resources and (iii) AndroidManifest.zml. The Class folder contains the

application’s source code in Java; the Resources folder stores the multimedia
files; and the AndroidManifest.xml file lists the required permissions that
are declared by the developer. When the Java source code is ready, it is
then compiled and converted into Dalvik byte code [23] and bundled with
the Resources folder and AndroidManifest.xml file to generate the Android
Application Package (APK). Finally, before the APK can be installed on
a device or emulator, the developer has to generate a key and sign the
application.

Android developers can upload their applications to either the official
market, Google Play [24], or any third-party market. To secure the privacy-
relevant resources for its users, Google provides automatic antivirus scan-
ning. The applications will be rejected from Google Play if any malicious
content is detected. From 2012, Google has extended its antivirus service on
the new Android 4.2 OS, which is claimed to be able to scan applications
before they are installed on the device [26].

2.1.1. Android Permission System

Google applies the permission system as a measure to restrict access to
privileged system resources. Application developers have to explicitly men-
tion the permissions that need user’s approval in the AndroidManifest.xml
file. Android adopts an ‘all-or-nothing’ permission granting policy. Hence,
the application is installed successfully only when the user chooses to grant
access to all of the required permissions.

There are currently 130 official Android permissions and are categorized
into four types: Normal, Dangerous, Signature and SignatureOrSystem [27].
Normal permissions do not require the user’s approval but they can be
viewed after the application has been installed. Dangerous permissions re-
quire the user’s confirmation before the installation process starts; these per-
missions have access to restricted resources and can have a negative impact
if used incorrectly. A permission in Signature category is granted without
the user’s knowledge only if the application is signed with the device manu-
facturer’s certificate. The SignatureOrSystem permissions are granted only
to the applications that are in the Android system image or are signed with
the device manufacturer’s certificate. Such permissions are used for special
situations where the applications, built by multiple vendors, are stored in
one system image and share specific features.

After an application is installed, a set of APIs will be called during the
runtime. Each API call is associated with a particular permission. When
an API call is made, the Android OS checks whether or not its associated
permission has been approved by the user. Only a matching result will

lead to the execution of the API call. In this way, the required permissions
are able to protect the user’s private information from unauthorized access.
However, an API call invocation cannot fully stop the malware developers
from declaring required permissions for their applications. Based on the
above observation, several studies have tried to identify the common required
permissions that are frequently declared by Android application developers.

By applying the Self-Organizing Map (SOM) algorithm, Barrera et al.
[13] studied the trends of permission requests from a dataset of 1,100 ap-
plications downloaded from the official market. Frank et al. [12] selected
188,389 applications from the official market and analyzed the combina-
tions of permissions requests by these applications. A probabilistic method
was proposed to deduce the popular permission patterns based on the appli-
cations’ popularity (ratings together with number of reviews), that is, the
deviation of permission requests for high- and low-ranked applications. Bar-
tel et al. [28] proposed an automated tool that can statistically analyze the
methods defined in an application and subsequently generate the permis-
sions required by the application. This in turn ensures that the user does
not grant access to unnecessary permissions when installing the application.
A model designed by Sanz et al. [29] is based on features which comprised
solely of Android permissions.

The aforementioned existing work studied the applications that were
collected mainly from the official market. The results and findings help us
to understand the Android permission system and the patterns for normal
permission requests. However, compared to clean applications, we are more
interested in the unusual permission requests, which are considered as more
valuable for the detection of Android malware.

2.2. Android Malware Detection with Permissions

Malware detection within the Android platform is gaining a fair amount
of attention from researchers in both academia and industry; however, there
is a lack of work on the detection of Android malware using permission
patterns. Rassameeroj and Tanahashi [30] used visualization techniques
and clustering algorithms to reveal normal and abnormal permission request
combinations. They evaluated their methodology on a dataset comprising
of 999 applications. After analyzing the extracted permission combinations,
they claimed that nearly 8% of the applications were potential malicious.

Chia et al. [16] argued that the current user-rating system was not a reli-
able source of measurement to predict whether or not an application was ma-
licious. Their dataset consisted of 650 applications from the official market
and 1,210 applications from a third-party market. The required permissions

were extracted from the dataset, together with other application-related in-
formation to develop a risk signal mechanism for detecting malware.

Sahs and Khan [31] focused on feature representation as one of the chal-
lenges to malware detection. The features to be represented included: (i)
permissions extracted from manifest files and (ii) control flow graphs for
each method in an application. Each feature was processed independently
using multiple kernels and applied a one-class Support Vector Machine to
train the classifiers. However, the evaluation results showed that the com-
mon features existing in both clean and malware datasets cause detection
error rate.

Wu et al. [32] put forward a static feature-based technique that can
aid towards malware detection. First, they apply K-means algorithms to
generate the clusters and use Singular Value Decomposition to determine
the number of clusters. In the second step, they classify clean and malicious
applications using the k-Nearest Neighbor (kNN) algorithm.

Zhou et al. [33] proposed a two-layered system known as, DroidRanger
and makes use of “permission-based behavioral foot-printing and heuristics-
based filtering”. The authors observed that the permissions extracted from
the AndroidManifest.xzml files of malicious applications gave an insight into
uncommon permission requests by some malware families. In Sanz et al.’s
work [29], they extracted the permissions and the hardware features to build
the feature set. As a result, clean applications require two to three permis-
sions on average, but some of malicious applications only have one permis-
sion and are still able to carry out the attack.

Most of the work extracted a feature set to represent the applications.
The information carried by those features were different from work to work.
There is no evidence to show which features give the best detection result;
nonetheless, each study considered only the required permissions. Accord-
ingly, we consider taking the permissions as the only features to represent
the applications and expect to find specific permission patterns to show the
difference between clean and malicious applications.

2.8. Summary

Malware proliferation is rising exponentially and the attack vectors used
by malware authors are getting more sophisticated. Current solutions pro-
posed to thwart attacks by malicious applications will struggle to keep up
with the increase of malware. The Android platform relies heavily on its
permission system to control access to restricted system resources and pri-
vate information stored on the smartphone. As demonstrated by [12], [34],

and [35], permissions that are requested by applications during installation
can be helpful in identifying permission patterns.
However, we identify the following problems in the existing literature:

Problem 1 What required permission patterns can be used to detect ma-
licious applications?

Problem 2 What used permission patterns can be used to detect malicious
applications?

Problem 3 Can we extract useful information by incorporating used per-
missions into the permission patterns?

Problem 4 What method can we use to identify these expected permission
patterns?

In this paper, we aim to extend the current statistical method used for
identifying permission patterns in Android applications by applying pattern
mining techniques to a set of clean and malicious applications in order to bet-
ter understand the similarities and differences between these two datasets.
With the help of visualization graphs, we establish possible connections be-
tween required permissions and wused permissions in order to extrapolate
emerging permission patterns that are frequently requested by applications.
Then, we apply contrast set mining on the permissions patterns from clean
and malicious applications to identify which patterns are most prevalent in
each dataset.

3. Mining Permission Patterns

The most common method used to analyze Android permissions are
statistical-based; for instance, frequency counting by Zhou and Jiang [11]
and probabilistic model by Frank et al. [36]. Thus, we started our work
by performing an initial analysis on the clean and malware datasets using
frequency counting and extended it to incorporate used permissions. To
further extend the work of Barrera et al. [I3] who utilized SOM for appli-
cation clustering and visualization, we applied the biclustering algorithm to
not only group the applications but also their respective permissions. Fi-
nally, a novel contrast permission pattern mining algorithm is presented to
identify specific permission patterns that can help distinguish between clean
and malicious applications.

3.1. Classic Statistical Analysis on Android Permissions

We performed a statistical analysis to study both the required and used
permissions for clean and malicious applications. Hence, the following four
sub-datasets were extracted: (1) Required permissions for clean applications;
(2) Required permissions for malicious applications; (3) Used permissions for
clean applications; and (4) Used permissions for malicious applications. Di-
rect frequency counting is employed on all four sub-datasets to find out the
most popular permissions required or used by clean and malicious applica-
tions.

Table 1: Top 20 Required Permissions by Clean and Malicious Applications

Clean Applications Malicious Applications

Required Permission ‘ Frequency Required Permission ‘ Frequency

INTERNET 1121 (91.36%) INTERNET 1199 (97.72%)
ACCESS_NETWORK_STATE 663 (54.03%) ACCESS_COARSE_LOCATION 1146 (93.40%)
READ_PHONE_STATE 391 (31.87%) VIBRATE 994 (81.01%)
WRITE_EXTERNAL_STORAGE 362 (29.50%) WRITE_EXTERNAL_STORAGE 823 (67.07%)
ACCESS_COARSE_LOCATION 236 (19.23%) READ_SMS 779 (63.49%)
VIBRATE 210 (17.11%) WRITE_SMS 762 (62.10%)
WAKE_LOCK 188 (15.32%) READ_CONTACTS 680 (55.42%)
ACCESS_FINE_LOCATION 162 (13.20%) BLUETOOTH 633 (51.59%)
GET_TASKS 125 (10.19%) WRITE_.CONTACTS 542 (44.17%)
SET_-WALLPAPER 102 (8.31%) DISABLE_KEYGUARD 491 (40.02%)
ACCESS_WIFI_STATE 64 (5.22%) WAKE_LOCK 471 (38.39%)
RECEIVE_BOOT_.COMPLETED 60 (4.89%) RECORD_AUDIO 461 (37.57%)
READ_CONTACTS 58 (4.73%) ACCESS_FINE_.LOCATION 446 (36.35%)
WRITE_SETTINGS 45 (3.67%) ACCESS_.NETWORK_STATE 416 (33.90%)
CAMERA 43 (3.50%) READ_PHONE_STATE 414 (33.74%)
CALL_PHONE 42 (3.42%) SET_ORIENTATION 413 (33.66%)
SEND_SMS 34 (2.77%) CHANGE_WIFI_STATE 384 (31.30%)
RESTART_PACKAGES 32 (2.61%) READ_LOGS 361 (29.42%)
RECEIVE_SMS 31 (2.53%) BLUETOOTH_-ADMIN 342 (27.87%)
RECORD_AUDIO 27 (2.20%) RECEIVE_BOOT_.COMPLETED 325 (26.49%)

After comparing the top 20 required permissions for clean and malicious
applications listed in Table |1} we found that the malicious applications re-
quested a total of 14,758 permissions, which was much more than clean
applications (4,470 permissions). Among these permissions, we found some
of them only appeared in one dataset, that is, those permissions are only
requested or used by clean applications but not malicious ones, and vice
versa. We call these permissions as ‘unique permissions’. Similarly, we
name those permissions that appear in both clean and malware datasets
as ‘common permissions’. Totally, there are 33 unique required permissions
for clean applications and 20 for malicious ones; and also 70 common re-
quired permissions. Another 5 permissions have never been requested by
any application. For used permissions, 9 unique ones for clean applications
and only 4 for malicious ones. The number of common used permissions
dropped to 28, and a large number of 87 permissions have never been used
by any application. Four common permissions that were most frequently

required by both clean and malicious applications are as follows: INTERNET,
ACCESS_COARSE_LOCATION, WRITE_EXTERNAL_STORAGE and VIBRATE. In con-
trast, there were nine out of twenty required permissions appeared frequently
in malware dataset than in clean one. Moreover, when comparing the top
20 used permissions in clean and malicious applications in Table [2, we ob-
served that sixteen out of twenty popular used permissions are common in
both datasets.

Table 2: Top 20 Used Permissions by Clean and Malicious Applications

Clean Applications Malicious Applications

Used Permission ‘ Frequency Used Permission ‘ Frequency
INTERNET 1029 (83.86%) INTERNET 1161 (94.62%)
WAKE_LOCK 816 (66.50%) ACCESS_.COARSE_.LOCATION 1125 (91.69%)
ACCESS_NETWORK_STATE 738 (60.15%) VIBRATE 954 (77.75%)
VIBRATE 608 (49.55%) WAKE_LOCK 826 (67.32%)
READ_PHONE_STATE 457 (37.25%) ACCESS_WIFI_.STATE 584 (47.60%)
ACCESS_COARSE_LOCATION 372 (30.32%) ACCESS_NETWORK_STATE 519 (42.30%)
SET_WALLPAPER 126 (10.27%) READ_SMS 473 (38.55%)
ACCESS_FINE_.LOCATION 116 (9.45%) WRITE_CONTACTS 426 (34.72%)
GET_ACCOUNTS 98 (7.99%) READ_PHONE_STATE 354 (28.85%)
ACCESS_WIFI_STATE 85 (6.93%) RECORD_AUDIO 319 (26.00%)
READ_SMS 82 (6.68%) SET_WALLPAPER 297 (24.21%)
RESTART_PACKAGES 65 (5.30%) ACCESS_FINE_LOCATION 199 (16.22%)
GET_TASKS 61 (4.97%) GET_ACCOUNTS 178 (14.51%)
CHANGE_CONFIGURATION 55 (4.48%) GET_TASKS 124 (10.11%)
RECEIVE_SMS 37 (3.02%) RECEIVE_BOOT_COMPLETED 111 (9.05%)
FLASHLIGHT 37 (3.02%) ACCESS_.CACHE_FILESYSTEM 101 (8.23%)
WRITE_.CONTACTS 34 (2.77%) WRTIE_.OWNER_DATA 59 (4.81%)
RECEIVE_BOOT_.COMPLETED 23 (1.87%) CHANGE_CONFIGURATION 52 (4.24%)
WRTIE_.OWNER_DATA 12 (0.98%) READ_HISTORY_.BOOKMARKS 49 (3.99%)
WRITE_SETTINGS 10 (0.81%) EXPAND_STATUS_BAR 41 (3.34%)

Statistical method such as direct frequency counting is suitable for iden-
tifying single permissions that are popular in each sub-datasets respectively.
However, it still requires further manual checking to confirm the obtained
permission lists for clean and malicious applications. This, in turn, fur-
ther complicates the counting process if permission combinations are to be
considered instead of individual permissions. Therefore, we continued our
analysis of Android permissions by applying the biclustering algorithm as
a next step in order to provide visualization of the relationship between
permissions and applications.

3.2. Visualization Using Biclustering

Biclustering [37] is a special cluster analysis method, which applies clas-
sic clustering to both rows and columns, simultaneously, in a two-dimensional
data matrix. In this work, biclustering can help group applications that re-
quest or use different permission combinations as well as show us the clusters
of permission combinations based on the various applications associated with
them.

10

The biclustering is achieved by performing Agglomerative Hierarchical
Clustering(AHC) [38, 89] on both dimensions of the data matrix. The AHC
is first applied along the columns of the data matrix and then applied along
the rows of the row-clustered data matrix.

Unlike the common clustering methods which identify a single set of
clusters, the AHC' is a bottom-up clustering method that seeks to identify
clusters with sub-clusters. It forms a multilevel hierarchical clustering tree,
where lower-level clusters are joined to form higher-level clusters. The steps
can be described as follows:

Step 1: Generate the Disjoint Clusters - The AHC starts with every single
data object, i.e. each data object is assigned to a separate cluster.

Step 2: Form a Distance Matrix - The pairwise distances between the disjoint
clusters are calculated using the Ward’s linkage [40] and are used to
initialize the distance matrix.

Step 3: Merge two Closest Clusters - Based on the distance matrix, each cluster
is merged with the next closest cluster with the shortest distance.

Step 4: Update the Distance Matrix - After the merging, the distance matrix
needs to be updated by calculating the new distance between each pair
of merged clusters.

Step 5: Obtain the Hierarchical Clustering Tree - Steps 3 and 4 are repeated
until all clusters are merged into one large single cluster, resulting in
a complete hierarchical clustering tree.

We applied the above biclustering steps on two separate sub-datasets
extracted from the malware dataset and our collected clean one. One sub-
dataset contains all clean and malicious applications with required permis-
sions (see Fig. ; the second sub-dataset includes the same applications
but with used permissions (see Fig. [LD]).

As a result, we had two output matrices - the required permissions are
shown in Fig. 2| and the used permissions are in Fig. Based on the
statistical analysis presented in Section there exist unique and common
permissions for either clean or malicious applications. As binary values are
shown in these matrices, we manually picked up four colors to mark the
values to visualize different types of permissions for clean and malicious
applications:

e Dark Green shows Common permissions for clean applications;

11

Permissions
(a) Required Permissions
z
<A
= = - = _ o
H E - =z - =8
- -z =z - = Q
- H = = 5
. - - E _ - - = - w
B - E ¢ - -
_ = F Tz 2 :
_ - - f . S -

Permissions

(b) Used Permissions

suonea1[ddy

Figure 1: Visualization of Sub-datasets for Biclustering: white for Os; gray
for 1s in clean applications; and black for 1s in malicious applications

12

° shows Common permissions for malicious applications;
e Blue indicates Unique permissions for clean applications; and

e Red indicates Unique permissions for malicious applications.

suonear ddy

Permissions

Figure 2: Resulting Matrix for Required Permissions by Biclustering

From these two figures, we can easily observe that more permissions
are declared as required than those that are actually used. This further
confirms our results from the statistical analysis in Section (3.1} Furthermore,
generally, malicious applications either request or use more permissions than
clean applications. In normal cases, the unique permissions should perform
better than the common permissions to contrast between clean and malicious
applications. However, from the resulting matrices, we only have few unique
permissions shown in bright red and blue colors compared to the large set
of common permissions. Therefore, when applying only statistical methods,
it is easy to ignore those unique permissions because of their low frequency.
Furthermore, it is obvious to see the color blocks in both figures, which
indicate specific permission combinations have potential capability to group
applications in separate clusters. The aforementioned observations give rise
to the following challenges, which are addressed in the rest of the paper:
How can we use the unique permissions for contrast detection? How can
we find out the permission combinations and use them as the patterns for
malware detection?

13

2

N =X
E - i g-
. -
= == «
- am]

Al

r——
]

Permissions

Figure 3: Resulting Matrix for Used Permissions by Biclustering

3.8. Contrast Permission Pattern Mining

In order to tackle the two challenges presented in Section the Con-
trast Permission Pattern Mining (CPPM) is proposed. The output permis-
sion patterns are expected to have the ability to indicate the difference be-
tween the clean and malicious applications. CPPM was designed to process
more than one dataset and take both common and unique permissions and
their combinations into consideration. Two major processes are involved
in CPPM: (1) candidate permission itemset generation, and (2) contrast
permission pattern selection.

3.8.1. Candidate Permission Itemset Generation

The purpose of this process is to obtain a number of candidate permission
combinations that are most likely to be the expected contrasting patterns.
CPPM takes at least two datasets as input. In this case two datasets are
loaded, each of which contains either clean or malicious applications. We
generate the candidate permission itemsets for every dataset using the same
procedure, which can be described as the following two steps:

Apriori-based Itemset Enumeration
Given Dz is one of the input datasets with either required or used per-
missions, which contains n Android applications. Let I = {A,B,C ...}
be the set of possible items (or permissions requested or used by the

14

applications) in Dz. The Apriori-based approach [41], enumerates
candidate itemset from the simplest structure with only a single item.
Based on this single item, a more complex itemset is then obtained by
adding new items. This joining operation is repeated continuously to
increase the number of the items in the itemsets. In each iteration,
only one item is added into the existing candidate itemset. One item
will not appear twice in one itemset. However, the Apriori-based ap-
proach can generate a large number of candidate itemsets with high
computational cost. To solve this problem, we employ a support-
based pruning technique to reduce the number of candidate itemsets
and consequently, the experimental time.

Support-based Candidate Pruning
Support is usually used to measure the occurrence frequency of a cer-
tain item or itemset in a dataset. Let A, B C I be two items, and
{A, B} forms a candidate itemset. The support of the candidate item-
set {A, B} can be calculated by:

number of applications that contain A and B in Dx
supp(A, B) =

total number of applications in Dx O

1
The candidate itemset { A, B} is considered as frequent only if supp(A,
B) > Osupp, Where 0y is user-specified minimum support threshold.
In classic pattern mining methods, only the frequent itemset is con-
sidered. Any itemset with a lower support than the pre-determined
threshold is treated as infrequent and discarded immediately. How-
ever, in our case, both the statistical analysis and biclustering results
show most of the unique permissions are requested or used by few
applications. This is an indication that their support values are def-
initely low. In order to inadvertently miss any valuable patterns, we
decide to take both frequent and infrequent candidate itemsets, but
only use frequent ones to generate new candidate itemsets to cut down
the computational cost.

3.8.2. Contrast Permission Pattern Selection

The permission itemsets generated from Section [3.3.1need to be reduced
according to the pre-defined selection criteria. This process guarantees that
the output itemsets are highly contrasted between clean and malicious appli-
cations. The contrasting permission patterns reflect the different behaviors
present amongst the applications in the two datasets. If one permission

15

itemset is frequent in one dataset, it is often considered to carry more com-
mon features than the infrequent ones. Therefore, the selection of specific
contrast permission pattern is based on comparison of its support in both
datasets. The bigger the difference in support values, the greater the con-
trast a permission pattern has.

Given one candidate permission itemset {A, B} and its support values
in clean and malware datasets, supp(A, B)cean and supp(A, B)maticious, cal-
culate the difference by dif f(A, B) = supp(A, B)cican — SUpp(A, B)maticious-
{A, B} is identified as a contrasted permission pattern only if dif f(A, B) >
ddiff, where dg;py is a user-specified minimum support difference. All the
candidate permission itemsets need to be tested using this approach, and the
ones with big support difference will be selected as the final output contrast
permission patterns.

4. Experiments and Results

4.1. FExperiment Settings

According to the statistical analysis and biclustering resulting figures,
not all the permissions are required or used. In the experiment to evaluate
the proposed Contrast Permission Pattern Mining algorithm, we ignore the
permissions that are not required or used in each sub-datasets respectively.
Table |3| gives more details of the four new sub-datasets.

The statistical analysis results also show that only a small set of per-
missions have support that are greater than 0.1 (10%), so we follow the
previous studies [42H44] to set 0.05 as an acceptable value for minimum sup-
port threshold for all four sub-datasets in CPPM. The minimum support
difference threshold is set to be 0.15 (15%) and applied to filter out itemsets
that are highly contrasted between clean and malicious applications.

Table 3: Four Sub-datasets Used in Contrast Permission Pattern Mining
Experiments

Dataset Permission involved ‘ Permission Discarded
1 Clean_Required 103 27
2 Malicious_Required 90 40
3 Clean_Used 37 93
4 Malicious_Used 31 99

16

Table 4: Permission Index

Permission Category ‘ Permission ID ‘ Permission Name

Normal pms0001 INTERNET
Normal pms0006 ACCESS_NETWORK_STATE
Normal pms0007 VIBRATE
Normal pms0012 RESTART_PACKAGES
Normal pms0013 RECEIVE_.BOOT_COMPLETED
Normal pms0023 ACCESS_WIFI_STATE
Dangerous pms0002 ACCESS_FINE_LOCATION
Dangerous pms0003 WAKE_LOCK
Dangerous pms0004 WRITE_EXTERNAL_STORAGE
Dangerous pms0005 READ_PHONE_STATE
Dangerous pms0008 READ_CONTACTS
Dangerous pms0011 READ_LOGS
Dangerous pms0020 ACCESS_COARSE_LOCATION
Dangerous pms0021 SEND_SMS
Dangerous pms0022 GET_TASKS
Dangerous pms0024 CHANGE_WIFI_STATE
Dangerous pms0028 WRITE_CONTACTS
Dangerous pms0029 RECEIVE_SMS
Dangerous pms0030 READ_SMS
Dangerous pms0031 WRITE_SMS
Dangerous pms0036 CALL_PHONE
Signature pms0010 FACTORY_TEST
SignatureOrSystem pms0052 INSTALL_PACKAGES

4.2. Contrast Permission Patterns

Among the permission patterns that were generated, we found that 23
distinct permissions were present in the highly contrasted permission com-
binations as listed in Table [l We classified the permissions based on the
following permission categories: Normal, Dangerous, Signature and Signa-
tureOrSystem. We recorded 6 permissions belonging to the Normal cate-
gory, 15 permissions for the Dangerous category and 1 permission each for
the Signature and SignatureOrSystem category.

We found that the generated permission combinations are correlated and
differed between clean and malicious applications. Based on the experimen-
tal results, we recorded 56 required permission patterns that are unique to
the malware dataset, 31 used permission patterns that only appear amongst
malware, 17 required permission patterns and 9 wused permission patterns
that are present in both clean and malware dataset. These findings are
formed as permission combinations which are listed in Table [5] - and
summarized with respect to the usage type of the permission in the follow-
ing section. First, we define the four types of permission combinations as
follows:

17

(i) Unique Required Permission (URP): Required permission pat-
terns present only in malware dataset

(ii) Unique Used Permission (UUP): Used permission patterns present
only in malware dataset

(iii) Common Required Permission (CRP): Required permission pat-
terns present in both clean and malware datasets

(iv) Common Used Permission (CUP): Used permission patterns present
in both clean and malware datasets

4.2.1. Unique Required Permission (URP) Patterns

From Table |5 - we present the permission patterns that were fre-
quently required by the applications in our dataset. It is worth noted that
these required permission patterns were unique to the malware dataset only;
hence the support value for the clean applications is 0.

Table 5: Unique Required Permission Sets in Malware Dataset (Normal
Permissions)

Permission Set Support Permission Set
Clean Malware D
pms0001, pms0005, pms0023 0 0.6309 URPSety
pms0001, pms0006, pms0023 0 0.6031 URPSety
pms0001, pms0013 0 0.5542 URPSets
pms0006, pms0013 0 0.5168 URPSety
pms0006, pms0031 0 0.4964 URPSets
pms0001, pms0021 0 0.4312 URPSets
pms0013, pms0023 0 0.4263 URPSety
pms0021, pms0029 0 0.3701 URPSetg
pms0004, pms0013 0 0.3660 URPSetg
pms0001, pms0005, pms0020 0 0.3562 URPSet1g
pms0001, pms0005, pms0006, pms0007 0 0.3497 URPSet11
pms0001, pms0004, pms0020 0 0.3122 URPSet12
pms0023, pm.s0024 0 0.3097 URPSet13
pms0006, pms0008 0 0.2975 URPSet14
pms0013, pms0031 0 0.2943 URPSet15
pms0006, pm.s0036 0 0.2869 URPSetig
pms0013, pms0021 0 0.2804 URPSet17
pms0007, pms0036 0 0.2494 URPSet1s
pms0012, pms0021 0 0.2405 URPSet19
pms0013, pms0036 0 0.2380 URPSetog
pms0006, pms0012 0 0.2372 URPSet2
pms0012, pms0029 0 0.2282 URPSetos
pms0012, pms0013 0 0.2234 URPSetas
pms0012, pms0036 0 0.2119 URPSetay
pms0001, pms0004, pms0005, pms0007 0 0.2014 URPSetas

18

In Table [5, we list the top 25 permission combinations where the first
permission in the listed patterns belongs to the normal permissions cat-
egory. The permission combinations from URPSet; and URPSets were
both required by more than 60% of the malware. In fact, we found that the
INTERNET permission (pms0001) is frequently requested along with other
permissions and their support value are relatively high. The permission
combination, INTERNET and RECEIVE_BOOT_COMPLETED were present in 55%
of the malware dataset. Other such patterns involving the INTERNET per-
mission are listed in Table [

Table 6: Unique Required Permission Sets in Malware Dataset (AC-
CESS_FINE(COARSE)_-LOCATION)

Permission Set Support Permission Set
Clean Malware 1D
pms0002, pms0005, pms0020 0 0.2690 URPSetag
pms0002, pms0004, pms0020 0 0.2576 URPSetar
pms0002, pms0005, pms0023 0 0.2307 URPSetag
pms0002, pms0004, pms0023 0 0.2234 URPSetag

Table 7: Unique Required Permission Sets in Malware Dataset (SMS)

Permission Set Support Permission Set
Clean Malware D
pms0030, pms0036 0 0.3228 URPSetso
pms0021, pms0036 0 0.3163 URPSet3
pms0031, pms0036 0 0.2690 URPSetsa
pms0029, pms0036 0 0.2674 URPSetss
pms0021, pms0028 0 0.2519 URPSetsy

Table 8: Unique Required Permission Sets in Malware Dataset (CON-
TACTS)

Permission Set Support Permission Set
Clean Malware 1D
pms0008, pms0030 0 0.3269 URPSetss
pms0008, pms0021 0 0.2894 URPSetss
pms0008, pms0031 0 0.2649 URPSetsr
pms0008, pms0029 0 0.2429 URPSetsg
pms0028, pms0036 0 0.2413 URPSetsg
pms0008, pms0028 0 0.2282 URPSetyo
pms0008, pms0013 0 0.2250 URPSetq
pms0028, pms0029 0 0.2128 URPSetyo

19

Table 9: Unique Required Permission Sets in Malware Dataset

(WRITE_EXTERNAL_STORAGE)

Permission Set Support Permission Set
Clean Malware 1D
pms0004, pms0006, pms0023 0 0.4475 URPSetys
pms0004, pms0030 0 0.3896 URPSetyqy
pms0004, pms0005, pms0020 0 0.3106 URPSetys
pms0004, pms0021 0 0.2462 URPSetys
pms0004, pms0020, pm.s0023 0 0.2258 URPSetyr
pms0004, pms0029 0 0.2022 URPSetys

Table 10: Unique Required Permission Sets in Malware Dataset

(READ_PHONE_STATE)

Permission Set Support Permission Set
Clean Malware ID
pms0005, pms0013 0 0.5453 URPSetyg
pms0005, pms0031 0 0.5094 URPSetso
pms0005, pms0021 0 0.4190 URPSets1
pms0005, pms0029 0 0.3798 URPSets2
pms0005, pms0008 0 0.3538 URPSetss
pms0005, pms0036 0 0.3350 URPSetsy
pms0005, pms0028 0 0.2934 URPSetss
pms0005, pms0012 0 0.2560 URPSetsg

20

In Table|6]- we present the permission patterns that can have an im-
pact on the following actions: access location information, read /write/send
and receive SMS, access to contact list, write to external storage and access
to phone state.

4.2.2. Unique Used Permission (UUP) Patterns

In Table we list the combinations of the used permissions that are
unique to the malware dataset only. It can be noted that the INTERNET
permission is included in the top 3 permission combinations, UU PSet; to
UUPSets and appears in over 40% of the malware samples. The combi-
nation of INTERNET and READ _PHONE_STATE permission is another frequent
permission pattern, as depicted by UU PSety; and UU PSets.

Table 11: Unique Used Permission Sets in Malware Dataset

Permission Set Support Permission Set
Clean Malware 1D
pms0001, pms0005, pms0006, pms0007 0 0.5542 UUPSet;
pms0001, pms0005, pms0011 0 0.4687 UUPSetq
pms0001, pms0006, pms0011 0 0.4320 UUPSets
pms0005, prm.s0006, pms0011 0 0.4312 UUPSety
pms0001, pms0007, pms0011 0 0.4149 UUPSets
pms0005, pms0007, pms0011 0 0.4133 UUPSetg
pms0006, pms0007, pms0011 0 0.3855 UUPSety
pms0001, pms0002, pms0005, pms0007 0 0.3423 UUPSetg
pms0001, pms0021 0 0.3358 UUPSetg
pms0005, pms0021 0 0.3236 UUPSet1g
pms0001, pms0002, pms0011 0 0.2845 UUPSet11
pms0002, pms0005, pms0011 0 0.2845 UUPSet12
pms0001, pms0002, pms0006, pms0007 0 0.2829 UUPSet13
pms0002, pms0005, pms0006, pms0007 0 0.2829 UUPSet14
pms0002, pms0006, pms0011 0 0.2755 UUPSets
pms0007, pms0021 0 0.2723 UUPSet16
pms0001, pms0020 0 0.2600 UUPSet17
pms0005, pms0020 0 0.2600 UUPSet1s
pms0002, pms0007, pms0011 0 0.2568 UUPSet19
pms0006, pm.s0020 0 0.2511 UUPSetag
pms0001, pms0005, pms0010 0 0.2421 UUPSeta1
pms0001, pms0007, pms0010 0 0.2413 UUPSeta2
pms0005, pms0007, pms0010 0 0.2413 UUPSetas
pms0011, pms0020 0 0.2380 UUPSetoy
pms0001, pms0006, pms0010 0 0.2372 UUPSetas
pms0005, pms0006, pms0010 0 0.2372 UUPSetag
pms0006, pm.s0007, pms0010 0 0.2364 UUPSetar
pms0006, pms0021 0 0.2348 UUPSetag
pms0007, pm.s0020 0 0.2266 UUPSetag
pms0001, pms0003, pms0005, pms0007 0 0.2258 UUPSetsg
pms0002, pms0020 0 0.2185 UUPSets1

Interestingly, READ_LOGS (pms0011) permission appears in one-third of

21

the permission patterns presented in Table It is often combined with the
INTERNET (pms0001) and ACCESS_FINE_LOCATION (pms0002) permissions.
The remaining patterns include combinations of network-related and SMS
permissions.

4.2.8. Common Required Permission (CRP) Patterns

Previously, we presented the permission patterns that were unique to
malicious applications only. In Table we list the permission combina-
tions that appear in both clean and malware datasets. However, it can be
observed based on the support value difference that the permission patterns
are more prevalent in the malware dataset, as shown by the negative support
difference values.

Table 12: Common Required Permission Sets in Both Clean and Malware
Datasets

Permission Set Support Difference | Permission Set
Clean Malware 1D
pms0001, pms0005 0.3121 0.9307 —0.6186 CRPSet;
pms0005 0.3187 0.9340 —0.6153 CRPSety
pms0005, pms0023 0.0236 0.6308 —0.6072 CRPSets
pms0030 0.0147 0.6210 —0.6064 CRPSety
pms0001, pms0023 0.0505 0.6349 —0.5844 CRPSets
pms0023 0.0522 0.6349 —0.5827 CRPSetg
pms0006, pms0023 0.0399 0.6031 —0.5632 CRPSetr
pms0005, pms0006 0.2421 0.7905 —0.5485 CRPSetg
pms0001, pms0005, pms0006 0.2421 0.7897 —0.5477 CRPSetg
pms0001, pms0004, pms0005 0.1328 0.6544 —0.5216 CRPSet1g
pms0004, pms0005 0.1337 0.6553 —0.5216 CRPSet11
pms0013 0.0489 0.5542 —0.5053 CRPSet12
pms0031 0.0106 0.5159 —0.5053 CRPSet13
pms0001, pms0004, pms0005, pms0006 | 0.1149 0.5623 —0.4474 CRPSetia
pms0004, pms0005, pms0006 0.1149 0.5623 —0.4474 CRPSet;s
pms0004, pms0023 0.0293 0.4637 —0.4344 CRPSet16
pms0021 0.0277 0.4417 —0.4140 CRPSet17

Permissions, such as INTERNET (pms0001), READ_PHONE_STATE (pms0005),
ACCESS_NETWORK_STATE (pmSOOOG) and ACCESS_WIFI_STATE (pm80023), are
present in different combinations and appear in more than 40% of the mal-
ware dataset. One interesting observation is C RPSet14 which comprises of
a combination of four permissions and appear in a significant 40% of the
malicious applications.

4.2.4. Common Used Permission (CUP) Patterns
In Table [I3], we present the used permission combinations that appeared
in both the clean and malware datasets. We note that although both

22

datasets have the same permission patterns, the ones in the malware dataset
have higher support values.

In such patterns, only five permissions are found: INTERNET (pms0001),
READ _PHONE_STATE (pm50005), ACCESS_NETWORK_STATE (pm80006), VIBRATE
(pms0007) and READ_LOGS (pms0011). It is also worth noting that CU P Set;
and CUPSets have almost the same support difference, hence indicating
that the occurrence of these permission combinations are highly relevant.
Moreover, we observed that even though READ_LOGS (pms0011) permission
did not appear in the common required permission patterns, but it ap-
peared in three common unique permission patterns READ_LOGS, CU PSety;
- CUPSetg.

Table 13: Common Used Permission Sets in Both Clean and Malware
Datasets

Permission Set Support Difference | Permission Set
Clean Malware D
pms0001, pms0005 0.2991 0.9152 —0.6161 CUPSety
pms0005 0.3032 0.9169 —0.6137 CUPSeta
pms0001, pms0005, pms0006 | 0.2363 0.7718 —0.5355 CUPSets
pms0005, pms0006 0.2363 0.7718 —0.5355 CUPSety
pms0001, pms0005, pms0007 | 0.2168 0.6512 —0.4344 CUPSets
pms0005, pms0007 0.2192 0.6528 —0.4336 CUPSetg
pms0005, pms0011 0.0538 0.4686 —0.4148 CUPSety
pms0011 0.0693 0.4760 —0.4067 CUPSets
pms0001, pms0011 0.0685 0.4711 —0.4026 CUPSetg

4.8. Discussion

The Android smartphone has gained in popularity in the past few years.
Two main factors that contributed towards this change is the open-source
nature of the platform and the flexibility provided to users and develop-
ers alike when downloading and developing Android applications, respec-
tively. However, not all applications present on the application markets,
both official and third-party, are clean. Previous work showed that malware
authors take advantage of the Android permission system to entice users
into installing unsafe applications. As such, this study aims to understand
required and used permissions by Android applications by applying data
mining techniques to find emerging permission patterns that can be used to
contrast clean and malicious applications.

23

4.8.1. Observations from Statistical Analysis

Our proposed methodology considers the patterns of both required and
used permissions. From our statistical analysis in Section [3.1] we observe
that the INTERNET permission remain the most required (97.72%) and used
(94.62%) permission in our experimental dataset. We also find, from Ta-
bles[[]and 2] that there is a significant difference in the frequencies of required
and used permissions for the clean and malware datasets. This observation
aligns with the one made by Felt et al. in [34] and therefore, demonstrates
that both clean and malicious applications can be over-privileged. Till date,
most of the proposed solutions have only considered required permissions
which are extracted from the AndroidManifest.xml files. From our statis-
tical results, we argue that used permissions should also be considered as
part of the feature set and as such, can aid towards malicious application
detection.

Additionally, in order to have a comparative distribution of required and
used permissions, we extend the statistical analysis by applying the biclus-
tering algorithm to generate visualization maps. It should be noted that we
apply biclustering mainly to visualize the distribution of required and used
permissions. Thus, we do not aim to identify clusters of permissions. As ex-
pected, since applications generally request more permissions than actually
used, the distribution of required permissions for clean and malware datasets
is more sparsed than that of used permissions - as shown in Figures [2|and
respectively. The visualization maps provide researchers and analysts alike
with a first-hand overview of permissions that are common and unique be-
tween clean and malicious applications. Furthermore, the maps can be used
as a substitution for statistical analysis as it is a time-consuming process
and requires little or no margin of error. As Zhou et al. pointed out in [45],
the increasing number of malicious applications is mostly due to how easy it
is to produce repackaged applications. These applications can contain addi-
tional advertising libraries, malicious code and most importantly, additional
permissions that were previously not present in the original applications.
The maps can outline these differences in permissions for clean and ma-
licious applications. Subsequently, the permission distribution visuals can
also portray required and used permissions for different variants belonging
to the same malware family. Hence, the maps can be used for a preliminary
analysis of zero-day samples detected by antivirus companies.

4.8.2. Analysis of Permission Visualizations
From the biclustering results, we observed that several applications,
clean or malicious, have more than one (required and used) permission in

24

common between them. Conversely, we also noticed similar observation for
unique required and used permissions for the two datasets. In general, exist-
ing work [12], [30], [33] consider only individual permissions when studying
permission request patterns. Therefore, we put forward a method that con-
sider co-dependencies between permissions that are unique and common
amongst clean and malicious applications. In our paper, we apply a data
mining technique known as contrast mining to generate permission sets that
constitute of multiple permissions and can be used to reinforce similarities
and contrasts between clean and malicious applications.

From our findings, we observe that 23 permissions (as shown in Table ,
out of a total of 128 permissions that were extracted from our dataset, ap-
pear frequently in the permission sets. It is also worth noting that two
of the Dangerous permissions, WRITE_EXTERNAL_STORAGE (pms0004) and
READ_PHONE_STATE (pms0005) can be implicitly granted to an application
that utilizes API level 3 or lower, as described in [27]. This implies that
if these two permissions are not recorded as required permissions, they can
still be present as used permissions. Upon further investigation, we found
that whilst the number of required permission for WRITE_EXTERNAL_STORAGE
exceeds that of used permission, the same observation cannot be made for
READ_PHONE_STATE. From Tables [If and |2} it can be noticed that the num-
ber of clean applications (391) which required READ_PHONE_STATE is lesser
than the number of clean applications (457) that used this permission. Al-
though we do not keep record of the API level information for the applica-
tions in our dataset; however, in this case, we can deduce that some clean
applications from the set of 457 applications were implicitly granted the
READ_PHONE_STATE permission. This permission can have nefarious rami-
fications on users’ private information as it allows an application to read
unique device identifiers such as, International Mobile Equipment Identity
(IMEI), International Mobile Subscriber Identity (IMSI) and the SIM serial
number, as shown by [46].

4.8.8. Analysis of Contrast Permission Patterns

In Section [4.2] we present the most significant permission sets generated
by contrast mining. Based on our experimental results, we found that a
large number of required and used permission sets were unique in malicious
applications only. This is a good indication that the permission sets can be
further applied during the malware detection phase to identify malicious ap-
plications. For normal required permissions, we observed from Table [5| that
the permission set IDs, U RPSet; and URPSets were required by 63% and
60% of the malicious applications in our dataset, respectively. We deduce

25

that this might be the case due to the fact that 25% of our experimen-
tal malware samples (malicious applications) belong to the Droid KungFu3
malware family. As demonstrated in [47], malware samples classified under
DroidKungFu3 attempt to extract device ID, network-related information
and send all information back to the attacker’s server.

As for the Dangerous required permissions sets included in Tables [0]
to we notice several interesting permission sets on which we provide
further explanation. For permission set IDs URPSetog and URPSeto7, we
find that 25% of malicious applications require both ACCESS_FINE_LOCATION
(pms0002) and ACCESS_COARSE_LOCATION (pms0020) permissions. While
ACCESS_COARSE_LOCATION grants access to GPS location sources, ACCESS_COARSE_LOCATION
is used for location information related to network sources. However, the
documentation [48] provided by Google specifies that if a developer requires
network and GPS location information, they do not need to include both per-
missions in the application; only requesting ACCESS_FINE_LOCATION should
suffice. The presence of unused permission can be exploited via permission
inheritance during inter-component communications, as explained in [49].

Moreover, we observe that for SMS-related permissions: SEND_SMS (pms0021),
RECEIVE_SMS (pms0029), READ_SMS (pms0030) and WRITE_SMS (pms0031),
as shown in Table (7} the CALL_PHONE (pms0036) permission is associated
with these four permissions in over 25% of the malicious applications in
our dataset. The CALL_PHONE permission allows an application to proceed
with making a phone call without going through the usual dialer interface.
Some malware samples exploit the aforementioned permission combinations
to make premium calls and send text messages to premium numbers.

As for the used permission sets that are unique in our malware dataset
(Table [11)), we observed that the permission set: INTERNET (pms0001),
READ_PHONE_STATE (pmSOOOS), ACCESS_NETWORK_STATE (pmSOOOG), VIBRATE
(pms0007) with permission set ID UU PSet; was used by 55% of the mal-
ware samples. Interestingly, we also found that the same permission set was
present in Table [5| under the permission set ID URPSet;;, with the only
exception that it was required by only 35% of the malware samples. We
attribute this 20% difference to the observation made in Section [4.3.2] on
the READ_PHONE_STATE permission. Moreover, it can be noted from Table
that the READ_LOGS (pms0011) permission is frequently associated with the
permission sets and appeared in 25% to 50% of the malware dataset. There
was previously no indication that (pms0011) was a highly used permission
among malicious applications as the permission did not appear in the Top
20 most used permission, in Table This further consolidates our argu-
ment that permission patterns cannot be generated by only considering the

26

number of frequencies for that particular permission.

Furthermore, we also noted that there are several permission sets which
appeared in both clean and malware datasets, shown in Tables and
The negative support difference given in the table shows that the permis-
sion sets are more prevalent in malicious applications than in clean ones.
We observed that the top two permission sets, C RPSet; and C'RPSety in
Table [12hnd CUPSet; and CUPSety; in Table [I3] are the same. However,
we noted some discrepancies for permissions such as READ_LOGS (pms0011)
and VIBRATE (pms0007). Similar to our previous observations, it appears
that the above two permissions are not recorded during the generation of
required permission sets but for used permission sets, their high support
values indicate that they are highly significant.

5. Conclusion

In this paper, we studied the Android permission system as the smart-
phone platform makes use of permissions to regulate access to system re-
sources and users’ private information. In order to understand and identify
permission patterns, the existing work consider only those permissions that
are declared in the AndroidManifest.xml files. We refer to those permissions
as required permissions. However, there is another permission check that
takes place after an application has been installed and is executed by the
smartphone OS. We refer to such permissions as used permissions.

In our work, we considered the implications of incorporating used permis-
sions in permission patterns and determined their usefulness in contrasting
between clean and malicious applications. We proposed an efficient pattern
mining method to generate a set of emerging contrast permission patterns
for our clean and malware dataset. Based on our experimental results, we
observed that there are several permissions that do not appear in the re-
quired permission sets but are present in the used permission sets. We found
out that there is a discrepancy in the official documentation that allows ap-
plication with API level 3 or level to implicitly inherit certain permissions -
although they are not declared in the AndroidManifest.xml file.

Additionally, the patterns obtained from our proposed methodology en-
sures that the permission sets were not generated by chance as we used
support values to measure and rank the patterns. This is an improvement
over Frank et al.’s work [12] where the authors had to simulate permission
request data to test their generated patterns. Last but not least, since ob-
fuscation methods cannot be applied to Android permissions, the generated
permission sets can be used to contrast clean and malicious applications. In

27

the future, we would like to work on finding contrasting patterns that can
differentiate between an original application and a repackaged one.

References

1]

[10]

[11]

PC Magazine. Encyclopedia, Accessed in December 2012. http:
//www.pcmag.com/encyclopedia_term/0, 2542, t=Smartphone&i=
51537,00.aspl

Google. Nexus, Accessed in March 2013. http://www.google.com/
nexus.

Apple Inc. iphone, Accessed in March 2013. http://www.apple.com/
iphone.

Research in Motion Ltd. Blackberry, Accessed in March 2013. http:
//au.blackberry.com.

Microsoft. Windows phone, Accessed in March 2013. http://www.
windowsphone.com/en-gbl

Apple Inc. Welcome to apple store, Accessed in March 2013. http:
//store.apple.com/au.

BlackBerry. Blackberry world, Accessed in March 2013. http://
appworld.blackberry.com/webstore.

Google. Google play, Accessed in March 2013. https://play.google.
com/store.

P. Gilbert and C. Byung-Gon and P. C. Landon and J. Jaeyeon. Vi-
sion: automated security validation of mobile apps at app markets. In
Proceedings of the 2nd International Workshop on Mobile Cloud Com-
puting and Services (MCS 2011), pages 21-26, Washington, USA, June
2011.

Google. Malware - what’s the policy?, Accessed in March 2013.
http://support.google.com/adwordspolicy/bin/answer.py?hl=
enkanswer=1308246&topic=1626336&path=1316546&ctx=1eftnav.

Y. Zhou and X. Jiang. Dissecting Android malware: Characterization
and evolution. In Proceedings of the IEEE Symposium on Security and
Privacy (SP 2012), pages 95-109, San Francisco, CA, May 2012.

28

http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.google.com/nexus
http://www.google.com/nexus
http://www.apple.com/iphone
http://www.apple.com/iphone
http://au.blackberry.com
http://au.blackberry.com
http://www.windowsphone.com/en-gb
http://www.windowsphone.com/en-gb
http://store.apple.com/au
http://store.apple.com/au
http://appworld.blackberry.com/webstore
http://appworld.blackberry.com/webstore
https://play.google.com/store
https://play.google.com/store
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

M. Frank, B. Dong, A.P. Felt, and D. Song. Mining permission request
patterns from Android andFacebook applications. In Proceedings of the
IEEE International Conference on Data Mining (ICDM 2012), pages
1-16, Brussels, Belgium, December 2012.

D. Barrera, H.G. Kayacik, P.C. van Oorschot, and A. Somayaji. A
methodology for empirical analysis of permission-based security models
and its application to Android. In Proceedings of the 17th ACM con-
ference on Computer and communications security (CCS 2010), pages
73-84, Chicago, Illinois, USA, October 2010.

A.P. Felt, K. Greenwood, and D. Wagner. The effectiveness of appli-
cation permissions. In Proceedings of the USENIX Conference on Web
Application Development (WebApps 2011), pages 1-12, Portland, Ore-
gon, June 2011.

A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: User attention, comprehension and behavior. In
Proceedings of the Symposium on Usable Privacy and Security (SOUPS
2012), number 3, pages 1-14, Washington, D.C., July 2012.

P.H. Chia, Y. Yamamoto, and N. Asokan. Is this app safe? a large scale
study on application permissions and risk signals. In Proceedings of
the 21st international conference on World Wide Web (WWW 2012),
pages 311-320, Lyon, France, April 2012.

International Secure Systems Lab. Andrubis: Analyzing Android bina-
ries, Accessed in May 2012. http://anubis.iseclab.org/7action=
home.

virusTotal. Credits & acknowlegements, Accessed in March 2013.
https://www.virustotal.com/en/about/credits.

Open Handset Alliance. Android, Accessed in February 2013. http:
//www.openhandsetalliance.com/android_overview.html.

F. Ableson. Introduction to Android development, Accessed in
January 2013. http://www.ibm.com/developerworks/library/
os—-android-devel.

Google. Android SDK, Accessed in January 2013. http://developer.
android.com/sdk/index.html.

29

http://anubis.iseclab.org/?action=home
http://anubis.iseclab.org/?action=home
https://www.virustotal.com/en/about/credits
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

[22]

[23]

[24]

[25]

[26]

The Eclipse Foundation. Eclipse ide for java developers, Accessed
in March 2013. http://www.eclipse.org/downloads/packages/
eclipse-ide-java-developers/junosrl.

Android Open Source Project. Bytecode for the dalvik virtual ma-
chine, Accessed in January 2013. http://source.android.com/tech/
dalvik/dalvik-bytecode.html.

Google. Google play, Accessed in March 2013. https://play.google.
com.

H. Lockheimer. Android and Security, Accessed in March
2013. http://googlemobile.blogspot.com.au/2012/02/
android-and-security.htmll

J.R. Raphael. Inside Android 4.2’s powerful new security system,
Accessed in November 2012. http://blogs.computerworld.com/
android/21259/android-42-security.

Google. Android permissions, Accessed in December 2012.
http://developer.android.com/guide/topics/manifest/
permission—-element.htmll

A. Bartel, J. Klein, M. Monperrus, and Y.L. Traon. Automatically se-
curing permission-based software by reducing theattack surface - an
application to Android. In Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2012),
pages 274-277, Essen, Germany, September 2012.

B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas,
and G. Alvarez. PUMA: Permission usage to detect malware in An-
droid. In Proceedings of the International Joint Conference CISIS’12-
ICEUTE’12-50C0’12 Special Sessions, volume 189 of Advances in In-
telligent Systems and Computing, pages 289-298. Springer Berlin Hei-
delberg, September 2013.

I. Rassameeroj and Y. Tanahashi. Various approaches in analyzing An-
droid applications with its permission-based security models. In Pro-
ceedings of the IEEE International Conference on Electro/Information
Technology (EIT 2011), number 44, pages 1-6, Minnesota, USA, May
2011.

30

http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://source.android.com/tech/dalvik/dalvik-bytecode.html
http://source.android.com/tech/dalvik/dalvik-bytecode.html
https://play.google.com
https://play.google.com
http://googlemobile.blogspot.com.au/2012/02/android-and-security.html
http://googlemobile.blogspot.com.au/2012/02/android-and-security.html
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html

[31]

[34]

J. Sahs and L. Khan. A machine learning approach to Android malware
detection. In Proceedings of the European Intelligence and Security In-
formatics Conference (EISIC 2012), pages 141-147, Odense, Denmark,
August 2012.

D.J. Wu, C.H. Mao, T.E. Wei, H.M. Lee, and K.P. Wu. DroidMat:
Android malware detection through manifest and API calls tracing. In
Proceedings of the 2012 Seventh Asia Joint Conference on Information-
Security (Asia JCIS 2012), pages 62-69, Tokyo, Japan, August 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of My
Market: Detecting Malicious Appsin Official and Alternative Android
Markets. In In Proceedings of the 19th Annual Network and Distributed
System Security Symposium (NDSS 2012), pages 1-13, San Diego, Cal-
ifornia, February 2012.

A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android per-
missions demystified. In Proceedings of the ACM Conference and Com-
munications Security (CCS 2011), pages 627-638, Chicago, U.S.A, Oc-
tober 2011.

T. Vidas, N. Christin, and L. Cranor. Curbing Android permission
creep. In Proceedings of the 2011 Web 2.0 Security and Privacy Work-
shop (W2SP 2011), pages 1-5, Oakland, CA, May 2011.

A.P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey
of mobile malware in the wild. In Proceedings of the ACM Workshop
on Security and Privacy in Mobile Devices (SPSM 2011), pages 3-14,
Chicago, U.S.A, October 2011.

S.C. Madeira and A.L. Oliveira. Biclustering algorithms for biological
data analysis: A survey. IEEE Transactions on computational Biology
and Bioinformatics, 1(1):24-45, 2004.

G.J. Szekely and M.L. Rizzo. Hierarchical clustering via joint between-
within distances: Extending ward’s minimum variance method. Journal
of Classification, 22(2):151-183, 2005.

A. Fernandez and S. Gémez. Solving non-uniqueness in agglomerative
hierarchical clustering using multidendrograms. Journal of Classifica-
tion, 25(1):43-65, 2008.

Joe H. Ward. Hierarchical grouping to optimize an objective function.
Journal of The American Statistical Association, 58:236-244, 1963.

31

[41]

[45]

[46]

R. Agrawal, T. Imieinski, and A. Swami. Mining association rules be-
tween sets of items in large databases. In P. Buneman and S. Jajodia,
editors, Proceedings of the ACM SIGMOD International Conference on
the Management of Data (COMAD 1993), pages 207-216, Washington
DC, 1993. ACM Press.

S. Liu, R. Law, J. Rong, G. Li, and J. Hall. Analyzing changes in
hotel customers’ expectations by trip mode. International Journal of
Hospitality Management, 34:359-371, 2013.

J. Rong, H.Q. Vu, R. Law, and G. Li. A behavioral analysis of web shar-
ers and browsers inhong kong using targeted association rule mining.
Tourism Management, 33(4):731-740, 2012.

R. Law, R. Rong, H.Q. Vu, G. Li, and H.A Lee. Identifying changes
and trends in hong kong outbound tourism. Tourism Management,
32(5):1106-1114, 2011.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smart-
phone applications in third-party Android marketplaces. In Proceedings
of the second ACM conference on Data and ApplicationSecurity and
Privacy (CODASPY 2012), pages 317-326, San Antonio, Texas, USA,
February 2012.

V. Moonsamy, M. Alazab, and L. Batten. Towards an understanding
of the impact of advertising on data leaks. International Journal of
Security and Networks, 7(3):181-193, 2012.

F-Secure. Trojan:android/droidkungfu.c, Accessed in January
2013. http://www.f-secure.com/v-descs/trojan_android_
droidkungfu_c.shtmll

Android Developer. Location strategies, Accessed in January
2013. http://developer.android.com/guide/topics/location/
strategies.html.

E. Chin, A.P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in Android. In Proceedings of the 9th An-

nual International Conference on Mobile Systems, Applications, and
Services (MobiSys 2011), pages 239-252, Washington, USA, June 2011.

32

http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.shtml
http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.shtml
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html

	Introduction
	Background and Related Work
	Android
	Android Permission System

	Android Malware Detection with Permissions
	Summary

	Mining Permission Patterns
	Classic Statistical Analysis on Android Permissions
	Visualization Using Biclustering
	Contrast Permission Pattern Mining
	Candidate Permission Itemset Generation
	Contrast Permission Pattern Selection

	Experiments and Results
	Experiment Settings
	Contrast Permission Patterns
	Unique Required Permission (URP) Patterns
	Unique Used Permission (UUP) Patterns
	Common Required Permission (CRP) Patterns
	Common Used Permission (CUP) Patterns

	Discussion
	Observations from Statistical Analysis
	Analysis of Permission Visualizations
	Analysis of Contrast Permission Patterns

	Conclusion

