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Abstract—This paper investigates the resource allocation prob-
lem for a type of workflows in pervasive computing. These
workflows are abstracted from the enterprise-level applications in
the business or commerce area. The activities in these workflows
require not only computing resources, but also human resources.
Human involvement introduces additional security concerns.
When we plan/allocate resource capacities, we often assume
that when a task is allocated to a resource, the resource will
accept the task and start the execution once the processor
becomes available. However, the security policies impose further
constraints on task executions, and therefore may affect both
application- and system-oriented performance. Authorization is
a important aspect in security. This paper investigates the
issue of allocating resources for running workflows under the
role-based authorization control, which is one of the most
popular authorization mechanisms. By taking into account the
authorization constraints, the resource allocation strategies are
developed in this paper for both human resources and computing
resources. In the allocation strategy for human resources, the
optimization equation is constructed subject to the constraint
of the budget available to hire human resources. Then the
optimization equation is solved to obtain the number of human
resources allocated to each authorization role. The allocation
strategy for computing resources calculates not only the number
of computing resources, but also the proportion of processing
capacity in each resource allocated to serve the tasks assuming
each role. The simulation experiments have been conducted to
verify the effectiveness of the developed allocation strategies. The
experimental results show that the allocation strategy developed
in this paper outperforms the traditional allocation strategies,
which do not consider authorization constraints, in terms of both
average response time and resource utilization.

I. INTRODUCTION

This work considers a type of workflow in pervasive com-
puting. These workflows are abstracted from the enterprise-
level application in the business or commerce area. In a
workflow of this type, some activities (or tasks) are run on
computing resources, which are called Computing Tasks (CT)
in this paper, and some need to be processed by human
resources (i.e., the employees in a bank), which are called
Human Tasks (HT). Nowadays, an employee in an enterprise
that is involved in processing the human tasks in certain
business processes is often equipped with a wireless device
(e.g., iPad or smart phone), so that the activities can be
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processed wherever the relevant employees are. When a human
task needs the employee’s attention, an alert or the task itself
is sent to his or her wireless device and then the employee
spends a certain amount of time to process it, for example, to
read the relevant information related to the task and then make
corresponding decisions. Human involvement introduces addi-
tional authorization concerns. Research has been conducted on
the topic of security and authorization constraints in the work-
flow context [1][2][3][4]. Role-Based Authorization Control
(RBAC), under which the users are assigned to certain roles
while the roles are associated with prescribed permissions, is
a popular authorisation control scheme applied to workflow
executions [5].

Many workflow management strategies have been devel-
oped to enhance the performance of workflow executions [6].
When we design workflow management/scheduling strategies
or plan resource capacities, it is often assumed that when
a task is allocated to a resource, the resource will accept
the task and start the execution once the processor becomes
available [7][8][9]. However, the authorization policies impose
further constraints on task executions and therefore, may incur
performance penalty and affect both application- and system-
oriented performance. The following example illustrates such
a situation.

A bank will need both human tasks and computing tasks to
support its business. A human task may involve a person (i.e.,
a user in the RBAC terminology) with an official position (i.e.,
a role in RBAC, e.g., a branch manager) signing a document;
a computing task may involve running an application (often
deployed as a service) on a computing resource to assess
risk for an investment. Further, the computing applications
may be hosted in a central resource pool (e.g. a cluster or
a Cloud) [10], and the invocation of an application may be
automated without human intervention, which we term an
Automated Computing Task (ACT), or for security reasons,
can only be initiated by a user with a certain role and
be executed under that role/user, which we term a Human-
aided Computing Task (HCT). The following authorization
constraints are often encountered in such scenarios [11]: 1)
Role constraints: A human task may only be performed by a
particular role; a computing application may only be invoked
by assuming a particular role; 2) Temporal constraints: A role



or a user is only activated during certain time intervals (e.g.,
a staff member only works morning hours); 3) Cardinality
constraints: The maximum number of tasks (computing or
other) running simultaneously under a role is N. It is common
to find such authorization constraints and interaction between
human and automated activities in other application domains
such as healthcare systems [12], the manufacturing community
[13][14], and so on. Human intervention and associated au-
thorization clearly affects the processing of tasks and impacts
on both application-oriented performance (e.g. mean response
time of workflows) and system-oriented performance (e.g.
utilization of the computing resource pool). For example, a
task may have to wait in the waiting queue due to the temporal
constraint and/or cardinality constraint of the role that the task
is assuming, even if there are free resources in the system.
Therefore, when planning resource capacities for workloads
in such situations, we need to take into account the impact of
authorization constraints.

The security-aware scheduling issues are also investigated
in literature. The work in [15] developed a security overhead
model for workflows and focussed on three security aspects:
1) confidentiality, ii) integrity and iii) authentication. However,
the work presented in this paper focuses on the security aspect
of authorization. The work in [16] developed the security-
aware resource allocation strategies for real-time DAG jobs
in homogeneous clusters and heterogeneous cluster. The work
in [17] proposed a Security-Aware Task (SEAT) graph model
and based on this model, further developed the methods to
achieve maximum security strength while satisfying the real-
time constraints. Again, the security issues investigated in the
above work do not include authorization. Moreover, those
work do not consider human resources.

This paper investigates the issue of allocating both human
resources and computing resources for running workflows
under the role-based authorization control, so as to mitigate
negative impact of authorization constraints on execution
performance of workflows.

In the application domains of interest, the allocations of
human resources and computing resources have different con-
siderations. In the role-based authorization control, a human
resource is affiliated with a role. The human resources with
different roles will incur different salary costs (e.g., hiring a
branch manager is more expensive than hiring a cashier). The
budget is often a major factor of determining the allocation
of human resources in enterprise applications. Therefore, this
paper takes authorization constraints into account and develop
an optimization method to allocate the proper amount of
human resources for each role, so that the human tasks can
achieve optimized performance subject to the budget limit for
human resources.

Due to relatively low costs of computing resources, the cost
is typically not a major concern for deploying low- or middle-
end computing resources. When the workflows are running
under authorization control, authorization constraints may in-
cur performance penalty as discussed in the above workflow
example in banks. Therefore, minimizing the overhead caused

by the authorization constraints should be a main objective.
In order to address this issue, this paper develops a strategy
of allocating computing resources. The strategy is able to
calculate 1) a proper number of computing resources allocated
to host each service, and 2) the processor sharing proportion
in each resource allocated to run the tasks assuming a certain
role.

In this paper, a workflow consist of human tasks and com-
puting tasks. A computing task involves invoking a computing
service hosted in a central resource pool (e.g., a cluster or a
Cloud). It is assumed that the invocation of computing services
can only be initiated by a user with a certain role. A human
task is executed by a human resource with a certain role.
A human task can also be regarded as invoking a human
service provided by a user with a certain role. Therefore, we
will discuss human tasks and computing tasks in a consistent
manner in this paper.

It is assumed that a set of services (human service or com-
puting service) is hosted by the resources (human resources or
computing resources). A task (human task or computing task)
in a workflow invokes one of the hosted services.

The rest of this paper is organized as follows. Section II
presents the methods to calculate the arrival rate of the requests
assigned to a role. Section III presents the method to allocate
human resources, while Section IV develops the method to
allocate computing resources for hosting computing services.
The experimental studies are presented in Section V. Finally
Section VI concludes the paper.

II. CALCULATING THE ARRIVAL RATE UNDER
AUTHORIZATION

In the workflow context in this paper, a task in a workflow
invokes one of the services running on the resources. In
order to determine the amount of resources allocated to host
services, this section first calculates the arrival rate of tasks
for each service, which is the invocation rate of each service
when there is no authorization control. However, under the
authorization control, the tasks have to be assigned to a
role before they can invoke the services, and the roles may
have temporal and cardinality constraints. Consequently, the
services’ invocation rates may be different from those when
there is no authorization. This section derives the arrival rate of
tasks for each role, i.e., the rate at which the tasks are assigned
to each role under the authorization constraints. Table.I lists
the notations used in the paper.

A. Calculating the arrival rates for services

S = {S T1y--
resource pool.

F = {f1,..., fn} denotes the set of workflows, which has
N types of workflow. Different types of workflow may have
different topologies of tasks. A task in a workflow invokes one
of the services in S. A service invocation matrix, denoted as
Cr«n, can be used to represent which services are invoked by
a workflow in F. The matrix has L rows and N columns. Row
i represents service s;, while column j represents workflow

., 81} denotes the set of services running on the



TABLE I

NOTATIONS
notations Explanation
T role i
e; the execution time of the tasks assigned to r;.
w; the waiting time of the tasks assigned to role r;
np(r;) the number of resources used to serve the tasks running under
i
i the mean response time of the tasks running under role r;
C(r; the cardinality constraint of r;

the temporal constraint of r;

C"(s;) the role constraint of service s;
) the arrival rate of the tasks that are assigned to r; when x
constraints are considered.

the set of services that role r; can invoke

the mean response time of the tasks that assume r; to invoke
.
J

f;j- An element c;; represents how many times service s;
is invoked by workflow f; (different tasks in a workflow
may invoke the same service). \; denotes the arrival rate of
Workflow f;.

The arrival rate of the requests for service s;, denoted
as A(s;), can be calculated from the service calling matrix,
Cr«n, as in Eq.1.

N
=3 (e x M) ()
j=1

B. Calculating the arrival rates for roles

This subsection analyse how to calculate the arrival rates for
the roles under three types of authorisation constraints: role
constraints, temporal constraints and cardinality constraints
[5].

1) Arrival rates under role constraints: R = {ry,....,rpr}
denotes the set of roles defined in the authorisation control
system. The role constraint specifies the set of roles that are
permitted to run a particular service. C"(s;) denotes the role
constraint applied to service s;.

A role constraint matrix, denoted as Opx s, is used to
represent which roles are permitted to invoke a particular
service. The matrix has L rows and M columns. Row i
represents service s;, while column j represents role ;. An
element o;; is O or 1, representing whether role r; is permitted
to run service s;.

If only role constraints are considered and multiple roles are
permitted to run a service, a role is randomly selected. In the
requests for service s;, the arrival rate of the requests allocated
to role 7, denoted as A" (s;,7;), can be calculated using Eq.2.
Further, the arrival rate of all service requests allocated to r;,
denoted as A"(r;) can be calculated using Eq.3.

N (s0,) = % i 3L 04 #0 2
whty) — s M
0 if Zj:l Oq;j = O
L
)\r(’l“j) = Z)\T(S%’I”j) (3)
i=1

2) Arrival rates under both role constraints and temporal
constraints: In most cases, a role is activated periodically. For
example, the role of bank manager is only activated from 9am
to 12pm in a day. Therefore, the temporal constraint of role
r;, denoted as C!(r;) can be expressed as Eq.4, where P; is
the period, D; is the time duration when r; is activated in the
period P;, and S; and FE; are the start and end time points when
this period pattern begins and ends. E; can be oo, meaning the
periodic pattern continues indefinitely. A temporal function for
role r; is defined in Eq.5. The value of the temporal function is
1 if the role is activated at the current time point t. Otherwise,
the value of the function is O.

C(r;) = (P, Dy, Si, Ey) 4
1 if t— |2 x P < Dy
flrist) =4 ift—bijp ~p, ©

The function nr(s;,t) defines the number of roles which
are activated at time point ¢ and are permitted to run service
;. mr(s;,t) can be calculated using Eq.6, which is based on
the roles’ temporal functions.

nr(s;,t) =

o St 6)

r; ECT(s;)

A't(s;,7;) denotes the arrival rate of the tasks that are
requesting service s; and are assigned to role r; when
both role constraints and temporal constraints are considered.
A"(s;,7;,t) denotes at time t, the arrival rate of the requests
that assume 7; and invoke s;. A"(s;,7;,t) can be calculated
as Eq.7. Then \"(s;,7;) (i.e., the average arrival rate of the
requests that assume r; and invoke s;) can be calculated as
Eq.8, where P is the minimal common multiple of the periods
of all roles that can run s;.

A"t(r;) denotes the arrival rate of all tasks that are assigned
to role r; when both role constraints and temporal constraints
are considered. A"*(r;) can be calculated as Eq.9.

Tt (o o _ )‘(Sl)
A (s4,15,t) = 7nr(si,t) @)
P
J A (si,m5,t) dt
At (si,rj) =2 (8)
R P
L
)\Tt(’l“j) = Z)\Tt(si,T‘j) (9)
i=1

Fig. 1 illustrates the temporal constraints of three roles, 71,
19, 13, in which t(r1) = (6,4,0, ), t(r2) = (4,2,0,0), and
t(rs) = (3,1,0,00).

Fig. 2 illustrates nr(s;,t) for the three roles in Fig.l. As
can be seen from this figure, the number of activated roles
that can run s; varies over time. Note that since the minimal
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The function of the number of activated roles for the example in

common multiple of the periods of r1, ro, r3 is 12, the pattern
of nr(s;,t) will repeat in every time duration of 12.

According to Eq.8, \"(s;,r;) is @ and A(s;) at time
point 0 and 12, respective.

The analysis can be easily extended to the case where the
temporal constraint of a role consists of multiple different
periodic patterns, each of which is specified by Eq.4. The
analysis for multiple periodic patterns is omitted in this paper.

3) Arrival rates under both role constraints and cardinality
constraints: The cardinality constraint of a role is defined
as the maximum number of tasks that the role can run
simultaneously. C¢(r;) denotes the cardinality constraint of ;.

In order to avoid the execution delay caused by r;’s cardi-
nality constraint, the number of the tasks running under role r;
should be less than C°(r;) when a new task arrives requesting
role r;. A\™°(s;,7;) denotes the arrival rate of the tasks that are
requesting service s; and are assigned to role r; when both role
constraints and cardinality constraints are considered. A"¢(r;)
denotes the arrival rate of all tasks that are assigned to role
r; when both role constraints and cardinality constraints are
considered.

According to Littles Law [18], we have Eq.10, where rp;
is the mean response time of the tasks running under role ;.

Ce(r;) = X"(r;) X rp; (10)

np(r;) denotes the number of resources used to serve the

tasks running under 7;, and these resources are modelled as a
M /M /np(r;) queuing model. w; denotes the waiting time of
the tasks assigned to role r;. According to the queuing theory
[18], w; can be calculated by Eq.11, where e; is the execution
time of the tasks assigned to ;.
e s 2
w; — (r;) x €; (11
np(ri)? — e; X np(ri) X Ar¢(r;)
Since Eq.12 holds, Eq.10 can be transformed to Eq.13

TP, = W; + €; (12)

A€(r;) % €2
np(ri)? — e; X np(r;) x Are(r;) +ei)
(13)

A"¢(r;) can then be calculated by transforming Eq.13 to
Eq. 14 in page 5, which is the maximum task arrival rate that
r; can tolerate in order to avoid the overhead caused by its
cardinality constraint.

4) Arrival rates under role, temporal and cardinality con-
straints: \"¢(r;) denotes the arrival rate of the tasks that are
assigned to r; when the role constraints, temporal constraints
and cardinality constraints are considered. \"%“(r;) can be
calculated as Eq.15.

CC(’I"i) = )\TC(TZ') X (

/\”C(ri) — min(/\”(ri), )\rc(,ri))

III. ALLOCATING RESOURCES FOR HUMAN TASKS

15)

Since a human task in a workflow invokes a human service
provided by a user with a certain role, we need to allocate an
appropriate amount of human resources for each role, so that
the desired performance can be achieved for human tasks. In
Section II, we have derived the tasks’ arrival rates for roles
under the authorization constraints. This section models the
problem of allocating human resources for roles, aiming to
optimizing the average response time of the human tasks.
Since the budget is often a major factor in hiring human
resources, the allocation of human resources is subject to a
budget constraint.

B denotes the budget that can be spent for human resources.
b; denotes the cost of hiring a human resource assuming role
r; (e.g., the salary for a staff taking the manager role). h;
denotes the number of the human resources allocated for role
r;. The budget constraint can be expressed as Eq.16, where h;
is an integer.

M

> (bixh)<B

i=1

(16)

We model the human resources allocated for role r; as an
M /M /h; queueing model. According to the queuing theory
[18], the average response time of human tasks over all roles,
denoted as RH, can be calculated by Eq.17.

M i
RH = Z <Tp¢ X M) A7)
i=1 Zj:l >‘j



np(ri) x \/(np(ri) +C°(ri))2 — 4 x C(ri) x (np(ri) —1) +np(ri) x (np(rs) + C(r:))

ATC(ry) = 14
(rs) 2 x e; X (np(r;) — 1) (14
Following the similar derivation as in Eq.11 and Eq.12,
Eq.17 can be transformed to Eq.18. AT (80,75 )
Ysect(ry) (it X rplry, 50) = b (i)
M N N Vsi, sk € C5(r;), rp(rj, si) = sjk x rp(rj, sk) (z‘z’)(ZI)
RH = z; ((h? —e; X hy X N * 61) . ZM1 /\j) (18) The problem of finding «;; in a node hosting service s;
1= J=

From the analysis in Subsection II-B3, we know that in
order to reduce the performance penalty caused cardinality
constraints, the tasks assigned to a role with a tighter cardinal-
ity constraint (i.e., less value of C¢(r;)) should have a shorter
average response time so that they can be turned around faster
in the system. This relation can be represented in Eq.19.
if CC(T’q;) S Cc(’l"j)

rp; < TPy, (19)

The objective is to find h; (1 < i < M) subject to Eq.16
and Eq.19, such that RH in Eq.18 is minimized. This is a
constrained-minimum problem, and there are existing solvers
to find its solution [19].

IV. ALLOCATING RESOURCES FOR COMPUTING TASKS

A computing task in the workflow invokes a service hosted
in the central computing resource pool (e.g., a Cluster or
a Cloud [10]). This section aims to determine the suitable
amount of computing resources allocated for hosting each
service and for processing the tasks assuming each role, so
that the overhead caused by the authorization constraints can
be minimized.

n; denotes the number of homogeneous nodes used to host
service s;. According to the role constraints, we know which
roles can invoke the services. Using Eq.8, we can calculate
the arrival rate of the requests that assume r; to invoke s;.
Applying Little’s law, the desired average response time for
a request assuming 7; (i.e., p;) can be calculated as Eq.20.
In order to satisfy rp;, we need to find a minimal number
of nodes for hosting each service (i.e., the minimal value of
n;,1 < i < L), and to find the proportion of processing
capability (in a node hosting s;) allocated to run the requests
that assume role 7;, which is denoted as o;.

_ Ce(ry)
T X)

We first calculate the desired response time for the requests
that assume r; to invoke s;. es; denotes the mean execution
time of the requests invoking service s;, which can be obtained
by benchmarking the executions of service s;. rp(r;,s;)
denotes the desired mean response time of the requests that
assume role r; to invoke service s;. Then rp(r;,s;) can be
calculated from Eq.21, where Eq.21.ii expresses that the ratio
among 7p(r;j,s;) should be equal to the ratio among es;

(Si S CS(Tj)).

(20)

relies on the analysis of multiclass queueing systems with
Generalized Processor Sharing, which is notoriously difficult
[20]. The analysis of the multiclass single-server queue can
be approximated by decomposing it into multiple single-class
single-server queues with the capacity equal to o;pu; [20],
where u; is the processing rate of a node for serving service
s; (e, ﬁ). Finding «;; and n; can then be modelled as
Eq.22, where Eq.22.i is constructed based on the equation of
calculating average response time of the tasks in an M/M/1
queue [18]. In Eq.22, the number of unknown variables (i.e., n;
and a5, r; € C7(s;))) is the same as the number of equations
in Eq.22. Therefore, n; and o;; can be calculated.

ng rp(7r;,8:)

ZTJ'ECT(Si) Q5 = 1 (2

V. EXPERIMENTAL STUDIES

{ vy € (s, - X ()

A. Experimental settings

This section presents the simulation experiments to demon-
strate the effectiveness of the resource allocation strategies
developed in this paper. The metrics used to measure the
performance obtained by resource allocation strategies are
mean response time of workflows and resource utilization.

The simulation program has the following components:
capacity planner, workflow generator, authorization controller,
workflow server.

The workflow generator generates the workflows in the
following way. The workflows are randomly generated, each
workflow containing TNUM tasks and each task in a workflow
having the maximum of M AX_DG children. A workflow
contains two types of task, Human Task (HT) and Computing
Task (CT), following a certain ratio of the number of tasks in
each type (denoted as |HT| : |CT|). A HT is processed by
a user, while a CT involves one of A applications. The tasks
execution times follow an exponential distribution. The human
tasks have the average execution time of £X_H time units,
while the computing tasks, including HCT and ACT, have
the average execution time of £ X_C' units. Assume that all
computing tasks can only be initiated by a user with a certain
role (i.e., all computing tasks are human-aided computing
tasks). RNUM roles and UNUM users are assumed to be
involved in processing the workflows. The generated workflow
instances will be issued following the Poisson process.

The authorization controller generates the authorization con-
straints as follows. The role constraints (i.e., the set of roles



that a task can assume) for each HT and CT are set in the
following fashion. The simulation sets a maximum number of
roles that any task can assume in the role constraints, denoted
as MAX_RCST, which represents the level of restrictions
imposed on the role assignment for tasks. When setting the
role constraint for task t;, the number of roles that can run
t; is randomly selected from [1, MAX_RCST], and then
that number of roles are randomly selected from the role set.
A similar scheme is used to associate users to roles. The
maximum number of users a role can be associated to is
denoted as M AX_U2R. The number of users belonging to
role r; is randomly selected from [1, M AX_U2R]; and these
users are then randomly selected for r; from the user set.

The temporal constraints on roles are set in the following
way. For each role, a time duration is selected from a period
of TD time units. The selected time duration occupies the
specified percentage of the TD time units, which is denoted
as TEMP. The starting time of the selected duration is chosen
randomly from the range of [0,7D x (1 — TEMP)]. For
example, if TD=200 and TEMP=70%, the starting point is
randomly selected from 0 to 30% x 200.

CARD denotes the cardinality constraint, i.e., the maximum
number of the tasks that can be run simultaneously in the
system by a role.

Besides generating the authorization constraints, the autho-
rization controller also enforces the authorization policy as the
workflow instances arrive and request services.

Given the generated workflows and the authorization con-
straints generated by the authorization control component, the
capacity planner calculates the capacity of human resources
and calculate the capacity of computing resources (i.e., the
number of computing resources) and the allocation strategy of
computing resources (i.e., the processing sharing fraction for
each role).

The workflow server run the generated workflows in the
resources in the aforementioned fashion. The obtained perfor-
mance is recorded. In the experiments, we also compare the
performance obtained by our strategies with the performance
by conventional strategies. Conventional capacity planning
and resource allocation strategies do not take authorization
constraints into account, and allocate the amount of resources
proportional to the arrival rate.

B. Experimental results

In order to demonstrate the effectiveness of the allocation
strategy for human resources, we conduct the experiments
using the traditional allocation strategy for human resources.
In the traditional strategy, we don’t impose authorization
constraints, and assume a particular type of human tasks are
handled by a particular user. Based on the arrival rate of
workflows, we can obtain the arrival rate of the requests for
each human service. The number of human resources allocated
for handling each human service is proportional to the arrival
rate of requests for each service, subject to the constraint that
the total cost of hiring all human resources is no more than the
budget B. With the same budget constraint, we conduct the

'|«Traditional strategy
A-Qur strategy

Value of RH

A A

0'8.5 1 15 2 2.5 3 3.5 4
Arrival Rate

Fig. 3. Comparing average response time of human tasks between our strat-
egy and the traditional allocation strategy for human resources; TNUM=15,
MAX_DG=10, EX_H=7, RNUM=5, UNUM=15, A=15, MAX_U2R=5,
MAX_RCST=4, CARD=4, TEMP=70%, TD=200, B=200, b1, ..., brnu M =
10,8,2,5,9

experiments using the allocation strategy for human resources
developed in this paper. Then we run the workflows consisting
of only human tasks under authorization constraints on both
resource allocation settings. Fig. 3 shows their performance in
terms of mean response time (i.e., RH) as the arrival rate of
the workflow increases.

As can be seen from Fig. 3, our strategy outperforms
the traditional strategy in all cases and the trend becomes
more prominent as the arrival rate of workflows increases.
This is because our strategy takes into account authorization
constraints and the arrival rate of requests, and establishes the
optimization equations to calculate the allocation of human
resources that can minimize the mean response time of human
tasks. In the traditional allocation strategy, the resources are
allocated only based on the arrival rate of the requests for
services, not considering authorization constraints. Due to the
existence of authorization constraints, the incoming requests
need to be first assigned to roles and then invoke the corre-
sponding services. Consequently, the rate at which the services
are invoked under authorization may be different from that
without authorization. Therefore, the resources allocated by
the traditional strategy may not be in line with the resource
demands, and consequently the performance may be impaired.
Further, as the arrival rate of workflows increases, it becomes
more likely that the following situation may occur under
the traditional strategy due to the fact that the amounts of
resources allocated for different services have to maintain
the proportion: the resources allocated for some services
become saturated while the resources are over-provisioned for
other services due to the extra authorization constraints. In
our strategy, however, the authorization constraints are taken
into account, and the amount of resources for each role are
calculated accordingly. The effect is that the cost spent for
allocating over-provisioned resources is now used to allocate
more resources that are saturated under the traditional strategy.

Fig. 4 compares resource utilizations between our strategy
and the traditional strategy in the same experimental settings
as in Fig. 3. As can be seen from Fig. 4, our strategy achieves
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Fig. 4. Comparing resource utilization between our strategy and the
traditional allocation strategy for human resources; the experimental settings
are the same as in Fig.3
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Fig. 5. Comparison of performance in terms of average response time be-
tween our allocation strategy and traditional strategy for computing resources;
NUM=15, MAX_DG=10, EX_C=7, RNUM=5, UNUM=15, MAX_U2R=5,
MAX_RCST=4, CARD=4, TEMP=70%, TD=200

higher utilization than the traditional strategy. This is still
because the traditional strategy allocates resources based on
the arrival rate of the requests for services, which causes the
over-provisioned resources for some services after imposing
authorization constraints.

In order to demonstrate the effectiveness of the allocation
strategy for computing resources, we conduct the experiments
using the traditional allocation strategy for computing re-
sources. In our strategy, the authorization constraints are taken
into account, and the proportion of processing capability allo-
cated for each role is calculated accordingly. In the traditional
strategy, all tasks are treated equally and are put into the central
waiting queue in the cluster of computing resources. When a
computing resource is free and the authorization constraints
are satisfied, the task at the head of the waiting queue is put
into execution in the free resource.

Fig. 5 compares average response time of computing tasks
between our strategy and the traditional allocation strategy
for computing resources. In these experiments, all tasks in
a workflow are computing tasks. In the traditional resource
allocation strategy, authorization constraints are not taken into
account, and the amount of resources allocated for a service is
proportional to the arrival rate of the requests for the service.
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Fig. 6. Comparing resource utilization between our strategy and the tradi-

tional allocation strategy for computing resources; the experimental settings
are the same as in the last figure

The allocation strategy developed in this paper calculates the
arrival rate for each role and then further calculate the amount
of resources allocated to serve the requests assigned to each
role.

As can be seen from Fig. 5, our strategy performs better
than the traditional strategy. This can be explained as follows.
In our allocation strategy, the authorization constraints are
taken into account. For example, if role r; has the tighter
cardinality constraint (i.e., smaller value of C¢(r;)), more
proportion of processing capability will be allocated to serve
the tasks assuming 7;, so that the number of those tasks in the
system will be less and the performance penalty imposed by
r;’s cardinality constraint can be reduced. In the traditional
allocation strategy, the tasks assuming different roles are
treated equally, and therefore cannot prioritize the tasks that
are assuming the roles with tight cardinality constraint and
therefore should be turned around faster.

Fig. 6 compares the resource utilization between our strat-
egy and the traditional allocation strategy for computing
resources. It can be seen from this figure that our strategy can
achieve higher resource utilization than the traditional strategy.
This can be explained as follows. In the traditional strategy,
it is more likely that the tasks have to wait in the waiting
queue even if there are free resources in the system, because
the tasks assuming the roles with tight cardinality constraints
can be turned around faster in our strategy. This causes lower
resource utilization.

Fig. 7 compares the schedule lengths of workflows achieved
by our strategy and the traditional strategy. In these experi-
ments, a workflow contains both human tasks and computing
tasks. Then we run the workflows on human resources and
computing resources allocated by our strategy as well as by
the traditional strategy. Fig. 7 shows that our strategy achieves
shorter schedule length than the traditional strategy. Again,
this is because our strategy takes authorization constraints into
account and allocate suitable amount of resources for both
human resources and computing resources.

Fig. 8 compares the resource utilization achieved by our
strategy and the traditional strategy. The depicted utilization
is averaged over the entire system consisting of both human
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Fig. 7. Comparing the schedule lengths of workflows achieved by our
strategy and the traditional strategy; NUM=15, MAX_DG=10, EX_C=7,
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Fig. 8. Comparing average resource utilization achieved by our strategy and
the traditional strategy; the experimental settings are the same as in last figure

resources and computing resources. The figure shows that
our strategy can achieve higher system utilization than the
traditional strategy. The reason for this is similar as explained
in Fig. 6 and Fig. 4.

VI. CONCLUSION

This paper investigates the issue of allocating resources for
a type of workflows in pervasive computing. These workflows
comprise both human and computing tasks. Human involve-
ment introduces the authorization concerns. The authoriza-
tion policies may incur performance penalty and affect both
application- and system-oriented performance. The resource
allocation strategies are developed in this paper for both human
and computing resources. In the allocation strategy for human
resources, the optimization equation is established by taking
into account the authorization constraints, and also subject to
the constraint of the budget available to hire human resources.
Then the optimization equation is solved to obtain the number
of human resources allocated to each authorization role. The
allocation strategy for computing resources also takes into
account authorization constraints, calculating not only the
number of computing resources, but also the proportion of
processing capacity in each resource allocated to serve the
tasks assuming each role. The simulation experiments have

been conducted to verify the effectiveness of the developed
allocation strategies. The experimental results show that the
allocation strategy developed in this paper outperforms the
traditional allocation strategies, which do not consider autho-
rization constraints, in terms of both average response time
and resource utilization.
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