
1

Group-Based Parallel

Multi-Scheduler for Grid Computing

Goodhead T. Abraham, Anne James and Norlaily Yaacob

Distributed Systems and Modelling Research Group,

Coventry University, UK, CV1 5FB

abrahamg@uni.coventry.ac.uk

{a.james, n.yaacob}@coventry.ac.uk

Abstract
With the advent in multicore computers, the scheduling of Grid jobs can be made more

effective if scaled to fully utilize the underlying hardware, and parallelized to benefit from the

exploitation of multicores. The fact that sequential algorithms do not scale with multicore

systems nor benefit from parallelism remains a major obstacle to scheduling in the Grid. As

multicore systems become ever more pervasive in our computing lives, over reliance on such

systems for passive parallelism does not offer the best option in harnessing the benefits of

their multiprocessors for Grid scheduling. An explicit means of exploiting parallelism for

Grid scheduling is required. The Group-based Parallel Multi-scheduler, introduced in this

paper, is aimed at effectively exploiting the benefits of multicore systems for Grid scheduling

by splitting jobs and machines into paired groups and independently scheduling jobs in

parallel from those groups. We implemented two job grouping methods, Execution Time

Balanced (ETB) and Execution Time Sorted then Balanced (ETSB), and two machine

grouping methods, Evenly Distributed (EvenDist) and Similar Together (SimTog). For each

method, we varied the number of groups between 2, 4 and 8. We then executed the MinMin

Grid scheduling algorithm independently within the groups. We demonstrated that by sharing

jobs and machines into groups before scheduling, the computation time for the scheduling

process drastically improved by magnitudes of 85% over the ordinary MinMin algorithm

when implemented on a HPC system. We also found that our balanced group based approach

achieved better results than our previous Priority based grouping approach.

Keywords: Grid Scheduling, Multicore systems, Parallelism, Multi-scheduling, Machine

Grouping, Job Grouping, HPC.

1. Introduction

With the advent of multicores, scheduling of Grid jobs can be made more effective if

parallelized to fully utilize the multicore and benefit from the underlying hardware. Most Grid

scheduling algorithms are saddled with overheads incurred in the pre-optimizing

computations done before scheduling jobs. Secondly, during scheduling, more overheads are

incurred when new jobs arrive and the whole pre-optimizing computations have to be done

over again. Furthermore serial scheduling algorithms become bottlenecks when the number of

tasks to be scheduled grows.

Multicore technology has come to stay and as Grid computing continues to grow, it will be

worthwhile to scale Grid scheduling to benefit from the multicore technology. Multicore

systems offer opportunity for parallelism and increased throughput. Parallelism takes

programming away from the traditional serial execution approach by employing several

mailto:abrahamg@uni.coventry.ac.uk

2

processors to simultaneously execute independent tasks and is best suited for independent

jobs which characterize a large percentage of users’ jobs on the Grid. Increased throughput is

a direct increase in output over a set period resulting from more efficient processing. Current

Grid scheduling algorithms do not exploit the benefits inherent in the underlying multicore

systems, mostly focussing on parallel execution of jobs rather parallelising the scheduling

function. Neglecting the underlying multicore hardware in the scheduling algorithm of the

Grid will cause an unnecessary bottleneck in processing.

The design of a parallel multi-scheduling method for the Grid that takes the underlying

multicore hardware into consideration will help position the growth on the right path for

future challenges. This work is aimed at exploiting the benefits of multicore systems for the

improvement of Grid scheduling. This research builds on our previous work, the Priority-

based Parallel Multi-scheduler (PPMS) method [1]. We found in our previous work that

grouping tasks and machines and then scheduling in parallel across paired groups can

improve scheduling time. The savings occurred because of the reduction in job numbers in

the groups which dampened the polynomial shape of the scheduling algorithm, MinMin, and

also because of the parallelisation. We also noticed that the heuristics employed in

configuring the groups effects the scheduling time. The work in this paper sets out a generic

grouping approach that can be calibrated according to various criteria such that improved

performance can be obtained. It generalises our previous work and offers further discussion

on its potential impact.

We used two methods for grouping of Grid jobs, and two methods for the grouping of Grid

resources (machines). After the grouping of machines and jobs separately, a pairing is made

between job groups and machines groups. Then using multiple threads (multi-threading),

scheduling is executed independently within the paired groups in parallel. Multi-scheduling

in this context refers to the scheduling of several independent groups of jobs to groups of

machines in parallel. A resources group contains a set of different computers for servicing a

set of jobs from a job group – the machines are grouped based on their configuration. Two

methods are adopted for this purpose: and Evenly Distributed (EvenDist); and Similar

Together (SimTog). The methods are discussed in section 3. A job group contains a set of

Grid jobs submitted by users but sorted into a group, based on some characteristics for the

purpose of being scheduled to a machine group independently. Two methods are adopted for

categorizing jobs into groups: Execution Time Balanced (ETB); and Execution Time Sorted

and Balanced (ETSB). These methods are also discussed in section 3. The scheduling of jobs

takes place within the groups simultaneously, achieved through the use of threads.

The remainder of the paper is organized as follows; Section 2 discusses related work. Section

3 presents the Group-based Parallel Multi-Scheduling (GPMS) method. Section 4 describes

the simulation for the experiment and section 5 discusses the experimental setup and

scenarios. Section 6 discusses results, analysis of the results and performance evaluation of

the method against the MinMin and also against the PPMS method. Section 7 provides

further discussion of results. Section 8 provides conclusion and thoughts for future work.

2. Related Work

The scheduling problem in heterogeneous environments is NP-complete [2]. Typically

heuristics are employed to ease the problem solving. A parallel scheduler for the Grid would

reduce further the time needed to solve the scheduling problem. Such a design will exploit

multicore technology and play a major role in the defined growth path of the Grid, facilitating

increased throughput and scalability. The challenge is to develop a parallel scheduler that is

dynamic, adaptive to workload increase, ensures increased throughput, is free of bottlenecks

and which maximizes resource utilization.

3

Scheduling can be carried out in immediate mode or batch mode [3]. Immediate mode is

when a job is assigned to a machine as it arrives and batch mode is when a number of jobs are

batched and scheduled together. Algorithms for immediate mode include: the traditional

First Come First Serve (FCFS); Backfilling Opportunistic Load Balancing (OLB); minimum

execution time (MET); minimum completion time (MCT); and k-percent best (KPB). Some

examples that use these approaches are [4, 5, 6, and 7]. Quezada-Pina et al. [8] compared

some of these strategies in the context of a strategy of admissible machines, where only part

of the complete set of machines is made available. Their simulation results revealed that in

terms of the considered criteria, admissible allocation strategies outperform algorithms that

use all available sites for job allocation. Liang et al. [9] used behavioural clustering of

execution time to establish a pattern for users’ jobs and used that to improve accuracy of

overall job execution times. Batch approaches include algorithms such as: MinMin, where

jobs with the minimum completion time are assigned to the processor that can complete the

job the earliest; MaxMin, where jobs with maximum completion time are assigned to

processors that can complete the job earliest; and Sufferage, where a machine is assigned to

the task that would ''suffer'' most in terms of expected completion time if that particular

machine is not assigned to it [3]. Evolutionary models have also been applied [10, 11] in a

batch context. Previous work has investigated and compared different immediate and batch

mode scheduling algorithms [3, 8]. Further discussion is provided in our previous work [1].

Later work has taken more of a user perspective and concentrated on providing or

maintaining Quality of Service. These efforts include: resource reservation mechanism [12],

monitoring, reallocation, varying levels of service [13]; and deadline guarantees [10, 14]. All

the schemes mentioned in this paragraph concentrate on makespan (the time taken to execute

a set of jobs) or improving quality of service to users in terms of job execution time and cost.

They do not concentrate on improving the efficiency of the scheduler in terms of how long

the scheduling task takes. Our current research aims to improve the efficiency of the

scheduler through exploiting parallelisation in a new way. This will also improve makespan

and quality of service further.

There has been some work that has addressed parallelisation of the scheduler itself [1].

Nesmachnow and Canabé [15, 16] investigated the use of massively parallel GPUs

(Graphical Processing Units) to improve scheduling time. Pinel, Dorronsoro and Boury [17]

have presented CPU and GPU multi-threaded parallel designs of the MinMin algorithm. As

would be expected, the GPU design outperforms the CPU because of the massive

parallelisation, while the parallel CPU solution outperformed the serial. The experimental

evaluation of the proposed parallel methods demonstrates that a significant reduction on the

computing times can be obtained when using the parallel GPU hardware. Further approaches

have proposed evolutionary algorithms which exploit GPUs in solving the scheduling

problem [18, 19]. Nesmachnow, Cancela and Alba [20] implemented a parallel micro

evolutionary algorithm to schedule tasks in heterogeneous and Grid environment algorithm.

Speed-up was obtained in comparison to their previous work. Pinel, Dorronsoro and Boury

[17] proposed a cellular genetic algorithm (CGA) to solve the MinMin problem. The CGA

brought better solutions but took longer to run. Mirsoleimani, Karami and Khunjush [21]

propose a memetic algorithm, which uses combinations of non-deterministic approaches to

solve the scheduling problem in a GPU environment. Very high speed-up was achieved. The

difference between the research described in this paragraph and our research is that the other

research described has focussed mainly on a GPU environment and/or on non-deterministic

algorithms such as evolutionary algorithms. The GPU environment offers massive

parallelisation. However the non-deterministic algorithms can have unpredictable run times.

The scope of our work has been the more general purpose environment. We selected this

environment as we wanted to create a facility that did not require a specialised environment.

We also concentrated on deterministic algorithms to have better control on scheduler

4

execution time. The other novelty in our work is the use of grouping to achieve greater

efficiency through parallelisation.

In our previous work on Priority-based Parallel Multi-scheduler (PPMS) for the Grid, we

noted that the effect of grouping machines and jobs before scheduling was promising but the

group cardinality (i.e. number of groups) we used was constant [1]. We needed to investigate

further by employing methods that can vary the number of groups. In that same work, we

equally noted that the Priority method does not necessarily distribute jobs equally among the

job groups. This phenomenon degraded the general performance. We needed to develop a

method that equitably distributes jobs amongst the groups which we have called Group-based

Parallel Multi-scheduler (GPMS) for the Grid. The method employs various grouping

strategies to exploit the multicore. It offers a platform of parallelism to the scheduling

algorithm itself to improve the computation and scheduling times and also provide answers to

some of the questions thrown up in our earlier work.

To summarise, parallel multi-scheduling can improve Grid scheduling performance and

should be exploited. This research aims to exploit multicores both on scheduler and on Grid

sites through an innovative grouping method which enhances and optimizes the performance

of Grid schedulers.

3. Group-Based Parallel Multi-Scheduler (GPMS) for Grid

3.1 Overview of the scheduler

In our previous work on Priority-based Parallel Multi-scheduler (PPMS) for the Grid [1], we

focused on the use of grouping of Grid jobs based on their priorities and categorizing Grid

machines based on two methods, the Evenly Distributed and Similar Together methods. We

noted it will be worthwhile to exploit further the effects of varying the number of groups for

both jobs and machines. We also needed a method that distributes jobs equally among the job

groups as the Priority method does not guarantee this.

The Group-based Parallel Multi-scheduler (GPMS) for Grid aims at exploring parallelism on

multicore systems to enhance scheduling algorithms in Grid. To achieve this we assume that

multicores are pervasive and constitute major part of Grid machines. We also assume that our

scheduler runs on a multicore system.

The GPMS requires jobs to be split into groups. We used two methods to achieve this:

Execution Time Balanced (ETB) - Estimate execution time and then balance across groups.

Execution Time Sorted and Balanced (ETSB) - Estimate execution time, then sort jobs and

 then balance across groups.

Jobs are first read into the scheduler by a job reader. We then estimate the execution time for

each job. The resulting job size and estimated execution time statistics are held in a table (the

Estimation table) to be used later for grouping and/or scheduling decisions.

The GPMS also requires machines to be split into the same number of groups as the jobs. We

use two methods to achieve this:

Evenly Distributed (EvenDist) - machines are evenly distributed independent of

 characteristics.

5

Similar Together (SimTog) - machines with similar characteristics are grouped together.

Information about Grid machines such as machine id., CPU speed and number of CPUs are

known to the algorithm and are used for splitting decisions and also for simulation and

computation of execution times of jobs. The scheduling algorithm is then executed in parallel

within the groups. A thread pool is created to enable the parallel execution within the groups

(multi-threading). The scheduling of jobs takes place simultaneously and independently

between paired groups (multi-scheduling). The MinMin algorithm is used within each group

pair to schedule the jobs.

The steps of the GPMS are presented in Table 1. Figure 1 provides an illustrative activity

diagram showing the GPMS steps of two processes. One is the machine grouping process and

the other the process of grouping and scheduling jobs onto machines. The machine grouping

process occurs less frequently that the scheduling process.

Table 1: High-level algorithm for GPMS

Step1. Start

Step2: Specify number of threads

Step3: Specify number of groups to use

Step4: Read jobs into the scheduler

Step5: From the job attributes, estimate the execution time for each job

Step6: Group jobs into number of specified groups using a chosen grouping method

Step7: Read machines and group them into the specified number of groups using a

 chosen grouping method

Step8: Execute the scheduling algorithms within the groups

Step9: Write results to output file

Step10: Stop

Figure 1: Activity diagram showing steps of the GPMS

Sort Machines

Group Machines
according to

Method

Check Jobs

Return Jobs

Schedule Jobs Execute Jobs

Group Jobs
according to

Method

Machine grouping

process
Scheduling process

6

3.2 Overview of grouping methods

The GPMS requires jobs and machines to be grouped. The groups are paired and scheduling

occurs in parallel within the groups. Various methods could be used to group the jobs and

machines. In this paper we discuss four methods, two for job grouping and two for machine

grouping.

3.2.1 Grouping jobs

Our approach splits jobs into groups before executing the scheduling algorithm within the

groups. Jobs are split (grouped) based on the estimated execution time computed from their

size. Jobs are initially held in a table which also holds their estimated size. Two methods are

employed in splitting jobs into groups:

Execution Time Balanced (ETB)

This method uses an estimation of the processing time for each job to group the jobs. It

attempts to even out the total processing times in groups by adding the next job to the group

with the current lowest total processing time. Table 2 shows the algorithm for the ETB

method.

Table 2: Algorithm for the ETB method of grouping jobs

Step1: Start

Step2: Select job from the Estimation table

Step3: Select the group with the smallest totalestimatedTime

Step4: Add job to group with the smallest totalestimatedTime

Step5: Update the totalestimatedTime for the group

Step6: Repeat step2 to step5 until end of table

Step7: Stop

Execution Time Sorted and Balanced (ETSB)

This method is similar to the ETB method but this time the jobs are sorted by size first, with

the largest jobs at the top of the list. This has the effect of ensuring a fairer balance across

groups. Table 3 outlines the ETSB algorithm.

Table 3: Algorithm for the ETSB method of grouping jobs

Step1: Start

Step2: Sort jobs in the Estimation table

Step3: Select job from the Estimation table

Step4: Select the group with the smallest totalestimatedTime

Step5: Add job to group with the smallest totalestimatedTime

Step6: Update the totalestimatedTime for the group

Step7: Repeat step3 to step6 till end of table

Step8: Stop

3.2.2 Grouping machines

For every group of jobs, there is equally a group of machines onto which jobs are to be

scheduled. This is to allow a high degree of independence of job and machine groups and to

enable scheduling to take place in parallel over the groups. Two methods are employed in

grouping (splitting) machines:

7

Evenly Distributed (EvenDist)

This method splits machines into each group so that each group has the same number of

machines. It adds the first machine to the first group, then the second to the second group,

third to the third group and so on until the last group is reached. When the last group is

reached the next machine is allocated to the first group and the process continues until all

machines are allocated. Machines are first sorted before the grouping. This method ensures

that machines making up the Grid are equally (or best effort equally) split into the specified

groups. This method offers better result if jobs are equally distributed among groups and if

the scheduling policy does not favour one set of jobs over another. Table 4 shows the

algorithm for the Evenly Distributed method.

Table 4: Algorithm the Evenly Distributed method for grouping machines

Step1: Start

Step2: Sort machines based on configurations (i.e. number and speed of processors)

Step3: Register number of groups

Step4: Add first machine to first group

Step5: Add next machine to next group

Step6: Repeat Step4 and Step5 until last group is reached.

Step7: Add next machine to first group

Step8: Repeat Step4, Step5 and Step6 until all machines are assigned to groups.

Step9: Stop

Similar Together (SimTog)

This method groups machines based on their performance characteristics. To group machines

based on their similarity, the configurations of the machines are compared and those with

similar characteristics (i.e. CPU speed and number of CPUs) are grouped together before jobs

are scheduled to them. This type of grouping can be useful if a priority-based scheduling

method is to be used and the jobs are similarly distributed in terms of priority. Each group has

the same number of machines. Table 5 shows the algorithm for the Similar Together method.

Table 5: Algorithm for the Similar Together method for grouping machines

Step1: Start

Step2: Sort machines based on configurations (i.e. number and speed of processors)

Step3: Work out how many machines per group (N = number machines/number groups)

Step 4: Add top N machines to the first group,

Step5: Add next N machines to the next group

Step6: Repeat Step5 until all machines are assigned

Step7: Stop

3.2.3 Inside group scheduling

Our grouping method seeks to improve the efficiency of Grid scheduling algorithms by

enabling the parallel multi-scheduling of jobs between independent groups of machines and

jobs. After grouping both jobs and machines with our method, we then implemented the

traditional Grid scheduling algorithm inside the groups. In this study, we implemented the

MinMin scheduling algorithm within the groups.

3.2.4 Multi-threading

Multi-threading was implemented with a dynamic thread pool. Threads were activated when

needed and deactivated when no longer needed. With the thread pool, we had the option of

8

choosing in our test parameters how many threads to use for each execution. Threads are not

necessarily set in a one to one relationship with each parallel scheduling event. In this paper

we have analysed the results for 4 threads.

4. The Simulation

Simulation was used for the experiment. In this section we discuss the source for the jobs

used in the experiment, how the Grid was simulated, and how the execution time was

estimated.

4.1 Grid job source

Jobs used for our experiment were downloaded from the Grid Workload Archive [22]. The

Grid Workload Archive is designed to make traces of Grid workloads available to researchers

and developers alike. It contains files both in plain text format and the Grid Workload Format

(GWF). The GWF file contains 29 attributes concerning the running of a job in a Grid. We

used some of these to create an estimate of job size and execution time. Of the attributes

contained in the GWF file, we employed only the fields relevant for our simulation,

estimation and experiment. These attributes are used to estimate job execution times on the

Grid machines. Table 6 shows relevant job attributes relevant in our work.

Table 6: Attributes from the Grid Work Archive used in our work

Attribute Description

JobID Identifies the job

NProcs Number of allocated processors

ReqTime Requested time measure in wallclock seconds

ReqNProcs Requested number of processors

RunTime Measured in wallclock seconds

AverageCPUTime Average CPU time over all the allocated processors

4.2 Estimation of Job Sizes

The information in the GWF trace file does not consist of job sizes but our simulation and

experiment needs this variable to estimate the execution time of the job on a processor. We

therefore estimate the job size from some available attributes, such as those shown in Table 6.

For instance if we multiple RunTime by NProcs we have some estimate of size. A more

accurate estimate may come from AverageCPUTime multiplied by NProcs but

AverageCPUTime was not always available. A value not available is shown as -1 in the file.

Table 7 shows typical values of the attributes from some of the rows in the trace file. Because

of missing values it was not possible to accurately replicate original job size from the trace

file but we used some values available to generate a set of jobs with estimated sizes. The

estimations served our experiment adequately as we needed a range of jobs of varying sizes

with which to experiment. Exactly mirroring the sizes of the jobs in the trace file was not

necessary.

Table 7: Typical values from the trace file

JobID RunTime NProcs AverageCPUTime ReqNProcs ReqTime

0 0 4 -1 4 3600

1 19 1 -1 1 3600
2 10 5 -1 5 3600

3 8 90 -1 90 3600

4 19 100 -1 100 3600

5 25 1 -1 1 3600

9

4.3 Simulation of Grid

A Grid site was characterized by the following attributes: Category; CPU; RAM; Bandwidth.

For example {A; 1200; 1000} represents Grid site A, with 1200 CPUs and Bandwidth 1000

Mbps. A Machine is defined with the following attributes: CORES; CPU; RAM. For instance

{2; 2000; 2000000} represents a Grid resource (machine) with 2 CPUs, 2000 MHz (2GHz)

and 2000000 (2MB) RAM. Table 8 shows the characteristics of the simulated Grid.

Table 8: Components of the simulated grid

Grid Site Characteristics Grid Site Characteristics

Number of

machines

Speed of

CPU

Number of

CPU/Cores

Number of

machines

Speed of

CPU

Number of

CPU/Cores

A

240

Machines

30

30

30

30

30

30

30

30

1GHz

2GHz

3GHz

4GHz

1GHz

2GHz

3GHz

4GHz

1

1

1

1

2

2

2

2

C

440

Machines

60

60

60

60

60

60

60

60

1.5GHz

2GHz

3.5GHz

4GHz

1.5GHz

2GHz

3.5GHz

4GHz

2

2

2

2

4

4

4

4

B

400

Machines

50

50

50

50

50

50

50

50

1.5GHz

2GHz

3.5GHz

4GHz

1.5GHz

2GHz

3.5GHz

4GHz

2

2

2

2

4

4

4

4

D

600

Machines

50

50

50

50

50

50

50

50

50

50

50

50

1.5GHz

2GHz

3.5GHz

4GHz

1.5GHz

2GHz

3.5GHz

4GHz

1.5GHz

2GHz

3.5GHz

4GHz

2

2

2

2

4

4

4

4

8

8

8

8

4.4 Simulation of execution time

The execution time was estimated from the job sizes. The processing speeds of Grid machines

were used to estimate execution times. Waiting times were calculated according to the

schedule and allocation to individual machines. Table 9 gives an outline algorithm for

calculating execution time.

Table 9: Simulation of execution time

Step 1: Set the job size to be job execution time (T) on a reference machine (1 GHz, 1core)

Step 2: Scale the expected time to match the current machine

a. Calculate performance ratio (R) between the current and the reference machine

b. Return the expected execution time divided by the performance ratio (T/R)

5. Experimental Design

We carried out our experiments on a HPC system using one node. In the experiment, we

simulated a Grid environment with four Grid sites consisting of machines with different CPU

10

speed and number of processors. Our scheduling aims directly at the CPUs on the individual

machines. Jobs are scheduled to CPUs.

The configuration of the HPC machine node on which our experiment was executed is as

follows:

Number of physical CPUs per node/head: 2

Numbers of cores per one compute node/head: 12

CPU family: Intel(R) Xeon(R) CPU X5650 2.67 GHz stepping 02

Operating System: Linux x86_64 RHEL 5

For each of the experiments described below we calculated for each parameter variation, the

time taken to schedule and the flow time. The flow time is the time taken to execute all of the

jobs. We defined makespan as the time to schedule plus the flow time. The scheduling time is

the time taken to schedule all the jobs using the algorithm.

Experiment 1

In the first experiment, we executed the MinMin algorithm on the HPC to schedule a range of

jobs (from 1000 jobs to 10000 jobs in steps of 1000) using 4 threads. In each instance of the

experiment, we recorded the time taken to schedule each step of jobs by the set number of

threads, for instance the time taken to schedule 1000, 2000, 3000, 4000, 5000, 6000, 7000,

8000, 9000, and 10,000 jobs. We also calculated the makespan for each variation.

Experiment 2

In the second experiment, we used the ETB method to group the jobs and the EvenDist

method to group the machines before implementing the same test as described in Experiment

1 above. We used 2, 4 and 8 groups and 4 threads in each case. We recorded time taken to

schedule and the makespan each variation.

Experiment 3

In the third experiment, we used the ETB method to group the jobs and the SimTog method

to group the machines before implementing the same test as described in Experiment 1 above.

We used 2, 4 and 8 groups and 4 threads in each case. We recorded time taken to schedule

and the makespan for each variation.

Experiment 4

In the fourth experiment, we used the ETSB method to group the jobs and the EvenDist

method to group the machines before carrying out the same test described in Experiment 1

above. We used 2, 4 and 8 and 16 groups and 4 threads in each case. We recorded time

taken to schedule and the makespan for each variation.

Experiment 5

In the fifth experiment, we used the ETSB method to group the jobs and the SimTog method

to group the machines before implementing the same test described in Experiment 1 above.

We used 2, 4, 8 and 16 groups and 4 threads in each case. We recorded time taken to

schedule and the makespan for each variation.

Our interest in this research was on improvements on scheduling in terms of throughput – the

gains we can make in improving the number of jobs scheduled over a period of time. The aim

was to ameliorate the issue of scheduler bottleneck through scheduling in parallel.

11

6. Performance Evaluation

In this section, we present results, analysis and performance of our GPMS method against

results from the MinMin algorithm used in isolation. We shall refer to results from

Experiment 1 (the first experiment done without the grouping method) as ordinary MinMin or

MinMin, while we shall properly label our results for the other experiments with a

combination of both job and machine grouping methods and the number of groups. We

employed linear graphs, bar charts, tables, trend lines, mathematical computations, percentage

computation, correlation and standard deviation and ANOVA statistical significance methods

for the analysis and evaluation of our results against the MinMin results. We also compared

our results against the results of our previous work which used the Priority method for

grouping jobs [1].

Our complete experimentation yielded many results because of the combinations of several

variables (number of groups, number of threads, job grouping method, machine grouping

methods). The analysis in this paper is based on results for each group cardinality (i.e.

2Group, 4Group and 8Group excluding 16 groups) and for each method (i.e. MinMin, ETB-

EvenDist, ETB-SimTog, ETSB-EvenDist, and ETSB-SimTog). We kept the thread number to 4

for this analysis so that we could focus on improvement, independent of thread variability.

Four threads was chosen because it represents the median cardinality of threads used (1, 2, 4,

8, 16) in our complete experimentation. Also, it allows us to compare results against the

Priority (PPMS) method from our previous work which used 4 threads.

In our performance evaluation, we investigate the following factors and their effects:

 Group cardinality (section 6.1).

 Varying grouping methods (section 6.2).

 GPMS method compared to our previous Priority (PPMS) method (section

6.3).

6.1 Group Cardinality

In this section we analyse the effect of group cardinality (number of groups) using the

following methods:

1. MinMin versus ETB and Evenly Distributed method (ETB-EvenDist)

2. MinMin versus ETSB and Similar Together method (ETSB-SimTog)

For the sake of brevity we do not include all four method combinations in our analysis of

group cardinality. All methods showed a similar pattern, with ETB-EvenDist an example of a

higher performing method over MinMin and ETSB-SimTog showing the lowest performance

over MinMin. The selection of the above methods for analysis therefore gives an illustration

of the range of performance improvement over MinMin and the range of methods. Note that

three of the methods demonstrated equally high performance with no statistically significant

difference between them. These were ETB-EvenDist, ETB-SimTog and ETSB-EvenDist. Thus

any of those three would be an example of the highest performance. We see later that ETSB-

SimTog was the odd one out with a different behaviour. This was the method that gave the

lowest performance, although still significantly better than MinMin alone.

12

6.1.1 MinMin vs. ETB and Evenly Distributed (ETB-EvenDist) method

Table 10 shows the results and computation of improvement of the GPMS ETB-EvenDist

method over the MinMin. These results were yielded after running experiment 1 and

experiment 2 (see section 5).

The MinMin method used a total of 242033 and an average of 3486.2 ms to schedule the job

sets. Using two groups, our method used a total of 34862 and an average of 3486.2 ms to

schedule same task. Four groups used a total of 4701 and an average of 470.1 ms to schedule

the task, while eight groups used a total of 1435 and an average of 143.5 ms to schedule same

tasks. Figure 2 shows the results graphically and Table 11 provides the ANOVA test results

which reveal the significance of the differences between the groups. Taking P values less

than 0.05 to indicate significance, we see that all differences were found to be highly

significant with very low P values.

Using two groups, the ETB-EvenDist method recorded between 6.32 and 9.92 speed-up with

an average of 7.62 speed-up against the MinMin. This represents an average of 86.53 percent

performance improvement over the MinMin. Using four groups, the method recorded

between 16.35 to 59.19 speeds up with an average of 47.46 speed-up over the MinMin,

representing 97.58 percent improvement over the MinMin. Eight groups recorded between

59.45 and 182.50 speed-up and an average of 155.33 speed-up over the MinMin, representing

99.28 percent performance improvement over the MinMin. Across all the groups, as the

number of jobs increases, there was a general improvement in the speed-up to a point beyond

which the speed-up declines.

There was a significant performance improvement by the GPMS over MinMin as the number

of groups increased. Increasing the number of groups enabled the scheduler to compute and

schedule more jobs in parallel. Figures 3 and 4 illustrate the scale of performance

improvements in multiples and percentage against MinMin. We can see an improvement of

scheduling efficiency with respect to the increase in groups. As the scheduling changes from

two groups to eight groups, the scheduling efficiency improved. This shows that using more

groups increases the performance of the scheduling algorithm. Figure 5 shows the

improvement in scheduling time as the number of groups increase. However the rate of

performance improvement of a successive group over its predecessor decreases generally, for

instance, using the ETB-EvenDist method, the rate of improvement of two groups over the

ordinary MinMin was 6.94, between 2 groups and 4 groups, there was performance

improvement of 7.41 while between 8 groups and 4 groups, performance improved only 3.28

times. This shows that even though there is a general performance improvement over MinMin

with increasing groups, the rate of improvement declines and levels off as the number of

groups increases. The calculation of this decreasing rate of improvement is given in Table 12

and illustrated by a line graph in Figure 6.

Table 10: Scheduling times and speed-up for MinMin vs. ETB-EvenDist

Methods MinMin Vs. ETB-EvenDist

Time in ms

Speed-up (X)

in multiples

Speed-up (%)

in percentage

Jobs Limit MinMin

2Grps

4Grps

8Grps

2Grps 4Grps 8Grps 2Grps 4Grp

s

8Grps

1000
654 101 40 11 6.48 16.35 59.45 84.56 93.88 98.32

2000
3230 331 92 25 9.76 35.11 129.20 89.75 97.15 99.23

3000
7601 766 163 46 9.92 46.63 165.24 89.92 97.86 99.39

4000
12920 1475 252 76 8.76 51.27 170.00 88.58 98.05 99.41

5000
18219 2410 323 100 7.56 56.41 182.19 86.77 98.23 99.45

6000
22671 3211 383 128 7.06 59.19 177.12 85.84 98.31 99.44

13

7000
29504 4670 511 185 6.32 57.74 159.48 84.17 98.27 99.37

8000
39074 5565 729 228 7.02 53.60 171.38 85.76 98.13 99.42

9000
48178 6989 954 294 6.89 50.50 163.87 85.49 98.02 99.39

10000
59982 9344 1254 342 6.42 47.83 175.39 84.42 97.91 99.43

Total

242033 34862 4701 1435 76.19 474.63 1553.32 865.27

975.8

0 992.84

Average

 24203.3 3486.2 470.1 143.5 7.62 47.46 155.33 86.53 97.58 99.28

Table 11: ANOVA results for ETB –EvenDist method vs. MinMin and between groups

Test Method P-value Significant

Difference?

1 MinMin / ETB-EvenDist (All groups) 0.001995

Yes

2 MinMin/ ETB-EvenDist (2Grps) 0.00431

Yes

3 MinMin/ ETB-EvenDist (4Grps) 0.00136

Yes

4 MinMin/ ETB-EvenDist (8Grps) 0.00121

Yes

5 ETB-EvenDist (2Grps)/

ETB-EvenDist (4Grps)
0.006842

Yes

6 ETB-EvenDist (2Grps)/

ETB-EvenDist (8Grps)
0.003126

Yes

7 ETB-EvenDist (4Grps)/

ETB-EvenDist (8Grps)
0.022274

Yes

Figure 2: Total and average scheduling times across groups (ETB-EvenDist)

0
50000

100000
150000
200000
250000
300000

M
ill

is
e

cs

Number of Groups

Total Scheduling Time

0

5000

10000

15000

20000

25000

30000

M
ill

is
e

cs

Number of Groups

Average Scheduling Time

14

Figure 3: Speed-up (in multiples) of the ETB_EvenDist over MinMin with increasing jobs

Figure 4: Speed-up (in percentage) of the ETB-EvenDist over the MinMin with increasing jobs

0

20

40

60

80

100

120

140

160

180

200

M
u

lip
le

s

Number of jobs

Speed Up (in multiples)

2Grps 4Grps 8Grps

75.00

80.00

85.00

90.00

95.00

100.00

105.00

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e

rc
e

n
ta

ge

Number of jobs

Speed Up (%)

2 Grps 4 Grps 8 Grps

15

Figure 5: Improvement of the ETB-EvenDist method across group cardinality

Table 1 Performance improvement for ETB-EvenDist method vs. MinMin and between groups

Methods ETB-EvenDist

Performance Improvement(X)

ETB-EvenDist

Performance Improvement (%)
Algorithm MinMin 2Grps 4Grps

8Grps

Methods 2Grps 4Grps

8Grps

Total 242033 34862 4701 1435

Group

MinMin

Total

Total

 6.94 51.49 168.66
100

1

21 X
x

xx 

x1 = MinMin

85.60

x2 =2Grps

98.06

x2

=4Grps

99.41

x2 =8Grps

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 7.41 24.29

x1 = 2Grps

 86.52

x2

=4Grps

95.88

x2 =8Grps

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 3.28

x1 = 4Grps
 69.47

x2 =8Grps

0

50

100

150

200

2 Grps 4 Grps 8 Grps

M
u

lt
ip

le
s

Number of Groups

Speed Up (in multiples)

16

Figure 6: Speed-up rate as group cardinality increases (ETB –EvenDist)

6.1.2 MinMin vs. ETSB and Similar Together (ETB-SimTog) method

Table 13 shows the result and computation of improvement of the ETSB-SimTog method over

the MinMin. These results were yielded after running experiment 1 and experiment 5.

The MinMin used a total of 242033 and an average of 3486.2 ms to schedule the jobs, using

two groups. ETB-SimTog used a total of 82557 and an average of 8255.7 ms to schedule the

same task. Four groups used a total of 17569 and an average of 1756.9 ms to schedule the

task, while eight groups used a total of 3587 and an average of 358.7 ms to schedule the same

task. Figure 7 illustrates the total and average scheduling times. The ANOVA test was used to

check the significance of the results, shown in Table 14. All differences were found to be

highly significant, exhibiting very low P values.

Using two groups, the ETSB-SimTog method recorded between 2.36 and 4.07 speed-ups with

an average of 3.21 speed-ups representing an average of 86.53 percent performance

improvement over the MinMin. Using four groups, recorded between 10.78 to 17.07 speed-

ups with an average of 14.58 speed-up representing 97.58 percent improvement over the

MinMin. While eight groups recorded between 34.42 to 71.04 speed-up, averaging 63.97 and

representing 99.28 percent performance improvement over the MinMin.

Across all the groups, there was a general improvement in the speed-up to a point after which

the speed-up declines. Figures 8 and 9 show the scale of improvement of the ETSB-SimTog

method in multiples and in percentage. Figure 9 shows improvement from 2 to 8 groups for

the same method. Figure 10 shows the rate of improvement and we see that there is a

levelling off of performance between the groups, demonstrating a possible limit to the amount

of improvement that is achievable with successive groups. The calculation of the rates of

improvement is shown in Table 15.

Table 13: Scheduling times and speed-up for MinMin vs. ETSB-SimTog

Methods MinMin Vs ETSB-SimTog

Scheduling time in ms

Speed-up (X) Speed-up (%)

Jobs

Limit

MinMin

2Grps

4Grps

8Grps

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps

1000
654 181 63 19 3.61 10.38 34.42 84.56 93.88 98.32

2000
3230 793 192 51 4.07 16.82 63.33 89.75 97.15 99.23

3000
7601 1876 447 110 4.05 17.00 69.10 89.92 97.86 99.39

0

2

4

6

8

2Grps 4Grps 8Grps

M
u

lt
ip

le
s

Number of Groups

Rate of Improvement

17

4000
12920 3691 757 183 3.50 17.07 70.60 88.58 98.05 99.41

5000
18219 7706 1178 283 2.36 15.47 64.38 86.77 98.23 99.45

6000
22671 8576 1548 360 2.64 14.65 62.98 85.84 98.31 99.44

7000
29504 10343 2133 437 2.85 13.83 67.51 84.17 98.27 99.37

8000
39074 12399 2555 550 3.15 15.29 71.04 85.76 98.13 99.42

9000
48178 15984 3527 685 3.01 13.66 70.33 85.49 98.02 99.39

10000
59982 21008 5169 909 2.86 11.60 65.99 84.42 97.91 99.43

Total
242033 82557 17569 3587 32.12 145.78 639.69 865.27 975.81 992.85

Average

 24203.3 8255.7 1756.9 358.7 3.21 14.58 63.97 86.53 97.58 99.28

Table 14: ANOVA results for ETSB-SimTog vs. MinMin and between groups

Test Method P Value Significant

Difference ?

1 MinMin/ ETSB-SimTog (All) 0.00423

Yes

2 MinMin/ ETSB-SimTog(2Grps) 0.0273

Yes

3 MinMin/ ETSB-SimTog(4Grps)

0.002202 Yes

4 MinMin/ ETSB-SimTog(8Grps)

0.001306 Yes

5 ETSB-SimTog(2Grps)/

ETSB-SimTog(4Grps)

0.00946 Yes

6 ETSB-SimTog(2Grps)/

ETSB-SimTog(8Grps)

0.001943

Yes

7 ETSB-SimTog(4Grps)/

ETSB-SimTog(8Grps)

0.015697

Yes

Table 15: Performance improvement for ETSB-SimTog method vs. MinMin and between groups

Methods ETSB-SimTog

Performance Improvement(X)

ETSB –SimTog

Performance Improvement (%)

 MinMin 2Grps 4Grps

8Grps

Methods 2Grps 4Grps

8Grps

Total 242033 82557 17569 3587 82557 17569 3587

Group

MinMin

Total

Total

 2.93 13.78 47.48
100

1

21 X
x

xx 

x1 = MinMin

65.89

x2 =2Grps

92.74

x 2 =4Grps

98.52

x 2 =8Grps

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 4.70 23.02

x1 = 2Grps

 78.72

x 2 =4Grps

95.66

x 2 =8Grps

18

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 4.90

x1 = 4Grps

 79.58

x 2 =8Grps

Figure 7: Total and average scheduling times of MinMin and across groups (ETSB-SimTog)

Figure 8: Speed-up (in multiples) of ETSB-SimTog over MinMin with increasing jobs

0

50000

100000

150000

200000

250000

300000

M
ill

is
e

cs

Number of Groups

Total Scheduling Time

0
5000

10000
15000
20000
25000
30000

M
ill

is
e

cs

Number of Groups

Average Scheduling Time

0
10
20
30
40
50
60
70
80

M
u

lip
le

s

Number of jobs

Speed Up
(in multiples)

2Grps

4Grps

8Grps

19

Figure 8: Speed-up (in percentage) of ETSB-SimTog over MinMin with increasing jobs

Figure 9: Improvement of ETSB-SimTog on MinMin across group cardinality

Figure 10: Speed-up rate as group cardinality increases (ETSB-SimTog)

75

80

85

90

95

100

105

P
e

rc
e

n
ta

ge

Number of jobs

Speed Up (%)

2Grps

4Grps

8Grps

0

20

40

60

80

2 Grps 4 Grps 8 Grps

M
u

lt
ip

le
s

Number of Groups

Improvement
(in multiples)

0

1

2

3

4

5

6

2Grps 4Grps 8Grps

M
u

lt
ip

le
s

Number of Groups

Rate of Improvement

20

6.2 Comparison of grouping methods

This section compares the performance of all the grouping methods against MinMin alone when using

four groups and four threads. These results were yielded from experiments 1 to 5. We compared the

average and total scheduling time of the ETB and ETSB methods of job grouping on both methods of

machine grouping, EvenDist and SimTog. Table 16 shows the scheduling times and speed-up. The

ANOVA significance test results for the various performances are shown in Table 17.

Figure 11 illustrates the difference in performance between MinMin and the grouping methods. We

see that all the grouping methods perform much better than MinMin. The ANOVA results show these

differences to be significant. Figure 12 compares the grouping methods without MinMin so that we

can differentiate their performance more clearly. We see that the ETSB-SimTog method performs

worse than the others. The ANOVA results, which are discussed in the next paragraph, show this

performance difference to be significant. There was no significant difference between the performances

of the other grouping methods.

All grouping methods performed better than MinMin with significant differences shown in the

ANOVA results. Test 1 in Table 17 has taken the mean scheduling speed of all grouping methods (we

call this GPMS) and compared this to MinMin and a significant difference is shown. This shows that

overall our GPMS performs significantly better than MinMin alone. We also see than the ETB and

ETSB methods perform significantly better than MinMin. The significance analysis shows that there

was no difference between grouping methods ETB and ETSB (Table 17, Test 8), both of which perform

significantly better than MinMin. However a difference is shown between the following methods: ETB-

EvenDist vs. ETSB-SimTog (Test 10); ETB-SimTog vs. ETSB-SimTog (Test 12); and between ETSB-

EvenDist vs. ETSB-SimTog (Test 14). We see that although ETSB-SimTog performs significantly

better than MinMin (Table 17, Test 7), it performs significantly worse than the other grouping methods

(Table 17, Tests 10, 12 and 14).

Table 18 shows the speed-up for all grouping methods. We see that for four groups, three of the

methods (ETB-EvenDist, ETB-SimTog, ETSB-EvenDist) perform at speed-ups of over 46 compared to

MinMin whereas ETSB-SimTog achieved a speed-up of 15 times over MinMin. There is a significant

difference between this speed-up time and the others in the comparative set.

Figure 13 shows improvement across group cardinalities for all methods, showing increased speed-up

as the number of jobs increases. Figure 14 shows the overall rate of improvement in multiples for all

GPMS methods and here we see a decrease as the number of groups approaches 8, again showing a

levelling-off of improvement rate.

Table 16: Scheduling times and speed-up for ETB vs. ETSB

Method ETB ETSB

Jobs MinMin EvenDist SimTog EvenDist SimTog

1000 654 40 32 24 63

2000 3230 92 50 61 192

3000 7601 163 99 119 447

4000 12920 252 196 186 757

5000 18219 323 324 333 1178

6000 22671 383 522 518 1548

7000 29504 511 703 532 2133

8000 39074 729 907 744 2555

9000 48178 954 992 949 3527

10000 59982 1254 1399 1177 5169

Total 242033 4701 5224 4643 17569

Ave 24203.3 470.1 522.4 464.3 1756.9

Performance
Speed-up (X) 51.48 46.33 52.13 13.78

21

Table 17: ANOVA results for MinMin and all grouping methods

Test No Method P value Significant

Difference?
(Threshold level:

P = 0.05)

1 MinMin vs. GPMS 0.001537 Yes

2 MinMin vs. ETB 0.001373 Yes

3 MinMin vs. ETSB 0.001723 Yes

4 MinMin vs. ETB-EvenDist 0.00136 Yes

5 MinMin vs. ETB-SimTog 0.001387 Yes

6 MinMin vs. ETSB-EvenDist 0.001357 Yes

7 MinMin vs. ETSB-SimTog 0.010622 Yes

8 ETB vs. ETSB 0.093828 No

9 ETB-EvenDist vs. ETSB-EvenDist 0.974201 No

10 ETB-EvenDist vs. ETSB-SimTog 0.026158 Yes

11 ETB-SimTog vs. ETSB-EvenDist 0.767002 No

12 ETB-SimTog vs. ETSB-SimTog 0.033619 Yes

13 ETB-EvenDist vs. ETB-SimTog 0.790165 No

14 ETSB-EvenDist vs. ETSB-SimTog 0.025532 Yes

15 EvenDist vs. SimTog 0.073511 No

Table 18: Grouping method, group cardinality and speed-up

 Speed-up

Grouping Method 2 Groups 4 Groups 8 Groups

ETB -EvenDist 7.62 47.46 155.33
ETB-SimTog 6.98 46.33 157.06

ETSB-EvenDist 6.79 52.13 190.57

ETSB-SimTog 3.21 14.58 63.97

Figure 11: Performance comparison of MinMin and grouping methods

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

Sc
h

e
d

u
lin

g
Ti

m
e

 in
 m

s

Number of jobs in thousands

Performance of
MinMin and Grouping Methods

MinMin

ETB EvenDist

ETB SimTog

ESTB EvenDist

ESTB SimTog

22

Figure 12: Performance comparison of grouping methods

Figure 13: Improvement across methods

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

Sc
e

d
u

lin
g

ti
m

e
 in

 m
s

Number of jobs in thousands

Performance of Grouping Methods

ETB EvenDist

ETB SimTog

ESTB EvenDist

ESTB SimTog

0

50

100

150

200

250

2 Grps 4 Grps 8 Grps

M
u

lip
le

s

Number of Groups

Improvement by Grouping Method

ETB-EvenDist ETB-SimTog ETSB-EvenDist ETSB-SimTog

23

Figure 14: Overall rate of improvement with increasing group cardinality

6.3 Comparison between GPMS methods and the Priority method

This section compares the results of the two GPMS grouping methods (ETB and ETSB)

against results of the Priority method (PPMS) from our previous work [1].

Results for this comparison are from 4 groups. Our Priority method used 4 groups so the

selection of the group cardinality of 4 allows fair comparison to be made. The number of

threads was also 4 in all tests. Table 19 provides the raw results. Figure 15 illustrates the

difference between the various methods and Figure 16 shows the overall difference between

Priority, ETB and ETSB. Table 20 shows the significance through ANOVA testing.

With the Priority job grouping method, the SimTog and EvenDist methods recorded a

performance improvement of 5.90 and 6.76, with times of 41006 and 35807 ms respectively

over the MinMin. With the ETSB grouping method, the SimTog and EvenDist methods

recorded a 13 times and 52 times performance improvement over the MinMin using 17569

and 4643 ms respectively, while the ETB job grouping method yielded 46 and 51 times

performance improvement between the SimTog and EvenDist methods respectively using

5224 and 4701 ms respectively to perform the scheduling task. The ANOVA results which

show the significance of the performance differences are given in Table 20. We have

compared Priority to ETB and ETSB for both machine grouping methods (EvenDist and

SimTog). We also have compared Priority with ETB and ETSB separately regardless of

machine grouping method. Furthermore, we have also compared Priority with ETB and

ETSB together as a combined group. We call this group the GPMS group and its scheduling

time is the mean of the scheduling times for ETB and ETSB.

We see in Figures 15 and 16 that the ETB and ETSB method generally perform much better

than the Priority. The ANOVA test results generally back up this observation (see Table 20).

The only exception is Priority vs. ETSB, where the significance is marginal, right on the

P<0.05 boundary (see Table 20, Test 3). If we look more closely at this we see that the

problem is the method ETSB-SimTog where the improvement is much smaller than the other

GPMS methods. In fact there is no significant difference between Priority-SimTog and

ETSB-SimTog (see Table 20, Test 7). In Figure 15, we can see that the performance of the

ETSB-SimTog method is much closer to that of the Priority methods than any other GPMS

method. Overall though, we can conclude that the GPMS methods perform better than the

0

1

2

3

4

5

6

7

2Grps 4Grps 8Grps

M
u

lt
ip

le
s

Number of Groups

Rate of Improvement

24

Priority method. The ANOVA analysis of Priority method versus GPMS methods combined

gave a P value of 0.027992 which shows that the difference is significant (see Table 20, Test

1). Figure 17 illustrates the difference between Priority and GPMS methods in the form of a

chart.

The reason the GPMS methods performed much better than Priority is because in our

previous experimentation with the Priority method we found that priorities were often not

evenly distributed, resulting in some priority groups being much larger than others. , Since

the MinMin scheduling algorithm tends to polynomial [23], larger groups have a

comparatively inflated scheduling time requirement. Although in some cases Priority might

work equally well as ETB or ETSB, this cannot be guaranteed unless the priority allocations

are known in advance or balanced by a priority-allocation algorithm.

Table 19: Scheduling times and speed-up for Priority, ETB and ETSB

Method Priority ETB

ETSB

Jobs MinMin EvenDist SimTog EvenDist SimTog EvenDist SimTog

1000 654 95 105 40 32 24 63

2000 3230 340 412 92 50 61 192

3000 7601 673 839 163 99 119 447

4000 12920 1092 1345 252 196 186 757

5000 18219 1776 2008 323 324 333 1178

6000 22671 2837 3339 383 522 518 1548

7000 29504 3860 4570 511 703 532 2133

8000 39074 5312 7500 729 907 744 2555

9000 48178 7818 8830 954 992 949 3527

10000 59982 12004 12058 1254 1399 1177 5169

Total 242033 35807 41006 4701 5224 4643 17569

Ave 24203.3 3580.7 4100.6 470.1 522.4 464.3 1756.9

Performance
Improvement(X)

6.76 5.90238 51.48 46.33 52.13 13.78

Table 20: ANOVA results for Priority and all grouping methods

Test Method P value Significant

Difference ?

1 Priority vs. GPMS (ETB

and ETSB averaged)
0.027992

Yes

2 Priority vs. ETB 0.015965

Yes

3 Priority vs. ETSB 0.048583 Marginal

4 Priority-EvenDist vs. ETB-

EvenDist
0.020335

Yes

5 Priority-SimTog vs. ETB-

SimTog
0.013124

Yes

6 Priority EvenDist vs.

ETSB-EvenDist

0.020128

Yes

7 Priority SimTog vs. ETSB-

SimTog

0.109315

No

25

Figure 15: Improvement comparison between GPMS methods and Priority methods

Figure 16: Priority method versus ETB and ETSB methods

0
10
20
30
40
50
60

M
u

lt
ip

le
s

Methods

Improvement
 (in multiples)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Priority ETB ESTB

M
e

an
 S

ch
e

d
u

lin
g

ti
m

e
 in

 m
s

Grouping method

Priority, ETB and ESTB

26

Figure 17: Priority versus GPMS

7. Discussion

We have explored job grouping methods in a bid to increase throughput in scheduling Grid

jobs by exploiting the multicore hardware. Two methods (ETB and ETSB) were used to group

jobs before scheduling in parallel. Two machine grouping methods (Similar Together and

Evenly Distributed) were also used to group jobs. Parallelism in scheduling was executed

using dynamic threads. In the first experiments, the MinMin scheduling algorithm was

implemented alone, then in separate but subsequent experiments, the grouping methods were

first used to group the jobs and machines, before implementing the MinMin algorithm again

to schedule same range of jobs. The dataset for the experiment was taken from the Grid

Workload Archive (GWA) [22].

In each of the experiments, we executed the MinMin algorithm on an HPC to schedule a

range of jobs (from 1000 jobs to 10000 jobs in steps of 1000). The range of jobs were kept

between 1000 and 10000. We experimented in steps of 1000 so we that we could determine

the effect of increasing jobs on the speed-up by the method, and also to ease the various

computations because computations are easier done with 10s, 100s, 1000s etc. In this paper

we have reported on our experimentation with 1, 2, 4 and 8 groups using 4 threads. In the

complete experimentation we varied both groups and threads between 1 to 16 in steps of

power 2 (
n2). This is because multicore computers exist in that order and also so we can try

to establish the relationship between the number of groups used, number of threads used and

number of CPUs used. However because of the number of combinations of variables yielding

extensive results we are unable to report on all findings at this stage. Our future work will

investigate further into these aspects and will report on effects of group, CPU and thread

variation.

Our results showed that increasing the number of groups with our method increases the

efficiency of Grid scheduling by large margins. By grouping jobs and executing the

scheduling in parallel within the groups, we found that scheduling of Grid jobs improved by 2

to 7 times when using two groups to schedule. With four groups, scheduling improved by 13

to 51 times and when using eight groups, scheduling improved by 59 to 253 times.

Percentage-wise, our results showed that using two groups improved the scheduling

efficiency by 81 to 87 percent. Four groups improved the efficiency of scheduling by 97 to 98

percent while eight groups increased the performance by up to 99 percent. Between the

groups, there was 80 to 84 percent improvement using four groups over two groups and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Priority GPMS

M
e

an
 s

ch
e

d
u

lin
g

ti
m

e

Grouping method

Priority versus GPMS

27

between 67 and 69 percent improvement by eight groups over four groups. There was a

pattern exhibited by the performance graph in all the cases. The pattern was that the rate of

improvement increases up to a point and then levels off. This is due to the relationships

between threads, cores and groups in the run-time environment and associated overheads.

With low numbers of groups, the overheads have a relatively large effect but their effect

diminishes as the number of groups increases and higher improvements are gained until a

steadier state and rate of improvement emerges. However the number of threads and the way

the parallelisation is carried out across the cores can disturb the steady state. Further

investigation is required to establish a robust theoretical model of the relationships in the

dynamic run-time environment.

We showed that grouping of jobs can be exploited in improving Grid scheduling by

comparing our two methods of job grouping (ETB and ETSB) against each other, the ETB

method performed similarly to the ETSB method when using EvenDist because both machines

and jobs were fairly distributed in this case. The ETB performed better than the ETSB method

when using SimTog to group machines. In fact of the four grouping combinations, ETB-

EvenDist, ETB-SimTog, ETSB-EvenDist, and ETSB-SimTog, the former three all performed

significantly better than the latter one according to our results. At the moment we do not have

a definite explanation for this observation.

We compared the GPMS methods to our Priority method [1]. The Priority method performed

less well than the other GPMS methods because in our data set the jobs were not equally

spread among the priority groups. It happened that a large number of jobs were assigned to

the same machine group. The polynomial-time MinMin algorithm for scheduling within

groups therefore took relatively longer, increasing the overall scheduling time

disproportionally. If the priority job groups had been evenly balanced, the poorer

performance would not have occurred. The makespan also increases if the jobs groups are

not balanced because the heavier loaded group would take longer to complete.

It will be noted that neither PPMS nor GPMS targets the specialised GPU environment as

most other research in this area does. Both methods execute correctly on general purpose

systems – including HPC, and standalone computers. This is intended to widen the scope of

applicability of the method in scheduling of not just Grid jobs. The approach can be extended

to GPUs, distributed systems and to any Grid or Cloud environment which is characterized by

a requirement to schedule a stream of jobs.

After jobs from the GWA trace file are read into the scheduler, two different methods were

used to split the jobs equally into the specified number of groups. Both methods depended on

the estimated times for the jobs. Estimates of execution times are computed from the size of

jobs which are also computed from the attributes. After the estimation has been made for all

jobs, the information is held in a table to be used for scheduling later. We recognise that the

estimated processing times are affected depending on the trace file attributes used by the

estimation method. In fact, it is not possible to generate the accurate job sizes from the GWA

trace file because some values are missing, including machine speed of the original machines.

However this limitation does not affect the validity of our results since the usefulness of the

trace file for us was as a source from which a variety of job data could be generated. The

relationship of our generated data to that of the original jobs was not crucial. The two

methods used in distributing the jobs in the GPMS approach balance the jobs equally into the

groups hence the distribution of the job attributes from the trace file would theoretically have

no direct impact on scheduling times. However, it would have an impact on the execution

times of jobs and hence on the makespan.

28

8. Conclusion and future work

The contribution of this work has been to show how different types of grouping can harness

parallelism in multicores and positively affect scheduling speed. The resulting Group Parallel

Multi-scheduler (GPMS) can be used in any environment in which there is a requirement to

schedule a stream of jobs onto a set of limited resources. Typical environments which could

benefit are Grid and Cloud environments. Given the growth in these paradigms, the research

has potential to be exploited widely.

The interest of most researchers in Grid scheduling has been on creating schedules such that

overall makespan is decreased. This research improves on those efforts by providing a

method by which the scheduling can also be carried out in parallel and thus overall makespan

can be decreased further. We have proposed the GPMS which can be configured with varying

grouping methods to suit varying characteristics of incoming jobs. Our experimentation has

shown that idiosyncrasies of the input job set can have an effect on the time taken to schedule,

depending on the scheduling method used. It can also affect the quality of the resulting

schedule. Thus, the best results might be obtained by using an adaptive GPMS which can

exploit different scheduling mechanisms depending on the characteristics of the incoming

jobs. Future work will further explore the relationship between the job characteristics,

machine characteristics, scheduling method, grouping parameters, scheduling time and

makespan. It will investigate alternative grouping methods and how characteristics of input

jobs can be identified early and exploited such that appropriate grouping methods can be

selected based on job and machine characteristics in an adaptive GPMS.

In our experiment the threads were not explicitly bound to CPUs. Thus we did not exercise

explicit control over the 12 cores on the compute node of the HPC. Such control would have

offered us an opportunity to investigate the relationship between increasing number of groups

and increasing number of CPUs relative to scheduling efficiency. Future work should include

a means of varying the CPUs on the HPC machine just the same way the number of groups

were varied and investigating the relationship between both and also in the context of varying

numbers of threads.

In very complex environment, it will be interesting to extend this study of parallel multi-

scheduling on multicores by the implementation of several (or different) scheduling

algorithms across the different job-machine groups. That is, we can decide to independently

execute a mix of different scheduling algorithms from each of the independent groups. This

will enable us to use one scheduling algorithms that suits jobs in one group and use another

scheduling algorithm which suits another set of jobs in another group. If characteristics or

attributes of certain jobs affect the efficiency of the scheduling method, then this will provide

the opportunity to exploit the benefits of one scheduling algorithm (from one set of jobs in

one group) against the disadvantages of the other (in another set of jobs in another group).

That means, we can implement a scheduling algorithm from the groups based on what

scheduling method favours jobs in that group.

Finally, the experiment was executed in a simulated environment and not on a real test bed,

while the differences of a simulated environment and that of a real system or test bed are out

of the scope of this work, it will be worthwhile to state here that effort should be made in due

course to test the scheduler on a real test bed to ascertain the real functionality of the method.

Acknowledgement

We are grateful to the following groups and members of their teams for making the Grid Workload

Archive available and free to researchers and developers alike:

29

 The Parallel and Distributed Systems Group at Delft University of Technology (TUDelft),

Netherlands (GWA 2014) (http://www.pds.ewi.tudelft.nl/). Members of the group are:

Shanny Anoep (TU Delft); Catalin Dumitrescu (TU Delft); Dick Epema (TU Delft);

Alexandru Iosup (TU Delft); Mathieu Jan (TU Delft); Hui Li (U. Leiden); and Lex

Wolters (U. Leiden).

 The e-Science Group of HEP at Imperial College London for providing the LCG data and Hui

Li for making the data publicly available and Dr Feitelson of the parallel workloads archive.

http://lcg.web.cern.ch/LCG

 The Grid’5000 team (especially Dr. Franck Cappello) and the OAR team (especially Dr.

Olivier Richard and Nicolas Capit) for the trace http://oar.imag.fr . Also special thanks to

John Morton (john_x_sharrcnet.ca) for providing the trace file and for making the parallel

workload archive publicly available

 The AuverGrid team with special thanks to Dr. Emmanuel Medernach, the owner of the

AuverGrid system made available through the Grid workloads archive http://auvergrid.fr

 NorduGrid team, with special thanks to Dr. Balasz Knoya, the owner of NorduGrid system

made public through the Grid workload archive.

References

[1] G. T. Abraham, A. James, N. Yaacob, Priority-grouping method for parallel multi-scheduling in

grid, Journal of Computer and System Sciences, 2015 (in press).

[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman, New York, 1979.

[3] M. Maheswaran, M., S. Ali, H. J. Siegel., D.Hensgen., and R. F. Freund, Dynamic mapping of a

class of independent tasks onto heterogeneous computing systems, Journal of Parallel and

Distributed Computing 59 (1999) 107-131.

[4] W. Mu'alem, D. G. Feitelson. Utilization, predictability, workloads, and user runtime estimates in

scheduling the IBM SP2 with backfilling, Transactions on Parallel and Distributed Computing, 12

(2001) 529-543.

[5] B. G. Lawson, E. Smirni, Multiple-queue backfilling scheduling with priorities and reservations

for parallel systems, in: Job Scheduling Strategies for Parallel Processing, Springer, Berlin

Heidelberg, 2002, pp. 72-87.

[6] G. Sabin, R. Kettimuthu, A. Rajan, P. Sadayappan, Scheduling of parallel jobs in a heterogenuous

multi-site environment, in: Job Scheduling Strategies for Parallel Processing. Springer, Berlin

Heidelberg, 2003, pp. 87-104.

[7] W. Zhang, Albert M. K. Cheng, Multisite co-allocation algorithms for computational grid, in:

Proceedings of the 20
th

 International Parallel and Distributed Symposium Symposium (IPDPS),

IEEE, 2006, pp. 8-pp.

[8] A. Quezada-Pina, A. Tchernykh, J. L. Gonzalez-Garcia, A. Hirales-Carbajal, J. M. Ramirez-

Alcaraz,U. Schwiegelshohn, R. Yahyapour, V. Miranda-López, Adaptive parallel job

scheduling with resource admissible allocation on two-level hierarchical grids, Future Generation

Computer Systems, 28 (2012) 965-976.

[9] F. Liang, Y. Liu, H. Liu, S. Ma, B. Schnor. A parallel job execution time estimation approach

based on user submission patterns within computational grids, International Journal of Parallel

Programming (2013) 1-5.

[10] M. Kalantari, K. M. Akbari, A parallel solution for scheduling of real time applications on grid

environments, Future Generation Computer Systems, 25 (2009) 704-716.

[11] J. Wang, B. Bin, H. Liu, L S. Li, J. Yi, Heterogeneous computing and grid scheduling with parallel

biologically inspired hybrid heuristics, Transactions of the Institute of Measurement and

Control (2014)

http://lcg.web.cern.ch/LCG
http://oar.imag.fr/
http://auvergrid.fr/
http://en.wikipedia.org/wiki/Michael_Garey
http://en.wikipedia.org/wiki/David_S._Johnson
http://en.wikipedia.org/wiki/David_S._Johnson
http://en.wikipedia.org/wiki/Computers_and_Intractability:_A_Guide_to_the_Theory_of_NP-Completeness

30

[12] J. Chen, B. Li, E. F. Wang, Parallel scheduling algorithms investigation of support strict resource

reservation from grid, Applied Mechanics and Materials 519 (2014) 108-113.

[13] R. Albodour, A. James, N. Yaacob, High level QoS-driven model for grid applications in a

simulated environment, Future Generation Computer Systems 28 (2012) 1133-1144.

[14] P. Xiao, L. Dongbo, Multi-scheme co-scheduling framework for high-performance real-time

applications in heterogeneous grids, International Journal of Computational Science and

Engineering 9 (2014) 55-63.

[15] S. Nesmachnow, M. Canabé, GPU implementations of scheduling heuristics for heterogeneous

computing environments, in: XVII Congreso Argentino de Ciencias de la Computación, 2014.

[16] M. Canabé, S. Nesmachnow,Parallel implementations of the MinMin heterogeneous computing

scheduler in GPU, CLEI Electronic Journal 15 (2012) 8-8

[17] F. Pinel, B. Dorronsoro, P. Bouvry, (2013), Solving very large instances of the scheduling of

independent tasks problem on the GPU, Journal of Parallel and Distributed Computing, 73 (2013)

101-110.

[18] S. Nesmachnow, H. Cancela, E. Alba, Heterogeneous computing scheduling with evolutionary

algorithms, Soft Computing, 5 (2010) 685-701.

[19] S. Nesmachnow, E. Alba, H.Cancela, Scheduling in heterogeneous computing and grid

environments using a parallel CHC evolutionary algorithm, Computational Intelligence 28 (2012)

131-155.

[20] S.Nesmachnow, H. Cancela, E. Alba, A parallel micro evolutionary algorithm for heterogeneous

computing and grid scheduling, Applied Soft Computing. 12 (2012) 626-639.

[21] S. A. Mirsoleimani, A. Karami, F. Khunjush, A parallel memetic algorithm on GPU to solve the

task scheduling problem in heterogeneous environments, in: Proceedings of the Fifteenth Annual

Conference on Genetic and Evolutionary Computation, ACM, 2013, pp. 1181-1188.

[22] GWA 2014 , The Grid Workload Archive available from <http://gwa.ewi.tudelft.nl/> [accessed

3
rd

 October 2014]

[23] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen, E. Keith, t.

Kidd, M. Kussaw, J.D. Luna, F. Mirabile, L. Moore, B. Rust, H.J. Siegel, Scheduling resources in

multi-user, heterogeneous, computing environments with SmartNet, in : Proceedings of the

Seventh Heterogeneous Computing Workshop, 1998 (HCW 98) IEEE, 1998, pp. 184-199.

http://gwa.ewi.tudelft.nl/dataset/

