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a b s t r a c t

Enterprise cloud tenants would store their outsourced cloud data in encrypted form for data privacy and
security. However, flexible data access functions such as data searching is usually sacrificed as a result.
Thus, enterprise tenants demand secure data retrieval and computation solution from the cloud provider,
which will allow them to utilize cloud services without the risks of leaking private data to outsiders and
even service providers.

In this paper, we propose an exclusive-or (XOR) homomorphism encryption scheme to support secure
keyword searching on encrypted data for cloud storage. First, this scheme specifies a new data protection
method by encrypting the keyword and randomizing it by performing XOR operation with a random
bit-string for each session to protect access pattern leakage; Secondly, the homomorphic evaluation key
enables the searching evaluation to be on-demand calculated, thus it removes the dependency of key
storage on cloud and enhance protection against cloud’s violability; Thirdly, this scheme can effectively
protect data-in-transit against passive attack such as access pattern analysis due to the randomization.
This scheme also can reduce data leakage to service provider because the homomorphism-key solution
instead of key storage on cloud. The above three features have been proved by the experiments and
further tested out at Email service which can support secure subject searching. The execution time of one
searching process is just in the order ofmilliseconds.We could get 2–3 times speedup compared to default
utility grep with the concern of expensive one-time indexing which can be built off-line in advance.
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1. Introduction

In contrast to traditional storage services with fully trusted in-
frastructure andmanagement, cloud storage provides tenantswith
a transparent service, like elastic capacity and flexible accessibil-
ity, without the need to manage troublesome infrastructure. Indi-
vidual users already enjoyed the flexibility, accessibility and data
management provided by cloud storage services such as gmail,
dropbox and wechat. People are demanding more storage space
from service providers to backup [1], share documents, photos
and videos with friends [2]. All these benefits are based on the
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assumptions that individual users trust the service providers or
take the risk to leak privacy to service providers.

For enterprise tenants/users, data growth is tremendous with
online business transactions, and it will continue to be so.
The demand for outsourcing data storage and management has
increased dramatically. The study from TheInfoPro’s Wave shows
that on-premises private cloud will host 30% and off-premises
public cloud will host 15% IT service by 2015 and data protection
and response on data breach are two top issues to concern.
However, the above assumption is not applicable to enterprise
tenants as individual users. Business data is vital to companies,
they can get reliable, available, fault-tolerance and performance
from cloud service providers, but they cannot take the risk to let
service provider to scan data. Enterprise tenants have to consider
data confidentiality and safeguard the data from unauthorized
access and analysis, even browsing from service provider. If
enterprise tenants were willing to outsource data storage to
cloud, they would prefer flexible but secure data storage and
management services. For example, they would like cloud service
handle their queries without knowing what is queried. Thus,
effective and secure data storage and retrieval to and from cloud
storage platforms become very important functions desired by
cloud tenants and studied by researchers.

As data itself and its access pattern are two major aspects of
privacy issues concerned by cloud tenants, the outsourced data on
the cloud must leak as little information as possible. We consider
the application scenario where a group of users share data through
an untrusted data storage server as what they did through local
network. The server can store and search on encrypted data it
hosting for this group of users. It uses indexed and encrypted
keywords to serve searching on encrypted data. We also require
the search can be executed without leaking access pattern, such as
the frequency of a query have to be protected against man-in-the-
middle hacker, advantages for storage server to analyze and so on.

We are working on a searchable encryption scheme to protect
data confidentiality and eliminate the access pattern leakage issue,
especially to protect against passive attack from eavesdropping,
but not eliminate ciphertext analysis from cloud server. We con-
struct a new searchable encryption where the query is encrypted
and randomized for each session by a XOR-homomorphic opera-
tion. We outline the contributions of this paper as the following:
• A new searchable encryption is presented that avoids both

data and access pattern leakage. The exclusive-or (XOR)-
homomorphic permutation function f (.) is used to preserve
special characteristics in the data structure after randomization
so that we can conduct searches revealing neither data nor
access patterns.

• A new homomorphic function Hf (.) is used to enable the
permutation key to be calculated during evaluation instead of
key storage on cloud. This is a step of improvement against
cloud’s violability.

• We prove that the proposed XOR-homomorphism encryp-
tion satisfies a stronger security guarantee than existing
searchable encryption scheme, such as Song’s scheme. This
XOR-homomorphism encryption eliminates the risks of search
pattern leakage to eavesdroppers.

• We test and compare the performance of the proposed con-
struction with existing searchable encryption schemes. The ex-
periment results indicate the effectiveness and feasibility of
proposed construction.
The rest of this paper is organized as follows. Section 2

lists some related work, Section 3 illustrates the setting and
potential threats and Section 4 defines the symbols and gives
backgrounds. Section 5 describes preliminary knowledge related
to secure searching and random permutation. Section 6 gives a full
description of our new searchable encryption scheme. Section 7
shows the experiment results and analysis. Finally Section 8
provides our conclusions.

2. Related work

Generally, searching solutions over encrypted data involve
building an encrypted searchable index such that its content is
hidden from the remote server yet allowing the corresponding
documents to be searched. These solutions differ from each other
mostly in terms of single/Multiple keyword search, types of tech-
niques to build trapdoor functions, and sorting support for query
results. Indexing is the most important for searching, from which
Boolean operation can be added for multi-keyword searching and
similarity score can be added for sorting.

Related work on searchable encryption scheme. Searchable
encryption scheme is the key technology to enable private equality
test on encrypted keywords. Song et al. proposed themost efficient
searchable encryption scheme by embedding a data structure
trapdoor function to test if a ciphertext keyword is in the test
list [3]. Boneh used bloom filters to build trapdoor functions to
evaluate whether a match occurs [4]. Chang used dictionaries
to develop index schemes for searching on encrypted data [5].
Goh described an efficient secure index construction Z-IDX using
pseudo-random functions and Bloom filters [6]. Some researcher
extended indexing by adding private similarity comparison. A
few of them, most notably [7,8], allow similarity search. These
schemes extended the searching enabled index with trapdoor
functions and linked similarity score to the document to form a
3-tuple of < Keyword, DocID, score >. The new added score is
also encrypted and allows secure comparison for sorting the query
result set. From the above searchable encryption schemes, recent
researchers extended the indexing construction formulti-keyword
and sorted searching over encrypted data. Works such as [9–11]
proposed multi-keyword similarity search over encrypted data.
All of these schemes are efficient and provably secure in terms of
confidentiality, but not in access pattern protection.

Regarding to data access pattern, groups of researcher proposed
various solutions to address access pattern leaks when search-
ing on encrypted data [12–15]. Some models like Oblivious RAM
[14,13,12], do not leak any information, but it is too computation-
ally expensive to be adopted on large datasets due to its whole
dataset update. Recently some groups are working on a group-
based construction to eliminate access pattern leakage [15], which
tradeoffs the data privacy at less computation cost. Another groups
areworking on securemulti-party computation such as [16],which
has expensive communication overhead. Some recent work ad-
dressed both data and access pattern privacy, they proposed more
comprehensive solution to protect data stored on server, queries
sent by client, and access pattern as well [17,18]. But these works
have not been deployed or tested to prove their practical usage yet.

This paper is addressing both data and access pattern confiden-
tiality with a new searchable encryption scheme, but we do not
concern sorting of the query result in this paper. Multi-keyword
searching can be easily extended by adding Boolean operation. We
adopt the principle of Song’s scheme [3] for it is practicable and
provably secure in termsof data confidentiality.We further enforce
protection on access pattern by introducing randomized session
query and a homomorphic evaluation key to effectively protect ac-
cess frequency against eavesdropper. Our scheme is implemented
and tested out for its accuracy and efficiency measurement.

3. Threat model

The scenario is where group of users are sharing untrusted
storage from third party. We assume data confidentiality is data
owners’ responsibility because only they can classify what data is
sensitive. Clients encrypt their data while the untrusted server still
can provide searching capability on encrypted data. The server’s
availability, reliability, fault-tolerance and performance can be
trusted but it may be curious about data and data access pattern.
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3.1. Entities

Two entities are in our system:

• Users: Legitimate users are able to access encrypted data resid-
ing on untrusted server. For data confidentiality, users encrypt
data and keywords before loading to the untrusted server.

• Server: Store and retrieve encrypted data with legitimate users
requests. Server provides searching ability although it knows
neither data value nor query.

3.2. Adversary and attacks

Curious Server as an adversary. We model the untrusted server
as honest but curious. The server is hosting the encrypted data and
has full access, it may be curious about what data and what query
a user is accessing.

Eavesdropper as an adversary. Eavesdropper can passively lis-
ten to the traffic and try to guess high frequency accessed data. He
may further guess the query from query frequency distribution of
domain knowledge.

4. Background and definitions

Our scheme uses several fundamental primitives from classi-
cal cryptography. And we adopt the standard definition of security
from the provable security literature [19] and measure the crypto-
graphic primitives in terms of the resources needed to break them
as defined in Song’s scheme [3].

Here we list the primitives used in our systems.

1. The distinguishing probability of an algorithm. Let an arbitrary
algorithm A : {0, 1}n → {0, 1} and let X and Y be random
variables distributed on {0, 1}n. The distinguishing probability
of A – sometimes called the advantage of A – for X and Y is

AdvA = |Pr[A(X) = 1] − Pr[A(Y ) = 1]|.

2. Pseudorandom generator G with (t, e)-security. Let G : KG → S
is a (t, e)-secure pseudorandom generator if every algorithm
A with running time at most t has advantage AdvAG ≤ ε,
illustrated as AdvAG = |Pr[A(G(UKG)) = 1]−Pr[A(G(US)) = 1]|,
where AdvA ≤ ε.

3. Pseudorandom function F . Let a pseudorandom function F : KF ×

X → Y is a (t, q, e)-secure pseudorandom function if every
oracle algorithm A making at most q oracle queries and with
running time at most t hash advantage AdvAF less than a small
value ε AdvAF = ∥Pr[AFk = 1] − Pr[AR

= 1]∥ ≤ ε, where R
represents a random function selected uniformly from the set
of all maps of X → Y .

4. Pseudorandom permutation P . If the above function F is
permutation function P . Let P : KP × Z → Z is a (t, q, e)-
secure pseudorandom function, where permutation function
has inverse, P with P−1 and the random selected function is
a random permutation selected uniformly from the set of all
permutation bijections on Z , symboled as π with its inverse
π−1. Thus for a (t, q, e)-secure pseudorandom function, its
advantage is formulated as:

AdvAP = ∥Pr[APk,P
−1
k = 1] − Pr[Aπ,π−1

= 1]∥ ≤ ε.

A cryptosystem is not considered secure in terms of indistin-
guishability if an adversary has an ‘advantage’ in distinguishing
the chosen ciphertext, meaning that the adversary has a proba-
bility greater than the small value ε. We rely on deterministic en-
cryption, secure permutation functions to build up our scheme to
protect both data and access pattern leakages. And its security is
measured according to the above definition. The notations used in
our paper are listed as Table 1.

Fig. 1. Principle of secure searching scheme.

5. Preliminary works

5.1. Problems defined for search on encrypted data

Search on encrypted data without comprising data privacy
means data itself and its access patterns should be protected from
attackers and service providers. To deal with data leakage, both
queries and results have to be protected in an encrypted form
while allowing searchable functionality on the encrypted data. To
deal with access pattern leakage, the encrypted data should not be
distinguishable from each other and its access frequency should
not be eavesdropped.

As an efficient searchable encryption, Song’s scheme gave the
principle of private keyword search, as diagrammed in Fig. 1. The
ith keyword Wi is encrypted using a deterministic encryption, as
pre-encryption result, and split into two parts left Li and right Ri.
Then this pre-encryption result is randomized by a XOR with a
masking string. Themasking string is formed as follows: (1) Setting
the left part of the string as a random number Si; (2) set right
part of the string as the result of a hash function of the left part,
denoted asHKi (Si)with hash key Kiwhich is generated from a pre-
defined function f (.)with the input of the left part of deterministic
encryption Li; (3) form the masking string Si|HKi(Si). Finally, the
XOR of the deterministically encrypted value with the masking
string is computed; it is the result denoted as Ci in Fig. 1. If same
word going through the pre-encryptionwith the output of Xi = Li |

Ri, the XOR result of Xi and Ci will keep the structure of Si | HKi (Si)
as left and right part respectively, match found, not otherwise.

By evaluating the encrypted data structure between the left and
right parts, Song’s searchable encryption can be used for search-
ing. The XOR operation makes this scheme practical and feasible.
However, this scheme did not protect search pattern. Because each
query session with same keyword generates same ciphertext, how
frequent a query is searched and whether this query is different
from previous one are visible to the man-in-the-middle due to the
equality of query ciphertext. We adopted its practical searching
principle and enhanced its security against pattern leakage issue
by embedding a XOR-homomorphism permutation to randomize
session query.

We reviewed Song’s Theorem 4.3, as below. Each sequence Ti =

⟨Si, FKi(Si)⟩ is the random string whose first n − m bit is random
number Si and last m-bit is the permutation of Si using key Ki.
The theorem shows the scheme’s provable secrecy. For the random
generator, given any block cipher, we may build a pseudorandom
generator using the counter mode [20] or a pseudorandom func-
tion using the CBC-MAC [21]which arementioned by Song.We use
Fisher–Yates Shuffle [22] to build our permutation function Hf (.)
with homomorphic key. Our scheme can provide provable security
with Fisher–Yates Shuffle and secure on-demand permutation key
on untrusted server.
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Table 1
Notations for secure searching enhanced by homomorphic evaluation key.

Notation Description

Wi The ith key word in plaintext
Xi = E(Wi) The deterministic encryption of the ith key word
Li The left part/first (n − m) bits of the ith encrypted key word
Ri The right part/last m bits of the ith encrypted key word
HKi(Si) The hash of a random number Si with hash key Ki in Song’s scheme
fkim (Sim) Pseudo random permutation function on random number Sim with permutation key kim in our scheme
Ki The key used for pseudo random function H(.) in Song’s scheme, which is generated by function G(.);
kim Permutation key at themth session for the ith key word for permutation function f (.) in our scheme, which is generated by Hf (.);
Sim Pseudorandom number generated at themth session for the ith key word
CimL The left part/first (n − m) bits of the ith encrypted and randomized key word
CimR The right part/last m bits of the ith encrypted and randomized key word

Fig. 2. Example of XOR-homomorphism function—1-bit left circular shift.

Fig. 3. Example of XOR-homomorphism function—bit-permutation.

Theorem 4.3. Suppose E is a (t, l, eE)-secure pseudorandom permu-
tation, F is a (t, l, eF )-secure pseudorandom function, f is a (t, l, ef )-
secure pseudorandom functions, G is a (t, eG)-secure pseudorandom
generator, and if the key material is chosen as described above,the
random string generated is (t − ε, e)-secure pseudorandom gener-
ator, where ε is negligible compared to t. Then the algorithm de-
scribed above for generating the sequence ⟨T1, T2, . . . , Tl⟩ will be a
(t − ε, eH)-secure pseudorandom generator [3].
Note: E and F are denoted as Pre-encryption and H in this paper, as
denoted in Fig. 1 as well.

5.2. XOR-homomorphism functions

We use pseudorandom bit-permutations to build XOR-homo-
morphism function to enhance the protection against data access
pattern leakage issue in this paper, as detailed in Section 6.
Properties of XOR-homomorphism functions are introduced here
for understanding.

XOR-homomorphism refers to the property of some functions;
they preserve the structure of the XOR (


) operation on the input

set. For a XOR-homomorphism function f and inputs x1 and x2,
f (x1


x2) = f (x1)


f (x2); the XOR of the inputs when passed

through the function will be equal to the XOR of the output of the
function on the inputs. For example, bit-based circular shift is an
XOR-homomorphism function; the result of two strings ofmbit left
circular shift followed by an XOR operation is equal to the result of
an XOR operation on the strings followed by a m-bit left circular
shift, an example of 1-bit left circular shift is illustrated in Fig. 2.

The other example of aXOR-homomorphism function is permu-
tation on bits of data. To ensure that the randomization cannot be
tamperedwith easily, wemust be careful about choosing a permu-
tation. The bit-permutation can be chosen with an algorithm, such
as Knuth shuffle, which will result in a random bit-permutation.
Fig. 3 illustrates a XOR-homomorphism of bit-permutations. The
randomness of the permutation function depends on the underly-
ing source of randomness.

As the base principle of searchable encryption showed, a special
characteristic of the data is kept for the relationship between the
left and right part. And if this characteristic can still be preserved
after randomization, we can search without revealing anything.
We add a session randomization by generating a cipher pad for
each session. Each cipher pad has two parts, left and right. For each
session, we use a pseudorandomnumber generator to generate the
left half (Si) and perform XOR-homomorphic bit permutation on
the left half to generate the right half using Knuth shuffle, details
can be referred 5.3.

5.3. Fisher–Yates Shuffle

As permutation has the property of XOR-homomorphism, a
secure permutation could be used to assist secure searching. The
question is what kind of permutation would be security. Knuth
Shuffle is algorithm for generating a random permutation of a
finite set by randomly shuffling [22–24]. One of the variants
of Fisher–Yates shuffle is the famous Sattolo’s algorithm that
generates uniformly distributed cycles of length n. This algorithm
is known for its unbiased shuffling and efficient running time.
• Unbiased. Permutations generated from Sattolo’s algorithm fall

in a uniform distribution.
• Efficient. The shuffle time is proportional to the number of

items being shuffled and it can be customized.

6. Homomorphic exclusive-or operationenhance secure search-
ing on cloud storage

6.1. Secure permutation with Fisher–Yates Shuffle

As shown in Fig. 4, the cipher pad we defined are based on bit
permutation with Sattolo’s algorithm. The Sattolo’s algorithm, as
introduced in Section 5.3, gives a evenly distributed random per-
mutation which allows a uniform distributed permutation hap-
pens at each session, thus it enables session protection. More
important, this algorithm is XOR-homomorphic to make it suit-
able for the secure searching. Thus we use the concept of Sattolo’s
algorithm for our permutation function. Based on Sattolo’s per-
mutation, an example of the randomize permutation pad and its
XOR-homomorphic properties are illustrated as figure.

6.2. XOR-homomorphic Structure of Cipher Pad

XOR-homomorphic Structure of Cipher Pad is defined as
following four steps:
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Fig. 4. Secure permutation with Fisher–Yates Shuffle to generate random pad.

1. For the ith keywordWi, it is pre-encryptedusing a deterministic
encryption as Xi = Li|Ri as shown in the left part of Fig. 5;

2. A random number is generated as Sio and it is XORed with Li
to form the current session (the oth session) permutation key
kio = Hf (Li


Sio);

3. The permutation of this random number Sio using the permuta-
tion key kio to generate fkio (Sio);

4. Form the masked ciphertext for the ith key word in the oth
session as: Li


Sio|Ri


fkio (Sio).

Suppose this oth session ciphertext is stored at cloud as
Li


Sio|Ri


fkio (Sio). When the qth query session occurs, the

following similar four steps are proceeded:

1. For the ith keywordWi, it is pre-encryptedusing a deterministic
encryption as Li|Ri, as shown in the right part of Fig. 5;

2. A session random number is generated as Siq and it is
XORed with Li to form the current session (the qth session)
permutation key kiq = Hf (Li


Siq);

3. The permutation of this random number Siq using the permuta-
tion key kiq to generate fkiq (Siq);

4. Form the masked ciphertext for the ith key word in the qth
session as: Li


Siq|Ri


fkiq (Siq);

5. The masked ciphertext is sent to server at cloud for secure
searching.

As illustrated in Fig. 5, themasked cipher from the qth session is
different from oth session, and the permutation key is also different
with kio and kiq respectively. Yet the ExclusiveOR operation of
these two ciphertexts generates Sio


Siq| fkio (Sio)


fkiq (Siq). If we

set the final permutation key as kio


kiq, fkio (Sio)


fkiq (Siq) =

fkio


kiq (Sio


Siq), which still keeps the relationship between
left hand and right hand and allows this scheme keep searching
capability while addon computable permutation key. This new
feature completely eliminates the key storage dependency on
cloud storage if the server can compute kio and kiq. We set
a XOR homomorphism function Hf (.) which enables the final
permutation key as kio


kiq with kio = Hf (CioL), kiq = Hf (CiqL). In

such a manner, only this homomorphism function Hf (.) is needed
to share with server. In our algorithm, we define Hf (.) as the left
part of the ciphertext itself, as the following equations:

Hf (CioL) = Li


Sio (1)

CioR = Ri


Li


Sio. (2)

Observing the ciphertext with CioL and CioR, their XOR will
generate Ri. We use Ri to build hash table to organize the encrypted
keywords to speedup the searching operation by reducing its
complexity close to O(1) from O(n2).

6.3. Secure data upload to build secure dictionary

Two types of data to be protected on the untrusted servers be-
fore data is uploaded to it: (1) key words protection using deter-
ministic symmetric pre-encryption and randomization; (2) data
file using encryption algorithmsuch asAES. In this paper, keywords
can be used as index to the file inwhich keywords are included.We
will focus on the keywords protection and searching on these key-
words.

Symmetric encryption is used to secure the privacy of the data
and randomization is used to prevent statistical analysis by an
eavesdropper on the encrypted data. The keyword to be searched is
first encrypted with a deterministic symmetric encryption scheme
such as block ciphers in ECB mode or with a constant initialization
vector, which ensures that the encrypted data is consistent. The
result of deterministic encryption is further randomized byXORing
with a randomized pad as defined in 6.1 to protect the privacy of
the key words.

As mentioned in the previous section, the randomized pad
is created by the following procedure: (1) Generating a random
number as the left part of a randomized pad; (2) Hashing the left
half of the encrypted keyword as permutation key; (3) Using them
to perform a pseudorandom bit-permutation as the right part of
the randomized pad.

This random pad and encrypted data is XOR-ed together and
generates a randomized output. This prevents any eavesdropper
or man-in-the-middle from getting any information about the
keyword by analyzing the traffic. For new keyword entry, the
keyword goes through the symmetric encryption followed by a
randomization with a random pad, and the result as a protected
entry is sent to the untrusted server where they can be stored
as secure index in secure dictionary or tree-based structures for
further searching, as illustrated in Fig. 6.

6.4. Secure data searching

The randomized and encrypted keyword Ciq, as illustrated in
the 5-steps of Section 6.2, is sent to the untrusted server for
searching, as diagrammed in Fig. 7. The server will check each
entry of the secure dictionary and session query. It first calculate
the permutation key with the homomorphism function Hf (.) on
the query and the checking entry; and then it XOR the query and
entry to check whether the relationship defined by P(.) between
the result left partial and right partial sustain or not with the
permutation key computed, as the bottom of Fig. 7 illustrated.
If the relationship between left part and right part preserves as
if the relationship between left part and right part preserves as
fkio (Sio)


fkiq (Siq) = fkio


kiq (Sio


Siq), the entry hit and its

corresponding data is the query result and will be sent to the
tenant.

6.5. Secure download

If there is a entry hit, the corresponding data pointed from the
entry is returned as a ciphertext. With the random number used to
randomize the ciphertext stored, the trusted client can decrypt the
message and retrieve the original data.

If the hitted entry or encrypted keywords are also needed
to decrypt, the following procedure is executed. With random
generator and seed, the random number of secure entry Sio is
generated, the left part of the ciphertext CioL is XOR-ed with Sio
to obtain the left part of the pre-encryption Li. kio = Hf (CioL)
to get permutation key and fkio(Sio) to get the permutation pad.
Form the randomized pad as Sio|fkio(Sio) then we XOR the retrieved
ciphertext with the randomized pad to obtain the pre-encrypted
keyword. This pre-encrypted keyword is decrypted to yield the
original private data finally.
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Fig. 5. On-demand key computing with XOR-homomorphism.

Fig. 6. Secure data upload to build secure dictionary.

Fig. 7. Secure data searching.
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Fig. 8. Without session protection of song’s secure searching scheme.

Fig. 9. With session protection of our searching scheme.

7. Experiment results and analysis

7.1. Performance test on keywords searching

We performed some experiments to verify the correctness of
our scheme and compare the performance overheadwith the prac-
tical scheme, Song’s scheme [3], which just uses the deterministic
encryption for query protection. For same query, it shoots same se-
cure query at different sessions. Fig. 8 gives one of the results from
Song’s scheme. This leaves it vulnerable to ciphertext analysis and
access pattern analysis attacks. We enhance the security by intro-
ducing session protection—the same keywords result in different
ciphertexts in different sessions; as seen from the bolded strings
in Fig. 9. Due to the session randomness from the pseudorandom
permutation, it effectively protects the query from the above two
attacks.

Secondly, we compare the time taken to search the data in the
server. The process time includes two parts: query protection at
client side and query searching at server side. With the extra ses-
sion protection, our scheme adds an additional overhead of about
880–900ms for the sessionprotection at client side. But the search-
ing time at the server side is much faster in our scheme compared
to the existing scheme, with 13955 vs. 20 032 ms, more than 30%
speed up. Furthermore, as evidenced in Table 2, our schemes ad-
vantage increases if the keyword is deeper down the list to be
searched. The additional overhead of about 880–900 ms at client
side is negligible compared to the searching time taken on the
server side, which is about 14000 ms for a list of 10000 words.

7.2. Use case on email service

Mailbox searching among encrypted emails on an untrusted
server is one of the real-life applications of our private search-
ing scheme. We have implemented the XOR-homomorphism en-
hanced secure searching scheme in the context of email searching,
set up Postfix on Ubuntu 13.10 as the Mail Transfer Agent (MTA),

Table 2
Performance tests on the time taken to search encrypted keywords.

Found location Searching time (ms)
Our scheme Existing scheme

2500 3504/3524 4941/4947
5000 6984/6995 9913/9989
7500 10398/10572 14826/14913
10000 13955/13958 20032/20036
Non-exist 14032 19769

Fig. 10. Performance evaluation compared with default searching.

and performed experiments under our searching scheme. Instead
of using mbox, the traditional mail storage format for Linux, we
choose Maildir format, which stores each email in a separate file.
For experimental purpose, only subjects of the emails are en-
crypted and searched in this set up.

We compare the performance of our searching schemewith the
Linux built-in search utility, grep command, as shown in Table 3.
Our solution has three phases: phase 1 for data protection at client
side; phase 2 for loading and updating index at server side; phase
3 for searching at server side. Our native XOR-homomorphism
solution is named as HOM and the optimized solution with
indexing is named as OptiHOM. As the experiment results shown
in table, phase 2 is an expensive process. But phase 2 could be
one-time off-line process followed by incremental on-line update.
For analyzing the online searching performance, only phase 1 and
phase 3 are compared in our set up.

Obviously the searching time at phase 3 is expensive compared
with default search of grep, ranging from 8 to 15 times slower
with the increase of keyword list as shown in Table 3. In order to
make our solution competitive with the default search yet provide
protection, we introduce hash-based dictionary for speeding up.
Each encrypted keyword and its corresponding DocID are stored
as value and its index is the key. When a query is sent to server, it
is attached with an extra index key, and the hash of this index key
assists the server to filter out most of the entries in the keyword
list, thus the XOR-homomorphism operation is only operated in a
much smaller set.

We evaluate default grep, our naive solution HOM and indexed
solution OptiHOM with the measurement of the searching time,
as shown in table and Fig. 10. The results in Fig. 10 show that
optimized solution, OptiHOM, is even faster than grep 4–7 times
of the searching time regardless of the key word list (depth of
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Table 3
Email service performance comparison between default grep and our search scheme.

Email # Searching time (ms)
Grep Our XOR-enhanced searching

Phase 1 encryption and randomization Phase 2 loading and updating Phase 3 searching
HOM OptiHOM HOM OptiHOM HOM OptiHOM

1000 120 13 22 41680 24350 830 11
5000 160 21 20 196720 200430 1100 17

10000 140 21 27 640550 643930 2420 19
50000 110 20 21 775790 938060 9250 40

100000 130 11 25 1073630 1334640 19710 33

Table 4
Secure searching time comparison of our naive scheme and optimized scheme.

Entries Rounds Searching time (s)
HOMsearch OptHOMsearch Norm HOM Norm OptHOM

1000 516 0.546116 0.013363 0.000546116 1.3363E−05
5000 2549 11.805252 0.085855 0.00236105 1.7171E−05

10000 5044 46.456223 0.117946 0.009210195 1.17946E−05
15000 7501 104.388108 0.179173 0.013916559 1.19449E−05
20000 10033 185.039314 0.238945 0.018443069 1.19473E−05
50000 25002 1173.794301 0.809676 0.046948016 1.61935E−05
75000 37490 2603.209873 1.007937 0.069437447 1.34392E−05

100000 49914 4638.139905 1.350909 0.092922625 1.35091E−05
1000000 501330 130 (h) 29.094767 0.468 2.90948E−05
5000000 2527875 N.A. 150.980269 N.A. 3.01961E−05

query entry). Since our solution has extra data protection overhead
at client side, the on-line search performance includes session
protection at client side plus searching on server side, as the results
shown in Fig. 10; the on-line searching time of OptiHOM is still
2–4 times faster than grep even with big dataset of 100,000. These
results give us the confidence to put OptiHOM solution to support
big data search for cloud-backed applications.

7.3. More experiments on the optimized scheme

Due to the hash based dictionary, we are able to speedup the
searching process by reducing the complexity close to O(1) from
O(n2). To investigate the benefits from this dictionary, we did
more experiments with different depth of secure dictionary, as
listed in Table 4. Entry # is the dictionary depth, Rounds is the
number of queries sent, HOMsearch and Opt HOMsearch are the
total searching time for our naive scheme and Optimized scheme;
Norm HOM and Norm OptHOM are normalized searching time,
means the time for each query. Table 4 shows that Norm OptHOM
is quite stable, ranging 1.171̃.35E−05 s regardless of the dictionary
depth while Norm HOM changes tremendously according to the
dictionary depth, which confirms our statement on the complexity
of O(1).

7.4. Accuracy and performance analysis

Accuracy analysis. Since each session query from clients is ran-
domized, there is a slim chance that the result of the equality test
returns a false positive. In this section, we analyze the probability
that such a scenario occurs.

The equality test procedure computes the XOR of the ciphertext
and the query and we denote this result as Lr |Rr , where |Lr | =

|Rr |; this is then checked for the following relation, Rr
?
= fk(Lr).

The function fk(·) is chosen in this setting as a pseudorandom
permutation of bitswhich implies that it is a bijection.We consider
a false positive query as a random string R∗ such that R∗ is not
a correct query. Then, a false positive result happens when R∗

⊕

E(w) ⊕ (L|fk(L)) is of the form X |fk(X), for some word w and mask
L|fk(L).

Since the mask is of the form L|fk(L), the XOR of R∗ and E(w)
must be of the same form as well. Let La|Ra = R∗

⊕ E(w), |La| =

|Ra| =
n
2 . Since R∗ is a random string and E(w) is pseudorandom,

we can assume that La and Ra are random strings themselves.
Without loss of generality, we fix La and consider fk(La) and let
Pr[fk(La) = Ra] be the probability that the equality test returns
a false positive. The false positive probability is Pr[Hk(La) = Ra] =

1/2n/2. This probability is negatively proportional to the length n
of ciphertext.

Searching performance. As the OptiHOM solution makes use
of hash-based index entry, the searching complexity comes down
close to O(1) from O(n2). This can be confirmed from the exper-
iment results as listed in Table 4 Norm Opt Column, where each
session searching is calculated by the total searching time (Opt
Secsearch Column) divided by the rounds. Each searching takes
around 111̃3 µs regardless of the entry depth. This performance
is enhanced by trading off some level of pattern security. We are
getting such good performance by leaking right half of the deter-
ministic encryption result.

8. Conclusions

Weproposed a XOR-homomorphismencryption to enhance the
data protection over searching process by introducing random-
ization for each session. Furthermore, this randomization based
searching can compute the session key on-demand and does not
require key storage on cloud as existing schemes. We also en-
hance the searching performance by a hashing based indexing. In
terms of security, the XOR-homomorphism encryption allows ses-
sion to be randomized by using on-demand bit permutation,which
provides strong protection for query session against access pat-
tern analysis attacks from eavesdropper and also reduce key leak-
age risk to cloud provider. In the measurement of searching time,
our solution is even faster by using hash-based indexing than the
default clear text utility grep, which not only speedup searching
process but also protects access pattern leakage against eavesdrop-
ping. Theuse casewith email server demonstrates that our solution
is a lightweight privacy protection and is very practical for cloud
backed applications.
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