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Abstract 
With the advent in multicore computers, the scheduling of Grid jobs can be made more 

effective if scaled to fully utilize the underlying hardware, and parallelized to benefit from the 

exploitation of multicores. The fact that sequential algorithms do not scale with multicore 

systems nor benefit from parallelism remains a major obstacle to scheduling in the Grid. As 

multicore systems become ever more pervasive in our computing lives, over reliance on such 

systems for passive parallelism does not offer the best option in harnessing the benefits of 

their multiprocessors for Grid scheduling. An explicit means of exploiting parallelism for 

Grid scheduling is required. The Group-based Parallel Multi-scheduler, introduced in this 

paper, is aimed at effectively exploiting the benefits of multicore systems for Grid scheduling 

by splitting jobs and machines into paired groups and independently scheduling jobs in 

parallel from those groups.  We implemented two job grouping methods, Execution Time 

Balanced (ETB) and Execution Time Sorted then Balanced (ETSB), and two machine 

grouping methods, Evenly Distributed (EvenDist) and Similar Together (SimTog). For each 

method, we varied the number of groups between 2, 4 and 8. We then executed the MinMin 

Grid scheduling algorithm independently within the groups. We demonstrated that by sharing 

jobs and machines into groups before scheduling, the computation time for the scheduling 

process drastically improved by magnitudes of 85% over the ordinary MinMin algorithm 

when implemented on a HPC system. We also found that our balanced group based approach 

achieved better results than our previous Priority based grouping approach. 

 

Keywords: Grid Scheduling, Multicore systems, Parallelism, Multi-scheduling, Machine 

Grouping, Job Grouping, HPC. 

 

1. Introduction 
 

With the advent of multicores, scheduling of Grid jobs can be made more effective if 

parallelized to fully utilize the multicore and benefit from the underlying hardware. Most Grid 

scheduling algorithms are saddled with overheads incurred in the pre-optimizing 

computations done before scheduling jobs. Secondly, during scheduling, more overheads are 

incurred when new jobs arrive and the whole pre-optimizing computations have to be done 

over again. Furthermore serial scheduling algorithms become bottlenecks when the number of 

tasks to be scheduled grows.   

 

Multicore technology has come to stay and as Grid computing continues to grow, it will be 

worthwhile to scale Grid scheduling to benefit from the multicore technology. Multicore 

systems offer opportunity for parallelism and increased throughput. Parallelism takes 

programming away from the traditional serial execution approach by employing several 
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processors to simultaneously execute independent tasks and is best suited for independent 

jobs which characterize a large percentage of users’ jobs on the Grid. Increased throughput is 

a direct increase in output over a set period resulting from more efficient processing. Current 

Grid scheduling algorithms do not exploit the benefits inherent in the underlying multicore 

systems, mostly focussing on parallel execution of jobs rather parallelising the scheduling 

function. Neglecting the underlying multicore hardware in the scheduling algorithm of the 

Grid will cause an unnecessary bottleneck in processing.  

 

The design of a parallel multi-scheduling method for the Grid that takes the underlying 

multicore hardware into consideration will help position the growth on the right path for 

future challenges.   This work is aimed at exploiting the benefits of multicore systems for the 

improvement of Grid scheduling. This research builds on our previous work, the Priority-

based Parallel Multi-scheduler (PPMS) method [1]. We found in our previous work that 

grouping tasks and machines and then scheduling in parallel across paired groups can 

improve scheduling time.  The savings occurred because of the reduction in job numbers in 

the groups which dampened the polynomial shape of the scheduling algorithm, MinMin, and 

also because of the parallelisation. We also noticed that the heuristics employed in 

configuring the groups effects the scheduling time.  The work in this paper sets out a generic 

grouping approach that can be calibrated according to various criteria such that improved 

performance can be obtained. It generalises our previous work and offers further discussion 

on its potential impact. 

 

We used two methods for grouping of Grid jobs, and two methods for the grouping of Grid 

resources (machines). After the grouping of machines and jobs separately, a pairing is made 

between job groups and machines groups. Then using multiple threads (multi-threading), 

scheduling is executed independently within the paired groups in parallel.  Multi-scheduling 

in this context refers to the scheduling of several independent groups of jobs to groups of 

machines in parallel.  A resources group contains a set of different computers for servicing a 

set of jobs from a job group – the machines are grouped based on their configuration. Two 

methods are adopted for this purpose: and Evenly Distributed (EvenDist); and Similar 

Together (SimTog). The methods are discussed in section 3.   A job group contains a set of 

Grid jobs submitted by users but sorted into a group, based on some characteristics for the 

purpose of being scheduled to a machine group independently. Two methods are adopted for 

categorizing jobs into groups: Execution Time Balanced (ETB);  and Execution Time Sorted 

and Balanced (ETSB). These methods are also discussed in section 3.  The scheduling of jobs 

takes place within the groups simultaneously, achieved through the use of threads. 

 

The remainder of the paper is organized as follows; Section 2 discusses related work. Section 

3 presents the Group-based Parallel Multi-Scheduling (GPMS) method. Section 4 describes 

the simulation for the experiment and section 5 discusses the experimental setup and 

scenarios. Section 6 discusses results, analysis of the results and performance evaluation of 

the method against the MinMin and also against the PPMS method.  Section 7 provides 

further discussion of results. Section 8 provides conclusion and thoughts for future work.   

   

2. Related Work 
 

The scheduling problem in heterogeneous environments is NP-complete [2].  Typically 

heuristics are employed to ease the problem solving. A parallel scheduler for the Grid would 

reduce further the time needed to solve the scheduling problem. Such a design will exploit 

multicore technology and play a major role in the defined growth path of the Grid, facilitating 

increased throughput and scalability. The challenge is to develop a parallel scheduler that is 

dynamic, adaptive to workload increase, ensures increased throughput, is free of bottlenecks 

and which maximizes resource utilization.  
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Scheduling can be carried out in immediate mode or batch mode [3].  Immediate mode is 

when a job is assigned to a machine as it arrives and batch mode is when a number of jobs are 

batched and scheduled together. Algorithms for immediate mode  include:  the traditional 

First Come First Serve (FCFS); Backfilling Opportunistic Load Balancing (OLB); minimum 

execution time (MET); minimum completion time (MCT); and k-percent best (KPB). Some 

examples that use these approaches are [4, 5, 6, and 7].  Quezada-Pina et al. [8] compared 

some of these strategies in the context of a strategy of admissible machines, where only part 

of the complete set of machines is made available.  Their simulation results revealed that in 

terms of the considered criteria, admissible allocation strategies outperform algorithms that 

use all available sites for job allocation.  Liang et al. [9] used behavioural clustering of 

execution time to establish a pattern for users’ jobs and used that to improve accuracy of 

overall job execution times. Batch approaches include algorithms such as: MinMin, where 

jobs with the minimum completion time are assigned to the processor that can complete the 

job the earliest; MaxMin, where jobs with maximum completion time are assigned to 

processors that can complete the job earliest; and Sufferage, where a machine is assigned to 

the task that would ''suffer'' most in terms of expected completion time if that particular 

machine is not assigned to it [3]. Evolutionary models have also been applied [10, 11] in a 

batch context.  Previous work has investigated and compared different immediate and batch 

mode scheduling algorithms [3, 8].  Further discussion is provided in our previous work [1].  

 

Later work has taken more of a user perspective and concentrated on providing or 

maintaining Quality of Service. These efforts include: resource reservation mechanism [12], 

monitoring, reallocation,  varying levels of service [13]; and deadline guarantees [10, 14]. All 

the schemes mentioned in this paragraph concentrate on makespan (the time taken to execute 

a set of jobs) or improving quality of service to users in terms of job execution time and cost.  

They do not concentrate on improving the efficiency of the scheduler in terms of how long 

the scheduling task takes.  Our current research aims to improve the efficiency of the 

scheduler through exploiting parallelisation in a new way. This will also improve makespan 

and quality of service further.  

 

There has been some work that has addressed parallelisation of the scheduler itself [1].  

Nesmachnow  and Canabé [15, 16] investigated the use of massively parallel GPUs 

(Graphical Processing Units) to improve scheduling time. Pinel, Dorronsoro and Boury [17] 

have presented CPU and GPU multi-threaded parallel designs of the MinMin algorithm.  As 

would be expected, the GPU design outperforms the CPU because of the massive 

parallelisation, while the parallel CPU solution outperformed the serial. The experimental 

evaluation of the proposed parallel methods demonstrates that a significant reduction on the 

computing times can be obtained when using the parallel GPU hardware.  Further approaches 

have proposed evolutionary algorithms which exploit GPUs in solving the scheduling 

problem [18, 19].  Nesmachnow, Cancela and Alba [20]  implemented a parallel micro 

evolutionary algorithm to schedule tasks in heterogeneous and Grid environment algorithm. 

Speed-up was obtained in comparison to their previous work.  Pinel, Dorronsoro and Boury 

[17] proposed a cellular genetic algorithm (CGA) to solve the MinMin problem.  The CGA 

brought better solutions but took longer to run. Mirsoleimani,  Karami and Khunjush [21] 

propose a memetic algorithm, which uses combinations of non-deterministic approaches to 

solve the scheduling problem in a GPU environment.  Very high speed-up was achieved. The 

difference between the research described in this paragraph and our research is that the other 

research described has focussed mainly on a GPU environment and/or on non-deterministic 

algorithms such as evolutionary algorithms.  The GPU environment offers massive 

parallelisation. However the non-deterministic algorithms can have unpredictable run times. 

The scope of our work has been the more general purpose environment.  We selected this 

environment as we wanted to create a facility that did not require a specialised environment. 

We also concentrated on deterministic algorithms to have better control on scheduler 
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execution time.  The other novelty in our work is the use of grouping to achieve greater 

efficiency through parallelisation. 

In our previous work on Priority-based Parallel Multi-scheduler (PPMS) for the Grid, we 

noted that the effect of grouping machines and jobs before scheduling was promising but the 

group cardinality (i.e. number of groups) we used was constant [1]. We needed to investigate 

further by employing methods that can vary the number of groups. In that same work, we 

equally noted that the Priority method does not necessarily distribute jobs equally among the 

job groups. This phenomenon degraded the general performance.  We needed to develop a 

method that equitably distributes jobs amongst the groups which we have called Group-based 

Parallel Multi-scheduler (GPMS) for the Grid.  The method employs various grouping 

strategies to exploit the multicore. It offers a platform of parallelism to the scheduling 

algorithm itself to improve the computation and scheduling times and also provide answers to 

some of the questions thrown up in our earlier work.  

To summarise, parallel multi-scheduling can improve Grid scheduling performance and 

should be exploited. This research aims to exploit multicores both on scheduler and on Grid 

sites through an innovative grouping method which enhances and optimizes the performance 

of Grid schedulers.  

3. Group-Based Parallel Multi-Scheduler (GPMS) for Grid 

3.1 Overview of the scheduler 

In our previous work on Priority-based Parallel Multi-scheduler (PPMS)  for the Grid [1], we 

focused on the use of grouping of Grid jobs based on their priorities and categorizing Grid 

machines based on two methods, the Evenly Distributed and Similar Together methods. We 

noted it will be worthwhile to exploit further the effects of varying the number of groups for 

both jobs and machines. We also needed a method that distributes jobs equally among the job 

groups as the Priority method does not guarantee this.  

The Group-based Parallel Multi-scheduler (GPMS) for Grid aims at exploring parallelism on 

multicore systems to enhance scheduling algorithms in Grid. To achieve this we assume that 

multicores are pervasive and constitute major part of Grid machines. We also assume that our 

scheduler runs on a multicore system.  

The GPMS requires jobs to be split into groups.  We used two methods to achieve this: 

Execution Time Balanced (ETB) - Estimate execution time and then balance across groups. 

Execution Time Sorted and Balanced (ETSB) - Estimate execution time, then sort jobs and 

    then balance across groups. 

Jobs are first read into the scheduler by a job reader.  We then estimate the execution time for 

each job. The resulting job size and estimated execution time statistics are held in a table (the 

Estimation table) to be used later for grouping and/or scheduling decisions.   

The GPMS also requires machines to be split into the same number of groups as the jobs. We 

use two methods to achieve this: 

Evenly Distributed (EvenDist) - machines are evenly distributed independent of   

   characteristics. 
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Similar Together (SimTog) -  machines with similar characteristics are grouped together. 

Information about Grid machines such as machine id., CPU speed and number of CPUs are 

known to the algorithm and are used for splitting decisions and also for simulation and 

computation of execution times of jobs. The scheduling algorithm is then executed in parallel 

within the groups.  A thread pool is created to enable the parallel execution within the groups 

(multi-threading). The scheduling of jobs takes place simultaneously and independently 

between paired groups (multi-scheduling).   The MinMin algorithm is used within each group 

pair to schedule the jobs. 

The steps of the GPMS are presented in Table 1.   Figure 1 provides an illustrative activity 

diagram showing the GPMS steps of two processes. One is the machine grouping process and 

the other the process of grouping and scheduling jobs onto machines.  The machine grouping 

process occurs less frequently that the scheduling process. 

Table 1: High-level algorithm for GPMS 

Step1.     Start 

Step2:     Specify number of threads 

Step3:     Specify number of groups to use 

Step4:     Read jobs into the scheduler 

Step5:     From the job attributes, estimate the  execution time for each job 

Step6:     Group jobs into number of specified groups using a chosen grouping method 

Step7:     Read machines and group them into the specified number of groups  using a     

               chosen grouping method             

Step8:    Execute the scheduling algorithms within the groups  

Step9:    Write results to output file 

Step10:   Stop 

  

 

 

 

 
 

 
Figure 1: Activity diagram showing steps of the GPMS 
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3.2 Overview of grouping methods 

 

The GPMS requires jobs and machines to be grouped.  The groups are paired and scheduling 

occurs in parallel within the groups.  Various methods could be used to group the jobs and 

machines.  In this paper we discuss four methods, two for job grouping and two for machine 

grouping. 

3.2.1 Grouping jobs 

Our approach splits jobs into groups before executing the scheduling algorithm within the 

groups. Jobs are split (grouped) based on the estimated execution time computed from their 

size.  Jobs are initially held in a table which also holds their estimated size. Two methods are 

employed in splitting jobs into groups: 

 

Execution Time Balanced (ETB) 

This method uses an estimation of the processing time for each job to group the jobs.  It 

attempts to even out the total processing times in groups by adding the next job to the group 

with the current lowest total processing time. Table 2 shows the algorithm for the ETB 

method. 

 

 
Table 2: Algorithm for the ETB method of grouping jobs 

Step1:    Start 

Step2:    Select job from the Estimation table 

Step3:    Select the group with the smallest totalestimatedTime 

Step4:    Add job to group with the smallest totalestimatedTime 

Step5:    Update the totalestimatedTime for the group 

Step6:    Repeat step2 to step5 until end of table 

Step7:    Stop 

Execution Time Sorted and Balanced (ETSB)  

This method is similar to the ETB method but this time the jobs are sorted by size first, with 

the largest jobs at the top of the list. This has the effect of ensuring a fairer balance across 

groups. Table 3 outlines the ETSB algorithm. 

 
Table 3: Algorithm for the ETSB method of grouping jobs 

Step1:    Start 

Step2:    Sort jobs in the Estimation table 

Step3:    Select job from the Estimation table 

Step4:    Select the group with the smallest totalestimatedTime 

Step5:    Add job to group with the smallest totalestimatedTime 

Step6:    Update the totalestimatedTime for the group 

Step7:    Repeat step3 to step6 till end of table 

Step8:    Stop 

3.2.2 Grouping machines 

For every group of jobs, there is equally a group of machines onto which jobs are to be 

scheduled. This is to allow a high degree of independence of job and machine groups and to 

enable scheduling to take place in parallel over the groups. Two methods are employed in 

grouping (splitting) machines:  
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Evenly Distributed (EvenDist) 

This method splits machines into each group so that each group has the same number of 

machines. It adds the first machine to the first group, then the second to the second group, 

third to the third group and so on until the last group is reached.  When the last group is 

reached the next machine is allocated to the first group and the process continues until all 

machines are allocated. Machines are first sorted before the grouping. This method ensures 

that machines making up the Grid are equally (or best effort equally) split into the specified 

groups. This method offers better result if jobs are equally distributed among groups and if 

the scheduling policy does not favour one set of jobs over another. Table 4 shows the 

algorithm for the Evenly Distributed method. 

Table 4: Algorithm the Evenly Distributed method for grouping machines 

Step1:  Start 

Step2:  Sort machines based on configurations (i.e. number and speed of processors) 

Step3:  Register number of groups 

Step4:  Add first machine to first group 

Step5:  Add next machine to next group  

Step6:  Repeat Step4 and Step5 until last group is reached.  

Step7:  Add next machine to first group  

Step8:  Repeat Step4, Step5 and Step6 until all machines are assigned to groups.  

Step9:  Stop 

 

 

Similar Together (SimTog) 

This method groups machines based on their performance characteristics. To group machines 

based on their similarity, the configurations of the machines are compared and those with 

similar characteristics (i.e. CPU speed and number of CPUs) are grouped together before jobs 

are scheduled to them. This type of grouping can be useful if a priority-based scheduling 

method is to be used and the jobs are similarly distributed in terms of priority. Each group has 

the same number of machines. Table 5 shows the algorithm for the Similar Together method. 

Table 5: Algorithm for the Similar Together method for grouping machines 

Step1:  Start 

Step2:  Sort machines based on configurations (i.e. number and speed of processors) 

Step3:  Work out how many machines per group (N = number machines/number groups) 

Step 4: Add top N machines to the first group, 

Step5:  Add next N machines to the next group  

Step6:  Repeat Step5 until all machines are assigned  

Step7: Stop                                                        

 

 

3.2.3     Inside group scheduling 

Our grouping method seeks to improve the efficiency of Grid scheduling algorithms by 

enabling the parallel multi-scheduling of jobs between independent groups of machines and 

jobs.  After grouping both jobs and machines with our method, we then implemented the 

traditional Grid scheduling algorithm inside the groups. In this study, we implemented the 

MinMin scheduling algorithm within the groups.  

 

3.2.4  Multi-threading  

Multi-threading  was implemented with a dynamic thread pool. Threads were activated when 

needed and deactivated when no longer needed. With the thread pool, we had the option of 
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choosing in our test parameters how many threads to use for each execution.   Threads are not 

necessarily set in a one to one relationship with each parallel scheduling event. In this paper 

we have analysed the results for 4 threads. 

 

4. The Simulation 
 

Simulation was used for the experiment.  In this section we discuss the source for the jobs 

used in the experiment, how the Grid was simulated, and how the execution time was 

estimated.  

 

4.1 Grid job source  

Jobs used for our experiment were downloaded from the Grid Workload Archive [22]. The 

Grid Workload Archive is designed to make traces of Grid workloads available to researchers 

and developers alike.  It contains files both in plain text format and the Grid Workload Format 

(GWF). The GWF file contains 29 attributes concerning the running of a job in a Grid. We 

used some of these to create an estimate of job size and execution time.  Of the attributes 

contained in the GWF file, we employed only the fields relevant for our simulation, 

estimation and experiment. These attributes are used to estimate job execution times on the 

Grid machines. Table 6 shows relevant job attributes relevant in our work.  

 
Table 6: Attributes from the Grid Work Archive used in our work 

Attribute Description 

JobID Identifies the job 

NProcs Number of allocated processors 

ReqTime Requested time measure in wallclock seconds 

ReqNProcs Requested number of processors 

RunTime Measured in wallclock seconds 

AverageCPUTime Average CPU time over all the allocated processors 

 

4.2 Estimation of Job Sizes  

The information in the GWF trace file does not consist of job sizes but our simulation and 

experiment needs this variable to estimate the execution time of the job on a processor.  We 

therefore estimate the job size from some available attributes, such as those shown in Table 6.  

For instance if we multiple RunTime by NProcs we have some estimate of size.  A more 

accurate estimate may come from AverageCPUTime multiplied by NProcs but 

AverageCPUTime was not always available. A value not available is shown as -1 in the file. 

Table 7 shows typical values of the attributes from some of the rows in the trace file.  Because 

of missing values it was not possible to accurately replicate original job size from the trace 

file but we used some values available to generate a set of jobs with estimated sizes. The 

estimations served our experiment adequately as we needed a range of jobs of varying sizes 

with which to experiment. Exactly mirroring the sizes of the jobs in the trace file was not 

necessary.  

Table 7: Typical values from the trace file 

JobID RunTime NProcs AverageCPUTime ReqNProcs ReqTime 

 

0 0 4 -1 4 3600 

1 19 1 -1 1 3600 
2 10 5 -1 5 3600 

3 8 90 -1 90 3600 

4 19 100 -1 100 3600 

5 25 1 -1 1 3600 
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4.3 Simulation of Grid 

A Grid site was characterized by the following attributes: Category; CPU; RAM; Bandwidth. 

For example {A; 1200; 1000} represents Grid site A, with 1200 CPUs and Bandwidth 1000 

Mbps. A Machine is defined with the following attributes: CORES; CPU; RAM.  For instance 

{2; 2000; 2000000} represents a Grid resource (machine) with 2 CPUs, 2000 MHz (2GHz) 

and 2000000 (2MB) RAM. Table 8 shows the characteristics of the simulated Grid. 

 
Table 8: Components of the simulated grid 

Grid Site Characteristics Grid Site Characteristics 

Number of 

machines  

Speed of 

CPU  

Number of 

CPU/Cores 

Number of 

machines  

Speed of 

CPU  

Number of 

CPU/Cores 

A 

240 

Machines  

30 

30 

30 

30 

30 

30 

30 

30 

1GHz 

2GHz 

3GHz 

4GHz 

1GHz 

2GHz 

3GHz 

4GHz 

1 

1 

1 

1 

2 

2 

2 

2 

C 

440 

Machines  

60 

60 

60 

60 

60 

60 

60 

60 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

2 

2 

2 

2 

4 

4 

4 

4 

B 

400 

Machines  

50 

50 

50 

50 

50 

50 

50 

50 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

2 

2 

2 

2 

4 

4 

4 

4 

D 

600 

Machines  

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

2 

2 

2 

2 

4 

4 

4 

4 

8 

8 

8 

8 

 

4.4 Simulation of execution time 

The execution time was estimated from the job sizes. The processing speeds of Grid machines 

were used to estimate execution times.  Waiting times were calculated according to the 

schedule and allocation to individual machines.  Table 9 gives an outline algorithm for 

calculating execution time. 

Table 9: Simulation of execution time 

Step 1: Set the job size to be job execution time (T) on a reference machine (1 GHz, 1core) 

Step 2: Scale the expected time to match the current machine 

a. Calculate performance ratio (R) between the current and the reference machine 

b. Return the expected execution time divided by the performance ratio (T/R) 
 

5. Experimental Design 
 

We carried out our experiments on a HPC system using one node. In the experiment, we 

simulated a Grid environment with four Grid sites consisting of machines with different CPU 
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speed and number of processors. Our scheduling aims directly at the CPUs on the individual 

machines. Jobs are scheduled to CPUs. 

 

The configuration of the HPC machine node on which our experiment was executed is as 

follows:  

Number of physical CPUs per node/head: 2 

Numbers of cores per one compute node/head: 12 

CPU family: Intel(R) Xeon(R) CPU X5650 2.67 GHz stepping 02 

Operating System: Linux x86_64 RHEL 5 

 

For each of the experiments described below we calculated for each parameter variation, the 

time taken to schedule and the flow time. The flow time is the time taken to execute all of the 

jobs. We defined makespan as the time to schedule plus the flow time. The scheduling time is 

the time taken to schedule all the jobs using the algorithm. 

 

Experiment 1 

 

In the first experiment, we executed the MinMin algorithm on the HPC to schedule a range of 

jobs (from 1000 jobs to 10000 jobs in steps of 1000) using 4 threads. In each instance of the 

experiment, we recorded the time taken to schedule each step of jobs by the set number of 

threads, for instance the time taken to schedule 1000, 2000, 3000, 4000, 5000, 6000, 7000, 

8000, 9000, and 10,000 jobs. We also calculated the makespan for each variation.  

 

Experiment 2 

 

In the second experiment, we used the ETB method to group the jobs and the EvenDist 

method to group the machines before implementing the same test as described in Experiment 

1 above. We used 2, 4 and 8 groups and 4 threads in each case.    We recorded time taken to 

schedule and the makespan each variation. 

 

Experiment 3 

 

In the third experiment, we used the ETB method to group the jobs and the SimTog method 

to group the machines before implementing the same test as described in Experiment 1 above. 

We used 2, 4 and 8 groups and 4 threads in each case.    We recorded time taken to schedule 

and the makespan for each variation. 

 

Experiment 4 

 

In the fourth experiment, we used the ETSB method to group the jobs and the EvenDist 

method to group the machines before carrying out the same test described in Experiment 1 

above. We used 2, 4 and 8 and 16 groups and 4 threads in each case.      We recorded time 

taken to schedule and the makespan for each variation. 

 

Experiment 5 

 

In the fifth experiment, we used the ETSB method to group the jobs and the SimTog method 

to group the machines before implementing the same test described in Experiment 1 above. 

We used 2, 4, 8 and 16 groups and 4 threads in each case.     We recorded time taken to 

schedule and the makespan for each variation.     

 

Our interest in this research was on improvements on scheduling in terms of throughput – the 

gains we can make in improving the number of jobs scheduled over a period of time. The aim 

was to ameliorate the issue of scheduler bottleneck through scheduling in parallel. 
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6. Performance Evaluation 
 

In this section, we present results, analysis and performance of our GPMS method against 

results from the MinMin algorithm used in isolation. We shall refer to results from 

Experiment 1 (the first experiment done without the grouping method) as ordinary MinMin or 

MinMin, while we shall properly label our results  for the other experiments with a 

combination of both job and machine grouping methods and the number of groups. We 

employed linear graphs, bar charts, tables, trend lines, mathematical computations, percentage 

computation, correlation and standard deviation and ANOVA statistical significance methods 

for the analysis and evaluation of our results against the MinMin results. We also compared 

our results against the results of our previous work which used the Priority method for 

grouping jobs [1]. 

 

Our complete experimentation yielded many results because of the combinations of several 

variables (number of groups, number of threads, job grouping method, machine grouping 

methods).  The analysis in this paper is based on results for each group cardinality (i.e. 

2Group, 4Group and 8Group excluding 16 groups) and for each method (i.e. MinMin, ETB-

EvenDist, ETB-SimTog, ETSB-EvenDist, and ETSB-SimTog). We kept the thread number to 4 

for this analysis so that we could focus on improvement, independent of thread variability. 

Four threads was chosen because it represents the median cardinality of threads used (1, 2, 4, 

8, 16) in our complete experimentation. Also, it allows us to compare results against the 

Priority (PPMS) method from our previous work which used 4 threads.  

 

In our performance evaluation, we investigate the following factors and their effects: 

 Group cardinality (section 6.1). 

 Varying grouping methods (section 6.2).   

 GPMS method compared to our previous Priority (PPMS) method (section 

6.3). 

 

 

6.1 Group Cardinality 

 

In this section we analyse the effect of group cardinality (number of groups) using the 

following methods: 

 

1. MinMin versus ETB and Evenly Distributed method (ETB-EvenDist) 

2. MinMin versus ETSB and Similar Together method (ETSB-SimTog) 

 

For the sake of brevity we do not include all four method combinations in our analysis of 

group cardinality. All methods showed a similar pattern, with ETB-EvenDist an example of a 

higher performing method over MinMin and ETSB-SimTog showing the lowest performance 

over MinMin. The selection of the above methods for analysis therefore gives an illustration 

of the range of performance improvement over MinMin and the range of methods. Note that 

three of the methods demonstrated equally high performance with no statistically significant 

difference between them. These were ETB-EvenDist, ETB-SimTog and ETSB-EvenDist. Thus 

any of those three would be an example of the highest performance. We see later that ETSB-

SimTog was the odd one out with a different behaviour. This was the method that gave the 

lowest performance, although still significantly better than MinMin alone.  
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6.1.1 MinMin vs. ETB and Evenly Distributed (ETB-EvenDist) method 

 

Table 10 shows the results and computation of improvement of the GPMS ETB-EvenDist 

method over the MinMin. These results were yielded after running experiment 1 and 

experiment 2 (see section 5). 

 

The MinMin method used a total of 242033 and an average of 3486.2 ms to schedule the job 

sets. Using two groups, our method used a total of 34862 and an average of 3486.2 ms to 

schedule same task. Four groups used a total of 4701 and an average of 470.1 ms to schedule 

the task, while eight groups used a total of 1435 and an average of 143.5 ms to schedule same 

tasks. Figure 2 shows the results graphically and Table 11 provides the ANOVA test results 

which reveal the significance of the differences between the groups. Taking  P values less 

than 0.05  to indicate significance, we see that all differences were found to be highly 

significant with very low P values. 
 

Using two groups, the ETB-EvenDist method recorded between 6.32 and 9.92 speed-up with 

an average of 7.62 speed-up against the MinMin. This represents an average of 86.53 percent 

performance improvement over the MinMin.   Using four groups, the method recorded 

between 16.35 to 59.19 speeds up with an average of 47.46 speed-up over the MinMin, 

representing 97.58 percent improvement over the MinMin. Eight groups recorded between 

59.45 and 182.50 speed-up and an average of 155.33 speed-up over the MinMin, representing 

99.28 percent performance improvement over the MinMin. Across all the groups, as the 

number of jobs increases, there was a general improvement in the speed-up to a point beyond 

which the speed-up declines.  
 

There was a significant performance improvement by the GPMS over MinMin as the number 

of groups increased. Increasing the number of groups enabled the scheduler to compute and 

schedule more jobs in parallel.  Figures 3 and 4 illustrate the scale of performance 

improvements in multiples and percentage against MinMin. We can see an improvement of 

scheduling efficiency with respect to the increase in groups.  As the scheduling changes from 

two groups to eight groups, the scheduling efficiency improved. This shows that using more 

groups increases the performance of the scheduling algorithm. Figure 5 shows the 

improvement in scheduling time as the number of groups increase. However the rate of 

performance improvement of a successive group over its predecessor decreases generally, for 

instance, using the ETB-EvenDist method, the rate of improvement of two groups over the 

ordinary MinMin was 6.94, between 2 groups and 4 groups, there was performance 

improvement of 7.41 while between 8 groups and 4 groups, performance improved only 3.28 

times. This shows that even though there is a general performance improvement over MinMin 

with increasing groups, the rate of improvement declines and levels off as the number of 

groups increases. The calculation of this decreasing rate of improvement is given in Table 12 

and illustrated by a line graph in Figure 6.   
 

Table 10: Scheduling times and speed-up for MinMin vs. ETB-EvenDist 

Methods MinMin Vs. ETB-EvenDist  

Time in ms 

Speed-up (X) 

in multiples 

Speed-up (%) 

in percentage 

Jobs Limit MinMin 

 

2Grps 

 

4Grps 

 

8Grps 

 

2Grps 4Grps 8Grps 2Grps 4Grp

s 

8Grps 

1000 
654 101 40 11 6.48 16.35 59.45 84.56 93.88 98.32 

2000 
3230 331 92 25 9.76 35.11 129.20 89.75 97.15 99.23 

3000 
7601 766 163 46 9.92 46.63 165.24 89.92 97.86 99.39 

4000 
12920 1475 252 76 8.76 51.27 170.00 88.58 98.05 99.41 

5000 
18219 2410 323 100 7.56 56.41 182.19 86.77 98.23 99.45 

6000 
22671 3211 383 128 7.06 59.19 177.12 85.84 98.31 99.44 
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7000 
29504 4670 511 185 6.32 57.74 159.48 84.17 98.27 99.37 

8000 
39074 5565 729 228 7.02 53.60 171.38 85.76 98.13 99.42 

9000 
48178 6989 954 294 6.89 50.50 163.87 85.49 98.02 99.39 

10000 
59982 9344 1254 342 6.42       47.83 175.39 84.42 97.91 99.43 

Total 

242033 34862 4701 1435 76.19 474.63 1553.32 865.27 

975.8

0 992.84 

Average 

 24203.3 3486.2 470.1 143.5 7.62 47.46 155.33 86.53 97.58 99.28 

 

 
Table 11: ANOVA results for ETB –EvenDist method vs. MinMin and between groups 

 

Test Method P-value Significant 

Difference? 

1 MinMin / ETB-EvenDist (All groups) 0.001995 
 

Yes 

2 MinMin/ ETB-EvenDist (2Grps) 0.00431 
 

Yes 

3 MinMin/ ETB-EvenDist (4Grps) 0.00136 
 

Yes 

4 MinMin/ ETB-EvenDist (8Grps) 0.00121 
 

Yes 

5 ETB-EvenDist (2Grps)/  

ETB-EvenDist (4Grps) 
0.006842 
 

Yes 

6 ETB-EvenDist (2Grps)/ 

ETB-EvenDist (8Grps) 
0.003126 
 

Yes 

7 ETB-EvenDist (4Grps)/ 

ETB-EvenDist (8Grps) 
0.022274 
 

Yes 

 

 

 

 

  
 

Figure 2: Total and average scheduling times across groups (ETB-EvenDist) 
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Figure 3: Speed-up (in multiples) of the ETB_EvenDist over MinMin with increasing jobs 

 

 

 

 

 

 
 

Figure 4: Speed-up (in percentage) of the ETB-EvenDist over the MinMin with increasing jobs 
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Figure 5: Improvement of the ETB-EvenDist method across group cardinality 

 
Table 1 Performance improvement for ETB-EvenDist method vs. MinMin and between groups 

Methods ETB-EvenDist 

Performance Improvement(X) 

ETB-EvenDist 

Performance Improvement (%) 
Algorithm MinMin 2Grps 4Grps 

 

8Grps 

 

Methods  2Grps 4Grps 

 

8Grps 

 

Total 242033 34862 4701 1435     

Group

MinMin

Total

Total

 

 6.94 51.49 168.66 
100

1

21 X
x

xx 

  

x1 = MinMin 

85.60 
 
x2 =2Grps 

98.06 
 
x2 

=4Grps 
 

99.41 
 
x2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

  7.41 24.29  

 

 

x1 = 2Grps 

 86.52 
 
x2 

=4Grps 
 
 

95.88 
 
x2 =8Grps 
 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

   3.28  

x1 = 4Grps 
  69.47 

 
x2 =8Grps 
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Figure 6:  Speed-up rate as group cardinality increases (ETB –EvenDist) 

6.1.2 MinMin vs. ETSB and Similar Together (ETB-SimTog) method 

Table 13 shows the result and computation of improvement of the ETSB-SimTog method over 

the MinMin. These results were yielded after running experiment 1 and experiment 5. 

The MinMin used a total of 242033 and an average of 3486.2 ms to schedule the jobs, using 

two groups. ETB-SimTog used a total of 82557 and an average of 8255.7 ms to schedule the 

same task. Four groups used a total of 17569 and an average of 1756.9 ms to schedule the 

task, while eight groups used a total of 3587 and an average of 358.7 ms to schedule the same 

task. Figure 7 illustrates the total and average scheduling times. The ANOVA test was used to 

check the significance of the results, shown in Table 14.  All differences were found to be 

highly significant, exhibiting very low P values.  

Using two groups, the ETSB-SimTog method recorded between 2.36 and 4.07 speed-ups with 

an average of 3.21 speed-ups representing an average of 86.53 percent performance 

improvement over the MinMin. Using four groups, recorded between 10.78 to 17.07 speed-

ups with an average of 14.58 speed-up representing 97.58 percent improvement over the 

MinMin. While eight groups recorded between 34.42 to 71.04 speed-up, averaging 63.97 and 

representing 99.28 percent performance improvement over the MinMin.  

Across all the groups, there was a general improvement in the speed-up to a point after which 

the speed-up declines. Figures 8 and 9 show the scale of improvement of the ETSB-SimTog 

method in multiples and in percentage. Figure 9 shows improvement from 2 to 8 groups for 

the same method. Figure 10 shows the rate of improvement and we see that there is a 

levelling off of performance between the groups, demonstrating a possible limit to the amount 

of improvement that is achievable with successive groups. The calculation of the rates of 

improvement is shown in Table 15. 

 
Table 13: Scheduling times and speed-up for MinMin vs. ETSB-SimTog 

Methods MinMin Vs ETSB-SimTog 

Scheduling time in ms 

Speed-up (X) Speed-up (%) 

Jobs 

Limit 

MinMin 

 

2Grps 

 

4Grps 

 

8Grps 

 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1000 
654 181 63 19 3.61 10.38 34.42 84.56 93.88 98.32 

2000 
3230 793 192 51 4.07 16.82 63.33 89.75 97.15 99.23 

3000 
7601 1876 447 110 4.05 17.00 69.10 89.92 97.86 99.39 

0

2

4

6

8

2Grps 4Grps 8Grps

M
u

lt
ip

le
s 

Number of Groups 

Rate of Improvement 
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4000 
12920 3691 757 183 3.50 17.07 70.60 88.58 98.05 99.41 

5000 
18219 7706 1178 283 2.36 15.47 64.38 86.77 98.23 99.45 

6000 
22671 8576 1548 360 2.64 14.65 62.98 85.84 98.31 99.44 

7000 
29504 10343 2133 437 2.85 13.83 67.51 84.17 98.27 99.37 

8000 
39074 12399 2555 550 3.15 15.29 71.04 85.76 98.13 99.42 

9000 
48178 15984 3527 685 3.01 13.66 70.33 85.49 98.02 99.39 

10000 
59982 21008 5169 909 2.86 11.60 65.99 84.42 97.91 99.43 

Total 
242033 82557 17569 3587 32.12 145.78 639.69 865.27 975.81 992.85 

Average 

 24203.3 8255.7 1756.9 358.7 3.21 14.58 63.97 86.53 97.58 99.28 

 
 

 

Table 14: ANOVA results for ETSB-SimTog vs. MinMin and between groups 

Test Method P Value Significant 

Difference ? 

1 MinMin/ ETSB-SimTog (All) 0.00423 
 

Yes 

2 MinMin/ ETSB-SimTog(2Grps) 0.0273 
 

Yes 

3 MinMin/ ETSB-SimTog(4Grps) 
 

0.002202 Yes 

4 MinMin/ ETSB-SimTog(8Grps) 

 
0.001306 Yes 

5 ETSB-SimTog(2Grps)/  

ETSB-SimTog(4Grps) 

 

0.00946 Yes 

6 ETSB-SimTog(2Grps)/ 

ETSB-SimTog(8Grps) 

 

0.001943 
 

Yes 

7 ETSB-SimTog(4Grps)/  

ETSB-SimTog(8Grps) 

 

0.015697 
 

Yes 

 

 

Table 15: Performance improvement for ETSB-SimTog method vs. MinMin and between groups  

Methods ETSB-SimTog 

Performance Improvement(X) 

ETSB –SimTog 

Performance Improvement (%) 

 MinMin 2Grps 4Grps 

 

8Grps 

 

Methods  2Grps 4Grps 

 

8Grps 

 

Total 242033 82557 17569 3587  82557 17569 3587 

Group

MinMin

Total

Total

 

 2.93 13.78 47.48 
100

1

21 X
x

xx 

  

x1 = MinMin 

65.89 

 

x2 =2Grps 

92.74 

 

x 2 =4Grps 
 

98.52 

 

x 2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

  4.70 23.02  

 

 

x1 = 2Grps 

 78.72 

 

x 2 =4Grps 
 

95.66 

 

x 2 =8Grps 
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]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

   4.90  

x1 = 4Grps 

  79.58 

 

x 2 =8Grps 

 

 

 

 

  

 
Figure 7: Total and average scheduling times of MinMin and across groups (ETSB-SimTog) 

 

 

 

 

 

 

 

 
Figure 8: Speed-up (in multiples) of ETSB-SimTog over MinMin with increasing jobs 
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Figure 8: Speed-up (in percentage) of ETSB-SimTog over MinMin with increasing jobs 

 

 
Figure 9: Improvement of ETSB-SimTog on MinMin across group cardinality 

 

Figure 10: Speed-up rate as group cardinality increases (ETSB-SimTog) 
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6.2 Comparison of grouping methods 

This section compares the performance of all the grouping methods against MinMin alone when using 

four groups and four threads. These results were yielded from experiments 1 to 5. We compared the 

average and total scheduling time of the ETB and ETSB methods of job grouping on both methods of 

machine grouping, EvenDist and SimTog.  Table 16 shows the scheduling times and speed-up. The 

ANOVA significance test results for the various performances are shown in Table 17.   

 

Figure 11 illustrates the difference in performance between MinMin and the grouping methods.  We 

see that all the grouping methods perform much better than MinMin.  The ANOVA results show these 

differences to be significant.  Figure 12 compares the grouping methods without MinMin so that we 

can differentiate their performance more clearly.  We see that the ETSB-SimTog method performs 

worse than the others. The ANOVA results, which are discussed in the next paragraph, show this 

performance difference to be significant. There was no significant difference between the performances 

of the other grouping methods. 

 

All grouping methods performed better than MinMin with significant differences shown in the 

ANOVA results. Test 1 in Table 17 has taken the mean scheduling speed of all grouping methods (we 

call this GPMS) and compared this to MinMin and a significant difference is shown. This shows that 

overall our GPMS performs significantly better than MinMin alone. We also see than the ETB and 

ETSB methods perform significantly better than MinMin. The significance analysis shows that there 

was no difference between grouping methods ETB and ETSB (Table 17, Test 8), both of which perform 

significantly better than MinMin. However a difference is shown between the following methods: ETB-

EvenDist vs. ETSB-SimTog (Test 10); ETB-SimTog vs. ETSB-SimTog (Test 12); and between ETSB-

EvenDist vs. ETSB-SimTog (Test 14).  We see that although ETSB-SimTog performs significantly 

better than MinMin (Table 17, Test 7), it performs significantly worse than the other grouping methods 

(Table 17, Tests 10, 12 and 14). 

 

Table 18 shows the speed-up for all grouping methods. We see that for four groups, three of the 

methods  (ETB-EvenDist, ETB-SimTog, ETSB-EvenDist) perform at speed-ups of over 46 compared to 

MinMin whereas ETSB-SimTog achieved a speed-up of 15 times over MinMin. There is a significant 

difference between this speed-up time and the others in the comparative set. 

 

Figure 13 shows improvement across group cardinalities for all methods, showing increased speed-up 

as the number of jobs increases.  Figure 14 shows the overall rate of improvement in multiples for all 

GPMS methods and  here we see a decrease as the number of groups approaches 8, again showing a 

levelling-off of improvement rate. 

 
Table 16: Scheduling times and speed-up for ETB vs. ETSB 

Method  ETB ETSB 

Jobs MinMin EvenDist SimTog EvenDist SimTog 

1000 654 40 32 24 63 

2000 3230 92 50 61 192 

3000 7601 163 99 119 447 

4000 12920 252 196 186 757 

5000 18219 323 324 333 1178 

6000 22671 383 522 518 1548 

7000 29504 511 703 532 2133 

8000 39074 729 907 744 2555 

9000 48178 954 992 949 3527 

10000 59982 1254 1399 1177 5169 

Total 242033 4701 5224 4643 17569 

Ave 24203.3 470.1 522.4 464.3 1756.9 

Performance 
Speed-up (X)  51.48 46.33 52.13 13.78 
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Table 17: ANOVA results for MinMin and all grouping methods 

Test No Method P value Significant 

Difference? 
(Threshold level:  

P = 0.05) 

1 MinMin vs. GPMS  0.001537 Yes 

2 MinMin vs. ETB 0.001373 Yes 

3 MinMin vs. ETSB 0.001723 Yes 

4 MinMin vs. ETB-EvenDist 0.00136 Yes 

5 MinMin vs. ETB-SimTog 0.001387 Yes 

6 MinMin vs. ETSB-EvenDist 0.001357 Yes 

7 MinMin vs. ETSB-SimTog 0.010622 Yes 

8 ETB vs. ETSB 0.093828 No 

9 ETB-EvenDist vs. ETSB-EvenDist 0.974201 No 

10 ETB-EvenDist vs. ETSB-SimTog 0.026158 Yes 

11 ETB-SimTog vs. ETSB-EvenDist 0.767002 No 

12 ETB-SimTog vs. ETSB-SimTog 0.033619 Yes 

13 ETB-EvenDist vs. ETB-SimTog 0.790165 No 

14 ETSB-EvenDist vs. ETSB-SimTog 0.025532 Yes 

15 EvenDist vs. SimTog 0.073511 No 

 

 
Table 18: Grouping method, group cardinality and speed-up  

                        Speed-up 

Grouping Method 2 Groups 4 Groups 8 Groups 

ETB -EvenDist 7.62 47.46 155.33 
ETB-SimTog 6.98 46.33 157.06 

ETSB-EvenDist 6.79 52.13 190.57 

ETSB-SimTog 3.21 14.58 63.97 

 

 

 
 

Figure 11:  Performance comparison of MinMin and grouping methods 
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Figure 12:  Performance comparison of grouping methods 

 
 

Figure 13: Improvement across methods 
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Figure  14: Overall rate of improvement with increasing group cardinality 

6.3  Comparison between GPMS methods and the Priority method  

This section compares the results of the two GPMS grouping methods (ETB and ETSB) 

against results of the Priority method (PPMS) from our previous work [1].    

Results for this comparison are from 4 groups. Our Priority method used 4 groups so the 

selection of the group cardinality of 4 allows fair comparison to be made.  The number of 

threads was also 4 in all tests.  Table 19 provides the raw results.  Figure 15 illustrates the 

difference between the various methods and Figure 16 shows the overall difference between  

Priority, ETB and ETSB. Table 20 shows the significance through ANOVA testing. 

 

With the Priority job grouping method, the SimTog and EvenDist methods recorded a 

performance improvement of 5.90 and 6.76, with times of 41006 and 35807 ms respectively 

over the MinMin.  With the ETSB grouping method, the SimTog and EvenDist methods 

recorded a 13 times and 52 times performance improvement over the MinMin using 17569 

and 4643 ms respectively, while the ETB job grouping method yielded 46 and 51 times 

performance improvement between the SimTog and EvenDist methods respectively using 

5224 and 4701 ms respectively to perform the scheduling task.  The ANOVA results which 

show the significance of the performance differences are given in Table 20. We have 

compared Priority to ETB and ETSB for both machine grouping methods (EvenDist and 

SimTog).  We also have compared Priority with ETB and ETSB separately regardless of 

machine grouping method.  Furthermore, we have also compared Priority with ETB and 

ETSB together as a combined group.  We call this group the GPMS group and its scheduling 

time is the mean of the scheduling times for ETB and ETSB. 
 

We see in Figures 15 and 16 that the ETB and ETSB method generally perform much better 

than the Priority.  The ANOVA test results generally back up this observation (see Table 20).  

The only exception is Priority vs. ETSB, where the significance is marginal, right on the 

P<0.05 boundary (see Table 20, Test 3). If we look more closely at this we see that the 

problem is the method ETSB-SimTog where the improvement is much smaller than the other 

GPMS methods.  In fact there is no significant difference between Priority-SimTog and 

ETSB-SimTog (see Table 20, Test 7). In Figure 15, we can see that the performance of the 

ETSB-SimTog method is much closer to that of the Priority methods than any other GPMS 

method.  Overall though, we can conclude that the GPMS methods perform better than the 
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Priority method. The ANOVA analysis of Priority method versus GPMS methods combined 

gave a P value of 0.027992 which shows that the difference is significant (see Table 20, Test 

1). Figure 17 illustrates the difference between Priority and GPMS methods in the form of a 

chart.   

 
The reason the GPMS methods performed much better than Priority is because in our 

previous experimentation with the Priority method we found that priorities were often not 

evenly distributed, resulting in some priority groups being much larger than others.  , Since 

the MinMin scheduling algorithm tends to polynomial [23], larger groups have a 

comparatively inflated scheduling time requirement.  Although in some cases Priority might 

work equally well as ETB or ETSB, this cannot be guaranteed unless the priority allocations 

are known in advance or balanced by a priority-allocation algorithm. 
 

Table 19: Scheduling times and speed-up for Priority, ETB and ETSB 

Method  Priority ETB 

 

ETSB 

Jobs MinMin EvenDist SimTog EvenDist SimTog EvenDist SimTog 

1000 654 95 105 40 32 24 63 

2000 3230 340 412 92 50 61 192 

3000 7601 673 839 163 99 119 447 

4000 12920 1092 1345 252 196 186 757 

5000 18219 1776 2008 323 324 333 1178 

6000 22671 2837 3339 383 522 518 1548 

7000 29504 3860 4570 511 703 532 2133 

8000 39074 5312 7500 729 907 744 2555 

9000 48178 7818 8830 954 992 949 3527 

10000 59982 12004 12058 1254 1399 1177 5169 

Total 242033 35807 41006 4701 5224 4643 17569 

Ave 24203.3 3580.7 4100.6 470.1 522.4 464.3 1756.9 

Performance 
Improvement(X)  

 

6.76 5.90238 51.48 46.33 52.13 13.78 

 

Table 20: ANOVA results for Priority and all grouping methods 

Test Method P value Significant 

Difference ? 

1 Priority vs. GPMS (ETB 

and ETSB averaged) 
0.027992 
 

Yes 

2 Priority vs. ETB 0.015965 
 

Yes 

3  Priority vs. ETSB 0.048583 Marginal  

4 Priority-EvenDist vs. ETB-

EvenDist 
0.020335 
 

Yes 

5 Priority-SimTog vs. ETB-

SimTog 
0.013124 
 

Yes 

6 Priority EvenDist vs. 

ETSB-EvenDist 

 

0.020128 
 

Yes 

7 Priority SimTog vs. ETSB- 

SimTog 

 

0.109315 
 

No 
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Figure 15: Improvement comparison between GPMS methods and Priority methods 

 

 

 
Figure 16: Priority method versus ETB and ETSB methods 
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Figure 17: Priority versus GPMS 

7. Discussion 
 

We have explored job grouping methods in a bid to increase throughput in scheduling Grid 

jobs by exploiting the multicore hardware. Two methods (ETB and ETSB) were used to group 

jobs before scheduling in parallel. Two machine grouping methods (Similar Together and 

Evenly Distributed) were also used to group jobs. Parallelism in scheduling was executed 

using dynamic threads. In the first experiments, the MinMin scheduling algorithm was 

implemented alone, then in separate but subsequent experiments, the grouping methods were 

first used to group the jobs and machines, before implementing the MinMin algorithm again 

to schedule same range of jobs. The dataset for the experiment was taken from the Grid 

Workload Archive (GWA) [22].  

 

In each of the experiments, we executed the MinMin algorithm on an HPC to schedule a 

range of jobs (from 1000 jobs to 10000 jobs in steps of 1000).  The range of jobs were kept 

between 1000 and 10000.  We experimented in steps of 1000 so we that we could determine 

the effect of increasing jobs on the speed-up by the method, and also to ease the various 

computations because computations are easier done with 10s, 100s, 1000s etc. In this paper 

we have reported on our experimentation with 1, 2, 4 and 8 groups using 4 threads. In the 

complete experimentation we varied both groups and threads between 1 to 16 in steps of 

power 2 (
n2 ). This is because multicore computers exist in that order and also so we can try 

to establish the relationship between the number of groups used, number of threads used and 

number of CPUs used.  However because of the number of combinations of variables yielding 

extensive results we are unable to report on all findings at this stage. Our future work will 

investigate further into these aspects and will report on effects of group, CPU and thread 

variation. 

 

Our results showed that increasing the number of groups with our method increases the 

efficiency of Grid scheduling by large margins. By grouping jobs and executing the 

scheduling in parallel within the groups, we found that scheduling of Grid jobs improved by 2 

to 7 times when using two groups to schedule. With four groups, scheduling improved by 13 

to 51 times and when using eight groups, scheduling improved by 59 to 253 times.   

Percentage-wise, our results showed that using two groups improved the scheduling 

efficiency by 81 to 87 percent. Four groups improved the efficiency of scheduling by 97 to 98 

percent while eight groups increased the performance by up to 99 percent. Between the 

groups, there was 80 to 84 percent improvement using four groups over two groups and 
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between 67 and 69 percent improvement by eight groups over four groups. There was a 

pattern exhibited by the performance graph in all the cases. The pattern was that the rate of 

improvement increases up to a point and then levels off.  This is due to the relationships 

between threads, cores and groups in the run-time environment and associated overheads.  

With low numbers of groups, the overheads have a relatively large effect but their effect 

diminishes as the number of groups increases and higher improvements are gained until a 

steadier state and rate of improvement emerges. However the number of threads and the way 

the parallelisation is carried out across the cores can disturb the steady state.  Further 

investigation is required to establish a robust theoretical model of the relationships in the 

dynamic run-time environment. 

 

We showed that grouping of jobs can be exploited in improving Grid scheduling by 

comparing our two methods of job grouping (ETB and ETSB) against each other, the ETB 

method performed similarly to the ETSB method when using EvenDist because both machines 

and jobs were fairly distributed in this case. The ETB performed better than the ETSB method 

when using SimTog to group machines.  In fact of the four grouping combinations, ETB-

EvenDist, ETB-SimTog, ETSB-EvenDist, and ETSB-SimTog, the former three all performed 

significantly better than the latter one according to our results.  At the moment we do not have 

a definite explanation for this observation. 

 

We compared the GPMS methods to our Priority method [1]. The Priority method performed 

less well than the other GPMS methods because in our data set the jobs were not equally 

spread among the priority groups.  It happened that a large number of jobs were assigned to 

the same machine group.  The polynomial-time MinMin algorithm for scheduling within 

groups therefore took relatively longer, increasing the overall scheduling time 

disproportionally.  If the priority job groups had been evenly balanced, the poorer 

performance would not have occurred.  The makespan also increases if the jobs groups are 

not balanced because the heavier loaded group would take longer to complete. 

 

It will be noted that neither PPMS nor GPMS targets the specialised GPU environment as 

most other research in this area does. Both methods execute correctly on general purpose 

systems – including HPC, and standalone computers. This is intended to widen the scope of 

applicability of the method in scheduling of not just Grid jobs. The approach can be extended 

to GPUs, distributed systems and to any Grid or Cloud environment which is characterized by 

a requirement to schedule a stream of jobs. 

 

After jobs from the GWA trace file are read into the scheduler, two different methods were 

used to split the jobs equally into the specified number of groups. Both methods depended on 

the estimated times for the jobs. Estimates of execution times are computed from the size of 

jobs which are also computed from the attributes. After the estimation has been made for all 

jobs, the information is held in a table to be used for scheduling later. We recognise that the 

estimated processing times are affected depending on the trace file attributes used by the 

estimation method.  In fact, it is not possible to generate the accurate job sizes from the GWA 

trace file because some values are missing, including machine speed of the original machines. 

However this limitation does not affect the validity of our results since the usefulness of the 

trace file for us was as a source from which a variety of job data could be generated. The 

relationship of our generated data to that of the original jobs was not crucial. The two 

methods used in distributing the jobs in the GPMS approach balance the jobs equally into the 

groups hence the distribution of the job attributes from the trace file would theoretically have 

no direct impact on scheduling times. However, it would have an impact on the execution 

times of jobs and hence on the makespan.   
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8. Conclusion and future work  
 

The contribution of this work has been to show how different types of grouping can harness 

parallelism in multicores and positively affect scheduling speed.  The resulting Group Parallel 

Multi-scheduler (GPMS) can be used in any environment in which there is a requirement to 

schedule a stream of jobs onto a set of limited resources.  Typical environments which could 

benefit are Grid and Cloud environments.   Given the growth in these paradigms, the research 

has potential to be exploited widely. 

 

The interest of most researchers in Grid scheduling has been on creating schedules such that 

overall makespan is decreased. This research improves on those efforts by providing a 

method by which the scheduling can also be carried out in parallel and thus overall makespan 

can be decreased further. We have proposed the GPMS which can be configured with varying 

grouping methods to suit varying characteristics of incoming jobs. Our experimentation has 

shown that idiosyncrasies of the input job set can have an effect on the time taken to schedule, 

depending on the scheduling method used. It can also affect the quality of the resulting 

schedule. Thus, the best results might be obtained by using an adaptive GPMS which can 

exploit different scheduling mechanisms depending on the characteristics of the incoming 

jobs.  Future work will further explore the relationship between the job characteristics, 

machine characteristics, scheduling method, grouping parameters, scheduling time and 

makespan. It will investigate alternative grouping methods and how characteristics of input 

jobs can be identified early and exploited such that appropriate grouping methods can be 

selected based on job and machine characteristics in an adaptive GPMS.  

 

In our experiment the threads were not explicitly bound to CPUs.  Thus we did not exercise 

explicit control over the 12 cores on the compute node of the HPC. Such control would have 

offered us an opportunity to investigate the relationship between increasing number of groups 

and increasing number of CPUs relative to scheduling efficiency. Future work should include 

a means of varying the CPUs on the HPC machine just the same way the number of groups 

were varied and investigating the relationship between both and also in the context of varying 

numbers of threads. 

 

In very complex environment, it will be interesting to extend this study of parallel multi-

scheduling on multicores by the implementation of several (or different) scheduling 

algorithms across the different job-machine groups. That is, we can decide to independently 

execute a mix of different scheduling algorithms from each of the independent groups. This 

will enable us to use one scheduling algorithms that suits jobs in one group and use another 

scheduling algorithm which suits another set of jobs in another group. If characteristics or 

attributes of certain jobs affect the  efficiency of the scheduling method, then this will provide 

the opportunity to exploit the benefits of one scheduling algorithm (from one set of jobs in 

one group) against the disadvantages of the other (in another set of jobs in another group). 

That means, we can implement a scheduling algorithm from the groups based on what 

scheduling method favours jobs in that group. 

 

Finally, the experiment was executed in a simulated environment and not on a real test bed, 

while the differences of a simulated environment and that of a real system or test bed are out 

of the scope of this work, it will be worthwhile to state here that effort should be made in due 

course to test the scheduler on a real test bed to ascertain the real functionality of the method.  
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