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Abstract 

A first-rate e-Health system saves lives, provides better patient care, allows complex but useful epidemiologic analysis and saves 
money. However, there may also be concerns about the costs and complexities associated with e-health implementation, and the 
need to solve issues about the energy footprint of the high-demanding computing facilities. This paper proposes a novel and evolved 
computing paradigm that: i) provides the required computing and sensing resources; ii) allows the population-wide diffusion; iii) 
exploits the storage, communication and computing services provided by the Cloud; iv) tackles the energy-optimization issue as a 
first-class requirement, taking it into account during the whole development cycle. The novel computing concept, and the multi­
layer top-down energy-optimization methodology, obtain promising results in a realistic scenario for cardiovascular tracking and 
analysis, making the Home Assisted Living a reality. 
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1. Introduction 

e-Health is a new concept of health management that pro­
duces several benefits. First, it reduces sanitary costs by pre­
vention of potential diseases. Besides, it empowers the patients 
with a new generation of non-invasive, wearable personalized 
devices to make them more independent, and to provide early 
signals of health decline and advice for appropriate actions in 
daily life. Finally, analysis of the obtained data greatly im­
proves prevention by detecting early patterns of potential dis­
eases; it allows to evaluate the efficacy of treatments, to under­
stand (through complex processing) the evolution of diseases 
and the factors that influence them. Biomedical engineers envi­
sion "a new system of distributed computing tools that will col­
lect authorized medical data about people and store it securely 
within a network designed to help deliver quick and efficient 
care" [1]. 

In order to obtain such benefits, the target population has to 
be monitorized 24 hours a day, and a Wireless Body Sensor 
Network (WBSN) is deployed. Thus, the system is composed 
by a large set of nodes, distributed among the population. Such 
nodes are non intrusive and portable, which imposes constraints 
on their energy consumption. Data obtained by the sensors are 
communicated to the embedded processing elements (PDAs, 
smartphones, etc.) by means of wireless connections. 

Then, the huge set of data must be analyzed with the aim 
of performing the epidemiologic assessment. Also, diagnosis 

algorithms have to be implemented to allow early detection of 
pathologies and to learn the evolution of patients. 

Since the target population is large, so it is the number of 
sensing nodes, and the amount of data to be managed is huge. 
In order to deal efficiently with such computationally intensive 
tasks, the use of cloud services is devised. Cloud computing is 
emerging as the dominant computer platform for scalable on­
line services. Thus, the WBSNs will be connected not only at 
the node level, but also through the PDA, Smartphone, etc to 
the Cloud. Part of the data processing and storage will be local 
to the node, while another part will be communicated and pro­
cessed in the cloud, depending on the application, on the state of 
the batteries and on security or privacy requirements of the in­
formation. The availability of the aforementioned technologies 
and the need of a continuous, portable, and non-invasive mon­
itoring of the health information has led us to envision and de­
sign a Cloud computing-based real-time health monitoring and 
analysis framework capable of aiding health-care professionals. 
This computing environment where the mobile client utilizes 
mobile network services to communicate with cloud through 
the Internet is called Mobile Cloud Computing (MCC) [2]. Mo­
bile cloud computing can address the problem of scalability by 
executing mobile applications on resource providers external to 
the mobile device. 

According to [3], one of the main questions to be answered 
in MCC is how computation can be offloaded and distributed to 
the cloud efficiently. The reasons for sharing/offloading work 
from a mobile device would be: limited computational capabil­
ity, limited battery power, limited connectivity and to make use 
of idling processing power. 

The focus of this work is proposing a novel multi-layered 



approach for the energy optimization of MCC technologies, and 
the validation with a case of study devoted to health monitoring 
and analysis applications. 

1.1. Related Work 

The use of MCC environments for the automation of personal 
health-care systems has been recently related in literature [4, 5, 
6]; however, none of these works have approached the energy 
efficiency in mobile cloud architectures. 

Energy consumption is one of the major concerns for the 
adoption of population-wide health monitoring systems, but 
energy efficiency cannot be added as an afterthought. Truly 
energy-efficient monitoring can only be achieved by consider­
ing energy as a first-class requirement, taking it into account 
during the whole development cycle, from design to implemen­
tation. Thus, we propose an architecture driven by energy con­
cerns and aimed at optimizing energy consumption globally. 

In literature, we can find several energy optimization tech­
niques that target the different abstraction levels of the MCC 
architecture. 

At the distributed computing level, the design of WBSN 
nodes is mainly focused on maximizing the lifetime of the node 
by reducing the energy consumption, although other perfor­
mance requirements such as the delay and quality of the de­
livered data must be kept into account [7]. Energy efficiency 
in WBSNs has been tackled by proposing efficient MAC layer 
alternatives [8, 9], providing stochastic approaches for traffic 
handling [10] or enabling compressed sensing signal acquisi­
tion/compression algorithms [11]. 

At the server level, one of the main problems to be solved in 
order to achieve the performance goal is the so called power-
wall. Semiconductor manufacturers are reaching the limits of 
voltage scaling, no longer reducing power consumption in new 
chips. Thus, power consumption limits the advances in com­
puter technology and is becoming a relevant part on the bud­
get of present data centers. According to [12] power is the 
second-highest operating cost in 70% of all data centers and 
data centers are responsible for the emission of tens of millions 
of metric tons of carbon dioxide annually, more than 2% of the 
total global emissions. As a result there has been as well a 
recent research interest in the development of energy efficient 
data centers. 

The researchers have done a massive amount of work [13, 
14, 15, 16, 17, 18, 19, 20] to provide an energy-aware high 
performance computing environment. In these works, differ­
ent scheduling, resource allocation and work assignment mech­
anisms are studied to improve the energy profile. Multi-layered 
approaches like ours, that targets both the node and server lev­
els, are still missing. 

Some energy optimization policies have been detected but 
not successfully proposed mainly due to the fact that they do 
not consider the global power consumption. In particular, they 
do not take into account the following: 

1. that the agents involved in the problem (wireless 
nodes, embedded processors, network interfaces, high-
performance servers, etc.) are very heterogeneous from 

the energy point of view. Therefore, the energy cost of 
performing part of the processing in any of the different 
abstraction layers, from the node to the data center, should 
be evaluated; 

2. a local optimization in one of the abstraction layers can 
have a bigger negative impact on the others, so that the 
global energy of the system is increased. In this way, the 
relationships between all the computational agents have to 
be taken into account. 

Our proposal develops global energy optimization policies 
that start from the design of the architecture of the system and 
take into account the energy relationship between the different 
abstraction layers. 

In our work, we manage the whole set of abstraction levels in 
MCC to obtain the maximum benefit of the energy-aware poli­
cies. Among others, we consider computation offloading from 
the Cloud to the wireless nodes (and viceversa) as an effective 
mechanism for energy optimization. Computation offloading in 
MCC scenarios has been proposed by Kumar and Lu [21] and 
probed to provide high benefits. However, the authors have not 
considered realistic scenarios like e-Health and have not pro­
posed a multi-layered optimization approach that combines this 
technique with other optimization mechanisms. 

Some authors have recently followed a similar approach to 
our multi-layered proposal. For example, [22] described a re­
search work on how to reduce GPS power consumption by of­
floading certain calculations onto the cloud. However, to the 
best of our knowledge, this is the first time that a work targets 
for energy optimization purposes the several constituent lay­
ers that enable MCC in e-Health scenarios. Our work provides 
horizontal and vertical approaches to extend the energy savings 
that these environments require. 

1.2. Contributions 
This paper makes the following contributions: 

• we define a realistic and current application scenario 
where the computing and energy saving challenges are ex­
posed; 

• we propose a new highly-efficient computational 
paradigm; 

• we demonstrate that the application characteristics must be 
considered in the computational paradigm since the very 
beginning of the design process; 

• we propose a global strategy for energy efficiency in the 
computational architecture. 

The remainder of this paper is organized as follows: Sec­
tion 2 describes our envisioned energy efficient computational 
paradigm, whereas Section 3 details the particular case study. 
Section 4 describes the models used and Sections 5 and 6 show 
the different optimizations applied. Section 7 integrates the re­
sults obtained so far into a multi-layer approach and describes 
the new challenges. Finally, the most important conclusions are 
drawn in Section 8. 
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Figure 1: Overview of the proposed architecture for energy optimization of MCC technologies 
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Figure 2: Overview of the proposed energy analysis and optimization system 
for population analysis applications 

2. Devised computer paradigm 

As previously described, our envisioned MCC e-Health sys­
tem is composed of a number of body sensors, wirelessly con­
nected to the cloud through a mobile processing device (as il­
lustrated in Figure 1). The distributed system spans a network 
comprised of individual health monitoring systems that connect 
through the Internet to data center facilities. 

To provide adequate energy management, this heteroge­
neous distributed computing system for health monitoring is 
tightly coupled with an energy analysis and optimization sys­
tem, which continuously adapts the amount of processing that 
is performed in the different layers of the distributed system, 
and the resources assigned to each task. 

It is important to stress the need for a top-down approach, 
driven by the application context and the energy constraints, in 
order to reach an optimum solution globally. 

2.1. Energy optimization system 
Figure 2 shows the proposed system architecture for the en­

ergy optimization of MCC technologies. Detailed functions of 

constituents in the system are summarized as follows: 

• Application support network: Population analysis applica­
tions require an heterogeneous network comprised of sen­
sor nodes, data centers, and some kind of interconnection 
network. Each node has different computation capacity, 
functional requirements, communication capacity, battery 
capacity, power consumption characteristics, etc. 

• Sensing infrastructure: Global energy optimization re­
quires a clear understanding of the current state of the net­
work, the characteristics of the different resources and of 
the analysis to be performed. Therefore, additional HW 
and/or SW sensors should be added to the system to get an 
insight. 

• Data analysis and sensor configuration: Not every sen­
sor has the same importance to understand the power con­
sumption characteristics of the different components. Af­
ter a careful analysis, the sensing infrastructure is config­
ured to provide only the relevant data at the required rate 
for the power model to be useful, and also to minimize the 
energy overhead of the energy optimization system. 

• Storage and inference system: Data provided by the sens­
ing infrastructure has to be stored and statistically ana­
lyzed in search of recurrent behaviors that could lead to 
simple but accurate power models to be used for proactive 
optimizations. Although the data provided by the sensors 
is very low-level, simple inference techniques can be used 
to raise the level of abstraction, for example, to understand 
the characteristics of energy demand by the different appli­
cations. 

• Power model: Complex power models are not adequate 
for online optimization, as different alternatives should 
be quickly evaluated against the power model to proac-
tively configure the whole system for minimum energy 
consumption. These power models can be trained with ac­
tual data from sensors in order to improve the quality and 
also to adapt to variations in the heterogeneous application 
support network. 
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Table 1: Summary of optimizations for different elements of the architecture and abstraction levels 

• Optimization: Based on the current state of the system, 
the historic data, and the energy characteristics of appli­
cation and resources, many optimization algorithms can 
be executed to enhance one or more aspects of the popu­
lation monitoring system. Heterogeneity can be analysed 
to always assign tasks to the most adequate resources; re­
sources not being used can be turned off and cooling en­
ergy can be taken into account when assigning tasks to 
resources. 

• Decision making system: All the different partial opti­
mizations obtained in the system should be integrated in 
order to obtain the overall energy savings of the architec­
ture. 

• Actuation support: Finally, decisions should be executed. 
Software agents in the body sensors, personal servers 
(smartphones or PDAs), and data centers are in charge 
of re-configuring their behavior whenever an optimization 
decision is made. 

The energy optimizations that could be applied at the differ­
ent elements of the architecture and at different levels of ab­
straction for the particular case of applications for ECG popu­
lation analysis are summarized in Table 1. Research has paid at­
tention to some of the above mentioned aspects, however, there 
are still some areas where contributions are needed. Moreover, 
these different contributions need to be integrated in a top-down 
fashion that ensures the global energy minimization. 

Our paper makes contributions in the areas not covered by 
other authors, emphasized in the table, as well as on the in­
tegration of all these optimizations. The goal is to perform a 
multi-objective energy-optimization in all the abstraction levels 
of design (vertical integration) as well as in all the components 
of the architecture (horizontal integration). The results of these 
optimizations are globally evaluated to obtain the energy sav­
ings for the whole architecture and observe the impact of each 
optimization. 

3. Case study 

In this section we describe a particular case study for ECG 
monitoring applications that we use throughout the paper to ap­
ply all energy models and optimizations (Sections 4, 5 and 6), 
and that is evaluated from a multi-layer perspective in Section 7. 
The architecture previously mentioned for MCC technologies 
includes 4 types of elements: (i) sensors, (ii) nodes, (iii) coor­
dinators and (iv) a cloud computing facility. In our case study: 

• Sensor: ECG sensors placed on the chest of the subject to 
record the signals of interest. 

• Node: Shimmer platform. Composed of a Texas Instru­
ments MSP430, a low power IEEE 802.15.4-compliant ra­
dio (CC2420) and Bluetooth radio (not used due to high 
power consumption). HW characteristics: CPU 8MHz, 
10KB RAM, 48KB Flash. The Shimmer platform is 
placed near the sensors and connected to them with wires. 
This node can perform some conditioning on the signals 
received and sends them to the coordinator via radio. If 
more than one ECG sensor is used, they are connected to 
the coordinator describing a star topology. 

• Coordinator: Android-based smartphone. HW character­
istics: CPU 1GHz, 1GB of RAM, 16GB of Flash Mem­
ory and a battery of 2000mAh. The coordinator is usually 
placed at the waist of the subject and receives informa­
tion from all the nodes that the person is wearing. It can 
perform some computations on the received signals (see 
Section 6.1) and it forwards data to the cloud computing 
facility via a 3G or WiFi network. 

• Cloud computing facility: Modern data centers are 
equipped with a large number of enterprise servers. Be­
cause of budget limits when renewing the equipment, in 
these facilities we usually find different generations of ma­
chines, often from even different manufacturers. For this 
case study we assume a heterogeneous cloud computing 
facility with two different servers (Intel and AMD) from 
different generations. The Intel server was first shipped in 
2010, while the AMD is much older, from year 2003. 

Table 2 summarizes the properties of the different compo­
nents of the architecture. Note that maximum power for rack 
mounted servers indicates the maximum power measured when 
fully utilizing the system, not the maximum power that can be 
drawn by the power supply. Thus, this power is dependant on 
the particular hardware configuration of our servers 

This case study considers a deployment consisting on 300 
Shimmer nodes, 300 coordinators (smartphones) and a data 
center where a total amount of 160 cores, belonging to 40 Intel 
or AMD machines, are dedicated to our computational needs 
and placed in an air-cooled data room. 

We define three different workload profiles: (i) heavy, (ii) 
reference and (iii) light workload depending on the amount of 
tasks and their arrival rate. These profiles emulate the typi­
cal distributions for workloads that arrive to a computing facil­
ity [34], in which the workload might show different temporal 
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Model 
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@8MHz 
Samsung 
Galaxy 

SII 
SunFire v20z 

RX-300 
S6 

Processor 

MSP430 

ARM 
Cortex-A9 
@ 1.2GHz 

2x AMD Opteron 
@2GHz 

Intel Xeon 
@2.4GHz 

#Cores 

1 

2 

2 

8 

Memory 

10KB 

1GB 

4GB 

16GB 

Idle 
Power 
6.6mW 

0.5W 

122W 

140W 

Max 
Power 
85mW 

2.5W 

220W 

200W 

Table 2: Summary of properties for all architecture components 
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Figure 3: Distribution of arrivals for high, medium and low loads 

patterns of utilization at concrete periods or at certain hours of 
the day [35]. All three workloads are organized in 10 different 
job sets that arrive following a Poisson distribution with an av­
erage of 30 minutes. Each job set consists of a burst of tasks 
to be executed. The amount of tasks per job set follows a uni­
form distribution that depends on the workload profile: 1,000 
to 1,500 tasks for the heavy workload profile, 500 to 1200 tasks 
for the reference workload and 300 to 700 tasks for the light 
workload profile. The arrival rate for the three workloads is the 
one presented in Figure 3. 

The different tasks of the workload are representative of the 
computation that has to be performed for e-Health monitoring 
applications and information extraction in data centers. Partic­
ularly, we use the following benchmarks and algorithms: 

• Customized state-of-the-art ECG acquisition, compression 
and delineation algorithms, such as Compressed Sensing 
or Digital Wavelet Transform, as well as encryption and 
decryption algorithms (e.g. AES) for secure data trans­
mission. 

• Statistical analysis algorithms, obtained from the IBM 
SPSS Statistics software. We choose six applications com­
monly used to extract information from the data obtained 
by bio-medical sensor nodes, such as correlation analysis, 
data regressions, estimation of data parameters and statis­
tical classification. 

• CPU-intensive tasks, obtained from the SPEC CPU 2006 
benchmark suite [36], representing algorithms of a higher 
abstraction level for the complex analysis and represen­
tation performed over data that has already gone through 
a data analysis and conditioning step. We choose the 12 
tasks of the integer benchmark, among which we find data 
interpreters, decompression algorithms, combinatorial op­
timizations, database searching algorithms or event simu­
lations. 

Low 
demanding 

Medium 
demanding 

Tasks 

6 
(regression) 

6 
(gcc, mcf) 

Execution 
Time 

<360sec 

360-600sec 

Instructions 
per Cycle 

<1.3 

<1.3 

High 6 460-800sec 
demanding (bzip2, hmmer) 

>1.3 

Table 3: Classification and main parameters for the tasks of the workload 

This workload must be known and profiled in advance for 
our experimental study. Data centers usually execute the same 
set of applications, what facilitates this knowledge extrac­
tion. Moreover, modern supercomputing infrastructures like 
CeSViMa [37] provide a mechanism for fast application pro­
filing before the actual execution. 

For our purpose, we suppose that each job set is split in 
two different levels: (i) a Data-Dependant layer, in which 
most of the algorithms and computation are dependant on the 
data generated by the Shimmer nodes; and (ii) an Application-
dependant layer, in which algorithms operate over data gener­
ated in the previous layer, and computation depends on the par­
ticular goal that has to be achieved. Because of the number 
of nodes deployed, we assume that in our workload, a 60% of 
tasks belong to the Data-Dependant layer and the other 40% to 
the Application-dependant layer. 

Moreover, because of the different nature of the algorithms 
to be executed, we assume that the tasks of the workload can be 
split into different classes according to the computing resources 
needed for execution. We define three different classes: (i) 
high-demanding applications, (ii) medium-demanding applica­
tions and (iii) low-demanding applications. Tasks are classified 
into a particular category attending to their computational de­
mand by means of the k-means clustering technique presented 
in Section 5. Table 3 shows the amount of tasks per category, 
example tasks for each category as well as two of the most im­
portant parameters for classification criteria (execution time and 
instructions per cycle). 

Finally, each of the two layers contains a different percent­
age of each of these tasks. The Data Dependant layer contains 
a 70% of low-demanding tasks, a 25% of medium-demanding 
and a 5% of high-demanding tasks. The Application-dependant 
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Figure 4: Workload structure for the Data Dependant layer and the Application 
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layer contains a 70% of high-demanding tasks, a 25% of 
medium-demanding tasks and a 5% of low-demanding tasks. 
Figure 4 summarizes the main parameters of the workload and 
its structure. 

4. Power models 

In order to optimize energy consumption of the overal MCC 
environment, we first need to understand which are the different 
main contributors to the overall power consumption. After that, 
we will be able to develop power models that explain the behav­
ior of the different elements of our architecture. In this section 
we present the power modeling for the nodes, coordinators and 
the cloud infrastructure that are managed by the optimization 
algorithms presented in Section 6. 

4.1. Node model 

The main contributors to the energy consumption at the node 
level are the sensors themselves (signal transducing and analog-
to-digital conversion), the microcontroller (because of the cal­
culations performed), the memory and the radio interface. The 
energy of the node (Enoí¡e) can thus be described as the sum of 
those terms: 

¡'node ~ ¡'sensor ' ¡-'¡iC ' ¡'mem ' ¡-'radio (1) 

Figure 5 shows the power consumption trace of the Shim­
mer node running a simple ECG streaming application. The 
Shimmer platform implements a reduced version of the beacon-
enabled mode of the IEEE 802.15.4 protocol that uses guar­
anteed time slots (GTS). The transmission consists of three 
phases: (i) the beacon reception, in which the radio is receiving 
and the microcontroller is idle, (ii) Low-Power mode until the 
start of the assigned GTS, and (iii) transmission of the ECG sig­
nal to the coordinator during the GTS. During these phases, mi­
crocontroller and radio go through different power states [11]. 
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Figure 5: Power dissipated in Shimmer during sampling, processing and trans­
mission [11] 

From the energy perspective, there is a trade-off between the 
amount of information sent through the radio link and the sig­
nal processing performed at the microcontroller. In ECG appli­
cations, there are several frequently used algorithms for signal 
compression and reconstruction that are performed at the node 
level. The most common are: (i) Compressed Sensing (CS), (ii) 
Digital Wavelet Transform (DWT) and (iii) Multi-lead DWT 

Works by Mamaghanian [11] and Rincón [25] show the en­
ergy differences when implementing these algorithms in the 
Shimmer platform. Table 4 summarizes the different node 
battery lifetime encountered depending on the algorithms and 
transmission strategies performed. 

Results show that total energy consumption increases with 
the computational burden of the algorithms and, thus, battery 
life is reduced. However, the radio interface is not always the 
responsible for most of the energy consumption. 

The previous energy results for different ECG algorithms are 
used in the optimizations in Sections 5 and 7 to optimize the 
overall consumption by properly balancing the power consump­
tion of the node elements and the coordinators. 

4.2. Coordinator energy modeling 

Our efforts in the energy modeling of the coordinator nodes 
(i.e. the smartphones) focus on being able to describe the im­
pact of running the MCC algorithms on the smartphone battery 
life. 

The main contributors to the power consumption in todays 
smartphones are the communications (GSM, Wifi, etc.), graph­
ics and the CPU when the system is suspended (i.e. most of the 
time) and also the display when the system is idle [38]: 

Because the Shimmer nodes are responsible for the wireless 
transmissions, the Shimmer attached to the smartphone is re­
sponsible for the radio reception instead of the smartphone it­
self, meaning that the ECG algorithms are a computational bur­
den that has an impact mainly on the microcontroller power 
consumption. 

Because of that, we consider that the energy consumed by 
the coordinator (Ecoor¿) can be described as in Equation 2: 

¡-'coord ~ ¡^ comm.idle ' ¡-'graphics,idle ' ¡-'¡iC \^) 

where EcommMie and EgraphicsMie are the idle power for com­
munications and graphics and E^c is the power consumption 
for the microcontroller, which varies depending on the algo­
rithm executed. In order to characterize the power consumption 
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Table 4: Node lifetime for the different algorithms 

of the microcontroller we use the Lookbusy synthetic workload 
to stress the system during monitored periods of time. Look-
busy can stress all the hardware threads to a fixed CPU utiliza­
tion percentage without memory or disk usage. The usage of a 
synthetic workload to derive the CPU model has many advan­
tages, the most important of which is that CPU power can be 
described as linearly dependent with CPU utilization (uc) and 
Instructions Per Cycle (IPC), as seen in Equation 3: 

^¡iC,coord Kc (3) 

where Ac is a constant. Our coordinator nodes (Samsung 
Galaxy SII smartphones) are equipped with an ARM Cortex-A9 
processor at 1GHz. This processor is commonly found in many 
embedded system devices, such as the Panda board 1. To ease 
the profiling process, we characterize the ARM Cortex-A9 pro­
cessor in the Panda board by measuring the energy consump­
tion with a Fluke 80i-l 10s AC/DC current clamp when running 
Lookbusy at different utilization values. We then fit this data by 
means of a MATLAB regression to obtain constants Ac and Kc. 

4.3. Data Center power modeling 

The main contributors to the energy consumption in a data 
center are the computing power (also known as IT power), 
which is the power drawn by servers in order to run a certain 
workload, and the cooling power needed to keep the servers 
within a certain temperature range that ensures safe operation. 
Together, they account for more than 85% of the total power 
consumption of the Data Center, being the other 15% the power 
consumption due to lightning, generators, UPS systems and 
PDU (power distribution units) [39]. 

cooling (4) 

The IT power is dominated by the power consumption of the 
enterprise servers in the data center. The power consumption of 
an enterprise server can be divided into three different contrib­
utors: (i) the dynamic or active power, (ii) the static or leakage 
power and (iii) the cooling power, due to the server fans: 

dynamic fan (5) 

Dynamic power is the power due to the switching of the tran­
sistors in electronic devices, i.e. it is the power used to per­
form calculations. Leakage power is the unwanted result of 
subthreshold current in the transistors and does not contribute 
to the microcontroller function. Fan power is becoming a more 

important contributor by the day to overall server power, and 
fan control policies can yield up to 10% energy savings at the 
server level [40]. 

Cooling power is one of the major contributors to the overall 
data center power budget, consuming over 30% of the overall 
electricity bill in typical data centers [41]. 

In the next subsections we propose a methodology to derive 
models for the power consumption of the servers and we evalu­
ate the impact of cooling into the server power consumption. 

4.3.1. Leakage power 
Dynamic consumption has historically dominated the power 

budget. But when technology scales below the WOnm bound­
ary, static consumption becomes much more significant, being 
around 30-50% [42] of the total power under nominal condi­
tions. This issue is intensified by the influence of temperature 
on the leakage current behavior. Therefore, it is important to 
consider the strong impact of static power as well as its tem­
perature dependence and the additional effects influencing their 
performance. In this section, we derive a leakage model for 
the static energy consumption of servers and we validate it with 
real measurements taken in the Intel Xeon machine of our case 
study. 

The current that is generated in a MOS device due to leakage 
is the one shown in Equation 6. 

VGS -yTH Vds 
rieak = Is-e ""•"> -(l-e«v*) 

TO r W kT2 

Is = 2 • n • ji • Cox • 

L q 

(6) 

(7) 

Research by Rabaey [43] shows that if VDS > lOOmV the 
contribution of the second exponential is negligible, so the pre­
vious formula can be rewritten as in Equation 8: 

vGS-yTH 
/ • e ntTlq (8) 

where technology-dependent parameters can be grouped to­
gether in a constant (5) to obtain the formula in Equation 9: 

BTZ 
VGS ~VTH 

. e nkTIq (9) 

1http://p andaboard.org/content/resources/references 

Based on the leakage current equation, we can derive the 
leakage power for a particular machine m e {1, . . . , M) (Equa­
tion 11). Because our goal is to fit a model for the leakage 
power, we expand the polynomial function into its Taylor sec­
ond order series (Equation 12) to easily regress the function, 
where Bm and Cm define constants due to the manufacturing 
parameters of a server. 

http://p
http://andaboard.org/content/resources/references
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(10) 

(ii) 

(12) 

As temperature-dependent leakage cannot be measured sep­
arately from the dynamic power in a server, we again make use 
of the Lookbusy synthetic workload to be able to express dy­
namic power as linearly dependant with CPU utilization, and 
isolate the contributions of leakage. Equation 13 provides the 
formula for the total power consumption: 

Mimk "i" £>m ' *- m < ̂ m ' -* m (13) 

where Am is a constant that defines the parameters of a spe­
cific machine, umk is the utilization of a certain task and Tm is 
the CPU temperature. 

Tests have been conducted gathering real data from the Intel 
Xeon server of the case study. During these tests, fan speed was 
constant, not interfering with leakage modeling. Total power 
consumption and CPU temperature have been collected via In­
telligent Platform Management Interface (IPMI) tool2 during 
the execution of lookbusy at different utilization levels ranging 
from 10% to 100%. We use MATLAB to fit our data to the 
energy model obtaining a maximum error of 8.18% and an av­
erage error of 2.29% in the fit. 

Deriving a leakage power model is of utter importance, as 
it allows us to exploit the leakage-temperature trade-offs at the 
server level and exploit all the capabilities of resource selection 
and configuration. 

4.3.2. Dynamic power 
In order to derive a dynamic power model we use the infor­

mation collected via the servers performance counters and IPMI 
during the execution of a workload. Performance counters are a 
set of special-purpose registers built into modern CPUs to store 
the counts of hardware-related events. Because they are inte­
grated into the architecture, polling these counters has a negli­
gible overhead in the performance of the workload being pro­
filed. Modern servers come with a high number of performance 
counters that can be polled. State-of-the-art workload profil­
ing techniques show that performance counters can be used as 
a good predictor of energy consumption [44]. Servers are also 
shipped with a large amount of sensors to collect temperature, 
fan speed or power consumption data. These data can be gath­
ered via IPMI monitoring tools with negligible overhead. 

Data has been gathered from the enterprise servers of the case 
study under two conditions: i) when executing one instance of 
SPSS and SPEC CPU 2006 benchmark suite and ii) when ex­
ecuting one instance of SPSS and SPEC CPU 2006 per core 
(i.e. fully utilizing the CPU) to evaluate possible contention 
of shared resources. All experiments have taken place in a data 
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Figure 7: First 3 principal components coefficients for various performance 
counters 

room at a constant server inlet temperature of 16°C to minimize 
the effects of temperature-dependent leakage on the modeling. 

Figure 6 shows the energy consumption of each server when 
executing one instance of SPSS and SPEC CPU integer bench­
marks. As can be seen, the most modern server (Intel Xeon 
server) outperforms the AMD in all SPEC CPU 2006 bench­
marks. That does not happen for the SPSS benchmarks, where 
boostrapping, bayes and bankloan have a lower energy con­
sumption in the AMD server. Moreover, depending on the 
SPEC benchmark, the difference is smaller or larger. These dif­
ferences can be used to perform a better workload scheduling 
in terms of energy efficiency as shown in Section 6.1. 

Intuitively, we explain these differences because of the differ­
ent idle power of both servers (120W for the AMD server and 
140W for the Intel server), as well as because of the different 
CPU and memory utilization of the benchmarks, i.e. the differ­
ences in the server architecture. However, in order to provide 
a deeper explanation of the energy behaviour of the workload, 
we must resort to the particular architecture of each server and 
understand the contention of shared resources that might be tak­
ing place. To do so from a high-level of abstraction perspective, 
we can derive a model for the dynamic power consumption for 
each one of the servers. We present the methodology and test 
our results for the Intel Xeon server. 

In order to understand the behavior of the workload we col­
lect information of the performance counters by means of PAPI 
during the execution of the workload in the Intel server. We 
collect 10 different parameters that are generally the most sig­
nificant to explain the dynamic power [45]: IPC, Instructions 
completed, Cycles, Branches, Branch miss-predictions, Float­
ing Point instructions, LI misses, L2 misses and memory ac­
cesses. We apply Principal Component Analysis (PCA) to the 
data to determine considerable variations across the benchmark. 
The first 3 components together explain an 87% of the variance. 
Figure 7 shows the different counters in the principal compo­
nents space. 

http://ipmitool.sourceforge.net/
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Figure 8: Data Center cooling scheme 

As can be seen, IPC and Instructions are closely related, as 
well as LI data misses, Memory accesses, Stalls and L2 data 
misses. With these results, we are able to propose a model 
that takes into account parameters highly unrelated between 
themselves: IPC, Floating-Point instructions, Branch Miss-
predictions and Resource Stalls. We use techniques to fit a 
model to these parameters in the way shown in Equation 14, 
where a, ¡3, y, 6 are the constants to be obtained with the regres­
sion. 

* dynamic — <% ' o tüllS + p • r rinstr 
+ yBrmispred + e-IPC (14) 

Once we have a model for the dynamic power of the different 
servers of our system, we can predict the energy consumption of 
each of them and validate it with our experimental results. For 
the Intel server and the tasks of the SPEC benchmark (which 
represent more than 70% of the total tasks executed in the data 
center according to our previous workload distribution and clas­
sification) we obtain a prediction in dynamic power with a max­
imum error of 13% and an average error of 7%. Given the dy­
namic power model and the execution time of our tasks, we can 
easily obtain the parameters for energy consumption per server 
and task. We apply these data in our fine-grain run-time alloca­
tion. 

4.3.3. Cooling power 
In a typical air-cooled data center room, servers are mounted 

in racks, arranged in alternate cold/hot aisles, with the server 
inlets facing cold air and the outlets creating hot aisles. The 
Computer Room Air Conditioning (CRAC) units pump cold air 
into the data room and extract the generated heat (see Figure 8). 
The efficiency of this cycle is generally measured by the Coeffi­
cient of Performance (COP). The COP is a dimensionless value 
defined as the ratio between the cooling energy produced by the 
air-conditioning units (i.e. the amount of heat removed) and the 
energy consumed by the cooling units (i.e. the amount of work 
to remove that heat), as shown in Equation 15. 

output cooling energy 
UJFMAX = : —;——:—-, ( tJ) 

input electrical energy 
Higher values of the COP indicate a higher efficiency. The 

maximum theoretical COP for an air conditioning system is de­
scribed by Carnot's theorem as in Equation 16: 
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Entering Dry Bulb Temperature (C) 

Figure 9: Evolution of the air-conditioning COP with room temperature 

COPMAX = „ T°T (16) 
¡-H- ¡-C 

where Tc is the cold temperature, i.e. the temperature of the 
indoor space to be cooled and TH is the hot temperature, i.e. the 
outdoor temperature (both temperatures in Celsius). As the dif­
ference between hot and cold air increases, the COP decreases, 
meaning that the air-conditioning is more efficient (consumes 
less power) when the temperature difference between the room 
and the outside is smaller. 

The data room considered in our case study is equipped 
with a Daikin FTXS30 unit, with a nominal cooling capacity 
of 8.8kW and a nominal power consumption of 2.8KW. For 
an outdoor temperature of 35°C the theoretical COP curve ob­
tained by using the manufacturer's technical datasheet [46] is 
shown in Figure 9. 

This figure shows how as the room temperature and the heat 
exhaust temperature raise, approaching the outdoor tempera­
ture, the COP increases and, thus the cooling efficiency im­
proves. According to this, one of the techniques to reduce the 
cooling power is to increase the COP by increasing the data 
room temperature. However, as we increase room temperature, 
CPU temperature increases and so does leakage power. There­
fore, there is a tradeoff between the reduction in cooling power 
and the increase in server leakage power. Our hypothesis is that 
we can find and define two different working regions depend­
ing on the impact of ambient temperature in leakage power and 
thus in the total power consumption of enterprise servers. In 
this sense, we aim to prove that for the lower range of ambient 
temperatures, the impact of the temperature-dependant leakage 
is negligible, whereas for a higher temperature range leakage 
needs to be considered. 

To prove our hypothesis, real power measurements are col­
lected in our data room. We gather the cooling power of the 
air conditioning unit when the servers are fully utilized running 
tasks of the SPEC CPU 2006 benchmark. Figure 10 shows the 
power consumption for different air supply temperatures. Data 
is gathered for a whole day, as the power consumption exhibits 
a periodic behavior dependant on the outdoor temperature. The 
power consumption decreases from 23.17kWh per day at 18°C 
to 19.65kWh when set to 24°C, yielding a 15% in energy sav­
ings. 

However, these data has to be shown together with the CPU 
temperature of the servers and their power consumption. Fig­
ure 11a shows the IT power consumption for the Sunfire V20z 
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Figure 11: IT power and CPU temperature for fully utilized server at various 
air supply temperatures 

server and the Intel Xeon that exhibit the higher CPU tempera­
tures in our data room. These servers are the ones limiting the 
air-supply temperature, as we must ensure their safety opera­
tion. Figure 1 lb shows how the server power consumption is 
stable, meaning that for these CPU temperatures we are work­
ing in the region where temperature-dependant leakage power 
is negligible. 

5. Global Resource Allocation techniques 

In several traditional distributed Mobile Cloud Computing 
solutions, the sensor and coordinator nodes of the architecture 
either perform as much computation as possible (with the inher­
ent penalty in battery lifetime) or forward all computation to the 
computer facility, even though coordinator nodes have enough 
computational capabilities to perform other tasks. These strate­
gies do not consider the benefits in terms of energy savings that 
an efficient allocation of workload can provide. 

Our global resource allocation proposes a coarse-grain work­
load assignment technique that aims to reduce the overall en­
ergy consumption of the architecture by optimizing the trade­
off between offloading computation to the data center facility 
and executing the calculation in the nodes. To do so, low-
demanding tasks of the Data Dependant layer are executed in 
the coordinator nodes, instead of forwarding all the tasks to the 
data center, while medium and high demanding tasks are of­
floaded to the data center infrastructure. We leverage the con­
cepts of previous work in this area [47] by improving the state-
of-the-art allocation algorithms and refining the modelling and 
assignment for nodes with lower resources. The goal of the 
allocation policy is to provide energy savings in three differ­
ent ways: (i) reducing the power consumption of the overall 
network by executing tasks in low-power nodes instead of in a 
cloud computing facility (ii), increasing throughput and overall 
performance by parallelly executing tasks in both data center 

Figure 12: Correlation between IPC * Time and LLC metric (left axis, lines) 
and Energy (right axis, bars) 

and coordinator nodes, and (iii) reducing the energy consump­
tion due to communication by decreasing the amount of data 
transmitted over the network. 

The coarse-grain resource assignment allocates tasks be­
tween coordinators (smartphones in our case) and data center. 
Shimmer nodes are not considered in this assignment because 
they have very low resources and the executed applications are 
particularly optimized for the Shimmer architecture. 

We propose a two-step methodology for our global resource 
management policy: (i) classifying tasks of the workload ac­
cording to their computational demand in the three different 
classes previously presented in Section 3, and (ii) running a 
run-time distributed coarse-grain allocation algorithm to decide 
whether each task should be executed at the coordinator or for­
warded to the data center to maximize energy efficiency across 
the network. 

5.1. Task classification 

In order to classify the tasks of the workload to be executed, 
the first time that a task appears in a job set, it is profiled during 
its execution in the data center. Task profiling is done without 
performance degradation by gathering information of perfor­
mance counters and execution time of the application. 

Our coarse-grain assignment policy does not need a really 
accurate metric for the absolute value of the dynamic power 
consumption of a task. Instead, we aim to obtain a good met­
ric of the energy-performance tradeoff of executing a particu­
lar task in a particular type of node (i.e., server or coordina­
tor) that allows us to classify that task . Previous work on this 
topic [48] shows that IPC and CPU utilization (or the combi­
nation of both) is usually a good predictor for power efficiency. 
However, this approach disregards the memory consumption, 
which is important in enterprise servers, and can be predicted 
via the Last Level Cache misses (LLC) [44]. 

We execute all the different tasks of the workload (i.e. the 
SPSS and SPEC tasks presented on Section 3) in one of the 
servers of the data center, the Intel Xeon RX300, and use 
PAPI [49] to collect performance counters. We also measure 
the overall energy consumption of the server when executing 
each task by polling the power sensors integrated in the server 
via IPMI. We only perform the profiling in the most modern 
server of the data center, as our goal is just to get a first rough 
idea of the computational demand of the tasks. 

Figure 12 shows the correlation between energy and the 
IPC * Time and LLC metrics. As can be seen, IPC * Time 
metric follows the trend of energy consumption, except for 
some benchmarks such as gcc, omnetpp or astar where the 
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Figure 13: Clusters obtained in k-means classification for SPSS and SPEC 

Cluster Tasks 

Low correlation, regression, bayes 
demanding bankloan,omnetpp,xalancbmk 

Medium bootstrapping, conjoint, gcc 
demanding mcf, astar, gobmk 

High perlbench, bzip2, hmmer 
demanding sjeng, libquantum, h264ref 

Table 5: Task classification for SPSS and SPEC tasks 

IPC*Time metric underestimates energy consumption. In these 
benchmarks, LLC is particularly high, meaning that they have 
a higher amount of memory accesses that have an impact in 
energy consumption. 

In this case, as we search for an overall server energy predic­
tor, we propose the usage of the metric IPC * Time. 

Based on these results, we use IPC and execution time values 
to classify the different tasks of the workload using a k-means 
clustering. K-means algorithms need to know a-priori the num­
ber of clusters for classification. We use k = 3 number of clus­
ters, and compare results with k = 2 and k = 4, getting the 
best results for k = 3. Figure 13 shows the clusters obtained 
whereas Table 5 details the task classification. We validate the 
clustering by checking whether low, medium and high energy 
consumption tasks are properly assigned to low, medium and 
high demand clusters. Our validation shows good results for 
the k-means clustering. 

With these results for the task characterization, we can move 
on to the proposal of the run-time allocation algorithm. 

5.2. Run-time allocation algorithm 

The run-time allocation algorithm proposes to execute some 
of the low and medium-demanding tasks of the workload pre­
sented in Section 3 in the coordinator nodes instead of forward­
ing all computation to the data center. Each coordinator acts as 
a concentrator of the information sent by Shimmer nodes and 
thus, has all the data needed for the computation. If coordi­
nators perform part of the tasks of the Data Dependent layer, 
the amount of computation in the data center is reduced and, 
thus, the facility consumes less energy. Moreover, if computa­
tions are performed at the coordinators, the amount of data to 
transmit to the data center is reduced, saving energy in the com­
munication process. In this paper, however, we do not aim to 
estimate the energy consumption of the coordinator-datacenter 

communication. Instead, we focus on the benefits on the overall 
network that come from the reduction in energy due to compu­
tation. 

When a new job set arrives each coordinator needs to com­
pute whether that task should be executed or forwarded with 
its data dependencies to the data center. This means that the 
run-time allocation algorithm must run in a distributed way, i.e. 
each coordinator launches the algorithm for its particular task, 
but using the information provided by the data center. As these 
nodes are battery-operated, it would not be wise to waste their 
energy calculating the optimum assignment. Instead, we pro­
pose the usage of a fast and lightweight distributed allocation 
algorithm based on Satisfiability Modulo Theory (SMT) for­
mulas. 

SMT solvers are fast solvers that determine whether a certain 
formula can be satisfied. In our case, when a certain amount 
of low and medium-demanding tasks arrive to a coordinator, it 
needs to compute whether the workload satisfies certain condi­
tions. We use an SMT solver to calculate which tasks of the 
workload satisfy those conditions and the amount of tasks that 
can be executed. Let us denote by Tnoc¡e¡j the low and medium 
demanding Data Dependent tasks of a particular job set j that 
can be executed in a certain node; by Tdata.j all the Data De­
pendent tasks in a job set j and by Ncores the overall amount of 
computational cores available at the data center. 

Each task t has a duration and consumes a certain amount 
of energy depending on whether it is executed at the data cen­
ter or coordinator, noted by crtp and etp respectively. As this 
optimization does not manage the idle power consumption of 
the elements of the architecture with turn off policies, we as­
sume that both coordinators and servers are always turned on. 
Because of this, we aim to optimize the energy variation for ex­
ecuting a certain task. For this reason, etp does not consider the 
idle power for neither coordinators or servers, i.e., it considers 
only the amount of energy spent over idle state. The conditions 
that the workload have to satisfy in order to be executed are 
proposed next: 
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Equation 17 states that the Energy Delay Product (EDP) of 
the tasks executed in the coordinators must be at least an order 
of magnitude less than the EDP product for those same tasks 
if executed in the data center. EDP weights power against the 
square of execution time, and is a common metric to compare 
energy efficiency optimizations from both the data center level 
and the architectural point of view [50]. Equation 18 constraints 
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Figure 14: Percentage of energy and time savings for each number of nodes and a = {0.8,1.0,1.2} under the reference workload 

the maximum time taken for the tasks to be executed to the 
overall time that it would take to execute data dependent tasks 
at the data center, i.e. it ensures a certain Quality of Service 
(QoS). This constraint can be adjusted through the parameter 
a = [0 . . . 1]. Finally, Equation 19 constraints the maximum 
amount of battery used per job set in each coordinator to a max­
imum energy ¡5max. 

In order to perform the run-time allocation, our SMT solver 
algorithm needs to know an estimation of the energy etp and 
duration <rtp of each task t to be executed for each processor 
p. For this purpose we use the energy profiling results for the 
Intel Xeon machine and the Samsung Galaxy S2 coordinator of 
Section 4. 

Each job set in our workload contains a 60% of tasks belong­
ing to the Data Dependent layer which, in its turn, has a 70% of 
low-demanding tasks and a 30% of medium demanding tasks. 
We assume that each coordinators in the architecture generates 
the same amount of data in average, so that tasks are uniformly 
split between nodes. We also assume that not all coordinators 
might be available at all times for computation purposes, so 
we might have a different amount of coordinators (from 100 to 
300). Depending on the workload profile (heavy, reference or 
light workload) and the amount of coordinators available, each 
coordinator executes a different amount of tasks. 

Our SMT algorithm is implemented using the Yices SMT 
solver3 that runs with negligible performance and energy over­
head in the coordinator node, obtaining a solution in less than 
1 second for each node. If the conditions to execute a task are 
satisfied, then the task is executed in the coordinator node. If 
not, it is off-loaded to the cloud infrastructure. For our case 
study we use a fixed value of )3max = 300mWh, which repre­
sents a 30% of the energy resources of the coordinator node 
Samsung Galaxy SIL We execute the workload for different pa­
rameters of a = {0.8,1,1.2} and calculate the average amount 
of tasks executed by the coordinator, the energy consumed by 
each coordinator in the system, and the energy saved at the data 
center. We use as a baseline for comparison the execution of all 
the workload in a data center with 160 cores (40 servers) of the 
Intel Xeon machine of the case study, without using any coor­
dinator. We run the algorithm for the three different workload 
profiles with three different number of coordinators (100, 200 
and 300) to compare performance. Figure 14 shows the per-

3 http://yices.csl.sri.com 

centage of dynamic energy and time savings compared to the 
execution of the reference workload in data center facility in 
160 Intel cores. 

The allocation of the whole workload at the data center fa­
cility (no coordinator nodes) consumes around 24kWh plus the 
idle energy of the servers, and the execution takes around 13h 
to complete. These 24kWh are the energy variation due to the 
workload execution. By using coordinators to execute part of 
the workload, we can obtain up to a 10% savings in energy 
variation and a 16% savings in execution time for the refer­
ence workload; while up to 24% energy savings for the heavy 
workload by using 300 coordinators can be achieved. The en­
ergy savings do not consider the savings obtained in idle power, 
which come from the reduction in execution time or occupancy 
that could lead to server turn-off policies specific to the data 
centers. This and other aspects are studied in Section 6.2. The 
absolute energy values for each workload profile and coordina­
tor are summarized in Table 9 in Section 7. 

6. Data Center horizontal optimizations 

In this section we present the main optimizations proposed 
by the scheme depicted in Section 2.1. We order these opti­
mizations by abstraction level in a top-down fashion (see En­
ergy Optimizations in Figure 2), focusing our analysis on the 
next optimization layers: 

• Data Center resource management policies 

• Energy-aware virtualization techniques 

Even though optimizations are presented as different hori­
zontal approaches, it must be kept in mind that all these layers 
are interconnected. Some of the optimizations presented are 
static, however, most of them are designed to work on runtime 
during the complete lifetime of the system, adapting and recon­
figuring their behavior according to the specific needs of the 
system. In this way, we can assure that the energy footprint of 
the computational paradigm is optimized to a maximum degree. 

6.1. Data Center resource management 

Resource management is a well known concept in the Data 
Center world and refers to the efficient and effective deploy­
ment of computational resources of the facility where they are 
needed. Resource management techniques are used to allocate 
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in a spatio-temporal way the workload to be executed in the 
data center, optimizing a particular goal. Traditionally, these 
techniques have focused on maximizing performance by as­
signing tasks to computational resources in the most efficient 
way. However, the increasing energy demand of Data Center 
facilities has shifted the optimization goals towards maximizing 
energy efficiency. Our work leverages this concept by propos­
ing energy-aware resource management techniques at different 
levels of abstraction of the proposed computational paradigm. 
In the previous section we proposed a workload assignment that 
splits the computation between the coordinator nodes and the 
data center. In this section we aim to propose a finer-grain 
workload assignment policy that distributes the computation 
at run-time inside the data center, taking advantage of (i) the 
knowledge about the energy behavior of the applications to ex­
ecute, and (ii) the resource heterogeneity of the data center. 

To do so, we first propose a static optimization that aims to 
select the most appropriate resources of the data center, i.e. the 
best machines, to execute the workload. Secondly, we perform 
a run-time allocation that minimizes the energy consumption of 
the cloud facility. 

6.1.1. Data Center server selection 
Until now, we had supposed that all the computations of the 

case study were performed in a homogeneous cluster with 160 
cores belonging to Intel Xeon machines. However, even though 
the Intel servers are the most modern ones, in Section 4 we 
have shown that for some tasks, the AMD server outperforms 
the Intel in terms of energy efficiency. Our claim is that we can 
find a set of heterogeneous servers that outperform the homo­
geneous scenario, i.e. executes the workload consuming less 
energy without a penalty in execution time. 

The optimization algorithm is based on previous work [51] 
and can be defined as follows. Let us denote by M a set of 
machines, by P a set of processors and by T a set of tasks that 
must be executed. Each machine m consumes a certain power in 
idle state nm. Each processor p belongs to one machine m, de­
noted as pm. Every task t has a duration and consumes a certain 
amount of energy depending on the target processor, <rtp and 
etp respectively. The minimization function is the one shown in 
Equation 21: 

Minimize] £ klp • elp + £ *m • **" [ (21) 

where klp is a binary variable that is set to 1 if the task t is 
executed in processor p. rmax is the time instant at which all 
the tasks have been executed. In this case we aim to obtain the 
best server set for a limited number of CPU cores which, in our 
case, is 160 cores. The optimizer takes as input a bunch of ma­
chines of each type, and it will provide as output the selection 
of machines m that should be used to execute the workload. 
Thus, the constraints that the proposed model must fulfill are 
the following: 

Workload profile Coordinators Server selection 

Heavy 

Reference 

Light 

100 
200 
300 
100 
200 
300 
100 
200 
300 

35 Intel + 5 AMD 
36 Intel + 4 AMD 
37 Intel + 3 AMD 
36 Intel + 4 AMD 
35 Intel + 5 AMD 
36 Intel + 4 AMD 
31 Intel+ 9 AMD 
31 Intel+ 9 AMD 
35 Intel + 5 AMD 

Table 6: Selected heterogeneous cluster configuration for each workload 
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where cm is the amount of cores of a certain machine ///, t¡/m 

is a binary variable that is set to 1 if a certain machine is used 
and *F is the maximum amount of cores available for computa­
tion. Constraint 22 ensures that the total number of cores used 
is not higher than the maximum. Constraints 23 and 24 ensure 
that all the tasks are executed within a maximum time, whereas 
constraint 25 ensures that all the tasks will be executed once 
and just once in one processor. 

The algorithm has been coded using ILOG CPLEX optimiza­
tion suite. The reason for choosing CPLEX tool is that it pro­
vides optimization libraries to solve Mixed Integer Linear Pro­
gramming (MILP) problems together with a very complete API 
for Java, C++, Python and .NET that eases the integration with 
other tools. We feed the algorithms with one job set per work­
loads to be executed, and the algorithm solves which is the op­
timum number of servers to be used, and provides an optimum 
assignment for that job set. Table 6 summarizes the results for 
every workload arriving to the data center. 

As can be seen, the optimizer always chooses an heteroge­
neous data center containing a small amount of AMD servers 
that are used to perform the tasks in which they outperform the 
Intel servers in terms of energy efficiency. Those tasks are the 
ones previously shown in Section 4 on Figure 6. All the combi­
nations use 160 cores and the amount of required AMD servers 
is highly dependant on the workload to be executed, as well 
on the duration of the execution, as the AMD servers present a 
lower static power than the Intel servers. 

In the next section we use these results to assign the whole 
workload profile and provide results on the energy and time sav­
ings when compared to the homogeneous data center scenario. 

6.7.2. Run-time workload assignment 
The dynamic run-time allocation of the tasks, performed by 

the resource manager, aims at minimizing the energy consump-



Workload profile Number of Energy consumption (kWh) 
tasks AMD Intel Intel + AMD 

Execution time(h) 
AMD Intel Intel + AMD 

100 nodes, Heavy 
200 nodes, Reference 

300 nodes, Light 

8559 
3765 
1961 

127.1 
61.7 

37.31 

67.46 
34.12 
28.02 

63.21 
31.89 
27.6 

16.3 
7.8 
4.8 

9.23 
4.7 
4.3 

8.7 
4.5 
4.3 

Table 7: Energy consumption and execution time comparison between SLURM allocation and optimized allocation for various workload 

tion of the assignment by placing each task where it wastes the 
minimum energy in a spatio-temporal way. The minimization 
objective is the same than the one in Equation 21, but the opti­
mization constraints and the data fed to the optimizer are differ­
ent. In this case, instead of running just one job set, we optimize 
the whole workload. 

Constraint 22, which was use to fix the amount of cores to 
select in the data center, is no longer needed as we use the op­
timum data center found in the static optimization. Instead of 
constraint 23, we use 26 to take into account tasks that were 
scheduled in a previous job set but have not yet finished their 
execution. ypm is a time offset that represents the amount of 
time that a processor p = 1,.. . , P is occupied executing previ­
ous tasks when the new job set arrives and has to be taken into 
account when computing maximum execution time per server. 

a) Number of jobs running (system utilization) during the execution of the workload (Intel only) 

Z' 
1, 

+ ypm < T„ 

.M 
p (26) 

Again, we use CPLEX with its C++ API to launch the opti­
mization. Because the workload is divided in job sets, the op­
timization will be executed each time that a new job set arrives 
to the resource manager, for a limited period of time, in or­
der to assign tasks to processors. This optimization procedure 
mainly improves the total energy variation (the aforementioned 
etp). The goal of this optimization is not really to reduce drasti­
cally the total execution time (as this time is inherently reduced 
by the static optimization), but just to ensure that it does not 
exceed a maximum. 

In order to compute the energy obtained by our optimization, 
we compare our solution to the one provided by the SLURM 
resource manager [52]. SLURM is an open source production-
ready software tools used in many data centers to allocate the 
workload to servers. SLURM uses a round-robin policy to as­
sign tasks to nodes. We use an open source SLURM simula­
tor [53] developed by the Barcelona Supercomputing Centre to 
simulate the workload assignment with SLURM default allo­
cation policy and our algorithm. Figure 15 provides an insight 
on the workload coming into the data center for three differ­
ent scenarios and how that workload is scheduled by SLURM 
in an Intel 160-core homogeneous cluster. As can be seen, un­
der the heavy workload profile with only 100 coordinator nodes 
offloading computation, the number of jobs running is always 
close to the maximum amount of cores, i.e. the system occu­
pancy is very high. Also, there is a huge number of jobs waiting 
to be scheduled. However, for the light workload profile with 
300 coordinators, the system has a low occupancy for long pe­
riods of time. 
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Figure 15: Running and waiting jobs in Intel only scenario for various loads 
with different number of coordinator nodes 

Table 7 shows the comparison in energy and execution time 
for the execution of the three workloads shown in Figure 15, 
between the AMD homogeneous data center, the Intel homoge­
neous data center, and the Intel + AMD heterogeneous solution. 
As can be seen, the heterogeneous solution clearly outperforms 
the homogeneous AMD data center. However, our purpose is 
not to outperform the AMD homogeneous scenario, as those 
servers are clearly older. Our goal is to prove how by means of 
application-awareness, i.e. knowing the energy profile of our 
workload, we can save energy. Moreover, our solution always 
saves energy without performance degradation when compared 
to the Intel cluster. This is accomplished not only because of 
the usage of a heterogeneous data center, but also because we 
schedule the workload in an optimum way thanks to the a pri­
ori knowledge of its behaviour in terms of energy and execution 
time. The energy savings obtained range from 1.4% for the light 
workload with 300 coordinators case to a 7.5% for a reference 
workload with 100 coordinators. All energy saving percentages 
are shown in Table 9 in Section 7. 

6.2. Virtualization techniques 
As shown previously, smart resource allocation in physical 

hosts is crucial to leverage computing resources more efficiently 
in order to reduce energy consumption. However, in our previ­
ous study, we were considering the execution of the workload 
on physical servers that did not provide virtualization. This has 
a small impact for the heavy workload profile in which all pro­
cessors are highly utilized. However, physical servers are under 
utilized for lighter workload profiles in which utilization of the 
cluster drops. 

The novel paradigm of cloud computing uses the concepts of 
virtualization and consolidation to offer new services in a plat­
form that achieves a more efficient infrastructure. Virtualiza­
tion leverages the management of the data center as a pool of 
resources, allowing a single node to accommodate simultane­
ously various Virtual Machines (VM) that can be dynamically 
started and stopped according to the system workload and that 
share physical resources. 



Consolidation uses virtualization to share resources and re­
duces energy consumption by increasing resource utilization. 
During periods of lower utilization, consolidation techniques 
can be used to attenuate power consumption by reducing the 
active server set, increasing resource utilization, reducing static 
power consumption and increasing energy efficiency. Handling 
the operating server set in order to turn off certain servers is a 
specially useful technique and provides very good results when 
considering the leakage power as well as the dynamic power 
consumed by servers. When implementing this type of policies 
it is important to consider the characterization of data center 
usage. The demand for resources reaching the data center is 
variable and usually follows seasonal patterns depending on the 
time of the day or certain periods of the year. In addition, the 
data center must be prepared to support peak demands. Also, a 
certain Quality of Service (QoS) must be satisfied in terms of 
availability, execution time and response time constraints. 

In order to apply virtualization and consolidation techniques 
to our scenario, we next present the experiments and system 
definition and an analysis of the results obtained. 

6.2.7. System definition 
In our system, the data center facility executes the low and 

medium demanding workload not computed at the coordina­
tor nodes as well as high-demanding applications. Depending 
on the workload profile (heavy, reference or light) the amount 
of tasks to be executed varies. Moreover, to procure an efficient 
placement, it is necessary to consider both the energy consump­
tion and the resource needs of every task of the workload as well 
as the availability of resources provided by each scenario. The 
physical needs of computing resources consumed by the appli­
cations are required in order to execute them under a required 
QoS and provide the minimum active server set. For our ex­
periments we define a time QoS that constraints the maximum 
execution task to a 33% more than its duration under optimal 
conditions. 

To show the benefits of virtualization, our experimental setup 
involves the comparison of two different scenarios: (i) the pre­
vious non-virtualized Intel data center and (ii) the same Intel 
cluster confirming a virtualized infrastructure. The virtual ma­
chines in this scenario also run CentOS under a KVM hypervi-
sor. 

Three experimental setups have been proposed to test energy 
consumption in both scenarios. 

• Low-demanding tasks: consists on the parallel execution 
of 8 correlation tasks, which are low-demanding tasks in 
terms of both CPU and memory utilization and belong to 
the SPSS benchmark. The test is performed sequentially in 
order to model different incoming requests during a fixed 
time determined by the execution of a medium or high de­
manding task belonging to the SPEC benchmark. 

• Mixed low-demanding and CPU intensive tasks: this sce­
nario combines the parallel execution of 6 correlation 
tasks together with a CPU intensive benchmark perlbench 
from the SPEC benchmark suite. 
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Figure 16: Workload allocation for the different tests. 

• Mixed low-demanding and memory intensive tasks: con­
sists on the parallel execution of 6 correlation tasks com­
bined with a memory intensive tasks mcf from the SPEC 
benchmark suite. 

As the execution of the correlation task consumes less than 
50% of a CPU core we can use virtualization to consolidate two 
of these processes in the same VM, in order to use physical re­
sources more efficiently. In the case of the non-virtualized data 
center we can only run four instances of SPSS simultaneously, 
one per core, in order to meet the time QoS constraint. How­
ever, by allocating one VM per core in a virtualized scenario we 
could execute 8 SPSS processes simultaneously. On the other 
hand, intensive applications such as mcf and perlbench fully 
utilize the CPU. Both virtualized and non-virtualized scenarios 
can only perform one of these tests per core without perfor­
mance degradation. 

Figure 16 shows how the different experimental sets can be 
allocated to fit the minimum operating server set on the data 
center in each scenario. Reducing the active set of physical 
machines by turning off idle servers decreases the static con-



Test Power Server 1 (W) Power Server 2 (W) Runtime (s) Total Energy (Wh) Energy Savings 
Workload non-virt. virt. non-virt. virt. non-virt. virt. non-virt. virt. (%) 

Low-demanding 
(8 correlation) 

Low-demanding & CPU intensive 
(6 correlation + 1 perlbench) 

Low-demanding & Memory intensive 
(6 correlation + 1 mcf) 

160.1 

168.0 

169.7 

171.3 

174.3 

173.7 

160.1 

155.1 

155.1 

0.0 

0.0 

0.0 

483.1 

479.5 

355.2 

512.6 

502.4 

467.2 

42.96 

43.03 

32.04 

24.39 

24.32 

22.54 

43.21 

43.46 

29.66 

Table 8: Workload average results for the different experimental scenarios 

Energy consumed per test for 2 Intel servers 

correlation & perlbench correlation & mcf 

Figure 17: Workload allocation for the different tests. 

sumption, which is one of the main contributions to power 
consumption and particularly relevant for light workload pro­
files. To evaluate the differences between virtualized and non-
virtualized infrastructures we have defined a set of experiments. 
The purpose of these tests is to compare the energy efficiency 
obtained by virtualization and consolidation, taking into ac­
count the modification of the operating server set. 

Tests have been performed in two Intel servers gathering the 
overall server power consumption during the execution of the 
workload as well as execution time. The energy savings reached 
43.46% due to the reduction of the operating server set offered 
by the virtualized data center, turning off idle servers, and are 
presented in Table 8, where they are compared with the case of 
the non-virtualized scenario. 

6.2.2. Results analysis 
As can be seen in Table 8, the virtualized scenario presents a 

power consumption overhead due to the execution of VMs and 
the additional workload run in parallel for Server 1. The work­
load consolidation in this scenario also adds a time overhead 
due to resource sharing. The execution of Low-demanding & 
Memory intensive tasks experiences this effect to a greater ex­
tent due to its high memory demand that results in higher mem­
ory contention. Increasing the execution time of the tests rises 
energy consumption. However, these overheads are compen­
sated by the reduction of the active server set when switching 
off Server 2 without degrading QoS. As seen in Figure 17, the 
data collected from the three workload tests show better results 
for the virtualized scenario achieving considerable energy sav­
ings of up to 43.46%. 

Virtualization can be applied to reduce the overall power con­
sumption of the workload, specially for light workload profiles 
of tasks exhibiting low computational demands. However, in 
order to be able to exploit all the potential of virtualization for 
our application, we need to reduce the operating server set when 
the cluster utilization drops during long periods. 

7. Multi-layer integration 

7.1. Overall energy savings 

The goal of this section is to provide an insight on how the 
models and optimizations developed in this paper can be ver­
tically integrated and applied together from a multi-layer per­
spective. 

To accomplish this objective we first present a summary of 
the energy savings obtained for the global resource allocation 
technique developed in Section 5 and the Data Center resource 
management policies in Section 6, for each of the workload 
profiles and for a different amount of coordinators. In Table 9 
Global resource allocation savings are referred to savings on the 
dynamic energy consumption only of the data center, whereas 
the DC policies offer the amount of savings for the Data Center 
only. In order to obtain an estimation of the impact of each opti­
mization on the overall energy savings, we must first obtain the 
baseline energy consumption for each kind of workload without 
any optimization, and then apply the optimizations one after the 
other. 

Table 10 shows the total energy consumption in kWh for the 
baseline case of not applying any optimization (first row of the 
table, i.e. the "No optimization" row) and when applying each 
optimization on top of the previous one. These values show 
the energy consumed for the whole architecture, i.e. coordi­
nator nodes plus data center IT power plus data center cooling 
power. Percentages show the amount of energy savings when 
compared to the baseline case. These data has been obtained by 
simulating all the workload profiles by means of the SLURM 
simulator. 

The second row of the table calculates the impact of offload­
ing computation to the coordinator nodes. In Section 5 we were 
presenting the dynamic power savings at the data center level. 
Here we use SLURM simulator to re-run the workload arriving 
to the data center for a different amount of coordinators, so that 
we can see the impact in execution time and static energy con­
sumption. As can be seen, the impact of offloading techniques 
is huge, and is highly dependant on the workload profile. The 
third row adds the impact of increasing the air-supply temper­
ature of the cooling system from 18°C to 24°C in the four air 
conditioning units needed to cool the 40 machines of the ex­
perimental set-up. Finally, the fourth row adds the impact of 
the data center resource selection and optimum workload as­
signment policies. As we are showing the results for around 13 
hours of computation in the worst-case scenario, we do not inte­
grate the results for virtualization techniques in Table 10, as the 



High workload 
100 200 300 

Medium workload 
100 200 300 

Low workload 
100 200 300 

Global 
DC policies 

No optimization 
Global allocation 

Cooling 

DC Allocation 

7.8% 9.3% 8.1% 
6.3% 6.0% 5.7% 

Table 9: Summary 

Heavy workload 
100 200 300 

153.6 
103.1 

(32.8%) 
97.7 

(36.4%) 
91.8 

(40.2%) 

153.6 
95.3 

(37.9%) 
90.2 

(41.2%) 
84.9 

(44.7%) 

153.6 
93.0 

(39.4%) 
88.1 

(42.6%) 
83.0 

(45.9%) 

4.9% 
7.5% 

of savings 

3.4% 6.4% 3.6% 
6.5% 5.2% 3.1% 

for each optimization 

Reference workload 
100 200 300 

101.0 
53.4 

(47.1%) 
50.6 

(49.9%) 
46.9 

(53.6%) 

101.0 
52.5 

(48.0%) 
49.7 

(50.7%) 
46.6 

(53.9%) 

101.0 
51.3 

(49.2%) 
48.5 

(51.9%) 
46.1 

(54.3%) 

11.6% 
2.3% 

24.0% 
1.4% 

Light workload 
100 200 300 

49.0 
45.2 

(7.7%) 
42.7 

(12.8%) 
41.9 

(14.5%) 

49.0 
47.7 

(2.6%) 
42.2 

(13.9%) 
41.7 

(14.9%) 

49.0 
44.6 

(9.3%) 
42.1 

(14.1%) 
41.7 

(14.9%) 

Table 10: Overall energy savings (in kWh and percentage) for the whole architecture when integrating all optimizations 

utilization does not drop long enough periods to propose the re­
duction of the operating server set by means of turn-off policies. 
However, the virtualization techniques proposed in Section 6.2 
would be extremely useful for the drops in demand that cloud 
infrastructures experience in this kind of applications during in 
some periods. 

7.2. New challenges 
The research work presented in this paper has open new chal­

lenges, profusely explored by the authors, that represent a novel 
and evolved conception of the distributed and high-performance 
computing paradigm. Along this paper, we have tackled the fol­
lowing topics: 

• the concept of heterogeneity has been considered at differ­
ent abstraction levels (horizontal heterogeneity among the 
server architectures of the data center, and vertical hetero­
geneity between the node-level and the data center-level 
architectures). This concept has been proved to provide 
further opportunities for energy-optimization (thanks to 
the workload distribution mechanisms), but it also encour­
ages the seeking of global-optimization techniques that 
consider the heterogeneity of the system since the appli­
cation conception. 

• the conceived optimization techniques take into account 
the dynamism of the scenario, where variable workloads 
and tasks arrive to the computing platform and a varying 
number of processing nodes can be available for process­
ing or ready to feed new data. 

• the constraints imposed by the Ubiquitous Computing 
model have been exposed to be determinant on the ar­
chitecture of the computing paradigm. Not only a set-up 
of wearable processing and sensing nodes is required, but 
also an all-over access to the computing services provided 
by the Cloud. 

• the need of efficient energy-saving techniques in e-Health 
application scenarios has driven the conception of a new 

computing paradigm where the design of the architecture 
is pushed by the energy consumption of such application. 
Only with such application-driven design style, the energy 
footprint of the whole computing scheme can be reduced, 
while the reliability and performance requirements are still 
satisfied. 

8. Conclusions 

Home assisted living reduces sanitary costs by prevention of 
potential diseases, provides early signals of health decline and 
advices for appropriate actions in daily life, and allows com­
plex epidemiologic analysis that improve prevention and effi­
cacy of treatments. However, energy consumption is one of 
the major concerns for the adoption of population-wide health 
monitoring systems, but energy efficiency cannot be added as 
an afterthought. 

In this paper, we have presented a novel concept of the com­
puting paradigm that combines the deployment of population-
wide Wireless Body Sensor Networks, wearable computing de­
vices, high-performance computing data-centers, and services 
delivered by Cloud computing. Moreover, we propose an ar­
chitecture driven by energy concerns and aimed at optimizing 
energy consumption globally. 

This paper considers, for the first time, energy as a first-class 
requirement, taking it into account during the whole develop­
ment cycle, from design to implementation. The novel strate­
gies presented in the experimental work focus on every abstrac­
tion layer, and obtain promising results for a realistic scenario 
that depicts the cardiovascular tracking and analysis of a broad 
population. 

We believe that the computing paradigm presented in this 
work, as well as the evolved methodology for energy reduc­
tion, deals with many and important challenges, often forgotten 
in the current related literature. 
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