
Picos: A Hardware Runtime Architecture Support for OmpSs

Fahimeh Yazdanpanaha,b, Carlos Álvareza,b, Daniel Jiménez-Gonzáleza,b, Rosa M. Badiaa,b,c, Mateo Valeroa,b

aUniversitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain
bBarcelona Supercomputing Center (BSC), Barcelona 08034, Spain

cArtificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC), Spain

Abstract

OmpSs is a programming model that provides a simple and powerful way of annotating sequential programs to exploit heterogeneity
and task parallelism based on runtime data dependency analysis, dataflow scheduling and out-of-order task execution; it has greatly
influenced Version 4.0 of the OpenMP standard. The current implementation of OmpSs achieves those capabilities with a pure-
software runtime library: Nanos++. Therefore, although powerful and easy to use, the performance benefits of exploiting fine-
grained (pico) task parallelism are limited by the software runtime overheads. To overcome this handicap we propose Picos, an
implementation of the Task Superscalar (TSS) architecture that provides hardware support to the OmpSs programming model.
Picos is a novel hardware dataflow-based task scheduler that dynamically analyses inter-task dependencies and identifies task-level
parallelism at run-time. In this paper, we describe the Picos Hardware Design and the latencies of the main functionality of its
components, based on the synthesis of their VHDL design. We have implemented a full cycle-accurate simulator based on those
latencies to perform a design exploration of the characteristics and number of its components in a reasonable amount of time.
Finally, we present a comparison of the Picos and Nanos++ runtime performance scalability with a set of real benchmarks. With
Picos, a programmer can achieve ideal scalability using aggressive parallel strategies with a large number of fine granularity tasks.

Keywords:
Hardware Implementation, Task Scheduling, Dataflow Execution, Parallel Programming Model, OmpSs, OpenMP

1. Introduction

As computing systems face the end of Dennard scaling [1],
or chips hit a power wall because of slowed supply voltage scal-
ing [2], multi- and many-cores arise as the main trend in current
architectures. Although this approach has allowed chips to keep
pace with Moore’s law, it has also introduced new challenges to
programmers. Indeed, parallel programming is an issue that is
far from being solved and several works have addressed it.

Parallel programming models represent one of the main and
more successful trends for solving the programmability issue.
Parallel programming models allow the programmer to anno-
tate or even fully specify the parallelism of the different se-
quences of code within a program. However, this task is often
cumbersome as parallel programmers may need to take many
details into account in order to avoid stalls and deadlocks that
are usual issues when creating parallel programs. New parallel
programming models try to leverage these problems by push-
ing the complexity of dependency management to the compiler
or even the runtime. OmpSs[3] is a programming model that
belongs to this last group. It allows programmers to annotate
sequential programs with directives that are afterwards used by

Email addresses: fahimeh@ac.upc.edu (Fahimeh Yazdanpanah),
calvarez@ac.upc.edu (Carlos Álvarez), djimenez@ac.upc.edu (Daniel
Jiménez-González), rosa.m.badia@bsc.es (Rosa M. Badia),
mateo@ac.upc.edu (Mateo Valero)

the runtime to ensure correct and as-parallel-as-possible execu-
tion. OmpSs has been successful enough to greatly influence
the last version (4.0) of the OpenMP standard. Its runtime im-
plementation, Nanos++, is a software library that manages the
creation of tasks, ordering them according to their dynamically
constructed dependency graph, issuing them to execute when
ready and, finally, removing them from the dependency graph
when finished. Although the Nanos++ runtime is optimized, all
this work introduces overhead time in each task execution. This
overhead influences the overall application performance when
approaching fine-grain parallelism with a large number of tasks.

The Task Superscalar [4] architecture was the first one to ad-
dress this problem, proposing a decoupled model in which dif-
ferent finite state machines (modules) manage the most cum-
bersome functionalities of the runtime. The first implementa-
tion of the Task Superscalar architecture, the Hardware Task
Superscalar, has already demonstrated high potential [5]. In
this paper we present Picos, a highly evolved hardware imple-
mentation of the Task Superscalar architecture designed in the
context of the TERAFLUX project (www.teraflux.eu), and
we perform a full study of its capabilities and resource necessi-
ties. The main contributions of the paper are:
• The Picos hardware design: a new hardware implemen-

tation of Task Superscalar architecture with a new opera-
tional flow.

• Latency information of each Picos module, based on the
synthesis of the VHDL code.

Preprint submitted to Future Generation Computing Systems December 31, 2014

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

• A detailed execution analysis of a set of real benchmarks
on a Picos-based system.

• A cycle-accurate simulator based on the latency informa-
tion obtained. This simulator is used to perform a design
exploration of Picos that leads to near optimum results for
different sizes (number of cores) of computing systems.

• A comparison analysis of the scalability of Nanos++ run-
time, a real pure software implementation, and Picos.

The rest of this paper is organized as follows: Section 2 de-
scribes the operational flow and the main modules of the Pi-
cos Hardware Design; in Section 3 we present the experimental
setup used in Section 4, where a full space design exploration
of the Picos hardware is shown. Results are shown in Section 5.
Section 6 reviews the Related work, and Section 7 concludes.

2. The Picos Hardware

Picos hardware is a major revision of the Hardware Task Su-
perscalar architecture with several improvements in its work-
flow. The main improvements are related with architectural
changes to add support to nested tasks, better memory manage-
ment and faster task dispatching. Figure 1 shows the organiza-
tion of a computing system that includes the Picos hardware. It
consists of a many-core with any number of threads that send
two types of task information to the Picos hardware: (1) the
dependency information of new tasks, and (2) the notification
of ending a task. The Picos hardware consists of one gateway
(GW), one or more Dependence Chain Trackers (DCT), one or
more Task Reservation Stations (TRS) and one Task Scheduler
(TS). All these components work together in parallel in order
to build the dynamic task dependency graph and generate a list
of ready tasks that are sent back to the threads to be executed.
The connections between the modules are decoupled by FIFO
queues that are interconnected by arbiter modules (not drawn in
Figure 1 for clarity). There is one arbiter module between the
output queues of one type of module and the input queues of a
different type of module (for example, one arbiter reads from a
single output queue from the GW and writes to one of the input
queues of the appropiate TRS).

GW TS

TRS 0TRS 0TRS 1

TRS 2

TRS 0

TRS 3

DCT 0

DCT 1

DCT 3

DCT 2

Thread n-1Thread 0 ...

GW: GateWay

DCT: Dependency

 Chain Tracker

TRS: Task Reservation

 Station

TS: Task Scheduler

Figure 1: Computing system with Picos pipeline hardware.

2.1. Operational Flow Overview
Once a thread reaches a task creation it creates a new task

descriptor that is basically a memory structure containing the
necessary information for the new task to be executed. This
information mainly includes the address of the task code to be
executed and the address of all its dependencies with their direc-
tions (input, output, input and output - inout, or direct for imme-
diate values). Once this descriptor is created, it is sent to the Pi-
cos hardware that reads its information and stores the data of the
corresponding task until all its dependencies are fulfilled. For
the first task created, all its dependencies are ready because all
its input and inout dependencies are already in memory. How-
ever, the most common case is that a task has to wait until one or
more of its dependencies become ready after other tasks finish.
The information (finishing messages) about those finished tasks
is sent to the Picos hardware by the threads that execute those
tasks. With this finishing message Picos will delete the corre-
sponding descriptor in the system and proceed to mark as ready
all the task dependencies that may be waiting for the dependen-
cies of the just finished task. The Picos hardware will then try
to send the new ready task/s to be executed. This entails send-
ing the descriptor to the TS, which will make it available to all
the threads in the system. When one thread that is not busy re-
alizes that a new descriptor is available it starts executing the
corresponding task. If a task creates new tasks, new descriptors
are created and the dependency information is sent to Picos as
explained above.

2.2. Picos Modules
The GateWay (GW) is a simple selector that reads the mes-

sages (new task and finishing task messages) that arrive to the
system and sends them to the associated module. If the mes-
sage is a new task, the GW reads the Task ID and the number of
dependencies and sends this information in a packet to the cor-
responding TRS. Each dependency is then read and sent to the
associated DCT with a packet containing the following infor-
mation: address and direction of the dependency, and the task
related identifiers (TRS destination, slot position in the TRS,
and dependence position inside the task). Therefore, to pro-
cess the new task message, the GW needs two items of infor-
mation: an empty slot in the TRS modules, and the DCT in
which the dependence information should be stored. The selec-
tion of the TRS is simply done by using a TRS identifier and
a TRS free slot previously read from a queue that comes from
the TRS modules. As we will see, each TRS sends a packet
with this information to the GW as soon as it has an empty slot.
On the other hand, the DCT associated with each dependence
is computed directly from the dependence address with a hash
function that should be properly selected to balance the load be-
tween all the DCTs. If the message is a finishing task message,
the GW only needs to forward that information to a TRS. In
this case, the TRS identifier and the task slot position are pro-
vided by the packet received from the thread that notifies that
the task is finished, this thread having previously received that
information with the task ready packet (as explained below).

The Task Reservation Station (TRS) is the module that man-
ages all the processes related to the in-flight tasks. To this end,

2

it has a Task Memory (TM) that is an indexed memory in which
each TRS stores all the information about the tasks and the
readiness of their dependencies. A TRS may receive packets
from the GW, the DCTs, and the TRSs. When a packet from
the GW arrives at the TRS with information about a new task,
the TRS stores it in the slot specified by the packet and then
looks for a new free slot and sends it to the GW (which will use
it to allocate a new incoming task, as explained above). The
TRS will then wait (or perform other processes) for all the de-
pendencies of the task to be ready before sending it to execute.
A packet coming to the TRS from the DCT or TRS modules
(as seen in Figure 1 they share the network) can have two ob-
jectives: (1) to update information about a dependence in order
to create a chain of dependencies, and (2) to notify that a de-
pendence is now ready. In the first case, the TRS only saves
the information in the appropriate slot. In the second case, the
TRS should update the information, send a packet to the next
instance (if it exists) of this version of the dependence and, if all
the dependencies of the task updated are now ready, mark the
task as ready for execution. In addition, the TRS periodically
(i.e. when it is not performing other actions) checks if there are
empty slots in the queue to the TS. In this case, the TRS picks
an available ready task and sends it to execute. Finally, TRS
may receive a packet from the GW informing it that a task has
finished. In this case the TRS parses each of the dependencies
of the task and sends one packet (per dependence) to the associ-
ated DCT, informing it that this instance of the dependence has
finished. After that, the TRS frees the slot and, if there were
no previous free slots, it sends the associated message with the
new free slot to the GW.

The Dependence Chain Tracker (DCT) manages all the de-
pendencies in the system. The dependence information is stored
in two different memories: the Dependence Memory (DM) and
the Version Memory (VM). DM is indexed by a hash function
of the initial dependence address and stores the basic depen-
dence information and a pointer to the last version of each de-
pendence. We call the ”version of a dependence” every output
instance of the dependence and all subsequent input instances
(i.e. a producer and all its consumers). Version information is
stored in the VM, which keeps one entry for every version of
the dependence where the TRS address of the last consumer of
this version of the dependence is stored, and also the TRS ad-
dress of the producer of the next version, should it exist. When
the DCT receives a packet from the GW with a new dependence
instance entering the system, it searches for the dependence in
the DM. If the dependence is not found, the DCT creates an
entry for it both in DM and VM. A packet specifying that the
dependence is ready is then sent together with its VM address
to the corresponding TRS. Otherwise, when a dependence in-
stance is found in the DM, two main possibilities exist: either
the dependence has an input direction (i.e. it is a consumer) or
it has an output or inout direction (i.e. it is a producer). In the
first case the dependence is added to the dependency chain in its
last version and a packet to the TRS is sent with the dependency
information (the version may or may not be ready). In the sec-
ond case, a new version should be created and all memories are
correspondingly updated (the DM should now point to the new

version entry and the previous VM entry now includes the TM
address of this producer). In this case, a packet is sent to the
TRS specifying that the dependence is not ready and the chain
information is stored in the TRS. In addition to keeping track of
new dependencies, the DCT also updates its information when
the TRS, on completion of task, sends a packet releasing a de-
pendence instance. When the DCT receives such a packet it
updates the corresponding version, and if a new dependence
version is ready it sends a packet to the TRS that stores it. Fur-
thermore, if the dependence instance was the last of a version,
the entry in the VM is deleted. If it was the last dependence
instance, the entry in the DM is also deleted.

The Task Scheduler (TS) is a simple dispatcher of tasks. As
soon as it receives a ready task, it searches for an available
thread and forwards the descriptor associated to the task to that
thread. More complex scheduling patterns can be implemented
in this module if, for example, the memory accessed by every
task is taken into account, but the exploration of these memory
conscious scheduling techniques is beyond the scope of this pa-
per and remains as subject for future work.

2.3. Picos hardware latencies
To obtain the Picos hardware latencies we have undertaken

a full VHDL implementation of all the modules in the Picos
hardware and synthesized them targeting a Virtex-7 device.
With this information we have obtained the exact cycles that
the finite-state machine (FSM) of every module in the design
uses in order to perform every assigned functionality. Table 1
shows the set of latencies corresponding to synthesis of the
main functionality of the Picos hardware modules. The laten-
cies shown are calculated assuming that everything (for exam-
ple the queues) is ready, otherwise the number of cycles spent
waiting for an available resource should be added. In addition,
the queues have a simple implementation that does not allow
them to be read from and written to at the same time. With
this implementation, the first cycle in the process of writing
from/reading to/from a queue is used to reserve the slot, while
the second cycle performs the action. The cycles used to inter-
act with the queues are in addition to the cycles specified and
should be added for every packet that any module has to send.
With this information, we have built a cycle-accurate simulator
that exactly replicates the hardware design. The software sim-
ulator allows us to fully explore the optimum design point of
the modules in terms of number of modules and memory sizes
that cannot at present be synthesizable in a real FPGA. It also
allows us to implement accurate simulation of complex behav-
ior patterns like thoses by nested tasks or by a large number
of modules, as well as detecting their bottlenecks and thereby
correcting them.

2.4. Design issues
The modular design of Picos introduces challenges that an

integrated design may not pose. The main problem sources in
this kind of design are the unexpected effects that arise from the
interaction of simple behaviors in the modules. In particular,
the Finite State Machines in the modules have undergone sev-
eral redesign cycles to avoid deadlocks and to minimize stalls.

3

Module Process Latency (cycles)
GW Reading a task 1 + 1×#dep.
GW Sending a task 1 + 2×#dep.
GW Reading empty slot 0 (bg. process)
TRS Allocating a task 5
TRS Freeing a task 6 + 2×#dep.
TRS Reading a ready dep. 6
TRS Chaining a ready dep. 1
TRS Sending task to execute 2
DCT Reading a dep. 3 + ...

... new ... + 2

... input (not new) ... + 3

... output (not new) ... + 4
DCT Removing a dep. 8
TS Forwarding a task to the

assigned thread
4

Arbiters Reading packet 1
Arbiters Writing packet 1
Queues Reading a value 2
Queues Writing a value 2

Table 1: Modules latencies.

Although a complete description of all the details of the design
is beyond the scope of this paper we believe that it is interest-
ing to highlight the main points that allow the system to work
properly and how they have influenced the design.

The key point that makes the modules work together is the
fact that the only module that can stall is the TS. If the TS
stalls, it means that all the threads are busy and the system sim-
ply waits for them to finish. The GW cannot stall as the system
has to wait for tasks to finish. This means that the finished task
messages use a different queue than the new task messages and
that if a task cannot be issued (due to contention in the TM or
in the DCT memories) the GW stores it internally and contin-
ues processing finished tasks. The same behavior occurs in the
DCTs. If any of the DCT memories are full, the DCT stops
processing new dependencies but continues processing packets
(releasing dependencies) from the TRSs.

The TRSs have the most complicated behavior. Basically the
TRSs may deadlock for two reasons: the first one is that they try
to send a ready task to execute but all the threads are busy. This
can be solved simply by keeping a bit information for every
ready task to indicate that it has not yet been sent for execution
yet. After verifying that there is at least one empty execution
slot, the TRS reserves it and sends the task to execute. The other
source of deadlock is a finished task; a finished task means that
the TRS should cycle through all the dependencies in the task,
sending messages to the associated DCTs. The deadlock occurs
when the DCT follows those messages trying to awake other
tasks in other (or the same) TRSs. If two or more TRSs are
doing the same thing at the same time (which happens often) a
deadlock may occur. In order to prevent this from happenning,
the queues from the TRSs to the DCTs are slightly different
than the others in the system. Their minimum size is equal to
the maximum number of dependencies per task (15), and when
fewer than this number of slots in the queue are empty, the TRS
does not process finished tasks messages but continues to do
other work.

Finally, the memories are a further key design point; although
they are not critical from the point of view of reliance, a wrong
approach would result in low performance (due to increased
access times) and would also probably lead to a lot of wasted
resources in the form of redundant data. Table 2 shows the the
number of entries per slot for every memory in the system, and
the information stored in each entry with its size in bits in our
final design (explained below in detail in Section 4).

With the specified memory entry sizes and the data obtained
in Section 4, all the memories in the system would amount to a
total of: 58.5 KBytes (the TM), 21 KBytes (the DM) and 11,75
KBytes (the VM), distributed in 12 small memories capable of
managing up to 1024 in-flight tasks. This size can be further re-
duced by optimizing the TM, which is the largest memory in the
system. Every entry in the TM uses 6 slots: 1 to manage task
information and the other 5 to store information about its de-
pendencies (3 dependencies per slot). As most tasks have only
a small number of dependencies, making a dynamic assignment
of slots 2 to 6 may result in a reduction of this memory to a size
of only 19.5 KBytes with the same results. This memory would
be able to store up to 1024 in-flight tasks with up to 3 dependen-
cies each or 341 tasks with 15 dependencies each. In this case
the total amount of memory in all the modules in the system
would be only 52.25 KBytes.

Another critical point about the memories is the DM design,
because its behavior is critical to the system performance. A
full DM entry that is required for a new dependence means that
the system would stall for a long time even if other entries are
empty. To alleviate this problem and reduce the effects of cor-
ner access patterns, an Inverse Victim-Cache-like mechanism
has been used. Should one entry be full, with this mechanism
the DCT searches for a space in the next entry. This mecha-
nism, although slower than doubling the associativity, uses al-
most less than half the resources and provides similar system
performance results.

3. Experimental setup

In order to evaluate the capabilities of the Picos hardware, we
selected a group of real applications as shown in Table 3. All the
benchmarks can be obtained from the BSC Application Reposi-
tory (BAR,https://pm.bsc.es/projects/bar). The name
of each benchmark is shown, as well as the configuration value
used to obtain the trace for the full cycle-accurate simulator; the
number task instance executions that it includes; the average
length in cycles of the tasks; the maximum and the minimum
task sizes; the average number of dependencies per task; the av-
erage distance between two consecutive tasks and the number
of cycles of the sequential execution in which the trace was
obtained. As may be seen in Table 3, the real applications
used are Cholesky, Heat (using Gauss-Seidel algorithm), LU
and Sparse-LU, all of which are standard implementations that
include OmpSs pragmas to annotate where tasks can be created
and their dependencies. The traces were obtained by executing
the applications sequentially and measuring the time at which
each task would be created, as well as the time spent in its ex-
ecution and its real dependence information. The configuration

4

Memory (bits) Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
TM Slot 1
(74+4)

Valid Bit (1) Task desc. (64) # dep. (4) # not ready dep. (4) In execution (1) Void (4) –

TM Slot 2-6
(3×26)

Dep. VM ad-
dress (9)

Dep. eORT id.
(2)

Chain dep. (1) TM chain address
(8)

TRS chain (2) Chain Dep. (4) –

DM (84) Valid Bit (1) Dep. addr. (64) Last ver. addr. (9) Dep. instances (10) – – –
VM (47) Version

Ready (1)
DM dep. entry
(6)

Consumers exist
(1)

Last consumer TRS
addr. (2+8+4)

Next producer
exists (1)

Next producer TRS
addr. (2+8+4)

Version
instances (10)

Table 2: System memories characteristics.

Application Chol. Heat LU Sp-LU
Input Conf. 100-2 256-32 256-1 64-8
of task instances 22100 1025 32896 11472
Avg. task size (cycles) 778 1116 1970 9835
Max task size (cycles) 84704 3124 229924 147128
Min task size (cycles) 416 24 488 3344
Avg. # deps. per task 2.88 4.99 2 2.9
Avg. task dist. (cycles) 31.06 39.63 24.78 139.06
Seq. execution cycles 19.9M 1.2M 114.4M 65.6M

Table 3: Application characteristics.

parameters of the benchmarks were chosen by seeking to obtain
executions that generate several fine-grained tasks. The execu-
tion time obtained for the given problem size was not a concern
in this regard, as we were interested in measuring the ability of
the hardware to manage the tasks and not in accelerating the
applications.

For the real software run-time system results of OmpSs ap-
plications, we used the same task decomposition strategy. The
OmpSs implementation employed is based on Mercurium 1.99
and Nanos 0.7a runtime system. The applications were exe-
cuted (sequentially and in parallel) in a shared memory machine
node with 2 NUMA nodes with 1 socket each. Each socket is a
Xeon E5645 with 6 cores each at 2.4 GHz. The system amounts
to a total of 24 GB of RAM Memory. The L1 memories (data
and instructions) have 32 KB and the L2 has 256 KB per core.
The system also has a shared L3 (for each processor) of 12 MB.

4. Space design exploration

In this section, a deep-space design exploration of the Picos
hardware it presented. The main goal is to explore the amount
of resources required in order to be able to fully exploit current
and future many-core designs.

4.1. Picos for High Performance Computing

To start our space design exploration, we selected a very large
configuration of the Picos hardware system with more-than-
enough resources (number of DCT and TRS modules and their
memory sizes), as presented in Table 4. For each configuration
parameter, the more-than-enough resources number is selected
in such a way that the time results of the system will be the
same even if the value is halved. Due to space constraints, we
do not show all the experimental analysis performed to obtain
the numbers in the table. The results of our preliminary space
design exploration are shown in Figure 2, where the Y-Axis
shows the speed up over the sequential execution of each of
the benchmarks presented in previous section, and the X-Axis

shows the number of processors in the system. Speed-up results
range from 11× to 56×, depending on the benchmark, and show
that 256 processors are enough to obtain the upper limit of the
achievable speed-up with our design. Unless otherwise stated,
from now on we will use 256 processors in our space design ex-
ploration. It is noteworthy that task scheduling, communication
and management overheads have no visible impact on scalabil-
ity. This is due to two reasons: first, for all those tasks that do
not belong to the critical path of the application, overheads are
completely overlapped with the execution of the tasks. Second,
for those tasks in the critical path, the non-overlapped hardware
overhead is negligible: around 75 cycles per task. For instance,
in Figure 2, the application with the shortest tasks, Cholesky,
with a critical path of 267 tasks out of 22K tasks, has a non-
overlapped overhead of only 20K cycles, while its sequential
execution takes nearly 20M cycles.

Parameter Value Meaning
TRS 32 Number of TRS modules
TM entries 16K Number in-flight tasks per TRS
DCT 32 Number of DCT modules
DM assoc. 16 Associativity of Dep. Memory
DM entries 16K Number of dependencies that the

system can keep per DCT
VM entries 16K Number of versions that the system

can keep per DCT

Table 4: Picos near-unlimited configuration.

1 2 4 8 16 32 64 128 256 512 1024 2048

cores

0

20

40

60

S
p

ee
d

-u
p Chol.

Heat

LU

Sp-LU

Figure 2: Speed-up obtained as a function of the number of processors with
more-than-enough resources.

TRS parameter configuration
Once we have obtained an upper limit to our design results,

we can reduce the number of resources in order to obtain a con-
figuration with an affordable amount of resources suitable for
HPC systems with 256 processors. First of all, we show the
effect of changing the number of entries in the TRS memory
(that is, limiting the maximum number of in-flight tasks that the
system supports) when Picos has only one TRS. All the other

5

parameters are maintained, as in the more-than-enough config-
uration. The results are shown in Figure 3, where the Y-Axis
shows the speed up over the sequential execution as a function
of the number of entries in the Task Memory (X-Axis). In this
figure one may observe two interesting effects: the first is that,
for the selected traces, 512 in-flight tasks seem enough when we
have only one TRS. The second observation is that the speed-
ups decrease when compared to those in Figure 2 due to the
effect of having only one TRS module in the system. This oc-
curs, in particular, for the Cholesky benchmark, while for other
benchmarks the speed-ups remain very similar to previous re-
sults. Regardless of TM size, the time that the TRS uses to pro-
cess the tasks may become the bottleneck of the system. This
can be solved by increasing the number of modules of Picos
hardware, thereby hiding the latency of the TRS processes.

8 16 32 64 128 256 512 1024 2048 4096 819216384

TM entries

0

20

40

60

S
p

ee
d

-u
p Chol.

Heat

LU

Sp-LU

Figure 3: Speed-up obtained as a function of the number of Task Memory en-
tries.

Table 5 shows how changing the number of TRSs and their
memory size influences the number of execution cycles for the
Cholesky application. As can be seen in the table, the opti-
mum design point is to have 8 TRS modules with the capac-
ity to store 512 tasks each (for a total of 4K in-flight tasks),
for the Cholesky benchmark. However, this configuration is
only ideal for the specific case of Cholesky and presents seri-
ous drawbacks from the hardware resources point of view: 8
TRS modules represent a large interconnection network and,
furthermore, as explained in Section 2.4, 4K in-flight tasks de-
mand at least 80 KBytes of memory storage for the tasks and
more space in the other memories, which should be scaled ac-
cordingly. Taking into account the results in Figure 3 for all
the benchmarks and the hardware resource requirements of a 8
TRSs configuration, we have limited the selected prototype to
4 TRSs, each with a 256-entry TM, thereby reducing the inter-
connection network and memory requirements, while guaran-
teeing high speed-up.

DCT parameters configuration
DCT modules keep track of the dependency chain, and in or-

der to do so they have to store not only all the dependencies
of all the tasks in the DM but also all the versions of those de-
pendencies (the different values that the dependency may have
due to the different in-flight tasks that produce this value) in
the VM. For the VM, the only parameter that may influence the
performance of the design is the capacity of the VM (#entries),
since a new version can be assigned to any empty entry. Fig-
ure 4 shows the speed-up obtained for each benchmark when

TM entries 1 TRS 2 TRSs 4 TRSs 8 TRSs 16 TRSs
8 1.52 2.14 3.36 5.56 9.38
16 2.12 3.35 5.55 9.37 15.10
32 3.31 5.50 9.33 15.07 21.61
64 5.30 9.08 14.99 21.56 23.74
128 8.06 13.78 21.34 23.77 24.60
256 10.03 17.11 23.45 24.59 25.32
512 10.51 17.69 23.97 25.31 25.32
1024 10.60 17.91 24.92 25.31 25.32
2048 10.77 18.33 25.30 25.31 25.32
4096 10.97 18.61 25.30 25.31 25.32

Table 5: Speed-up of Cholesky application as a function of number of TRS
modules and their memory size.

the number of entries is modified and we have only one DCT
module (in this graph the number of TRSs is 32). As it can be
seen in the graph, as in the case of the TM, the Cholesky appli-
cation is the most demanding one, needing 4096 entries in the
VM to achieve the peak performance. Considering that number
of entries, in Figure 5 we show how changing the number of
DCT modules affects the speed-up when the total VM is main-
tained constant and the Dependency Memory (DM) is kept at its
more-than-enough value. In particular, one may observe that 4
DCTs with 1024 entries each (4096 entries in total) reaches the
upper performance limit.

8 16 32 64 128 256 512 1024 2048 4096 819216384

VM entries

0

20

40

60

S
p

ee
d

-u
p Chol.

Heat

LU

Sp-LU

Figure 4: Speed-up obtained as a function of the number of Version Memory
entries.

1 2 4 8 16 32

DCT modules

0

20

40

60

S
p

ee
d

-u
p Chol.

Heat

LU

Sp-LU

Figure 5: Speed-up obtained as a function of the number of DCT modules.

The Dependency Memory (DM) is the key element in the
DCT module. It keeps track of all the dependencies of all the
in-flight tasks in the system. When a dependency enters the
system, it should determine efficiently whether or not the de-
pendency is new and update its meta-data accordingly. As the
latency of this search is critical, the ideal way to store the depen-
dency information would be in a direct access memory. How-
ever, the DM is not a cache, and when a block in the dependence

6

memory is full the system cannot flush the old entry. Instead,
it should stall and wait (perhaps for quite a while) until another
dependence that is using the same entry is no longer live. For
this reason, an associative memory and a more complex hash
function (Pearson-like hash) than the usual one (addresses less
significant bits - LSB in Figure 6) is used.

Figure 6 shows the effect of this improved hash function on
the speed-up obtained for the Cholesky benchmark as a function
of the number of entries in the DM. As may be observed, the
improved hash function a has better speed-up for all the cases,
and from another point of view allows the system to obtain the
same results with smaller DMs. Other results presented in this
section use the improved hash.

8 16 32 64 128 256 512 1024 2048 4096 819216384

DM entries

0

10

20

30

S
p

ee
d

-u
p

LSB Hash

Improved Hash

Figure 6: Speed-up obtained as a function of the DM entries with and without
an improved hash for Cholesky application.

The selected memory associativity is also crucial for perfor-
mance. As stated above, the ideal solution would be a full asso-
ciative DM, but as this is not possible in a real environment we
have studied the effect of having different associativities. With
the improved hash shown in Figure 6, 8-way has been selected
as sufficient to provide good performance results while ensuring
that the resources used are affordable.

Finally, with the selected hash and memory associativity, we
conducted a combined-space exploration of the sizes of both
DCT memories (DM and VM). The results in speed-up cycles
for a different number of memory entries for the Cholesky ap-
plication are shown in Table 6. The number of DM and VM
entries in this Table is per DCT, and a total of 4 DCTs were
used for obtaining those results, as deduced above. As can be
seen, the previously selected 1024 entries for the VM are more
than enough, and the correct design point for this benchmark
is 512 entries in the VM of each DCT and 64 8-way (512) en-
tries for the DM. While this value is not the maximum for each
benchmark, it is very close to the upper limit for all benchmarks
and constitutes an affordable amount of memory (3 KB the VM
and 5.25 KB the DM) in each DCT module.

VM DM entries
entries 32 64 128 256 512 1024 2048
32 3.17 3.22 3.22 3.22 3.22 3.22 3.22
64 4.40 6.26 6.56 6.57 6.57 6.57 6.57
128 4.42 7.40 11.41 12.41 12.42 12.42 12.42
256 4.42 7.41 12.22 18.60 20.21 20.21 20.21
512 4.42 7.41 12.21 19.50 23.27 23.27 23.27
1024 4.42 7.41 12.21 19.50 23.27 23.27 23.27
2048 4.42 7.41 12.21 19.50 23.27 23.27 23.27
4096 4.42 7.41 12.21 19.50 23.27 23.27 23.27

Table 6: Speed-up obtained for the Cholesky application as a function of the
size of both DCT module memories.

Our last experiment in the space design exploration consists
of a crosscheck of the obtained values. We evaluated the sys-
tem by changing the number of modules, but maintaining the
total amount of memory. The results of this experiment can
be seen in Figure 7, which shows that it is necessary to have
at least 4 TRS and 4 DCT modules to achieve the upper per-
formance limit of the explored system. One may also see that
more modules does not help to improve this performance. This
is because four modules are enough to exploit the parallelism
found in those benchmarks, and any increase in this number
only results in a more complex network. Note however that
doubling the number of modules halves the memory in each
module. This has no influence on the capacity of the system in
terms of tasks, since TM is always fully occupied if there are
enough tasks, but as dependences can only be stored in the as-
signed DCT, halving their memories may sometimes give rise
to stalls if their occupancy is not perfectly balanced.

Chol. Heat LU Sp-LU

modules

0

20

40

60

S
p

ee
d

-u
p

2 DCTs, 2 TRSs

4 DCTs, 4 TRSs

8 DCTs, 8 TRSs

Figure 7: Effect of changing the number of modules maintaining the sizes of
the memories.

In conclusion, our proposed configuration for a Picos Hard-
ware machine is composed of 10 modules: 1 Gateway, 4 TRSs,
4 DCTs and 1 TS. Each TRS has a 256-entry TM. Each DCT
module has 2 memories: the VM is an indexed array of 512 en-
tries while the DM is an 8-way set associative memory with 64
entries (also amounting to a total of 512 entries). In Section 5,
we compare the performance results for the set of benchmarks
in the selected design to the those that can be obtained with the
software runtime as well as to the ideal ones.

4.2. Simple Picos for small multicores

1 2 4 8 16 32 64 128 256

cores

0

5

10

15

S
p

ee
d

-u
p

52.25 KB

26.1 KB

13 KB

6.5 KB

3.3 KB

1.65 KB

Figure 8: Speedups obtained with only one TRS and one DCT modules when
changing the memory sizes.

In addition to our previous design space exploration target-
ing applications that can scale up to 256 processors, we wish to
select a more simple Picos hardware design capable of manag-
ing small multicores. In order to conduct this exploration we
selected an initial configuration of Picos that has only one TRS
and one DCT module and configured them with an amount of

7

memory equal to the total amount in our previous selected de-
sign. We obtained the speed-ups that this design can achieve
when a variable number of processors is used. We then reduced
all the memories by half and repeated the experiment. Fig-
ure 8 shows the results obtained for the Cholesky application
by means of this experiment. Results for the other benchmarks
show a similar behavior. As one may see in this Figure, it is
necessary to have only a quarter of the total system memory
of our previous configuration to obtain virtually the same re-
sults. This means that our minimum configuration is composed
of only 4 modules (1 Gateway, 1 TRS, 1 DCT and 1 TS) and
each module has exactly the same memory as in our previously
selected configuration.

5. Results

In order to form a good idea of how well our proposed fi-
nal systems behave, we evaluated them with a different num-
ber of processors, comparing the speedups obtained to a set of
control configurations. For each of the benchmarks, Figure 9
shows the maximum speedup that can be obtained with the
chosen parallelization strategy (Parallelism=T1/T∞, where
T1 is the sequential time and T∞ is the execution time of the
critical path in the parallel execution, with infinite resources)
of a given benchmark. Figure 9 also shows the results that
would be obtained with a Picos hardware that uses 0 cycles to
process any packet (IdealPicos); the results obtained with our
previously mentioned Picos near-unlimited configuration (Un-
limited); the selected configuration for big systems (HPCConf)
in Section 4.1, and the selected minimum configuration (Min-
Conf) in Section 4.2.

As one may observe in Figure 9, the selected HPCConf per-
formance is almost the same as the near-unlimited one for all
the benchmarks. Only in the case of Cholesky can a small slow-
down be appreciated as a trade-off of downsizing the resources.
As stated in Section 4.2, one can also see that for systems with a
small number of processors (up to 8) a minimum configuration
(MinConf) is able to keep pace, and thus, it would be both suffi-
cient and affordable for implementation in embedded systems.

A comparison of the results in Figure 9 with the maximum
parallelism (Parallelism) shows that the implementable Pi-
cos hardware can extract all the possible parallelism for three
of the four benchmarks. The only exception is for the LU appli-
cation, in which maximum speedup with the ideal (impossible)
implementation of Picos (IdealPicos) can be obtained, but not
with the current one (HPCConf) or even with the near-unlimited
(Unlimited). We believe that the difference in performance here
is due to the large dependency chains of consumers (255 for
each producer) created by the LU application. Awakening 255
consumers means creating a sequential chain of 255 packets
between the TRSs, and thus when the last consumer is awak-
ened several cycles have been wasted. As an improvement we
propose a system that simply creates a new version of a depen-
dence when several consumers are detected. This new version
awakens at the same time as the original one and splits the chain
of packets into two different and parallel chains. However, we

have not implemented this improvement, since with more re-
alistic task sizes this behavior will disappear and be hidden by
the longer task execution times, as can be seen below in Sec-
tion 5.1.

5.1. Comparison with the software alternative
Figure 10 provides a comparison of the benchmark per-

formances when using HPCConf and the performance of
the OmpSs benchmark versions using Nanos++ runtime for
Cholesky and LU problems. OmpSs results are for a machine
with 12 cores at 2.4 GHz (see Section 3). The Y-axis in this
Figure indicates the speed-ups obtained against the sequential
execution when we change the number of threads (X-axis) and
the parallel approach (the block size). The executions shown
in each graph solve the same problem: a Cholesky and a LU
application for a 2048 problem size (matrix), but with dif-
ferent block sizes (the different bars are labeled with the se-
lected block size) with Nanos++ (Nanos bars) and Picos hard-
ware (Picos bars). To avoid the variability of comparing dif-
ferent executions, all the tests were performed three times and
the best results were chosen. Furthermore, it is important to
note that while Nanos++ real executions are influenced by the
parallel memory behavior of the application, Picos results are
based on a sequential execution that may exhibit a different
memory behavior. In Figure 10 one may observe that when
the parallelism is increased (bars with diminishing block sizes)
Nanos++ and Picos take advantage of the increasing number of
tasks (Cholesky 2048-1024 has only 4 tasks while 2048-16 has
357760 tasks). However, as the task granularity diminishes (the
problem size is the same in all the executions) the overhead in-
troduced by the software runtime scheduler starts to introduce
diminishing returns in the obtained speed-up. This effect can
be observed in the last execution configurations in Figure 10(a):
bars 64-Nanos, 32-Nanos and 16-Nanos. Moreover, the Picos
hardware is able to benefit from the parallelism of the applica-
tion regardless of the parallelism granularity; in fact, the more
aggressive the parallelism, the better Picos exploits it. This be-
havior is really desirable as it decouples the application paral-
lelization approach from the hardware in which it is going to be
executed, thereby making life easier for the parallel program-
mer.

In the case of the Figure 10(b), two interesting effects can
be seen. First of all it shows superlinear speed-up for the LU
2048-16 parallelization making Nanos++ perform better than
the hardware. This effect cannot be observed in Picos because
its results are extrapolated from the sequential execution, but it
will also occur in a real machine, thus enabling the hardware
to be at least as good as the software. The second effect we
can observe is that the delay introduced by the hardware when
following the large chain dependencies observed in Figure 9
vanishes due to the more reasonable size of the problem and
the tasks. As commented above, this effect is easily solvable,
although the effort would probably not be worthwhile in real
implementations.

Figure 11 shows the number of task-instance executions
(right axis) and the average task size in cycles (left axis) of the
executions in Figures 10(a) and (b) as a function of the block

8

1 2 4 8 16 32 64 128 256 512

Cores

0

20

40

60

S
p

ee
d

-u
p Parallelism

IdealPicos

Unlimited

HPCConf

MinConf

(a) Cholesky

1 2 4 8 16 32 64 128 256 512

Cores

0

20

40

60

S
p

ee
d

-u
p Parallelism

IdealPicos

Unlimited

HPCConf

MinConf

(b) Heat

1 2 4 8 16 32 64 128 256 512

Cores

0

20

40

60

S
p

ee
d

-u
p Parallelism

IdealPicos

Unlimited

HPCConf

MinConf

(c) LU

1 2 4 8 16 32 64 128 256 512

Cores

0

20

40

60

S
p

ee
d

-u
p Parallelism

IdealPicos

Unlimited

HPCConf

MinConf

(d) Sparse-LU

Figure 9: Speedups obtained for different number of processors with several different configurations.

sizes. As can be observed, on comparing the three figures, the
software approach suffers not only when the tasks are small but
also when the number of tasks grows exponentially. On the
other hand, the hardware transforms its limited memory stor-
age drawback into an advantage. Picos hardware continues to
obtain good results because it only maintains a limited number
of in-flight tasks at the same time, but processes them very fast.

Figure 11: Number of tasks and average task size in cycles of Cholesky 2048
and LU 2048 as function of the block size.

Another interesting side effect of using the Picos hardware
instead of the software approach is that the hardware does not
suffer from contention when the number of threads increases.
This effect can be seen even for 12 threads, compared with 8
threads in the 256 bars in figure 10(a). In these two bars, the
number or threads augment and the Picos hardware is able to
benefit from the increase in available resources (this configu-
ration, Cholesky 2048-256 has only 120 tasks and a maximum
speed-up (Parallelism) of 7.6×). However, the runtime is not
able to do so, and provides even less speed-up with more re-
sources. The reason for this different behavior is the decoupled
design of the hardware, which allows it to work in parallel in
the different dependence chains that the application generates,
thereby avoiding contention caused by shared data structures.

In fact, to illustrate better this example of contention by taking
it to the limit, Cholesky 2048-64 has a maximum speed-up of
103× and our selected configuration can extract a speed-up of
up to 76× with 256 workers. An even more parallel configura-
tion (with 8 TRS and 8 DCT modules) with the same number of
workers can scale up to a 100×, showing that even for very ag-
gressive machines and demanding applications the Picos hard-
ware system would be able to deal with the challenge.

6. Related Work

Some hardware support solutions have been proposed to
speed-up task management, such as Carbon [6], TriMedia-
based multi-core system [7] and TMU [8], but most of them
only schedule independent tasks. In these systems, the pro-
grammer is responsible for delivering tasks at the appropriate
time. Carbon minimizes task queuing overhead by implement-
ing task queue operations and scheduling in hardware to support
fast tasks dispatch and stealing. The TriMedia-based multi-core
system contains a centralized task scheduling unit based on Car-
bon. TMU is a look-ahead task management unit for reducing
the task retrieval latency that accelerates task creation and syn-
chronization similar to video-oriented task schedulers [9].

Dynamic scheduling for system-on-chip (SoC) with dynami-
cally reconfigurable architectures is interesting for the emerging
range of applications with dynamic behavior. As an instance,
Noguera and Badia [10] presented a micro-architecture sup-
port for dynamic scheduling of tasks to several reconfigurable
units using a hardware-based multitasking support unit. In this
work the task-dependency graph is statically defined and ini-
tialized before the execution of the tasks of an application. Un-
like Noguera’s work, in our work the task dependency graph
is dynamically created and maintained using runtime data flow
information, therefore increasing the range of applications that
can be parallelized.

Nexus++ [11] and our previous hardware implementation of
Task Superscalar architecture [5] are other hardware task man-

9

(a) Cholesky (b) LU

Figure 10: Comparison of Nanos++ and Picos with different number of threads and tasks for the same problem (Cholesky 2048 and LU 2048).

agement systems designed in VHDL based on StarSs. Both de-
signs leverage the work of dynamically scheduling tasks with
a real-time data dependence analysis while at the same time
maintaining the programmability, generality and ease of use of
the programming model. However, in this paper we present a
deeper space design exploration analysis of the hardware sys-
tem using several real benchmarks. Results show that Picos
hardware, with less hardware resources than previous works,
achieves near ideal speedup for the analyzed real benchmarks.

7. Conclusions

In this paper we present the Picos Hardware, a Task Su-
perscalar architecture implementation that supports the paral-
lel programming model OmpSs in order to exploit parallelism
efficiently in many-core architectures. We describe the Picos
work-flow in detail showing its key design issues and the fact
that it can be implemented efficiently using only 53 KBytes of
memory in a decoupled design. We also analyze the perfor-
mance of the proposed design, showing that an affordable de-
sign composed of only ten modules is able to keep pace with the
necessities of a system with 256 workers providing speed-ups
very close to the theoretical limit for all the analyzed bench-
mark applications. A simpler design with only 13 KBytes of
memory and 4 modules manages up to 8 cores with no signif-
icant performance loss, thereby making it suitable for current
embedded devices.

Results show that the runtime task-management hardware
approach is much more efficient than the software alternative
for the whole set of benchmark applications used when they
are divided into several small tasks. Furthermore, the hardware
approach efficiently decouples the parallelization applied to the
applications from the resources (physical threads) used in per-
forming the computation, thus enabling the applications to be
easily optimized for a wide range of target platforms. These ad-
vantages are attributable to two main factors: the speed at which
the hardware can manage the task dependencies, and its decou-
pled design that allows different processes (such as chaining de-
pendencies while sending tasks to execute) to be performed in
parallel. Both the minimized overhead and reduced contention
imply that smaller tasks can be executed efficiently, thus provid-
ing a suitable base for building and exploiting next-generation

many-core systems.

8. Acknowledgements

This work is supported by the Ministry of Science and Tech-
nology of Spain and the European Union (FEDER funds) un-
der contract TIN2012-34557, by the Generalitat de Catalunya
(contract 2009-SGR-980), by the European FP7 project TER-
AFLUX id. 249013 and by the European Research Council un-
der the European Union’s 7th FP, ERC Grant Agreement num-
ber 321253. We also thank the Xilinx University Program for
its hardware and software donations.

References

[1] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, A. R.
LeBlanc, Design of ion-implanted MOSFET’s with very small physical
dimensions, IEEE Journal of Solid-State Circuits 9 (1974) 256–268.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger,
Dark silicon and the end of multicore scaling, in: Intl. Symp. on Computer
Architecture, 2011, pp. 365–376.

[3] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia,
E. Ayguade, J. Labarta, Productive cluster programming with OmpSs, in:
Euro-Par, 2011, pp. 555–566.

[4] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, M. Valero, Task Superscalar: An out-of-order task pipeline,
in: Intl. Symp. on Microarchitecture, 2010, pp. 89–100.

[5] F. Yazdanpanah, D. Jimnez-Gonzlez, C. Alvarez-Martinez, Y. Etsion,
R. M. Badia, Analysis of the task superscalar architecture hardware de-
sign, in: ICCS’13, 2013, pp. 339–348.

[6] S. Kumar, C. J. Hughes, A. Nguyen, Carbon: Architectural support for
fine-grained parallelism on chip multiprocessors, in: Intl. Symp. on Com-
puter Architecture, 2007, pp. 162–173.

[7] J. Hoogerbrugge, A. Terechko, A multithreaded multicore system for em-
bedded media processing, Trans. on High-performance Embedded Archi-
tectures and Compilers 3 (2).

[8] M. Själander, A. Terechko, M. Duranton, A look-ahead task management
unit for embedded multi-core architectures, in: Conf. on Digital System
Design, 2008, pp. 149–157.

[9] G. Al-Kadi, A. S. Terechko, A hardware task scheduler for embedded
video processing, in: Intl. Conf. on High Performance & Embedded Ar-
chitectures & Compilers, 2009, pp. 140–152.

[10] J. Noguera, R. M. Badia, Multitasking on reconfigurable architectures:
Microarchitecture support and dynamic scheduling, ACM Trans. Embed.
Comput. Syst. 3 (2) (2004) 385–406.

[11] T. Dallou, B. Juurlink, Fpga-based prototype of nexus++ task manager,
in: 6th Workshop on Many-Task Computing on Clouds, Grids, and Su-
percomputers (MTAGS13), 2013.

10

	Sin título

