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Abstract

Auditability is crucial for data outsourcing, facilitating accountability and identifying

data loss or corruption incidents in a timely manner, reducing in turn the risks from

such losses. In recent years, in synch with the growing trend of outsourcing, a lot of

progress has been made in designing probabilistic (for efficiency) provable data pos-

session (PDP) schemes. However, even the recent and advanced PDP solutions that

do deal with dynamic data, do so in a limited manner, and for only the latest version

of the data. A naive solution treating different versions in isolation would work, but

leads to tremendous overheads, and is undesirable. In this paper, we present algorithms

to achieve full persistence (all intermediate configurations are preserved and are mod-

ifiable) for an optimized skip list (known as FlexList) so that versioned data can be

audited. The proposed scheme provides deduplication at the level of logical, variable

sized blocks, such that only the altered parts of the different versions are kept, while the

persistent data-structure facilitates access (read) of any arbitrary version with the same

storage and process efficiency that state-of-the-art dynamic PDP solutions provide for

only the current version, while commit (write) operations incur around 5% additional

time. Furthermore, the time overhead for auditing arbitrary versions in addition to the

latest version is imperceptible even on a low-end server. Additionally, the application

of our approach opens up the possibility to naturally support block level deduplication.

While a naive solution to audit versions would copy the whole data and the data struc-

ture for each version, our solution utilises storage space amounting very close to the
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most efficient delta-based solutions. Accordingly, we explore how the proposed data

structure benefits the system with block level deduplication besides adding auditability

property, and how it can be integrated with a state-of-the-art versioning system (Git),

and in the process scale the storage efficiency of Git, and thus help scale the size of data

to be stored in Git, without compromising the retrieval efficiency of arbitrary versions.

1. Introduction
One of the natural challenges in outsourcing data to third party services is to ensure its

integrity over time. This has led to the study of probabilistic techniques for Provable

Data Possession (PDP) [1], in order to efficiently determine the loss or corruption of

(substantial subset) of the outsourced data. Early works on PDP [2, 3, 4] dealt with

static data, limiting their practicality. This in turn led more recently to the exploration

of mechanisms better suited for dynamic data, e.g., DPDP [5], FlexDPDP [6] and Dy-

namic POR using Oblivious RAM [7]. These later solutions do not consider provability

of the intermediate versions, but instead focus on the final/latest version. This leads to

the natural question on whether the meta-information maintained to carry out dynamic

proof of data possession can be amortized to also carry out version control, and how

in turn to adapt the data-structures and algorithms to carry out data possession and in-

tegrity verification while supporting the various versions of the data. The presented

work targets precisely this sweet spot, which we believe paves way for deployment of

wider class of applications using an outsourced backend storage service.

An obvious way to go about is to apply PDP separately over a version maintenance

mechanism, e.g., as in [8]. However, by instead adapting a dynamic PDP solution,

we can amortize the data structures, and realize versioning with marginal further over-

heads. Specifically, given its ability to efficiently support mutable content, albeit only

for the latest version, we leverage on the FlexDPDP [6] approach which uses a proba-

bilistically balanced data structure allowing for variable sized blocks, giving flexibility

to accommodate arbitrary changes.

In order to support the versioning of the data, we need a data structure which is

fully persistent. So to say, the data structure should be such that it should be possible
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to access and modify any version of the data [9], possibly creating version forks in

the process. For answering audit queries the data structure needs to be authenticated

(each node keeps a hash value), yet, for practicality, the data-structure also needs to be

efficient. The original skip list data structure was optimised in [5] and [6], resulting in

the use of only half the number of nodes and links above level 0 and a new traversal

mechanism which allows the data structure to be used for PDP with dynamic data. The

optimization diminishes the number of most costly operation (namely hashing) and

stored hash values.

The prior works however delve in ephemeral data structures - any update in the

data structure results in the loss of the previous version. In this work we present nec-

essary algorithms to realize full persistence to support multiple versions of data. Our

experiments that the performance overheads - for either data manipulation (read/write

of arbitrary version) or for auditing - are barely visible with respect to the underlying

ephemeral data structure that supported only the latest version of dynamic data. Addi-

tionally, we discuss how our approach can be integrated with Git [10] version control

system, and in doing so, in addition to the provable data possession guarantee, our ap-

proach derives significant savings in storage by facilitating block-level deduplication,

without compromising data access performance.

The contributions, and consequent advantages and key performance indicators of

the work presented in this paper are as follows:

� We propose algorithms to realize persistence of a data structure (FlexList) (Section

4.2), and thus extend its existing functionality from supporting the audit of the latest

version of a mutable content to that of arbitrary or all versions of the mutable data.

Our approach is general enough and can be adapted for optimized skip list and rank-

based skip list with slight changes to the traversal functions (namely canGoBelow and

canGoAfter).

� Our versioning algorithms add only 5% computational overheads to the original

[5, 6] schemes when committing a new version of data.

� Computational overhead for challenging versions is in the worst case log(v), where

v is the number of versions. For a 1GB of file with 1500 versions, our approach adds

only a millisecond more latency for auditing the versions with respect to approaches
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which could store and audit only the last version, even with a low-end server.

� Each version of the data is retrievable with O(n) I/O operations, where n is the

number of file system blocks (fixed sized, determined by the underlying file system) of

the data (assuming that the data structure is in the main memory).

� Unlike existing delta based versioning solutions (such as SVN[11]), each byte of

each version can be reached by expected worst-case of O(log(v)+ log(b)) traversal on

the data structure, where v and b are number versions and blocks respectively. And

unlike all tree-based solutions it achieves this regardless of the alteration pattern of the

user and without needing a re-balancing operation.

� Thus, our approach opens up the possibility to realize block level deduplication

across versions of data, without compromising the efficiency of access or manipulation

of any of the versions. We expose this by exploring integration of our solution with a

state of the art versioning system, Git.

2. Related Work
The related works can be broadly classified across two different aspects: (i) mech-

anisms for keeping track of mutable content and (ii) auditing outsourced data. The

former encompasses a wide spectrum of services, including system backups, typically

based on snapshots or copy on write mechanisms [12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24], and version management systems such as SVN [11] and Git [10].

The techniques we propose are applicable for storing the mutable content arising from

either setting, however, in the current work we do not address synchronization and con-

flict resolution, and those additional mechanisms would have to be integrated on top

in order to realize a full-fledged version management system. We instead discuss how

our approach complements a full-fledged version control framework like Git [10]. The

primary focus of this work is thus only on the aspect of storing and manipulating the

changed content, and the persistent data structures to efficiently access them.

The other aspect falls under the broader umbrella of security. While confidentiality

of the data - be it in transit or when it is stored - can readily be achieved with encryption,

the current version control systems implicitly assume a trusted storage service as far as
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data corruption or loss is concerned. One of the challenges of outsourcing is however

precisely to ascertain integrity of the stored content. That’s the notion of auditing.

The pioneering work on provable data possession for auditing [1], and several sub-

sequent works [2, 3, 4, 7] support append-only changes to the data. These were fol-

lowed by other works [25] using a Merkle Hash Tree and other balanced data structures

such as range-based 2-3 tree [26, 27], which however suffer from implementation and

performance complexities, particularly necessitated by re-balancing operations.

In [5], an optimized skip list was proposed with modified traversal algorithm,

namely the ‘rank-based authenticated skip list’, and provided the first dynamic provable

data possession scheme. It was extended in FlexDPDP [6] to accommodate variable

block sizes. A radically different approach provides dynamic proof of retrievability

using Oblivious RAM [7], and achieves stronger guarantees but is not as efficient as

[5, 6] solutions. All these approaches keep track of only the latest version, and hence,

as it is, inadequate for versioning, or proof of data possession of multiple versions of

the data. A naive solution will be to keep multiple instances of such a data structure

and the corresponding data separately, one instance per version, but such an approach

is clearly inefficient. We will explore how the data and data structure across versions

can be superimposed together, thereby keeping track of only the difference across ver-

sions, and yet, keeping data access and manipulation efficiency comparable to storing

each version separately, and not suffer the qualms of delta-based versioning solutions.

To understand this further, we next switch to the discussion of some popular ver-

sioning mechanisms, and the implications of our work with respect to these. SVN

(Subversion) [11] is a delta-based versioning mechanism. A delta represents the differ-

ence from the previous version. Thus, an SVN server stores the initial file and deltas

for subsequent commits. An easy approach will be to use a static solution for the initial

data and each delta as in [8]. The audit in this setting is fast. On the other hand, not

only retrieving the later versions is slow (needs to fetch and apply all the deltas) but

also, the earlier versions cannot be removed since [1] doesn’t allow any insertion or

removal, but only append operations. Therefore a dynamic solution is required to sup-

port all sorts of mutations. The way the deltas are stored comes into prominence. With

our approach, one can achieve fast retrieval as in Git (discussed next) and less storage

5



overhead as in SVN, while providing data possession guarantees.

Git [10] overcomes the reconstruction inefficiency problem of the delta-based so-

lutions. It stores a directory of data in blobs where a blob consists of the content of a

file. Each blob is indexed by a tree structure. Whenever a change occurs inside specific

files (a commit), new corresponding blobs and a new tree is created for the commit

operation. Therefore all of the versions are at log(n) distance when requested, where n

is the number of different files (blobs). Blobs corresponding to the unchanged files are

reused across versions, thereby achieving deduplication at file level, nevertheless, for

large files, a lot of storage space is wasted whenever there is even a small change. With

our approach, the deduplication is moved to a finer granularity of data blocks, reducing

storage overheads when storing multiple versions of data. Leaving the indexing data

structure as a tree (where we suggest a Merkle hash tree), we apply our solution to file

level.

We chose FlexList as the underlying data structure to design our solution since

other dynamic provable data possession techniques such as Zang et al’s update tree [28]

or red-black tree [29] need re-balancing, while FlexList keeps itself probabilistically

balanced, inheriting an intrinsic property of skip list which it enhances. This eliminates

the need for re-balancing, which is important for an authenticated data structure, since

re-balancing is very expensive since it requires many hash calculations.

3. Preliminaries: FlexList
In this section, we provide a summary of prior arts, specifically on FlexList (see Fig-

ure 1) which realizes a probabilistically balanced authenticated dictionary enabling

provable data possession of variable block sized dynamic data, by extending in turn a

rank-based authenticated skip list [5].

We explain how the FlexList works using examples. In Figure 1, consider node n2

which keeps two outgoing links, a rank value (90) and a level value (3). By following

the links we reach n3 and n9, called the below and after nodes respectively. The rank

is the value that represents how many bytes of the real data can be reached passing

through that particular node. The rank value is computed by adding rank values of the
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node below and the node after (we take 0 as the rank of after if the link is null). If the

below link is null (at leaf level) the length of the corresponding data piece is used. The

level represents the height of the node in the data structure. Last but not least, each

node keeps a hash value generated using a collision-resistant hash function (such as

SHA1) which uses all the above as inputs, namely; hash values of the below and after

nodes, the rank value and the level value.

Now, consider n7 which has an after link to n8, but doesn’t have a below link. A leaf

level node has a pointer to the data block that it corresponds. In the figure the values

shown below the nodes represent the lengths of the data blocks. We use the hash value

of the after node (if there is none, then null), the information of the data block, the

level and the rank values of the block. For simplicity, we can think the information of

the data block as the block content. In the real protocols, to achieve the same level of

security with a lesser communication cost, a value named Tag is used [5]. Note that

the FlexList has 2 sentinel nodes (n4 and n15). These nodes don’t provide any new

dependencies and they are not related with any data. The sole reason of their existence

is to make the algorithms and the figures more lucid. Since the hash value of the root

node of the FlexList depends on each block and each node on the data structure, making

FlexList an authenticated dictionary.

Figure 1: A FlexList example.
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3.1. A Search Example

Say we are searching the block that includes the byte with index 40. We start with

the root node n1 and we check the below node’s rank (note that the rank value shows

how many bytes can be reached from that node). Since, 40 < 90 we conclude that we

should follow the below link and reach n2. Repeating the same check we see that 40

> 35 therefore we need to follow the after link this time, and arrive at n9. When we

follow an after link, we leave behind some bytes on the left that can not be reached

anymore. We deduct those bytes from the index we are looking for. We continue our

search with index 40 - 35 (rank of n3) = 5. Following the same rules as the first one we

reach n10 and n11 respectively. Knowing the length of the corresponding data for n11 is

20, we stop since index 5 can be reached at that point.

Figure 2: An insert example on the FlexList.

3.2. An Insert and Remove Example

Insertion and removal to a FlexList are a bit more complicated. We must preserve

optimality of the data structure by removing nodes which become unnecessary after

the operation and by creating new nodes if a connection point is empty. Optimality is

where we have links and nodes if they are creating new dependencies otherwise we call
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them unnecessary. Lets say in Figure 2, we insert a data block of length 5 to index 55.

Insertion: A level is chosen for the new node randomly, following a geometric

distribution with parameter 0.5. The expected depth of the resulting data structure is

log(b) where b is the number of leaf level nodes (number of blocks), ensuring that the

skip list (thus the FlexList) is probabilistically balanced and doesn’t need re-balancing

[30].

We start from the root n1 and with the same rule as in search we follow the links

until we reach the node before the first insertion point (n9 in our Example). Then, we

create m1 and connect it between n9 and n14. We continue following the links and

reach n10 and stop since n10 has an after link which crosses our new nodes index. We

create m2, connect it to m1 and copy the after link from n10 to m2. As the node n10

loses its after node it becomes unnecessary because it is dependent to none but only

n11. Then we follow below link of n10 and reach n11 from which we will copy the after

link. We create m3, connect it to m2 and copy after link from n11 to m3. Since n11 is a

leaf level node, we do not remove it since it is our path to the corresponding data block.

We calculate all the rank and hash values of the nodes on the path, backwards until the

root, to finalize the operation.

Removal: Simply put, the remove operation is reverse of the insertion operation.

In the running example, we are to remove node with index 55 from Figure 2, and obtain

back the FlexList in Figure 1.

3.3. Pre-processing for Data Possession Guarantees

Pre-processing is done at both the client and the server sides. We show the concept as if

there is only one file at the server for simplicity. We discuss file hierarchy later. For the

randomness (refer to 3.2) of the data structure, they both use the same seed to construct

the FlexList over the data divided into pieces. Another choice would be the client to

construct the data structure and send it to the server. This saves processing time for

the server but adds communication cost. When both parties have the data structure, the

hash value of the root is the meta-data of the client for later integrity checks. In our

scheme, the root of the layer 2 data structure is the meta data to the client. We use layer

2 to keep each version’s root, meaning after each commit applied to layer 1 FlexList the
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Figure 3: Illustration of a commit operation of a new version for one file.

newly created root for the new version is to be added to layer 2. Note that the client’s

space complexity for meta-data is still O(1). Initially after a pre-process the root of the

layer 1 FlexList is the first and only element of the layer 2 data structure.

4. Auditing with Versioning
In this section, we discuss versioning. We first present a high level illustration (Figure

3) of the modified update phase of the FlexDPDP scheme that incorporates the version-

ing feature. Then we provide the operations to persistently modify, insert and remove

content in order to keep track of the modified data (used at both the server and the

client whenever an update occurs). We then discuss how challenges over the versions

and roll-backs work. Last but not least, we explore how our approach’s integration

benefits a state-of-the-art versioning system (Git).
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4.1. Update Phase

After the pre-processing, both sides (client and server) have the exact same data struc-

tures. Later when the client wants to make any change she will take the following

steps, illustrated in Figure 3. In the Figure ‘FlexList Generator’ stands for the algo-

rithm which creates a partial FlexList using a proof. Since a proof consists of all nodes

to be altered, the partial FlexList includes all of the nodes that we need for an update.

‘FlexList Adaptor’ stands for the algorithm that translates standard diff output (such

as [insert ”in red w” to index 59]) to data structure operations such as [modify the block

starting with index 50 with ”the lady in red was”], or something like [insert the block

starting with index 59 with content ”n red w”].

When a user wants to interact with the remotely stored data, the client requests data

from the server (Step 1) that the client wants to work on. The server’s response includes

the requested part of the data along with a DPDP proof (Step 2). The proof consists of

the necessary information from the two data structures to compute the meta-data kept

at the client. Therefore, the client may check the integrity of the received parts that the

client will work on. We do not include verification step in the illustration for simplicity.

While the data is sent to the user and the user interacts with the data (Steps 3 and 4),

the proof is processed by the FlexList Generator and the output (a partial FlexList)

awaits the updates by the user (Steps 3’ and 4’). When the client is done updating,

the resulting changes are parsed by a diff algorithm (Step 5) and sent to the FlexList

Adaptor, where they are turned into block updates (Step 6) which consists of modify,

insert and remove operations. Then the updates are applied to the partial FlexList at the

client side while they are being sent to the server for application to the remotely stored

data (Step 7). The client needs to apply the block updates to the partial FlexList of layer

1 and add the resulting root value to the data structure of layer 2 to compute her new

meta-data. Note that partial FlexList along with the updates from the client includes all

necessary nodes to compute the new root of the layer 2 data structure. After the client

computes and stores the new meta-data (Step 8), she can remove the partial FlexList

and all the update information.

There are several alternatives to choose from to serve as the layer 2 data structure.
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PDP
Key-based
Skip List

Rank-
based
Skip List

FlexList

Code Re-use no yes* yes yes
Branching needs new algorithms yes no yes yes
Process time for challenges O(1) O(log c) O(log c) O(log c)
Removing middle versions no yes yes yes
Removing a whole branch O(v) O(v log c) O(v log c) O(v log c)
Needs extra field
to keep #blocks
effected in a version

yes yes yes no

Table 1: Level 2 structure choice and properties.

Main options are presented in Table 1. In the table, v and c are number of versions and

commits respectively.

Assuming each update is of size 20KB (which is a fairly big size for an average

update) and we challenge 460 different nodes (for detecting data loss of 1% with 99%

confidence [1]) which alter from a version to another, the overheads of challenging

versions while using the different layer 2 structure choices are as follows. Time con-

sumed by skip list, rank-based skip list and FlexList are approximately the same, and

are around 0.65ms for 1000 commits, 0.79ms for 5000 commits, 0.9ms for 10000

commits and 1.19ms for 50000 commits, while the time consumed by PDP is around

0.53ms irrespective of the number of commits. Note that we used an altered version of

PDP here for a fair comparison, where we mitigate server process by transferring it to

the client, similar to as DPDP solutions do.

Though PDP is faster than the other three alternatives, it has other limitations (as

tabulated). Among the remaining three options, there is no discernible advantage of any

one approach over the others, and any of the three would be suitable as a choice of layer

2 data structure. For the rest of the exposition of our approach and the experiments, we

chose FlexList.

4.2. Algorithms for Versioning

There are several ways of versioning. First and the very basic one is to keep each

version of the data. This solution requires no query overhead when a previous version
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Symbol Description
(new) cn (new) current node
pn previous node, indicates the last node that current node moved from
mn missing node, created when there is no node at the point where a node has to be

linked
nn new node
dn node to be deleted
after the after neighbor of a node
below the below neighbor of a node
r rank value of a node
i index of a byte
npi a boolean which is always true except in the inner loop of insert algorithm
tn stack (initially empty), filled with all visited nodes during search, modi f y, insert

or remove algorithms
canGoBelow,
canGoAfter

functions that make decisions according to FlexList mechanism

createMissing
Node

function that creates a node when a link needs to be connected to a point of
another link, where there is no node present

Table 2: Symbol descriptions of FlexList algorithms (we reuse the notations from [6]).

is needed and any static provable data possession solution may work on this case by

processing each version as a new data stored. On the other hand this highly increases

the space requirements and the time spent for the updates. Another solution would be

delta versioning which is recording updates and keep only the last or first version of

the data. In this case, updates and the queries for the chosen version (first or last) are

fast, it uses minimum space but the queries for the other versions are too slow. For

this case a static PDP solution can be employed for the deltas (the update records) for

the the scenario that only the first version is kept and all of the updates are kept as

records. This seems inefficient since users tend to use the latest version. For a dynamic

data, keeping the last version and having the PDP solution for the deltas doesn’t work

since we can not apply PDP to the latest version due to the fact that the PDP solution

is efficient only under static setting. Therefore a dynamic PDP solution is needed to be

employed for this case. In this Section we show how not to suffer slow queries for the

past versions by presenting a path copying solution for the FlexList. We summarize the

crucial symbols used in the presented algorithms in table 2.

We first describe the nextPos function (Algorithm 4.1) to move from a current node

to a desired node of interest. Let us revisit the insert example of Figure 2. nextPos starts

from the root n1 and moves the pointer to n2, n9, then stops. After the insert creates
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Algorithm 4.1: nextPos Algorithm
Input: pn , cn , i , level , npi, newcn , version
Output: pn , cn , i , tn, newcn

1 tn = new empty Stack ;
2 while cn can go below OR after do
3 pn = newcn ;
4 if canGoBelow ( cn , i ) AND cn . below .level ≥ level AND npi then
5 cn = cn . below ;
6 newcn . below = new Node( cn , version); newcn = newcn . below ;
7 else
8 if canGoAfter ( cn , i ) AND cn . after .level ≥ level then
9 i = i - cn . below .r; cn = cn . after ;

10 newcn . after = new Node( cn , version); newcn = newcn . after ;
11 add newcn to tn;

m1, nextPos is called again to arrive at n10. After the creation of m2, nextPos moves

the pointer to n11. As observed, the function covers the affected nodes on the path. By

using this property we modify the algorithm as follows.

We add two more inputs which are a pointer to a newly created node for version-

ing and the version number. By this function, we handle the main versioning of the

manipulated nodes by creating version nodes each time we move the pointer of the

current node. We create the version node by copying the current node and setting the

version number and move the pointer of the new current node (namely newcn in the al-

gorithms) to the newly created one. When traversal ends and some specific operations

are required, we handle them in the main algorithms that we present below. Last but

not least, our nextPos algorithm pushes all the newly created nodes to the stack (Line

11), since all these nodes are on the search path and will need a recalculation according

to main FlexList algorithms [6].

4.2.1. Modify Operation

We explain the modify algorithm (Algorithm 4.2) using Figure 4. In the example

the user modifies the block starting with the index 55 and puts a data block of length

15 there. We intend to keep the previous version as is and have a new root pointing

to the new version of the data. Therefore we start by creating the new root using the

old root’s content for the next version (Line 1). Then we call the nextPos with the new

inputs. Version nodes, presented as circles in the figure, for n1 and n2 are created and

attached as shown in the Figure. Line 7 and 8 creates version node for n9 and links it.

To finalize the modify algorithm, we loop until we reach the node to be modified by
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Figure 4: A modify example on the FlexList with versioning.

creating version nodes at each step (Line 9-12). We return two root nodes - one for the

old version, one for the new version. Last step is to compute all the new rank and hash

values from the stack for the new version. Since old version nodes remain untouched,

we do not need any recalculation, and the same amount of calculations are needed as

for the non-versioned auditable modify operation.

Algorithm 4.2: Modify Algorithm
Input: i
Output: cn , tn, newRoot

1 newRoot = new Node(root, version);
2 newcn = newRoot ;
3 tn = new empty Stack ;
4 cn = root ;
5 call nextPos ;
6 cn = cn . after ;
7 newcn . after = new Node( cn , version);
8 newcn = newcn . after then newcn is added to tn;
9 while cn .level 6= 0 do

10 cn = cn . below then cn is added to tn;
11 newcn . below = new Node( cn , version);
12 newcn = newcn . below then newcn is added to tn;
13 save newRoot as the new root;
14 return root as the previous version;
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Figure 5: An insert example on the FlexList with versioning.

Algorithm 4.3: Insert Algorithm
Input: i , data
Output: nn ,tn, newRoot

1 newRoot = new Node(root, ++version);
2 newcn = newRoot ;
3 tn = new empty Stack ;
4 pn = root; cn = root; level = tossCoins() ;
5 call nextPos // cn moves until it finds a missing node or cn . after is where nn

is to be inserted
6 if !CanGoBelow( cn , i ) or cn . level 6= level then
7 call createMissingNode; // instead of standart function call with cn

we call with newcn
8 cn = newcn ;
9 nn = new node is created using level ;

10 nn . after = cn . after ; newcn . after = nn and nn is added to tn;
11 while cn . below 6= null do
12 if nn already has a non-empty after link then
13 a new node is created to the below of nn ; nn = nn . below and nn is added to tn;
14 call nextPos ;
15 nn . after = cn . after ; nn . level = cn . level ;
16 deteletUNode( pn , newcn );
17 cn = newcn ;
18 nn . leafAfter = cn . leafAfter ;
19 newcn . leafAfter = nn ;
20 nn .data = data;
21 save newRoot as the new root;
22 return root as the previous version;
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4.2.2. Insert Operation

We explain the insert algorithm (Algorithm 4.3) with Figure 5. We repeat the same

operation from Figure 2 (insert data of length 5 to level 2) but we want to deduce two

data structures with shared parts, as we do with the modify example. We start with

creating the root m1 for the new version. Then nextPos moves the pointer until n9

creating m2 and m3. Lines 6-8, a version node is created if it was necessary to connect

newly created nodes (For example if the insertion was to level 3 instead of level 2, we

would stop at n2 and create a version node after m2 and above m3). Then we create

the new node of insertion, m4, using the level to insert (Line 9) and set its after and

m3’s after. Lines 11-17 create m5 and m7 by taking their after links from n10 and n11.

Line 16 deletes the version node for n10 created by nextPos since in the new version

that node is unnecessary. Lines 18-19 connect the leaf nodes together. Then Line 20

sets the new data to the newly created node and the algorithm returns the old root for

versioning. With the nextPos pushing the newly created nodes to the stack, they re also

pushed at Line 10 and 13. To finalize the new version we need to calculate rank and

hash values of all the nodes from the stack.

4.2.3. Remove Operation

Algorithm 4.4: Remove Algorithm
Input: i
Output: dn ,tn, newRoot

1 newRoot = new Node(root, ++version);
2 newcn = newRoot ;
3 tn = new empty Stack pn = root; cn = root ;
4 call nextPos ;
5 dn = cn . after ;
6 if cn . level = dn . level then
7 newcn . after = dn . after ; dn = dn . below ; // unless at leaf level
8 else
9 deleteUNode( pn , newcn );

10 cn = newcn ;
11 while cn . below 6= null do
12 call nextPos ;
13 call createMissingNode with newcn instead of cn ;
14 cn = newcn ;
15 newcn . after = dn . after ; // Deletion on the new version
16 dn = dn . below ;
17 newcn . leafAfter = dn . leafAfter ;
18 save newRoot as the new root;
19 return root as the previous version;

We run the remove algorithm (Algorithm 4.4) on our FlexList , illustrated in Figure

6 to remove the block starting with index 35. The new root, m1 is created, and the
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Figure 6: A remove example on the FlexList with versioning.

nextPos function brings the pointer to n2 by creating a version node for n2 as well.

Since the level of the node to remove is not equal to the one our pointer is on (check at

line 6) we delete the newly created version node and also pop it from the stack (called

deleteUNode). Then we create m2 (the missing node - Line 13) since in the new version

n14 is connected to level 2 without the presence of n9. After the linking of m2 (Line

15) we let the nextPos to move our pointer until n5 by creating m3 and m4 on the way

(line 12). At this point, we again need a node to connect the after link of n10 therefore

createMissingNode (Line 13) creates one. Instead of creating the node on the FlexList,

we create and link it to the new version nodes. Therefore, m5 is created and its after

link is set to n10’s after link (Line 15). The next call of the nextPos function carries

the pointer to n8, creating m6 and m7 on the way. Then m7 takes the after link of n11

(the last of the nodes to delete). We set the leaf level links of the new version nodes

and return the old root after setting the new one. createMissingNode pushes the newly

created node to the stack and the rest of the new nodes are pushed to the stack by the

nextPos function. To finalize the remove operation, all the hash and rank values of the

nodes from the stack are calculated.
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4.3. Challenge Phase
4.3.1. Challenge

Dynamic provable data possession systems employing an authenticated dictionary

works in the following manner. The client, by sending a seed to the server sets the

randomness for a shared pseudo randomness generator. Using that randomness, the

server picks some blocks to generate a proof and collects all the necessary information

to compute the hash value of the main root of the challenged data. Considering an

authenticated dictionary, each node’s hash value depends on the child nodes’ hash val-

ues and their own attributes, the necessary information are the attributes of the nodes

in the path from the root to the challenged data blocks and their neighbor’s hash val-

ues. The server also adds the data blocks themselves to the proof, so that the client

may compute the root value using these unique values where one of them is the data

block to be checked for integrity. Note that an authenticated dictionary uses a collision-

resistant hash function, therefore these values are unique in the sense that there is no

probabilistic polynomial time adversary that can find any other input sets to compute

the same result. Formally: Let hash : I1 x I2 → O be a family of hash functions, a

function is collision resistant if ∀ PPT adversaries A, ∃ a negligible function neg s.t.

P[(I2, I′2)← A(I1) : I2 6= I′2∧ (hashI1(I2) =hashI1(I
′
2))]≤ neg(n).

We keep each of the data structures for each version so any version can be chal-

lenged in the old way [5, 6]. To be precise, challenging the latest version as in [5, 6]

schemes makes sense but challenging all previous versions in that manner is too much

of an overhead. So we suggest a version challenging mechanism to decrease this over-

head, which challenges only the changed blocks from the versions. Since all versions

are present in our scheme, additional computation in not needed, so, it is adequate to

challenge only the changed nodes from each version, while other schemes (e.g., [8])

need to challenge the main version and the deltas until that version.

4.3.2. Challenging Versions

One solution would be to utilise the version numbers inside the nodes. We use an

alternative that requires less authenticated information. We add a value to leaf level

nodes of the layer 2 data structure (roots to layer 1), thus they keep the update infor-
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mation (index from which it starts, and the length) and add them to inputs of the hash

function (authenticate) to compute the hash value for the node.

When we challenge the versions we choose particular nodes in a version that are

modified in that specific version. To achieve that we use the authenticated information

in the version’s root to choose which nodes to challenge. Both parties use the seed that

the client picks for a challenge and generate the indices to be challenged. Therefore the

challenge by the client remains the same, no addition to original scheme [6] is needed.

Since the client gets the start index and the length of the update by the proof from the

layer 2, the server cannot choose a node other than whatever the client has picked by

the random seed that she has chosen.

Thus, the proof consists of two parts. First is the proof from layer 2 which includes

the roots of versions which are challenged. Second is the set of proofs for each version

from layer 1. The integrity of the roots are guaranteed by layer 2 and the integrity of

blocks are guaranteed by layer 1.

Probability of catching a cheating prover when a fraction f of a file is damaged or

lost is (1− f )r where r is the number of blocks randomly picked and challenged [1]. In

case of loss or damage where f = 10% (of the versioning data), one needs 20 random

nodes from the versions to be challenged to catch the problem with 88%. Challenging

43 nodes is enough to catch the same problem with 99%. Unlike in [1, 5, 31] we don’t

consider 1% of data loss since the versions, themselves, are small in size and deleting

1% of it wouldn’t benefit the server.

4.4. Roll-back

Roll-back is achieved readily by choosing the root of the required version. Note that

all indices of the version is at expected O(logn) distance and recovering all of the

version is O(b) where b is the number of blocks for that specific version. To be precise,

reaching the node at index 0 requires O(h) hops, where h is the height of the data

structure, and following the leaf level nodes all the way right costs O(b). O(h) =

O(log(b)) as discussed in Section 3.2, therefore recovering all of the versions costs

O(log(b)+b).

Note that each algorithm that we provide in Section 4 (line 19 of Algorithm 4.3 and
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line 17 of Algorithm 4.4) deals with leaf level connections which are not presented in

the Figures for simplicity.

4.5. Git Integration

Git is a popular versioning system because it achieves very good performance given

the underlying data model for storing versioned data. Even though our approach can

be plugged into many other versioning systems, we choose Git as the candidate to

demonstrate the proposed approach’s applicability, both because Git is a widely used

system with its superior performance than the delta based solutions as well as because

our approach naturally complements Git’s underlying data model, and enables the use

of much less storage space for each version (than Git), thus scaling the size of data

objects that can be supported, while retaining the same efficiency of retrieving arbitrary

versions of data.

Figure 7: How Git would look like after integration.

In Figure 7 we show how our approach can be integrated with and supplements Git

[10]. On the left we show how Git works. In this example, a typo is fixed by changing

a character in a file. Git creates a new blob for that file and adds it to the index where

it keeps an index tree for each version. On the right, we show how our approach can
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Figure 8: Space requirement after 627 commits.

be integrated to supplement Git. We suggest usage of an persistent (to save space by

not repeating shared node’s hash values) authenticated tree structure for indexing (e.g.,

a Merkle hash tree [32] would suffice, since we don’t need re-balancing at this layer).

When we use our proposed solution, shown on the right (with logical block size of 1

in this example), instead of creating a new blob, only the changed part is subject to

change. Following the index starting from the root shown by ‘v2’ the data we will

reach is the version 2. No further de/compression is required.

This example demonstrates that our approach deals with the data at a different

granularity. While Git provides blob level deduplication (which is a slightly better

way than file-level deduplication, where the deduplication excludes the file header and

focus on the content itself where two files with, for instance, different authors, name

or date can be deduplicated), our deduplication approach becomes active when the file

is updated below the blob level, where we handle deduplication within a blob at the

block level. For a file of size 400KB, 5 alterations of average size of 20KB will end up

with a space usage of ∼2000KB with Git (for storing the five versions), on the other

hand, integration of our approach will cost 100KB in addition to the 400KB, using a
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total space of 500KB. We note that Git applies compression (zlib [10]) to reduce the

storage overhead, and the numbers we report in this example are for just a qualitative

comparison. Furthermore, applying compression induces further computational costs.

Overall, the advantages of our approach are directly proportional to the size of the files

being changed.

In Figure 8, we show the space usage at the server for a mutable data. In this real life

example deducted from our own SVN server, we track a file directory that starts with

several files of total size 117KB. At the end of 627 commits the size gets increased

to 50MB. By taking these commits as basis, we show the space requirement for the

optimal case, where only the necessary bytes are kept. This is the optimal, where, even

the delta based solutions (such as SVN without the skip delta implementation) do not

achieve but approximate. We show the SVN space usage while using the skip deltas.

In the worst case, all updates are additive and in the average case the updates are as they

really are. We present the Git results for different average file sizes (2KB, 5KB, 10KB,

20KB, 40KB). We observe that even when the average file size is 2KB, Git uses more

space than our variable block size setting, since Git copies the same file and adds the

additional content on it, where we may add the additional content as a new block. The

bigger the average file size, the more space is used in Git. With our solution integrated

to Git, regardless of the average file size, the overhead depends on the updates only.

5. Evaluation
We have employed methods from cashlib library to implement the proposed mecha-

nisms [33]. The experiments are run on a 64-bit computer with a 3.2GHz Intel Xeon

E5-1650 Processor with one active core, Dell Perc H310 (for high density, entry level

servers) disk drive that provides 6Gb/s per port, 15.6GB main memory and 12MB L2

cache, running Ubuntu 12.10. As security parameters, for a 80-bits expected security

we use 1024-bit RSA modulus, 80-bit random numbers, and SHA-1 hash function.

Reported results are the averages of 10 iteration of experiments. The tests include I/O

access time. The FlexList was small enough to be stored in the main memory. Unless

stated otherwise, we use data of size 1GB in our experiments.

23



There is a dearth of suitable data sets (see a discussion in the context of deduplica-

tion [34]) to drive the experiments. We thus created synthetic commit patterns, gener-

ated randomly - parametrized by ranges of sizes of updates, which allows the study of

a wide range of update behaviors. Specifically, we use a uniform random distribution

and the updates are insertion, removal or combination of both. We choose ranges as

follows; 1KB to 10KB, 10KB to 20KB, 20KB to 50KB and 50KB to 100KB. We use

10KB to 50KB range to show time overheads since they are relatively big, and allows

to better observe latency, and we want to demonstrate that the overheads are acceptable

even for such moderately large updates. We used 1KB to 20KB range to show space

overheads since an average update size falls into this range for many scenarios [5, 34].
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Figure 9: Time spent for commits.

The overhead in terms of time spent for versioning with respect to [6, 5] is presented

in Figures 9a and 9b. The versioning overhead is around 5% and 4% for updates

ranging from 10KB to 20KB and 20KB to 50KB respectively. We see that, among

1500 commits, some with big size and including operations to higher levels of the

data structures ends up with significantly higher overheads (shown on the rightmost of

the graphs). For instance, an update of size 50KB (25 blocks involved, where 17 of

them are inserts, among which the maximum level is 5 and average level is close to 1)

takes less than 18ms for the commit operation and 0.4ms as the versioning overhead.

Regarding these events with significantly higher overheads, we note that even though
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an update takes long time, the versioning overhead is barely visible. Not only it is too

small in the update phase, but also with the proofs and server-client communication

added (which ends up taking seconds) the versioning overhead is negligible.
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Figure 10: Space overhead of versioning.

Figure 10a and 10b show the different (due to the block size choice) overheads to

keep previous versions of the data. In [6], it is shown that 2 and 4KB block sizes give

best performance results for auditing. With versioning (this work), 2-4KB block sizes

have reasonable space usage on the server side (not much is gained with smaller blocks

of say 0.5KB), thus, there are no conflicts in choosing the design parameters.

Figure 11 shows the increase of the total number of nodes (including all versions)

in the FlexList under different settings. For the most common update sizes of 1 to

10KB range, the increase in node number is barely discernible. If big commits of sizes

20 to 50KB arrive for consecutive 1500 commits (which is unlikely) while using a 2KB

block sized FlexList, number of the nodes doubles. Each node constitutes of 5 integers

and one 160 bit hash value (considering SHA-1 as the hash function) and leaf level

nodes includes extra 1024bit tags for network efficiency (∼60MB for 1GB of data).

Therefore doubling the FlexList means using an extra space of ∼76MB for the data

structure if an integer is considered to be of 2 bytes. The smaller the block size per

node, the less overhead, while when it gets bigger, FlexList loses some efficiency. We

see that the persistent FlexList and our 2KB choice stays in an acceptable range in

terms of extra nodes used and space consumed. If under any setting the ∼76MB space
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is not affordable, then larger block sizes may be used at the cost of processing time.

For instance, when dealing with a big volume of data but with only insertion based

modifications, bigger block sizes could be used.

Integrating our scheme with Git is logically straightforward, however, ultimately,

substantial software integration work. In order to determine the advantages of our

approach, we instead emulated the Git part and tested our implementation as another
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Figure 12: Server Side Commit times.

module working on top of Git. Figure 12 shows the time spent at the server side for

each commit. We assume a 1GB data stored. We applied 1500 randomly generated

commits. Each commit size is between 20KB and 50KB. We sorted the commit times

from the fastest to slowest for better visualization. For the optimal case we created a

delta that includes only the differentiated part of the file and measure the time. The

optimal is not a result of an actual scheme but measured only as a base reference. For

Git, we have chosen 3 average file sizes of 20KB, 50KB and 1MB. In the legend of

Figure 12, we have grouped these together into one. When the file sizes diminish, the

file hierarchy grows, resulting is a bigger tree structure (file hierarchy). Since the tree

structure is copied with each update, the effect is more pronounced with the smaller

file sizes. On the other hand, when the average file size is 1MB, since the file itself

is bigger than the space used by the whole file hierarchy, it dominates the time spent
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for the commit. For SVN, we observe an exponential increase in time spent due to the

size growth of the skip deltas with the increase in the commit count. Even with a very

fast storage device (Dell Perc H310 for high density, entry level servers disk drive that

provides 6Gb/s per port), we observe that the main factor in the spent time is the disk

write times of the files, deltas or the data structures. Our scheme (applied along with

Git) minimizes the data writes and does the updates in variable sized blocks and does

not copy the whole file hierarchy, thus the difference from one version to another is

close to optimal data writes. Regardless of the average file size, it makes all commit

times in Git with our scheme quite close to the optimal solution with an average 2KB

block sizes.

Last but not the least, as we have discussed in Section 4.4, one of the best features in

our scheme is that it allows an instantaneous roll-back to any version (like the original

Git) without any processing required. The only thing the server needs to do is to choose

the root of the particular version (as the root of the file hierarchy) and all the leaf level

nodes constitute the data of that version. Garbage collection of redundant nodes/links,

if desired by a user, can be carried out in a disentangled manner as a background

process, and does not affect the run-time performance.

6. Conclusion
In this paper we have proposed a practical solution for auditing versioned data, support-

ing arbitrary edits across versions, while not compromising performance of the various

operations (access/commit/audit). We have discussed how the proposed mechanism

supplements version control systems like Git providing significant storage savings in

addition to auditability.
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