
Large-scale climate simulations harnessing Clusters,
Grid and Cloud infrastructures

V. Fernández-Quiruelasa, C. Blancoa, A.S. Cofiñoa, J. Fernándeza

aGrupo de Meteoroloǵıa, Dpto. Matemática Aplicada y CC. Computación. Universidad de
Cantabria. Santander, Spain

Resumen

The current availability of a variety of computing infrastructures including HPC,
Grid and Cloud resources provides great computer power for many fields of sci-
ence, but their common profit to accomplish large scientific experiments is still
a challenge. In this work, we use the paradigm of climate modelling to present
the key problems found by standard applications to be run in hybrid distributed
computing infrastructures and propose a framework to allow a climate model to
take advantage of these resources in a transparent and user-friendly way. Fur-
thermore, an implementation of this framework, using the Weather Research
and Forecasting system, is presented as a working example. In order to illus-
trate the usefulness of this framework, a realistic climate experiment leveraging
Cluster, Grid and Cloud resources simultaneously has been performed. This
test experiment saved more than 75% of the execution time, compared to local
resources. The framework and tools introduced in this work can be easily ported
to other models and are probably useful in other scientific areas employing data-
and CPU-intensive applications.

Keywords: Grid computing, Cloud computing, HPC, Regional climate model,
WRF, distributed computing infrastructures, hybrid computing infrastructures

1. Introduction

The improvements achieved on commodity computers during the last two
decades have changed the accessibility and availability of computing resources
for research. Although supercomputers still play an important role for the
research community, clusters and other infrastructures based on commodity
computers such as Grid and Cloud infrastructures are widely used due to their
low cost and homogeneity [41]. This situation has promoted the spread of new
computing facilities and, as a consequence, researchers can simulate in a wide
range of computing resources. Today, most researchers have access to several
clusters and Grid infrastructures and can rent on-demand Cloud resources to
temporarily solve peak workloads [16, 23, 31]. The aggregation of these resources
as a single Hybrid Distributed Computing Infrastructure (HDCI) can provide
a great computing potential. This work introduces a framework for performing

1

Preliminary version – March 23, 2017

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



large experiments with climate models on HDCIs. The framework has been
designed to access transparently these heterogeneous distributed environments
providing a uniform interface to run simulations.

The heterogeneous and distributed nature of HDCIs poses new challenges
to the applications willing to exploit them. Although there are several pieces
of middleware that facilitate the use of HDCIs, there are still unsolved aspects.
Moreover, applications with special requirements, such as data-intensive ones
or those with long-term runs, require a workflow modification in order to make
an efficient use of resources. Section 2 of this work describes the main issues a
user finds when trying to port an application to an HDCI.

So far, some efforts have been made to run climate models on HDCIs. Sev-
eral works have been devoted to adapt a climate model to perform a given
experiment in a given Grid infrastructure [11, 27, 42]. These works do not solve
the issues related to the heterogeneity of resources nor to the data management.
Instead, they provide ad-hoc solutions that only work in a very limited set of
computing resources. The main disadvantage of this approach is that the solu-
tion is not scalable nor reusable. In a previous work, Fernández-Quiruelas et al.
[14] developed a framework for executing a climate model on a Grid infrastruc-
ture (the EGEE testbed). This first prototype was scalable and was able to
exploit all the available Grid resources. However, it could not manage other
computing infrastructures such as Clusters or Cloud resources and only allowed
the execution of a given experiment. Blanco et al. [4] presented a scientific
gateway focused on running climate workflows on Grid resources. This solution
is useful to handle experiments with complex workflows among different Grid
virtual organizations, but it lacks of scalability and scheduling capabilities.

Other groups have explored new possibilities to run applications on HDCIs
without a common middleware. Bretherton et al. [5] developed a framework
based on web services that can be used to run different climate models by slightly
modifying the job configuration. This solution provides some advanced features
like the abstraction that allows the execution of different models. However,
some important issues, such as job scheduling, efficient data management or
recovery of failed simulations, were not handled.

The complexity of climate models poses challenges not only to the HDCI
middleware, but also to the standard software used in a single cluster or su-
percomputer [37]. The execution of climate models usually involves managing
complex workflows that produce large volumes of data and occasionally long-
term runs lasting for weeks or even months. Furthermore, new trends in climate
modeling employ ensemble prediction [36] to sample the uncertainties inherent
to the simulations. This technique requires running multiple times the same
simulation with varying parameters and thus complicates the experiment man-
agement even further. The growth in the number of independent simulations
required to perform ensemble prediction has forced the community to find new
sources of computing power. The independent nature of these simulations makes
them suitable to run on HDCIs. Adapting these models to efficiently take ad-
vantage of HDCIs can enormously enlarge the computing power accessible for
climate researchers.

2

Preliminary version – March 23, 2017



In order to simplify the execution of climate and weather experiments, some
institutions have created their own frameworks that allow the users to easily
perform experiments on their computing facilities. These frameworks provide
a set of commands and services that hide the complexity of configuring, run-
ning and monitoring all the simulations involved in an experiment. Among
other features, these frameworks usually provide means for running the whole
experiment workflow unattended and restarting part or the whole experiment
in case of failure. The FMS Runtime environment (FRE), the ECMWF Su-
pervisor monitor scheduler (SMS) or the IC3’s Autosubmit1 are some examples
[37]. These frameworks have been designed to work with a given model and a
single batch-queuing system (usually the one used in the developers institution).
Adapting them to use different resource managers or computing configurations
might involve a lot of work.

The framework shown in this paper encompasses many features already
available in other institutional climate modelling frameworks (e.g. FRE, SMS
and Autosubmit), facilitating the management and execution of climate ex-
periments. The main contribution of our framework is the ability to combine
heterogeneous, distributed resources to run the simulations. Additionally, its
layered design allows to take advantage of most of the developments and easily
port the framework to other climate models. Section 3, describes WRF4G, the
framework created for running the WRF [39] atmospheric modeling system on
HDCIs. This section describes the framework architecture and shows how other
applications could also benefit from it to run on HDCIs. It is important to note
that this work is not only useful for the climate community, but could also be
of interest to other disciplines. Applications that require long running times,
large data transfers or complex workflows could take advantage of this work.

In order to illustrate the usefulness of the framework, section 4 shows how
using WRF4G to access Cluster, Grid and Cloud resources simultaneously, the
time spent in running a real climate experiment has been reduced 4 times. The
experiment performed consisted of 365 independent simulations, which were
executed using computing and data resources from our institutional Cluster, a
remote Cloud and an EGI Grid infrastructure. Finally, section 5 presents some
conclusions and future work.

2. Hybrid Distributed Computing Infrastructures challenges

Although the combination of Cluster, Grid and Cloud resources on a single
HDCI can offer a great computing potential [31, 33], leveraging these hetero-
geneous resources poses several challenges. The distributed nature of these
infrastructures complicates tasks such as the monitoring and debugging of ap-
plications. Furthermore, combining Cluster, Grid and Cloud resources poses an
additional challenge: providing a uniform interface that allows interoperability
among different job managers. Interoperability of data resources is also an issue

1https://redmine.dkrz.de/collaboration/attachments/194/autosubmit.pdf

3

Preliminary version – March 23, 2017



on these infrastructures. Below, we show the main difficulties users might find
when executing their applications on an HDCI.

2.1. Application monitoring and debugging

In traditional computing infrastructures, users have direct access to the sim-
ulation working environment. They can track the simulation status or find errors
inspecting the files generated by the application. Moreover, they can debug er-
rors by re-running the simulation from the last checkpoint file or just stopping
the job and running it again with debugging parameters. When the computing
nodes belong to an HDCI, very often it is not possible to have direct access to
the working directory as the simulations run or even when they have finished.
The adaptation of the simulation environment to the policies of each computing
resource (i.e disk, memory and CPU quotas, scratch directory, interconnection
among nodes) is another issue that has to be faced when running on HDCIs.

Therefore, a framework to run simulations on HDCIs must allow users to
track and control their simulations, and to adapt the simulation environment
to each site policy. To provide the framework with such capabilities, it is nec-
essary to orchestrate and monitor the simulation workflow. One approach to
application monitoring on HDCIs is the use of a wrapper that registers in a
central database all the events produced by the simulation. This wrapper can
also transfer the output and checkpoint datasets to the data repositories as they
are being produced. Thanks to the checkpoint datasets, in case of crash, the
simulations can continue from their last checkpoint, with minimal data loss.
This wrapper will also prepare the execution environment (application paths,
location of the parallel libraries or scratch file systems...).

Section 3 describes how the central database and WRF wrapper have been
implemented in WRF4G.

2.2. Executing jobs on heterogeneous resources

Running computational jobs on heterogeneous infrastructures can be diffi-
cult due to the different middleware available. The variety of such middlewares
is quite large, even on each HDCI: PBS [20], SGE [19], LSF [51], SLURM [50],
LoadLeveler [24] and Condor [29] are examples of Cluster middlewares; gLite
[28], Globus Toolkit [15], ARC [12] and UNICORE [1] are examples of Grid
middlewares; and Eucalyptus [35], OpenNebula [40], OpenStack [10] and Nim-
bus [44] are examples of Cloud middlewares. These middlewares with different
interfaces are seldom compatible with each other, creating substantial barriers
to users. Fortunately, there are several successful software frameworks which
aim at solving the job interoperability among HDCIs, such as DIRAC [45],
gUSE/WS-PGRADE [13], GridWay [21] or Condor-G [17]. These frameworks
provide generic solutions to simplify the user access to heterogeneous resources.

Table 1 summarizes the features of the mentioned frameworks, focusing on
supported resources and scheduler type. Although these frameworks are aimed
at facilitating the use of HDCIs, none of them offers a final solution. All frame-
works, except GridWay, support running jobs on Grid, Cloud and Cluster infras-
tructures. However, the Local Resource Manager Systems (LRMS) supported

4

Preliminary version – March 23, 2017



Framework Resource support Scheduler type
Condor-G Grid, Cloud and Cluster Matchmaking metascheduler
DIRAC Grid, Cloud and Cluster Pilot Jobs
gUSE/WS-PGRADE Grid, Cloud and Cluster Metabroker
GridWay Grid and Cloud Metascheduler

Table 1: Comparison of software frameworks.

for Clusters are usually PBS, LSF and Condor. Only DIRAC offers a larger
variety in terms of these middlewares by enabling SGE as well.

There are different approaches to perform the job scheduling (Table 1).
Condor-G supplies mechanisms to match job requirements against resource fea-
tures (matchmaking process). Unfortunately, it does not support scheduling
policies [17]. DIRAC [7] relies on Pilot Jobs the job scheduling. Once on the
computing node, Pilot Jobs contact a central server to get tasks to run. The
main limitation of this approach is the requirement of an internet connection.
Most Cluster policies do not allow these kind of connections, which make Pilot
Jobs unusable for most HPC infrastructures. For these situations DIRAC pro-
vides a matchmaking scheduling. The metabroker concept posed by gUSE/WS-
PGRADE aims at supporting interoperability among resources at workflow level
[26]. Thus each component of the workflow can be run on a different resource.
gUSE/WS-PGRADE does not provide a scheduling policy by delegating the job
scheduling on the middlewares of the infrastructure chosen to run each workflow
component.

To conclude, none of the above mentioned approaches implements scheduling
policies to optimize the use of an HDCI. Only GridWay provides an adaptive
scheduling, with fault recovery mechanisms and on-request and opportunistic
job migration [49], which can operate independently from the infrastructure.

In order to provide efficient access to HDCIs, we decided to develop our
own framework but, rather than developing from scratch, we took advantage of
some capabilities of the GridWay metascheduler. We selected GridWay because
of its unique adaptive scheduling [22] and its customization support, which
allows to add new resource managers easily without modifying the code . This
development will be described in detail in Section 3.3.

2.3. Data intensive applications

The increasing data processing demand in many scientific fields has made the
management of storage resources and data transfers one of the biggest issues that
users have to face when running applications on HDCIs. In HPC environments,
data transfer time is negligible compared to the overall job execution time.
Thus, most application workflows are optimized to reduce the CPU time. When
these workflows are run in an HDCI, very often the data transfers become the
bottleneck.

In climate modeling, for example, an experiment run in an HDCI using the
traditional workflow would be inefficient because most of the time will be wasted

5

Preliminary version – March 23, 2017



transferring input and output data across the Internet. The typical workflow
of a climate modeling experiment is composed of 3 tasks. First, the input data
is transformed to fit the model requirements (preprocess). Second, the model
simulations are submitted to the computing resource. These simulations will
read the preprocessed data, and will store the raw output in the data storage.
And third, the raw output is filtered (postprocessed), significantly reducing its
size if the experiment focuses in a particular field of application.

To avoid the excessive data transfer, the experiment workflow in HDCIs
has to be modified to integrate the postprocessing step inside the simulation
execution in the computing node. An additional preprocessing has also to be
performed locally, before the submission, to reduce the input data for each
simulation. In a local cluster, the input for several simulations is often stored in
a single file. In a remote resource, this extra data transfer would be a waste of
time. Therefore, only the minimum required input data should be transfered.
Performing these tasks is crucial in Cloud infrastructures, where the pay-as-
you-go pricing model not only charges for the use of the instances, but also for
long-term storage and network transfers.

Apart from modifying the execution workflow, the data management effi-
ciency can be improved by using data-aware job schedulers. These take into
consideration the location of the data required by the jobs. When data and
computational resources are geographically dispersed, the use of a data-aware
job scheduler can enormously reduce the job execution time. There are several
works [25, 43, 30] that propose algorithms to develop this kind of job schedulers.
These works relay on data replicas to optimize the scheduling strategy. Among
the solutions proposed, the approach of Taheri et al. [43] best fits the character-
istics of climate models; these authors present a scheduling methodology where
“the overall makespan of executing all jobs as well as the overall delivery time
of all data files to their dependent jobs is concurrently minimized”. To date,
none of these proposals have been implemented.

The use of file replicas can also strongly improve the speed and reliability of
data transfers. Although many studies have been performed in order to optimize
transfers using scheduling algorithms based on the server loads or bandwidth
[38, 2], to date, there are no solutions that provide a smart replica allocation.
gLite LFC [3] and Globus RLS [8], two of the most commonly used replica
services, let the user choose the replica data resource or let the system use one
at random. It is important to note that both services only support replicas
among GridFTP servers.

Although GridFTP is a de facto standard for data transfers in HDCIs, there
are still several data repositories that do not support it. Instead, they provide
less efficient protocols for transferring data such as RSYNC, SFTP or HTTP.
This lack of homogeneity makes it difficult for the users to access them. Section
3 shows how this issue has been partially solved in the WRF4G framework.

6

Preliminary version – March 23, 2017



3. WRF4G Framework

WRF4G is a tool that simplifies the execution of atmospheric numerical sim-
ulation experiments with the Weather Research and Forecasting model (WRF
[39]) in HDCIs. WRF is a limited area model, widely used due to its flexibility
and modularity. It has been used in a variety of research and application areas,
from weather forecasting to climate change projection.

WRF4G allows the execution of large-scale experiments efficiently combining
heterogeneous, distributed resources. It provides full control of the simulations
and means for restarting part or the whole experiment in case of failure. It also
provides the ability of reproduce the experiment fully or partially. WRF4G is
an open-source and public available software that can be downloaded from the
Santander Meteorology Group website2 and installed in any Unix-like system.

3.1. Statement of the problem

Performing a climate experiment very often requires running multiple times
the same simulation with varying parameters. These parameters can be different
dates, input data, model configurations, etc. The computing requirements of
a given simulation do not always fit the resources capabilities. In some cases,
the input boundary data exceed the computing resource disk capacity and,
in others, the simulation wall-time is longer than the queue limit. To avoid
these restrictions, it is necessary to use the check-pointing/restart capabilities
of climate models to split the simulations in a cascade of smaller chunks.

In this framework, each experiment comprises a set of independent realiza-
tions (at least one) that can be split in several chunks executed as dependent
simulations (one chunk does not start until the previous chunk has finished).
Thus, if an experiment consists of an ensemble of 100 independent realizations
and each realization is split in 50 chunks, a total of 5,000 chunks will have to
be handled. Each chunk is submitted as a job to the HDCI. In case of failure,
several jobs will be required to finish a chunk, and they will probably run on
different resources.

The WRF4G framework is layered to separate the experiment design from
the execution environment. An atmospheric simulation experiment is defined
through two configuration files: one contains the scientific configuration of the
experiment (start and end dates, model configuration, experiment setup, input
data, postprocess to apply, etc.) and the other, the execution environment
(number of MPI process to run, memory required, data repositories, etc.).

The WRF4G framework is composed of three services. The Experiment
Management service (EMS) creates, monitors and manages the experiments
according to the user requests. In order to provide transparent and unified
access to HDCIs, the EMS interacts with the Job Management Service (JMS)
and the Data Management Service (DMS). JMS and DMS are in charge of

2http://www.meteo.unican.es/software/wrf4g

7

Preliminary version – March 23, 2017



Figure 1: Schema of the WRF4G components: Experiment Management Service (WRF4G
commands, database and vdb), Data Management Service (vcp) and Job Management Service
(DRM4G).

performing an efficient management of the computational and data resources,
respectively.

3.2. Experiment Management Service

WRF4G incorporates a set of tools that facilitate the experiment manage-
ment. All these tools relay on a python library (WRF4Glib.py) that provides
functions to interact with the different components of the framework.

To manage the experiment, it is necessary to persist all the experiment in-
formation and status (Section 2.1) in a database. The WRF4G database is
embedded in the framework and hidden to the users. In order to facilitate the
interaction with the database, an API called vdb (virtual database) has been
created. The WRF4G library uses vdb to provide high level functions that in-
teract with the database. Although, the database used by default is the MySQL
installed with the framework, other instances of MySQL can be used and, with
a few modifications in the vdb API, any other relational database could be ac-
cessed. The database contains several tables (Experiment, Realization, Chunk,
Job, ...) were the configuration and status of the different components are

8

Preliminary version – March 23, 2017



recorded. With the information stored in the database, the status of the ex-
periment execution can be monitored in real-time. More information about the
schema and relationships among the database components can be found in the
WRF4G website3.

The EMS comprises the user tools, the WRF4G library and the database.
The user tools requests are handled by the WRF4G library, which interacts with
the database, the JMS and the DMS (see Figure 1). To run an experiment,
WRF4G goes through 3 phases:

Preparation The experiment configuration is analyzed and the details about
the resulting realizations and chunks are recorded in the database. Con-
figuration files for each of the chunks are also created and transfered to
the data repositories using the DMS.

Submission The database is queried to obtain a list of the chunks that need to
be run. These chunks are efficiently scheduled to the computing resources
taking into consideration the dependencies among them. To do so, the
EMS prepares the jobs templates and submits them to the JMS.

Execution The chunk execution in the computing node is driven by a wrap-
per script in charge of preparing the environment and orchestrating the
run. The wrapper contains a monitor that tracks the events occurred
during the model execution, updates them in the central database and
manage the output files. The algorithm of the WRF4G monitor is shown
in Algorithm 1. The location of the executables and libraries required
to run WRF can be customized in the experiment configuration file for
each computing resource. The serial, MPI, OpenMP and Hybrid (MPI-
OpenMP) execution environments of WRF are supported. If the location
of the executables and libraries required to run WRF is not supplied, a
precompiled binary is transferred to the computing nodes during the envi-
ronment preparation step. The precompiled binary includes OpenMPI, an
MPI implementation characterized by its modularity and its adaptability
to many LRMS.

3http://www.meteo.unican.es/software/wrf4g

9

Preliminary version – March 23, 2017



Data: Process ID
Result: exit code

1 while workflow still running do
2 update chunk status;
3 if new dataset then
4 postprocess dataset;
5 upload postprocessed dataset;
6 set event in database;
7 remove dataset;

8 end

9 end
10 Clean up and upload logging info;
11 update chunk status in database;
12 exit(exit code);
Algorithm 1: WRF Monitor in charge of sending the events occurred during
the execution to the central database

3.3. Job Management Service

As mentioned above (Section 2.2), there is not a complete framework to
manage HDCIs. Considering the options available, the GridWay metascheduler
is well-suited to our purpose thanks to its modular design, with plugins named
Middleware Access Drivers (MAD) [22]. GridWay’s MAD architecture is flexi-
ble enough to enable the interoperability among the components of an HDCI.
For instance, it has been tested on different Grid [48, 6] and Cloud [46, 47]
infrastructures.

Although GridWay’s approach eases the management of HDCIs, there are
no plugins to access Cluster middlewares. DRM4G [9] is at the core of WRF4G
and bridges the gap between GridWay and Cluster resources. It also provides
an API(Figure 1). DRM4G can define, submit, and manage computational jobs
among Cluster, Grid and Cloud resources. It also provides a single point of
control for these resources without installing any middlewares. Furthermore,
DRM4G improves the GridWay adaptive scheduling enabling new parameters
such as the maximum queued jobs or the maximum running jobs on each HDCI
component.

Following a modular design like that of GridWay, DRM4G’s MAD consists
of two components: the protocol used to access resources (communicator) and
the middleware used to manage jobs (resource manager). As a result, it can
be easily customized by combining a communicator (ssh, gsissh or local) with
a resource manager (fork, sge, pbs, slurm, lsf, loadleveler, globus or cream).
DRM4G treats all resource managers and communicators equally, thus a user
can even add Grid resources over SSH and GSISSH protocols. This unique
approach makes DRM4G access many kinds of remote resources.

DRM4G has been designed following strong scalability requirements, which
are an essential feature for running large-scale experiments, as those requested
by some climate modeling experiments (Menéndez et al. [32] show an exam-
ple with more than 7,000 jobs). To provide scalability, several management

10

Preliminary version – March 23, 2017



queues have been implemented inside DRM4G to handle job requests. These
requests can now be dispatched without overloading the framework. DRM4G
has also the ability to perform SSH channel multiplexing. This technique allows
to handle each resource by using a single SSH connection. Otherwise, several
concurrent SSH connections would be established between each resource and
DRM4G server. This could lead to stability issues or even be considered an
attack to the resource.

In summary, the combination DRM4G-GridWay solves the issue of efficiently
handling different HDCI components by providing a homogeneous access to
Cluster, Grid and Cloud resources. Both are embedded in the WRF4G frame-
work and their use is transparent for users.

3.4. Data Management Service

The heterogeneity of data resources and its geographical distribution in-
creases the difficulty of managing efficiently the data on an HDCI (see Sec-
tion 2.3). The combination of different infrastructures involves the use of differ-
ent data transfer protocols. Thus, the data repository used by a job depends on
the infrastructure or resource where it will run. For instance, a job dispatched to
a Grid resource will have to transfer the data using GridFTP. A job dispatched
to a Cluster will use rsync, or just a local copy.

In order to handle this heterogeneous situation, WRF4G provides a tool
called vcp (virtual copy). The aim is to hide the complexity of managing dif-
ferent transfer protocols. To date, vcp supports the following URLs: rsync,
lfn (gLite LFC), gsiftp, sftp and http. Although vcp does not implement any
replica algorithms, it is able to handle file replicas using the LFC (only GridFTP
transfers).

Additionally, WRF4G has a fine-grained data management which allows to
indicate the location of data repositories on a per-resource basis. The user
can easily customize the input and output data repositories and, when a job
starts to run on a resource, the data repository is selected depending on the
infrastructure where the job is running.

3.5. Leveraging the framework to run other applications

The modularity of the framework proposed allows other applications to ben-
efit from the WRF4G components to leverage HDCIs. Applications with no
special requirements, such as long-term runs or detailed monitoring capabili-
ties, can be easily adapted to HDCIs using DRM4G and vcp. Only a couple
of commands to prepare the job templates and to submit the jobs should be
created.

The framework deployment would be more complex for an application requir-
ing monitoring. First, it would be necessary to create a new database schema.
Some database components, such as the Jobs or Events tables, could be copied
from the WRF4G schema. Then, the user tools and the WRF4G library should
be modified to fit the new schema. Most of the WRF4G library functions will
be reusable. The highest level part of the library should be rebuilt, but the

11

Preliminary version – March 23, 2017



functions that interact with the database, DRM4G and vcp, that are the most
complex part, could be exploited.

We have leveraged the framework presented in this paper to port the Com-
munity Atmospheric Model (CAM) to HDCIs and we are currently adapting
the framework to work with other two regional climate models: COSMO-CLM
and RegCM4. As the characteristics of these models are very similar to WRF,
only a few changes in the database and in the library are required.

4. An illustrative example of WRF4G

In order to illustrate the usefulness of the framework proposed, we rerun
on an HDCI resource a wind simulation experiment that had been previously
executed in a single cluster. The use of HDCI significantly increased the com-
putational capacity available for the simulation. In this section, we show how,
leveraging different computing infrastructures, the overall execution time was
reduced 4 times. This was done without additional effort in porting the appli-
cation to the different infrastructures and with the output data gathered in a
common place at the end of the simulation.

The experiment performed for this example aims at simulating the wind
behavior over the Mediterranean basin during one year. To do so, an ensemble
of 365 independent realizations was run. Scientific details of the experiment can
be found in Menéndez et al. [32].

The input for each realization were 230 MB of global reanalysis data (84 GB
for the whole experiment). For each realization, the WRF model produced 2
GB of meteorological variables at 15-km resolution and hourly time step. As the
main goal of the study focused on wind, we selected just this variable, reducing
the output produced to 40 MB. Thus, the data output for the whole experiment
was reduced from 730 GB to 14 GB.

The reference execution in our local cluster (cluster1, see Table 2) took ∼60
hours using 18 nodes (144 cores, Intel Xeon E5620). The execution time for
each realization was around 175 minutes using 8 MPI parallel processes. Given
that the realization execution time was short, in this particular example it was
not necessary to split the realizations into chunks.

4.1. Experimental setup

Three different experiments were performed to test the framework. All of
them were performed using the WRF4G framework and were run in jobs using
8 MPI parallel processes.

The first experiment was run in a single cluster (cluster1) and it matches
exactly the configuration of Menéndez et al. [32] SeaWindI experiment. This
configuration was preserved in all experiments, except for the list of computing
and data resources.

The second and third experiments were run on an HDCI. In order to create
a realistic scenario, we combined different computing infrastructures supported
by the framework. It is important to note that all the computing infrastruc-
tures, except for the Cloud resource, were shared with other researchers, and

12

Preliminary version – March 23, 2017



no resource reservation was made. The WRF4G framework was installed in the
submission machine of the research group cluster (cluster1), which also acts as a
Grid user interface. The list of resources available for running the experiments
(i.e. the HDCI) is shown in table 2.

Name Type Nodes Cores Comm. RM OS Repo.
cluster1 Cluster 18 144 Local PBS Centos 6 Local
cluster2 Cluster 8 64 Local PBS Centos 6 Local
cluster3 Cluster 4 32 SSH SGE Debian 7 rsync
cloud Cloud 4 32 SSH PBS Centos 7 rsync
EGI Grid 14246 136352 Local CREAM SL 6 gsiftp/lfn

Table 2: Characteristics of the resources used for running the Experiments 2 and 3, showing for
each resource the name, type, number of nodes, number of cores available, Communicator used
to access it (Comm.), Resource Manager (RM), operating system installed in the computing
nodes (OS) and data repository (Repo.) used for input and output data in Experiment 2.

The computing resources cluster1 and cluster2 are two queues of our research
group cluster, featuring processors from different makers (Intel and AMD, re-
spectively). EGI is the European Grid Infrastructure. We used the Earth
Science Virtual Organization4 from EGI, which provides access to 136352 cores
from 61 different sites distributed all over the world. cloud is a private Cloud in-
frastructure managed with OpenNebula where we deployed 4 computing nodes.
cluster3 is the cluster of other research group from our university, included in
the HDCI for the purpose of illutrating the access to an additional local resource
manager (SGE) and OS (debian 7) via SSH.

In order to show that the use of replica file services is essential when run-
ning large-scale experiments in HDCIs, we performed two different experiments
on this HDCI (Experiment number 2 and 3). In Experiment 2, a single data
repository was used (data.unican.es). The EGI resources accessed this repos-
itory using the GridFTP protocol, cluster1 and cluster2 have the repository
directly mounted in the nodes (local) and cluster3 and cloud accessed through
rsync. In Experiment 3 the input data accessed by jobs running in EGI were
replicated in 5 different GridFTP data repositories using the LFC service (under
the logical file name lfn://grid/esr/seawind). This process replicated 365 files
from data.unican.es to 5 different EGI storage repositories, transferring a total
of 420 GB of data. This operation took 6 hours.

As the output data were transfered as they were being produced, and the
total output size was much smaller than the input, in all experiments the output
data were stored in-house in a common location (data.unican.es).

During the execution of Experiment 2, the data repository crashed because
the server run out of memory (80 GridFTP processes were downloading data
simultaneously). After tuning the configuration of the GridFTP service, the re-
alizations were able to run. However, the jobs executed in EGI resources hanged

4http://www.euearthsciencegrid.org/

13

Preliminary version – March 23, 2017



while downloading the data. The problem was caused by a bottleneck in the
Internet connection of the data repository that resulted in a very slow trans-
fer rate in the GridFTP connections. Under these circumstances, we canceled
Experiment 2 and no statistics are shown. This illustrates the essential role of
replica services in deploying data intensive applications on HDCIs.

4.2. Job execution statistics

Experiment 3 was executed twice (Experiments 3.1 and 3.2) to show the im-
portance of the scheduling policy when running in heterogeneous environments.
The DRM4G scheduling policy penalizes the resources when they do not behave
as expected. Thus, when a site is publishing available CPUs but jobs queued
on those resources do not start to run after a given time (one hour in the con-
figuration used to run these experiments), the scheduler penalizes these sites
and migrates the jobs to other resources. The same happens when jobs crash
without a reason.

In the execution of Experiment 3.1, the scheduler did not have previous in-
formation about the resources. Experiment 3.2 was launched afterwards, once
the scheduler was “trained”. The default behavior of DRM4G scheduler is dis-
patching the jobs to the resources with fastest cores. As the fastest computer
resource was publishing more than 1920 free cores (365 jobs x 8 MPI processes),
all the jobs were submitted to that resource. Unfortunately, only one job started
to run. After one hour, DRM4G migrated all those queued jobs to other re-
sources. This situation was repeated with other EGI resources; most resources
with 3 jobs or less in Figure 2a suffered the same problem. Some jobs run in
EGI failed because they reached the resource storage quotas. The waste of time
while jobs were queuing or running before they die in Experiment 3.1, together
with a temporary better availability of free resources in Experiment 3.2 are the
main reasons why the Experiment 3.2 was twice faster than the 3.1 (see Fig-
ure 3). It is important to note that even the inefficient execution in the HDCI
(Experiment 3.1) was twice faster than the execution on a single cluster (Ex-
periment 1). As shown in Figure 2b, Experiment 3.2 used less less computing
resources as a result of the change in the scheduling priority, which banned some
sites.

Table 3 shows some job statistics for Experiment 3.2. Data download times
are significantly larger in the Grid resources. However, the input data retrieval
time is still negligible compared to the computing time (WRF) in the node, so
the use of Grid resources is still worth.

5. Summary and conclusions

This work has introduced a new framework for running complex applica-
tions in HDCIs. The framework frees the user from tedious tasks such as the
experiment workflow management, the monitoring or the data transfers, pro-
viding at the same time a homogeneous access to the computing and storage
resources. It fits the purpose of climate modeling, which is characterized by

14

Preliminary version – March 23, 2017



Figure 2: Distribution of the jobs among the different computing resources. a) first trial on the
HDCI (Experiment 3.1) b) second trial, after the scheduling policy was updated (Experiment
3.2).

Figure 3: Number of jobs running vs. time (in hours) since the experiment submission.

15

Preliminary version – March 23, 2017



Resource Jobs Wait Download WRF
cygnus.grid.rug.nl 292 262 (212) 4.8 (0.8) 119 (6)
cluster1 24 290 (100) 0.8 (0.1) 169 (17)
cloud 17 239 (164) 1.3 (0.2) 79 (1)
cluster2 11 231 (102) 0.6 (0.1) 171 (24)
cream-ce-3.ba.infn.it 7 123 (81) 4.0 (0.3) 111 (22)
cluster3 3 461 (1) 1.2 (0.1) 103 (1)
cce.ihep.ac.cn 1 10 12.2 194

Table 3: Job statistics for Experiment 3.2, showing for each resource the number of jobs run
(Jobs) and the average and standard deviation (in parenthesis) of the time spent waiting
to run (Wait), Downloading input data (Download) and running WRF (WRF). Times are
expressed in minutes

large data transfers and long execution times. WRF4G is an implementation
of the above framework to run a regional climate model (WRF) taking advan-
tage of an HDCI. The WRF4G framework has already been used for scientific
production runs, contributing to several works [34, 18, 32].

The new framework has been tested on an HDCI using a realistic experiment
consisting of 365 simulations of wind speed over the Mediterranean area. The
efficient use of the resources led to saving more than 75% of the execution time,
as compared to the same simulations run on local resources. WRF4G benefited
from the additional heterogeneous resources without increasing the complexity
for the user. Moreover, the ability to add on-demand resources is very useful
to solve peak-loads or to guarantee service-level agreements by renting Cloud
resources.

All output data were transparently sent back to a common local repository
as if local computing resources would have been used. Input data replication has
been shown crucial to sustain a large scale experiment. Otherwise (Experiment
2), the initial concurrent access to a single data resource acts as a bottleneck.

Also, the training of the scheduling policy (Experiment 3.1 vs 3.2) seems
to introduce strong differences in the final execution time. It should be noted
that, due to the intermittent availability of some of the resources in the HDCI
used in the test (mainly the Grid component), the results may vary strongly
if repeated. In fact, the differences between Experiments 3.1 and 3.2 include
not only the training of the scheduler, but also these differences in the resource
availability. One of the features of HDCIs is this variability of resources, which
prevents a detailed evaluation of the impact of different approaches.

Although WRF4G has been adapted to the WRF workflow, the modularity
of the framework allows other climate models with similar characteristics to be
easily ported. Moreover, applications from other disciplines can also benefit
from most of the framework components shown in this work (DRM4G, vcp,
wrapper services, etc.).

WRF4G is an active project and it is continuously adding new features. An
interesting addition to the current framework would be to provide GridWay
with data-aware scheduling. This capability would enormously improve the

16

Preliminary version – March 23, 2017



overall experiment execution time. In this regard, Taheri et al. [43] show how
the algorithm they propose can be easily integrated in the GridWay scheduler
policies.

Acknowledgements

This work has been supported by the Spanish National R&D Plan under
projects WRF4G (CGL2011-28864, co-funded by the European Regional De-
velopment Fund –ERDF–) and CORWES (CGL2010-22158-C02-01) and the
IS-ENES2 project from the 7FP of the European Commission (grant agree-
ment no. 312979). C.B. acknowledges financial support from Programa de Per-
sonal Investigador en Formación Predoctoral from Universidad de Cantabria,
co-funded by the regional government of Cantabria. The authors are thankful
to the developers of third party software (e.g. GridWay, WRFV3, python and
netcdf), which was intensively used in this work. the authors are also thankful
to the reviewers who contributed to improve the final manuscript.

17

Preliminary version – March 23, 2017



References

[1] Almond, J., Snelling, D., 1999. UNICORE: uniform access to supercom-
puting as an element of electronic commerce. Future Generation Computer
Systems 15 (5–6) 539–548.

[2] Amjad, T., Sher, M., Daud, A., 2012. A survey of dynamic replication
strategies for improving data availability in data grids. Future Generation
Computer Systems 28 (2) 337–349.

[3] Baud, J.-P., Casey, J., Lemaitre, S., Nicholson, C., 2005. Performance
analysis of a file catalog for the LHC computing grid. In: 14th IEEE
International Symposium on High Performance Distributed Computing,
2005. HPDC-14. Proceedings. 91–99.

[4] Blanco, C., Cofiño, A., Fernandez-Quiruelas, V., 2013. WRF4SG: A scien-
tific gateway for the Weather Research and Forecasting model. In: 2013
36th International Convention on Information Communication Technology
Electronics Microelectronics (MIPRO). 172–176.

[5] Bretherton, D. A., Blower, J. D., Haines, K., Smith, G. C., 2009. Run-
ning climate models on grids using G-Rex. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences
367 (1890) 847–853.

[6] Carrión, I. M., Huedo, E., Llorente, I. M., 2012. Interoperating grid in-
frastructures with the GridWay metascheduler. Concurrency and Compu-
tation: Practice and Experience .

[7] Casajus, A., Graciani, R., Paterson, S., Tsaregorodtsev, A., Team, t. L. D.,
2010. DIRAC pilot framework and the DIRAC Workload Management
System. Journal of Physics: Conference Series 219 (6) 062049.

[8] Chervenak, A., Schuler, R., Ripeanu, M., Amer, M., Bharathi, S., Foster, I.,
Iamnitchi, A., Kesselman, C., 2009. The Globus Replica Location Service:
Design and Experience. IEEE Transactions on Parallel and Distributed
Systems 20 (9) 1260–1272.

[9] Cofiño, A., Blanco, C., Fernández-Quiruelas, V., 2011. Aggregation of Grid
and HPC resources for running huge experiments in climate and weather
prediction. In: EGU General Assembly 2011, volume 13. 13194.

[10] Corradi, A., Fanelli, M., Foschini, L., 2014. VM consolidation: A real
case based on OpenStack Cloud. Future Generation Computer Systems 32
118–127.

[11] Davidović, D., Skala, K., Belušić, D., Telǐsman Prtenjak, M., 2010. Grid
implementation of the weather research and forecasting model. Earth Sci-
ence Informatics 3 (4) 199–208.

18

Preliminary version – March 23, 2017



[12] Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J.,
Livenson, I., Nielsen, J. L., Niinimäki, M., Smirnova, O., Wäänänen, A.,
2007. Advanced resource connector middleware for lightweight computa-
tional grids. Future Generation Computer Systems 23 (2) 219–240.

[13] Farkas, Z., Kacsuk, P., 2011. P-GRADE portal: A generic workflow system
to support user communities. Future Generation Computer Systems 27 (5)
454–465.

[14] Fernández-Quiruelas, V., Fernández, J., Cofiño, A., Fita, L., Gutiérrez, J.,
2011. Benefits and requirements of grid computing for climate applica-
tions. an example with the community atmospheric model. Environmental
Modelling & Software 26 (9) 1057–1069.

[15] Foster, I., Kesselman, C., 1996. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputer Applications 11 115–128.

[16] Fox, A., 2011. Cloud Computing—What’s in it for me as a scientist?
Science 331 (6016) 406–407.

[17] Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S., 2002. Condor-
g: A computation management agent for multi-institutional grids. Cluster
Computing 5 (3) 237–246.

[18] Garćıa-Dı́ez, M., Fernández, J., Fita, L., Yagüe, C., 2013. Seasonal depen-
dence of WRF model biases and sensitivity to PBL schemes over europe.
Quarterly Journal of the Royal Meteorological Society 139 (671) 501–514.

[19] Gentzsch, W., 2001. Sun grid engine: towards creating a compute power
grid. In: First IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2001. Proceedings. 35–36.

[20] Henderson, R. L., 1995. Job scheduling under the portable batch system.
In: Feitelson, D. G., Rudolph, L., (Eds.) Job Scheduling Strategies for
Parallel Processing, number 949 in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 279–294.

[21] Huedo, E., Montero, R. S., Llorente, I. M., 2001. The GridWay frame-
work for adaptive scheduling and execution on grids. Scalable Computing:
Practice and Experience 6 (3).

[22] Huedo, E., Montero, R. S., Llorente, I. M., 2007. A modular meta-
scheduling architecture for interfacing with pre-WS and WS grid resource
management services. Future Generation Computer Systems 23 (2) 252–
261.

[23] Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B. P.,
Maechling, P., 2009. Scientific workflow applications on amazon EC2. In:
2009 5th IEEE International Conference on E-Science Workshops. IEEE,
59–66.

19

Preliminary version – March 23, 2017



[24] Kannan, S., Roberts, M., Mayes, P., Brelsford, D., Skovira, J., 2001. Work-
load management with loadleveler. IBM Redbooks 2 2.

[25] Kosar, T., Balman, M., 2009. A new paradigm: Data-aware scheduling in
grid computing. Future Generation Computer Systems 25 (4) 406–413.

[26] Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T., 2014.
DCI bridge: Executing WS-PGRADE workflows in distributed computing
infrastructures. In: Kacsuk, P., (Ed.) Science Gateways for Distributed
Computing Infrastructures. Springer International Publishing, 51–67.

[27] Lagouvardos, K., Floros, E., Kotroni, V., 2010. A Grid-Enabled Regional-
Scale ensemble forecasting system in the mediterranean area. Journal of
Grid Computing 8 (2) 181–197.

[28] Laure, E., Gr, C., Fisher, S., Frohner, A., Kunszt, P., Krenek, A., Mulmo,
O., Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Byrom, R.,
Cornwall, L., Craig, M., Meglio, A. D., Djaoui, A., Giacomini, F., Hahkala,
J., Hemmer, F., Hicks, S., Edlund, A., Maraschini, A., Middleton, R., Sgar-
avatto, M., Steenbakkers, M., Walk, J., Wilson, A., 2006. Programming the
grid with gLite. In: Computational Methods in Science and Technology.
2006.

[29] Litzkow, M., Livny, M., Mutka, M., 1988. Condor-a hunter of idle work-
stations. In: , 8th International Conference on Distributed Computing
Systems, 1988. 104–111.

[30] Mansouri, N., Dastghaibyfard, G. H., Mansouri, E., 2013. Combination of
data replication and scheduling algorithm for improving data availability in
data grids. Journal of Network and Computer Applications 36 (2) 711–722.

[31] Mateescu, G., Gentzsch, W., Ribbens, C. J., 2011. Hybrid Comput-
ing—Where HPC meets grid and cloud computing. Future Generation
Computer Systems 27 (5) 440–453.

[32] Menéndez, M., Garćıa-Dı́ez, M., Fita, L., Fernández, J., Méndez, F. J.,
Gutiérrez, J. M., 2014. High-resolution sea wind hindcasts over the mediter-
ranean area. Climate Dynamics 42 (7-8) 1857–1872.

[33] Montella, R., Foster, I., 2010. Using hybrid Grid/Cloud computing tech-
nologies for environmental data elastic storage, processing, and provision-
ing. In: Furht, B., Escalante, A., (Eds.) Handbook of Cloud Computing.
Springer US, Boston, MA, 595–618.

[34] Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R.,
Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A., van Meijgaard,
E., Samuelsson, P., Sylla, M. B., Sushama, L., 2012. Precipitation cli-
matology in an ensemble of CORDEX-africa regional climate simulations.
Journal of Climate 25 (18) 6057–6078.

20

Preliminary version – March 23, 2017



[35] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff,
L., Zagorodnov, D., 2009. Eucalyptus: an open-source cloud computing
infrastructure. Journal of Physics: Conference Series 180 (1) 012051.

[36] Palmer, T. N., 2002. The economic value of ensemble forecasts as a tool
for risk assessment: From days to decades. Quarterly Journal of the Royal
Meteorological Society 128 (581) 747–774.

[37] Redler, R., Budich, R., Ford, R., Riley, G., 2012. Earth System Modelling -
Volume 5: Tools for Configuring, Building and Running Models. Springer,
1 edition.

[38] Saadat, N., Rahmani, A. M., 2012. PDDRA: a new pre-fetching based
dynamic data replication algorithm in data grids. Future Generation Com-
puter Systems 28 (4) 666–681.

[39] Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M.,
Wang, W., Powers, J., 2008. A description of the advanced research wrf
version 3. Technical report, NCAR.

[40] Sotomayor, B., Montero, R. S., Llorente, I., Foster, I., 2009. Virtual infras-
tructure management in private and hybrid clouds. IEEE Internet Com-
puting 13 (5) 14–22.

[41] Strohmaier, E., Dongarra, J. J., Meuer, H. W., Simon, H. D., 2005. Re-
cent trends in the marketplace of high performance computing. Parallel
Computing 31 (3–4) 261–273.

[42] Sulis, A., 2009. GRID computing approach for multireservoir operating
rules with uncertainty. Environmental Modelling & Software 24 (7) 859–
864.

[43] Taheri, J., Zomaya, A. Y., Bouvry, P., Khan, S. U., 2013. Hopfield neu-
ral network for simultaneous job scheduling and data replication in grids.
Future Generation Computer Systems 29 (8) 1885–1900.

[44] Tran Van Lang, N. T. D., 2012. Deploying business virtual appliances on
open source cloud computing. International Journal of Computer Science
and Telecommunications, ISSN: 2047-3338 3 (4) pp.26–30.

[45] Tsaregorodtsev, A., Bargiotti, M., Brook, N., Ramo, A. C., Castellani,
G., Charpentier, P., Cioffi, C., Closier, J., Diaz, R. G., Kuznetsov, G.,
Li, Y. Y., Nandakumar, R., Paterson, S., Santinelli, R., Smith, A. C.,
Miguelez, M. S., Jimenez, S. G., 2008. DIRAC: a community grid solution.
Journal of Physics: Conference Series 119 (6) 062048.

[46] Vazquez, C., Huedo, E., Montero, R. S., Llorente, I. M., 2009. Dynamic pro-
vision of computing resources from grid infrastructures and cloud providers.
In: Grid and Pervasive Computing Conference, 2009. GPC ’09. Workshops
at the. IEEE, 113–120.

21

Preliminary version – March 23, 2017



[47] Vázquez, C., Huedo, E., Montero, R. S., Llorente, I. M., 2011. On the
use of clouds for grid resource provisioning. Future Generation Computer
Systems 27 (5) 600–605.

[48] Vázquez-Poletti, J., Huedo, E., Montero, R., Llorente, I., 2006. Coor-
dinated harnessing of the IRISGrid and EGEE testbeds with GridWay.
Journal of Parallel and Distributed Computing 66 (5) 763–771.

[49] Vázquez-Poletti, J., Huedo, E., Montero, R., Llorente, I., 2007. A com-
parison between two grid scheduling philosophies: EGEE WMS and Grid
Way. Multiagent and Grid Systems 3 (4) 429–439.

[50] Yoo, A. B., Jette, M. A., Grondona, M., 2003. SLURM: Simple linux utility
for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn,
U., (Eds.) Job Scheduling Strategies for Parallel Processing, number 2862
in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 44–60.

[51] Zhou, S., 1992. LSF: Load sharing in large-scale heterogeneous distributed
systems. In: Proceedings of the Workshop on Cluster Computing.

22

Preliminary version – March 23, 2017


