
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
8
4
3
5
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
7
.
4
.
2
0
2
4

Accepted Manuscript

Edge caching with mobility prediction in virtualized LTE mobile
networks

Andre S. Gomes, Bruno Sousa, David Palma, Vitor Fonseca,
Zhongliang Zhao, Edmundo Monteiro, Torsten Braun, Paulo Simoes,
Luis Cordeiro

PII: S0167-739X(16)30207-2
DOI: http://dx.doi.org/10.1016/j.future.2016.06.022
Reference: FUTURE 3088

To appear in: Future Generation Computer Systems

Received date: 30 January 2016
Revised date: 18 April 2016
Accepted date: 20 June 2016

Please cite this article as: A.S. Gomes, B. Sousa, D. Palma, V. Fonseca, Z. Zhao, E. Monteiro,
T. Braun, P. Simoes, L. Cordeiro, Edge caching with mobility prediction in virtualized LTE
mobile networks, Future Generation Computer Systems (2016),
http://dx.doi.org/10.1016/j.future.2016.06.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2016.06.022


• A new model is introduced for optimized content migration in mobile networks. 
 

• The architecture fully exploits new concepts such as Future Internet and NFV. 
 

• Mobility prediction in LTE virtualized networks further improves the system. 
 

• It achieves fivefold improvements in performance experienced by end users. 
 

• Mobile network providers optimize resources and have significant savings.	

Highlights (for review)
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Abstract

Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity
to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional
awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to
consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming
5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Network-
ing together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of
cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500%
when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a real-
istic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation
and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the
users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant
bandwidth savings.

Keywords:
Information-Centric Networking, Content Migration, Edge Caching, Mobility Prediction, LTE, Mobile Cloud, Follow-Me Cloud.

1. Introduction

Mobile Edge Computing (MEC) [1], as a key 5th Genera-
tion (5G) network enabling technique, enables a cloud-based
Information Technology (IT) service environment at the edge
of mobile networks. It provides benefits such as ultra-low la-
tency, precise positional awareness and agile applications, be-
ing foreseen as an essential building block for the 5G mobile
networks. Moreover, it also plays a key role in supporting
new business solutions based on smart devices and machine-
to-machine (M2M) communication. From services and appli-
cations to content, they can all be accelerated by taking advan-
tage from increased responsiveness at the edge of the network.
Therefore, end users’ experiences will be enriched through ef-
ficient network and service operations, based on the radio and
core network conditions. Considering these facts, we may con-
clude that the key characteristics of MEC are the following:

• Proximity: Being deployed close to the network end users,
MEC is particularly useful to better serve and understand

Email addresses: gomes@inf.unibe.ch (Andre S. Gomes),
bmsousa@onesource.pt (Bruno Sousa), palma@item.ntnu.no (David
Palma), fonseca@onesource.pt (Vitor Fonseca), zhao@inf.unibe.ch
(Zhongliang Zhao), edmundo@dei.uc.pt (Edmundo Monteiro),
braun@inf.unibe.ch (Torsten Braun), psimoes@dei.uc.pt (Paulo
Simoes), cordeiro@onesource.pt (Luis Cordeiro)

users’ preferences on content. MEC may also have direct
access to the devices, which can easily be leveraged by
applications;

• Low latency: As edge services run close to end-devices,
latency is considerably reduced. This can be utilized to
react faster, to improve user experience, or to meet the re-
quirements of delay-sensitive applications;

• Location-awareness: A locally-deployed service can
leverage low-level signaling information to anonymously
determine the location of each connected device. This
enables various applications, such as Location-based Ser-
vices and analytics solutions, among others;

• Network context-awareness: Real-time network data (such
as network conditions, radio status and more) can be used
by applications/services to offer context-related services
that can differentiate the mobile broadband experience and
be monetized. New applications can be deployed to con-
nect mobile devices with local points-of-interest, events,
among many other possibilities.

Using MEC as the starting point, in this paper we present and
detail a model for content distribution optimization in mobile
networks. At the same time, to explore new paradigms and
gather additional benefits, we leverage emerging 5G concepts
that are becoming standards in the industry.
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One of these concepts is Network Function Virtualization
(NFV) [2], which is expected to improve dynamic adaptation
of networks to different conditions and requirements, further in-
creasing the impact of Mobile Cloud Computing (MCC) [3, 4]
and MEC. Cloud Radio Access Networks (C-RAN) [5, 6] is a
relevant trend in this direction, bringing the possibility of vir-
tualizing the entire 3rd Generation Partnership Project (3GPP)
Long Term Evolution (LTE) radio infrastructure, except for a
part of the antenna hardware. Virtualized infrastructures ex-
tend the mobile cloud-computing concept to the Radio Access
Network (RAN) and explore the modularity of the components,
together with the usage of general-purpose hardware infrastruc-
tures to run evolved Node Bs (eNBs). Such fact transforms the
C-RAN into an enabler for deployment of value-added services
closer to the edge of the network (i.e. in close proximity to
mobile users).

In parallel with these 5G concepts, Information-Centric Net-
working (ICN) [7] is becoming increasingly important, along-
side other new Future Internet (FI) concepts, proposing a
paradigm change in how content can be handled more ef-
ficiently and how users’ experience can be improved. In
fact, the fast-pace growth and evolution of Mobile Networks,
driven mainly by smart-consumer devices, new contents, video
streaming, Peer-to-Peer (P2P) applications, and induced by the
usage of traffic-heavy applications by millions of people world-
wide, results in a tremendous demand of bandwidth [8] and in
several challenges that need to be tackled by new concepts and
technologies.

With such challenges and requirements in mind, new pro-
posals arise to explore the benefits of combining the new 5G
and FI concepts to deliver a more efficient and performing end-
to-end solution for mobile users. One example is the deploy-
ment of ICN co-located with 3GPP LTE mobile networks [9],
using ICN together with C-RAN to deliver content efficiently
very close to the edge. Despite the demonstrated improve-
ments in terms of performance and reduction of traffic at the
core network, such enhancement is not straightforward. Indeed,
enhanced ICN caching mechanisms must efficiently populate
caches and maintain content where it will yield the most ben-
efit. Such benefit is intrinsically related with users’ mobility
patterns, as cached content should be available at users’ new
locations (e.g. associated to different LTE eNBs). This support
requires preemptive actions resulting, for instance, from mobil-
ity prediction algorithms [10, 11, 12], which may be employed
for triggering the migration of content. Nevertheless, determin-
ing the optimal set and subset of content to be migrated, for a
given amount of available resources (e.g. cache sizes, number
of routers) and user mobility patterns, falls into an NP-complete
optimization problem.

This paper introduces an end-to-end architecture and the Mo-
bile Follow-me Cloud (M-FMC) model to get an approximate
solution for this problem with high accuracy and meeting real-
time requirements. Therefore, the following technical contribu-
tions are part of this work:

• An end-to-end cloud architecture for the deployment and
orchestration of ICN, its dependencies and M-FMC com-

ponents is proposed.

• The usage of different modular software components is
suggested in order to improve the efficiency of key ser-
vices, such as monitoring services to enable auto-scaling
depending on load.

• Multiple Attribute Decision Making (MADM) algorithms
are proposed to get an approximate solution to the opti-
mization problem of content migration, considering sev-
eral criteria such as content popularity, content size and
the capacity of the caches of different routers.

• Mobility prediction is analyzed, described and proposed
as an enabler for the M-FMC model’s content migration.

• The performance of the M-FMC model is assessed us-
ing different candidate MADM algorithms and validated
against optimal solutions computed off-line. Moreover,
multiple experiments are performed in realistic scenarios
to evaluate benefits from both end users’ and mobile net-
work operators’ perspectives.

Evaluation results, obtained in a realistic mobile core net-
work testbed, demonstrate that the M-FMC model using the
MeTHODICAL [13] algorithm performed better than the re-
maining competitors, returning its solutions in deterministic
and polynomial time, thus not compromising its employment
in ICN-based FI scenarios.

The remainder of this paper is organized as follows. An anal-
ysis of existing contributions and proposals to address content
and service migration is presented in Section 2, followed by
the presentation of an enhanced system for smart MEC, in Sec-
tion 3, and the definition of the proposed model. Section 4
describes experimentation scenarios for the evaluation of this
model, taking into account the users’ location in a mobile cloud
environment, which lead to the obtained results provided in
Section 5. Finally, Section 6 discusses the main achievements
of this work.

2. Related work

2.1. Information-Centric Networking

Nowadays, the prevailing paradigm for content requests is
based on client/server principles: every time a user requests
an object it queries a specific resource at a previously known
server. However, according to the ICN approach the concepts
of client and server no longer exist, and nodes may simultane-
ously play multiple roles. Moreover, requests are not directed to
a particular node. When a user is interested in a certain content
object, it sends an Interest message to the network, consisting of
a provider and an object name (in most naming schemes). This
message is then routed by other nodes (ICN routers), which
have forwarding tables based on content naming prefixes. The
requested content object will eventually be reached (assuming it
is available in the network) and it will be forwarded to the orig-
inal requester, using the same communication path traversed
by the Interest message. ICN brings a number of advantages
when compared to traditional approaches. First, performance
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has substantial gains due to caching, faster lookups and intelli-
gent routing. Second, mobility support is greatly improved [14]
due to a decoupled approach and the lack of content trans-
fer sessions. Third, security is amplified by trust mechanisms
and inherent avoidance of known vulnerabilities [15]. These
improvements are particularly relevant for mobile networks,
where mobile edge resources are scarcer and traffic loads be-
come higher. Moreover, they also bring advantages regarding
cost savings – less resources used and a lower investment re-
quired from mobile operators. In this line of thought, current
works [16, 17] evaluate the feasibility of deploying ICN to-
gether with LTE mobile networks, leveraging the C-RAN con-
cept and its role as an enabler for the deployment of additional
services within these networks. Their findings include band-
width savings at the core network and lower latency when re-
trieving content from ICN routers co-located with LTE eNBs.
In addition, the impact of processing LTE frames is low and the
performance of content caching in ICN is superior when com-
pared to HyperText Transfer Protocol (HTTP) caching mecha-
nisms. ICN provides distributed storage, caching and content
relocation features that could be used to optimize the distribu-
tion of content and enhance caching strategies. For instance,
taking into account mobility-prediction results, users’ content
could be stored and made available in future locations, which
would reduce content access delays and unnecessary bandwidth
spikes in the operators’ networks.

2.2. Mobility Prediction

Predicting mobile users locations at any time moment in the
future is essential for a wide range of mobile applications, in-
cluding location-based services, mobile access control, mobile
multimedia Quality of Service (QoS) provision, as well as the
resource management for mobile communication and storage.
In a cloudified LTE mobile network, different virtualized net-
work services might need the end users’ predicted location to
optimize network performance. As an example, ICN could
benefit from the mobility prediction results to have improved
caching strategies and place the content closer to users’ pre-
dicted locations in advance, thus improving the experience for
users in terms of access delay.

A large number of different algorithms have been proposed
in the literature for predicting the future positions of users in
mobile networks. Generally speaking, proposed schemes carry
out prediction based on mobility models that can be catego-
rized into three main classes: Temporal Dependency, Spatial
Dependency, and Geographic Restriction [18]. The mobility
models represent the movement of mobile nodes, and how their
location, velocity and acceleration change over time. Prediction
schemes based on the Temporal Dependency mobility model as-
sume that mobile node trajectories may be constrained by some
physical characteristics such as acceleration, velocity, direction,
and also affected by their movement history [19, 20]. In case of
the latter, estimation is performed based on the assumption that
mobile nodes incline to travel in a correlated manner and mo-
bility of one node is affected by the mobility pattern of other
neighboring nodes [19, 21].

The solutions relying on Geographic Restriction assume that
node trajectories are subject to the environment and motion of
mobile nodes is bound by geographic restrictions such as free-
ways or local streets in urban areas. Likewise, pedestrians may
also be blocked by buildings and other obstacles [22, 23]. How-
ever, most of the works focus on providing an isolated pre-
diction framework, which cannot be utilized by other network
services. Few efforts have been made in providing mobility
prediction as a supporting Virtual Network Function (VNF)
for the virtualized LTE mobile networks. Previous work on
Mobility Prediction as a Service (MOBaaS) [24] provides a
fully cloudified mobility prediction service that supports the
on-demand life-cycle management of the mobility prediction
service instantiation and disposal on top of the cloud infras-
tructure. The mobility prediction algorithm is based on the Dy-
namic Bayesian Network (DBN) model, and the rational behind
using DBN is that the next location visited by a user depends
on (i) its current location, (ii) the movement time, and (iii) the
day that user is in the movement.

2.3. Content Migration
Predicting mobile users’ locations has big potential in var-

ious telecommunication applications, including mobile access
control, resource management for mobility and storage, con-
tent migration, etc. However, there are few relevant and actu-
ally feasible proposed strategies for service or content place-
ment/migration specifically taking into account users’ mobility.
Antonescu et al. take into account user mobility for placement
and scaling of services [25], performing orchestration of dis-
tributed cloud services based on prediction of user mobility:
more or less resources are allocated based on how the system
predicts users will move to/from the area of each Data Center
(DC). Nonetheless, migration of services from one location to
another is not considered.

In this direction, Follow-Me Cloud (FMC) is an important
concept towards service migration strategies. First proposed by
Taleb et al. [26], FMC assumes that mobile networks are sup-
ported by a few large DCs at the core and many small DCs
geographically distributed at the edge of the networks. At the
same time, it proposes to deploy cloud services in the small
DCs to improve proximity to the users. Hence, when users of a
service move from one region to another, services (and content)
shall follow the users, remaining with assured levels of qual-
ity and availability. The decision to migrate a specific cloud
service is based on a set of models. Together with the ran-
dom walk mobility model, the analytical model described by
Taleb, Ksentini et al. [27, 28] and based on Markov Decision
Processes, attempts to keep cloud services on the optimal DC
according to users’ mobility, interests and other network-related
factors. This solution is already interesting, providing a prelim-
inary perspective on the possibilities and raising important open
issues. For instance, the system considers only a 1-dimensional
mobility model, and a single destination has to be considered
despite the fact that the user may be moving and passing by
multiple destinations in the selected period of time. These open
issues, as well as the decision about which services to migrate
and whether group mobility is better than single user mobility,
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have so far not been subject to further study. Moreover, ser-
vices are the focus of these works, where content specificities
are disregarded.

Regarding strategies for content replication and migration,
existing proposals look at the problem in Peer-to-Peer (P2P)
networks from the providers’ perspective [29], or rely on a
Global Name Resolution Service to prefetch and cache relevant
content [30]. Considering a typical hierarchical Content De-
livery Network (CDN) architecture, the problem is how to dis-
tribute content among multiple network nodes in order to avoid
network traffic at higher layers of the hierarchy and achieve la-
tency improvements. Decisions to move objects to lower layer
nodes (i.e. nodes with less resources) are usually based on the
costs of migration together with the overall number of requests
for the content object within a time interval. These decisions
aim at maintaining an optimal usage of available storage space,
together with the highest throughput possible, corresponding to
an NP-complete problem. Such proposals typically yield a high
benefit, but one may argue that such a system may not scale
with complex hierarchies due to a large number of nodes and
the need for global information about content. Moreover, deci-
sions are made with low frequency and cannot keep up with the
pace of very dynamic networks, where users often move and
need content to be available beforehand. Also, these works do
not explore the fact that popularity is typically local and clus-
ter based [31, 32], and only account for overall popularity. In
line with this, proposals that are simpler and exploit most of the
benefits of hierarchical caching already exist [33] and can be
considered as a basis for our own work.

However, mobility of users is still not taken into account
by existing approaches [33, 34]. In this direction, Vasilakos
et al. [35] suggest the use of proactive migration strategies for
content: migration is triggered when it is predicted that the user
will move to a neighbor location. Using proxies at most 1-hop
away from the user, authors propose to pre-fetch subscribed
content between proxies whenever it is predicted that the user
will disconnect and move to the region of another proxy. To be
able to do this pre-fetching, it is assumed that all destinations
are known and that migration cost is minimized while attempt-
ing to maximize the benefits in terms of performance. Provided
results show high gains regarding latency, but ignore some is-
sues that can arise in larger scale networks: the number of crite-
ria for proxy selection is low and not weighted, and replacement
policies for caches without free storage space are not discussed
at all. At the same time, mobility prediction is too simple and
only for a single user, while the gain will only be meaningful if
migrations are performed for multiple users (groups).

Considering all the described proposals and the issues they
fail to address, in this paper we propose a system that relies
on their positive findings and, at the same time, addresses the
challenges not previously taken into consideration.

3. Mobility Prediction-Enhanced Smart Caching at Net-
work Edges

The M-FMC proposal is described in this section, leveraging
the benefits of the MEC paradigm (e.g. lower latency, reduced

traffic at the core, more distributed systems, etc.) together with
the cloud computing concept.

3.1. Base Architecture

One of the efforts that follows this approach is the Mobile
Cloud Networking (MCN) project, an European Union (EU)
FP7 Large-Scale research project [36], which integrates the use
of cloud computing concepts in LTE mobile networks with the
objective of increasing its performance by building a shared
distributed LTE mobile network that can: (i) optimize the uti-
lization of computation, storage and networking resources, (ii)
minimize communication delays, (iii) reduce the required Core
Network bandwidth, and (iv) enable multiple virtual mobile
network operators, while using a common physical infrastruc-
ture. The MCN project extends the cloud computing con-
cept beyond the typical (macro) data centers towards smaller
(micro) data centers, which are distributed within the Evolved
UMTS Terrestrial Radio Access Network (E-UTRAN). These
data centers are able to deploy and run cloud-based E-UTRAN
denoted as Radio Access Network as a Service (RANaaS), as
well as parts of the Evolved Packet Core as a Service (EPCaaS)
to be co-located with RANaaS for improved performance.

As far as ownership and operation of this base infrastruc-
ture is concerned, it can be distributed among several differ-
ent entities, i.e. providers. For instance, a Mobile Network
Operator (MNO) can own and control the entire infrastructure
and therefore fully manage its components and technologies.
In another example, a different service provider may act as a
proxy and provide access to that infrastructure without owning
or even operating any of its physical components. Such ser-
vice provider would have to sign business agreements with the
owner(s) of the physical infrastructure, which can for instance
be MNOs that operate in the desired geographic areas or infras-
tructure providers that own/control DCs in strategic locations,
either micro or macro DCs.

The innovation here is that a MCN provider exploits the
MCN architecture to compose and operate virtual end-to-end
infrastructures and platforms on top of several different and sep-
arated physical infrastructures belonging to different providers,
thus providing an end-to-end service architecture that has no
geographic boundaries and brings new potential benefits.

3.2. End-to-End M-FMC Architecture

With the proposed End-to-End architecture, M-FMC is able
to support content migration with advanced strategies that con-
sider user and group mobility predictions for optimal content
migration. This way, M-FMC differs from related FMC ap-
proaches by allowing the migration of content at different cache
levels according to the proximity of users, fulfilling the goals of
MEC. M-FMC also includes support to a comprehensive set of
metrics for decisions related to content migration, which go be-
yond content size or content access latency in hierarchical net-
works. Moreover, M-FMC is more granular and the associated
optimization mechanism for content migration is not tied to the
particularities of scenarios, e.g. number of routers or moving
users.
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One of the key benefits of the architecture defined in the pre-
vious subsection is the virtualization of the entire mobile net-
work’s infrastructure (except the radio antennas). With that vir-
tualization and subsequent cloudification of functionalities as
services, many enhancements and new features can be explored
at the edge of the mobile networks.

For this work, we assume that ICN is a cloud service compli-
ant with the MCN architecture – ICN as a Service (ICNaaS) –
and can be integrated with other services to achieve better end-
to-end performance for content delivery. Namely, with M-FMC
features enabled by getting external input data from other ser-
vices, it can cache the content objects where they will yield the
greatest benefits for end users while saving network resources.
As depicted in Fig. 1, this requires integration with other MCN
services, such as RANaaS, EPCaaS and MOBaaS.

Figure 1: End-to-End M-FMC Architecture

With RANaaS, LTE 3GPP base stations (eNodeBs) can be
split into two key components: Base Band Units (BBUs) and
Remote Radio Heads (RRHs). While RRHs cannot be virtual-
ized because they include the antennas, BBUs have that po-
tential and therefore other services may be easily integrated
with them at the same DC. One of those is ICNaaS [16]. IC-
NaaS, represented here as ICN Routers (cf. Section 3.3.1),
gets filtered traffic that matches a certain number of rules (e.g.
UDP port 9695) and can process it before it is encapsulated
in a General Packet Radio Service (GPRS) Tunneling Proto-
col User plane (GTP-U) tunnel and sent to the Evolved Packet
Core (EPC), here represented by its key components (S-GW,
P-GW, MME) together with its interfaces (S1-U, S1-MME, S5,
S8, S11). If the content is cached, the EPC has to be informed
so that it will still charge the user for the data. Otherwise, the
request is forwarded to the following ICN Router in the core
network.

MOBaaS delivers user mobility detection and prediction by

analyzing data coming from the EPC Mobility Management
Entity (MME). With such information, smart decisions about
content location can be made by the M-FMC components, as
detailed in the following subsections.

3.3. M-FMC Model

The architecture of ICNaaS is twofold: its core ICN compo-
nents and the M-FMC components. Therefore, the architecture
of M-FMC is part of the architecture of ICNaaS, which is de-
picted in Fig. 2 and described in detail below.

Figure 2: ICNaaS + M-FMC Architecture

3.3.1. Information-Centric Networking as a Service
ICNaaS is a service aimed at deploying an ICN infrastruc-

ture in a cloud environment, leveraging the advantages of cloud
principles and pushing the boundaries of existing content deliv-
ery technologies. In this specific case, an ICN approach named
Content-Centric Networking (CCN) [7] was selected due to its
relevance in the research community and its open source code.

The core of ICNaaS consists of six main components: CCN
Routers, CCN Filter, ICN Manager, Service Orchestrator, Ser-
vice Manager and Management Agent. Initially, when an Enter-
prise End User (EEU) wants an instance of the service, it con-
tacts the Service Manager (SM). This component has a catalog
of ICN services that can be offered, and upon request it will de-
ploy a Service Orchestrator (SO) by contacting the Cloud Con-
troller (CC), which is the component that manages the cloud
platform. Once the SO has been deployed, it will use its Execu-
tion (E) sub-component to deploy all the remaining components
of the service instance in the following order:

1. The ICN Manager component to handle automated man-
agement of the entire ICN layer.

2. The CCN Filter, which converts HTTP Requests into ICN
Interest messages and HTTP Responses into ICN Data
messages.

3. The CCN Routers that implement a subset of ICN func-
tionalities, in particular CCN.

4. The M-FMC components (described in the subsection be-
low).
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5. The Management Agent, which provides an interface for
the EEU to have fine-tuned manual control over the service
instance.

At the same time, the SM handles dependencies of the ICN
service. Monitoring as a Service (MaaS) is used to monitor
components and provide information to the Decision (D) sub-
component for scaling in and scaling out decisions that allow
the service to have the exact number of resources to handle
the load at a given time. The second dependency is MOBaaS,
which as described in the previous section is used by the M-
FMC components to get input related to user mobility, either
predicted or detected. Another dependency is Authentication,
Authorization, and Accounting (AAA), used to authenticate the
requests between components. A fourth and last dependency is
Rating, Charging and Billing as a Service (RCBaaS), used by
the SM to charge and bill the EEU for the resources used by its
service instances.

3.3.2. M-FMC Decision Mechanisms
The MADM module provides a quasi-optimal subset of con-

tent to migrate, providing an approximate solution for the NP-
complete problem. The MADM algorithm provides a score
of the content to be migrated based on the input criteria, such
as content popularity and content size. Diverse MADM algo-
rithms could be considered, such as MeTHODICAL [13], TOP-
SIS [37] and DiA [38]. Algorithm 1 details MeTHODICAL
steps for B-benefits, K-costs and multiple criteria organized
in a Mn,m matrix for m-criteria and n alternatives. Step 2 al-
lows the weighting of normalized B̂i,b = bb × Bi,b benefits and
K̂i,c = kc × Ki,c costs, with i = 1, 2, · · · , n, b = 1, 2, · · · , B and
c = 1, 2, · · · ,K.

Algorithm 1 – MeTHODICAL optimization steps (as per [13])

Require:
∑B

j b j = 1 #Benefits weights vector

Require:
∑K

j k j = 1 #Costs weights vector

Require:
∑m

i
∑B

j Bi, j ≥ 0 #Benefits matrix

Require:
∑m

i
∑K

j Ki, j ≥ 0 #Costs matrix

Require: si,(t−1) = 0 #Initialize Score vector for (t)ime − 1

1: Ni j =
Mi, j−min(Mn,m)

Max(Mn,m)−min(Mn,m) , i = 1, · · · , n #Normalization

2: Ĝi, j = n j × Ni j with i = 1, 2, · · · , n and j = 1, 2, · · · ,m
3: I(B̂ j) = max{B̂i, j |i = 1, 2, · · · , n} #Ideal Benefits solution

4: I(K̂ j) = min{K̂i, j |i = 1, 2, · · · , n} #Ideal Costs solution

5: ∆(B̂i) =
B∑

j=1


[I(B̂ j)−B̂i, j]2

[I(B̂ j)−A(B̂ j)]+0.01

 A(B̂ j) = m(B̂ j) + v(B̂ j)

6: ∆(K̂i) =
K∑

j=1


[I(K̂ j)−K̂i, j]2

[I(K̂ j)−A(K̂ j)]+0.01

 A(K̂ j) = m(K̂ j) − v(K̂ j)

7: si =

√
α × ∆(B̂i) + (1 − α) × ∆(K̂i), i = 1, 2, · · · , n

8: si,t = si + v
(
si, si,(t−1)

)
, i = 1, · · · , n #Set current score

9: ri = order
(
si,t

)
#Vector in crescent order

The difference among the MADM algorithms is related
mostly with the methods used to determine the optimal solution,
which employ distance functions to determine the distance to
ideal values, c.f. Algorithm 1 steps 5 and 6. TOPSIS employs
the Euclidean distance, Di =

√
Id j − vi, j, while DiA employs

the Manhattan distance, Di = |Id j − vi, j|. The employment of
such distances leads to non-optimal results due to the missing
correlation between the values of the different criteria [39]. The
distance of MeTHODICAL, A(K̂ j) = m(K̂ j) ± v(K̂ j), considers
a range that is determined by the m-mean and v-variance func-
tions, therefore supporting correlation.

Other optimization techniques could be used, such as Linear
Programming, but these are commonly tied to the specificities
of each scenario and therefore would require adaption when-
ever new criteria are considered or changes on the scenario are
verified.

3.3.3. M-FMC components
M-FMC has two key components: the CCN Server, which

runs at every router, and the FMC Manager, which is responsi-
ble for all the decision-making and control of the routers’ cache
management actions.

The CCN Server is responsible for sending all the monitoring
data to the FMC Manager, so it can be stored at the centralized
database. It is also responsible for migrating the contents when
requested by the M-FMC Manager. Monitoring is achieved by
a few minor changes in the code of CCN routers, when based
on the popular CCNx framework [40].

The M-FMC Manager stores the monitoring data (i.e. name
prefix information, size of caches, popularity of content) com-
ing from the routers in a database and, when a migration is
needed, it uses this data to determine the list of objects that
the router should have in its cache to better serve its current and
arriving users. After deciding on the content (and the respective
subsets), the FMC Manager sends the subset list of objects to
be migrated. The FMC manager is orchestrated (e.g. deployed,
provisioned, disposed) by the service Orchestrator of ICNaaS.
The interface with MOBaaS is employed to receive information
regarding user mobility predictions. To support multiple crite-
ria decision-making, the M-FMC Manager interfaces with the
MADM module described in subsection 3.3.2.

The M-FMC model requires an accurate and efficient
decision-making mechanism, no matter the scenario where it
is operating. Therefore, the decision mechanism considers con-
tent popularity and content size metrics (since local caches of
routers have size limitations). Content popularity, popCont, de-
fined in Equation 1, is a composed metric that is formulated
by considering three parameters, including the content popular-
ity at the source routers (popSr/reqSr) and destination routers
(popDs/reqDs); the number of users per source cell moving to
the destination cell (movU); and the number of users at the des-
tination router (dstU).

popConti =

N∑

k=1

( popS ri,k

reqS rk
∗ movUk

)
+

popDsi

reqDs
∗ dstU

N + 1
(1)

Hence, Eq. 1 depicts the formula that determines the content
popularity for the N source cells considered in each migration.

3.3.4. MOBaaS
As a cloud-based supporting service, MOBaaS should pro-

vide requested information on-demand. Accordingly, several
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cloud computing principles have been considered to its design,
in which on-demand service management and prediction func-
tions are the two most important features.

Its architecture includes several components: the mobility
prediction algorithm, the history data retriever and data con-
verter, a front end, a SO and a SM. SO and SM are respon-
sible for management actions related to the service instances
of MOBaaS, which include service initialization, disposal and
scaling operations. Once the service instance is running, a front
end will handle mobility prediction requests and algorithms.
The mobility prediction algorithms block includes the predic-
tion algorithm that is based on a Dynamic Bayesian Network
(DBN). History data retriever and converter is in charge of col-
lecting the user movement traces from system monitoring tools
and converting them into the proper format. Due to the difficul-
ties of collecting actual user traces, we used a dataset provided
by Nokia as historical user movement traces [41].

The proposed mobility prediction algorithm [24] benefits
from Dynamic Bayesian Networks (DBNs). The rationale be-
hind using DBNs is that the next location (cell) visited by a
user depends on: its current location, the current time, and the
day of week on which the user is in movement. We model the
future location distribution using both a location dependent dis-
tribution and a temporal dependent distribution. Hence, each
of them can be modeled as a simple first order Markov Chain
(MC), which encodes the probability of transitions between the
cells.

4. Methodology

This section describes the evaluation methodology and sce-
narios we adopted to validate the proposed M-FMC model.

4.1. Evaluation Goals

The evaluation aims at validating the M-FMC model as an
enabler of content migration mechanisms for ICN in the con-
text of MEC environments. Moreover, a subsequent goal is to
validate the MADM algorithm for the M-FMC model in terms
of decision optimality, accuracy and efficiency.

The NP-complete problem of content migration can be
solved by the Knapsack algorithm [42] by considering the best
theoretical solution as the one that determines the correct con-
tent subset to be migrated to the cache of the destination routers.
The correct content subset is the one that ensures lower latency
based on the requests from users while, at the same time, maxi-
mizing the profit by filling the cache of routers. Indeed, the op-
timization of the M-FMC model follows the optimization pur-
sued in the 0/1 Knapsack problem where, given the size of the
destination router’s cache, the content to fill the cache must be
selected under the constraints of content popularity and size of
content objects. As Knapsack is very intensive in terms of com-
putation and takes a long time to be executed, the MADM al-
gorithms have been considered because of their flexibility and
efficiency when providing approximate optimal solutions irre-
spective of the scenario.

4.2. Evaluation Platform
In order to evaluate the proposed M-FMC model, two dif-

ferent platforms were considered: a small testbed to validate
multiple MADM algorithms for decisions while selecting the
most appropriate one and a larger testbed to evaluate the end-
to-end integrated model from the users experience perspective
in the context of the MCN project.

4.2.1. Platform A - MADM Algorithms Validation
The evaluation conducted in this platform had the goal of val-

idating the algorithm to enable optimized migration of content
as proposed in the M-FMC model. It includes two steps: a first
step with a small testbed to fill databases and a second step at a
Linux cluster to run large scale experiments in parallel.

Figure 3: Evaluation testbed

In the first step, only the FMC Manager and the Request
Simulator components are included, both implemented in the
Python programming language, as depicted in Fig. 3. The Re-
quest Simulator component was configured to process the re-
quests according to the configurations of each defined scenario.
The CCN Server receives the commands to migrate content ac-
cording to the decisions of optimization algorithms running in
the FMC Manager. These components, as shown in Fig. 3, run
in two Virtual Machines (VMs) inter-connected with 10 Giga-
bits per second (10 Gbps) links, each with 2 vCPUs, 4GB of
RAM and 40GB of disk space. The MADM algorithms val-
idation compares Knapsack [42], MeTHODICAL [13], TOP-
SIS [37] and DiA [38] algorithms. Knapsack, as an optimiza-
tion technique providing optimal solutions for NP-complete
problems, has associated a fully polynomial time approxima-
tion scheme, which leads us to the usage of the UBELIX clus-
ter [43] for a timely determination of optimal solutions. More-
over, this validation did not consider mobility predictions. We
assumed that users connected to one source cell move towards
an arbitrary destination cell, as only the content subset migra-
tion is being analyzed (not location) when simulating file re-
quests following the different distributions being evaluated.

To perform the first step of the validation, the small testbed
depicted in Fig. 3 was run for several days to inject requests
into the database of the FMC Manager for the files of each sce-
nario, following the specified popularity distributions. With the
database populated with the simulated requests of two different
cells, the second step could start. Data was hence processed
with multiple parallel jobs at the UBELIX cluster using Python
and R [44] to apply the MADM and knapsack algorithms.

4.2.2. Platform B - End-to-End Users Experience Validation
To assess the users experience in an end-to-end fashion, a de-

ployment of all the required services was done using the MCN
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architecture. Namely, ICNaaS, MaaS and MOBaaS were de-
ployed as a service combination, i.e. simultaneously deployed
and aware of each other. Due to existing constraints the EP-
CaaS data containing user mobility information was received
from a mobility trace (described below in subsection 4.3), while
RANaaS was left out to simplify the setup and allow a higher
number of cells. This deployment’s setup is shown in Fig. 4 at
the MCN end-to-end orchestration framework’s level, depicting
AAA authentication where applicable.

Figure 4: End-to-End Orchestration

The first step for deployment is the authenticated request
from an Enterprise End User (EEU) to the End-to-End Ser-
vice Manager (E2E SM). This component creates an End-to-
End Service Orchestrator (E2E SO) to manage this deployment,
using Red Hat OpenShift Origin version 3 [45] as a container
platform. After the E2E SO has been created, it uses a manifest
file to list the services to be deployed and their dependencies.
Then, endpoints are queried from a catalog and services are re-
quested by contacting their SMs, which have the descriptions
of their services and information on how to create their SOs.
Hence, these SMs create SOs at OpenShift, which will instan-
tiate the required components at OpenStack Kilo [46]. When
all the components have been deployed, endpoints of depen-
dencies are provided to the dependent services, e.g. ICNaaS
requires MOBaaS and needs its endpoint. That triggers the pro-
visioning phase, which concludes the deployment and provides
information to the EEU that the E2E deployment is ready to be
used.

As for the components deployed by the orchestration frame-
work at OpenStack Kilo for the required services, they are
summarized in the following list (vCPU is a virtual CPU unit,
mapped to a thread/core by the Kernel-based Virtual Machine
(KVM) hypervisor [47]):

• One ICN Manager with 1 vCPU, 2GB of RAM and 20GB
of disk space.

• Five CCN Routers, each with 2 vCPUs, 4GB of RAM and
40GB of disk space. Four are assigned to a given LTE cell
ID, while the other is in a different layer (at EPC P-GW
level). Hence, it is a 1-4 tree topology.

• One FMC Manager with 2 vCPUs, 4GB of RAM and
40GB of disk space.

• One MP Middleware with 1 vCPU, 2GB of RAM and
20GB of disk space.

• One MOBaaS Predictor with 2 vCPUs, 4GB of RAM and
40GB of disk space.

• One MaaS Zabbix with 1 vCPUs, 2GB of RAM and 20GB
of disk space.

Regarding the ICN clients (end users), they were deployed
manually as CCN Routers without repositories. After setting up
content prefixes’ routes, network connections at 100 Megabits
per second (100 Mbps) to approximate LTE speeds and con-
tent request generators, they were ready to start the proposed
experiments.

Finally, the OpenStack Kilo testbed consists of two nodes
with distinct roles: a controller node with 8 physical CPU cores
at 3.90 GHz, 16GB of RAM and 256GB of SSD disk for image
storage; a compute node with 24 physical CPU cores (2 threads
each) at 2.50 GHz, 192GB of RAM and 2.1TB of 15k RPM
hard drives in RAID 5. Both nodes, together with the external
iSCSI storage of the compute hard drives, are inter-connected
at 10 Gbps with redundant links.

4.3. Mobility prediction dataset

In order to make location prediction, historical user traces
should be provided. However, due to the fact that in a pro-
totype implementation actual user traces are not available, we
used a mobility data trace provided by Nokia for academic re-
search. The dataset is collected during the Nokia Mobile Data
Challenge (NMDC) [41], which is a large-scale research initia-
tive aimed at generating innovations around smartphone-based
research, as well as community-based evaluation of related mo-
bile data analytics methodologies. This dataset includes rich
context information running at the mobile phone for around 200
users for 2 years. It includes Global Positioning System (GPS)
information, running applications, chat records, calling records,
etc. However, for making location, we are only interested in the
GPS location information. From this dataset, we picked data of
100 users ranging over 2-6 months. This is because the quality
of the trace has significant impact on the prediction accuracy,
and based on our previous findings [24], only around 100 users
from the original dataset have good recordings of their loca-
tion information. The rest of the users have their location data
recorded discretely, which does not make it useful for the pre-
diction inputs. For each user, we separated available data into
two parts: the first part as the learning data set (L), and the rest
as the testing data set (T). Learning data set is the first 70% of
user’s data and is used to derive the Markov Chain states and to
calculate its transition probability matrix. Data set T contains
30% of the data trace, which is used to test and evaluate the ac-
curacy of the proposed prediction algorithm. For instance if the
length of a data trace is 2.5 months, which includes trace data
for ten Mondays, we use the data traces of the first seven Mon-
days to make prediction and use the remaining three Mondays
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Table 1: M-FMC Configuration Parameters

Parameter Normal YouTube WebServer

Request Zipf Distribution
Popularity α = 1 α = 2 α = 1

Number of
Popularity
Classes

10 20 20

Content Object
sizes per class

Normal Gamma Gamma
µ = 30.60 α = 1.8 α = 1.8
σ2 = 15.72 β = 500 β = 1200
min 150Kb min 500Kb min 50Kb
max 70Mb max 100Mb max 50Mb

Content Object Zipf Distribution with reversed classes
distribution per
class

α = 2 α = 1 α = 1

Total number
of content
objects

2000 2000 2000

for validation. The reason we divide the dataset deterministi-
cally is based on the non-stationary of the users’ behavior [41].

4.4. Content and Requests

Table 1 summarizes the three content production and request
scenarios that are defined according to three typical usage pro-
files: Normal, YouTube and WebServer.

Content popularity was defined according to the Zipf dis-
tribution [48], considering the characteristics of each scenario
(e.g. number of files). The number of files present in each
popularity class was determined by performing a reverse map-
ping of the Zipf distribution, as performed in the related work
(e.g. [49] and [50]). Such reverse mapping is used because it
has been demonstrated that the majority of the files are unpop-
ular while only a few files are extremely popular. Finally, the
total number of content objects and the content object size dis-
tribution per class follow the settings that are characteristic for
each scenario. In the Normal scenario, the size of content ob-
jects follows a Normal Distribution, with mean 30.6MB and
variance of 15.72MB. This distribution is based on a survey of
current Internet statistics, such as the average size of a web page
(2MB) [51] and the average size of 60 seconds YouTube videos
with a resolution of 720p (40MB) [52]. The YouTube scenario
follows a model already defined in a previous work [53], us-
ing a gamma distribution with α = 1.8 and β = 500. For the
WebServer scenario we defined a model based on the observed
growth of the size of files available at file servers [54], follow-
ing a gamma distribution with α = 1.8 and β = 1200.

4.5. Configuration Parameters

As described in the M-FMC subsection 3.3, different param-
eters can be configured. MeTHODICAL, as the decision mech-
anism of M-FMC, enables weighting the distance of benefits
criteria and the distance of costs criteria α in Algorithm 1 step
7. In this evaluation, we considered α = 0.5 for a balanced im-
portance. In addition, step 8 was not considered since it aims to

Table 2: Configuration Criteria in MADM Algorithms

Item Criteria description

Benefits: Popularity contents as per Eq. 1

Costs: Size of Files

Cache Size: 256, 512MB, 1, 2 and 4GB

avoid fluctuations in handover decisions. It should also be no-
ticed that both TOPSIS and DiA do not have such configuration
parameters.

As depicted in Table 2, the MADM algorithms have con-
sidered the popularity and the file size criteria metrics. In the
initial steps of Algorithm 1, no weights have been considered,
since the popularity is a composite criterion as it includes the
relation between requests and popularity at source and desti-
nation cells. Since different cache sizes may produce differ-
ent results, we consider 5 possible cache sizes: 256MB and
512MB, 1GB, 2GB and 4GB. The selection of these cache sizes
is explained by the fact that we are considering the first level
of caching (Content Store in CCNx), which is stored in Ran-
dom Access Memory (RAM) or other similar high performance
memory. While the usage of such type of caching significantly
reduces access latencies, its size cannot be expanded arbitrar-
ily to accommodate more files due to power and cost limita-
tions [55]. Therefore, a second level of caching is typically
considered (hard-drive based, as the CCNx repositories) [33]
and our model can easily be extrapolated to both of these lev-
els. However, as the selection of content stays unchanged by
the type of memory in use, multiple levels of caching are out of
scope in this evaluation.

4.6. Evaluation metrics

The evaluation of the mobility prediction includes the accu-
racy evaluation of the mobility prediction algorithms, and we
will show that the predictions’ accuracy heavily depends on the
quality of the collected mobility traces. To support this claim,
we also depict trace qualities for different users and periods of
time.

The evaluation of MADM algorithms considers accuracy and
efficiency. For assessing accuracy we consider (i) the number
of files correctly selected for migration by the MADM mech-
anism, when compared with the optimal solution provided by
knapsack [42] (the optimal set of files that can be moved given
cache constraints); and (ii) the accumulated ratio of content re-
quests corresponding to cache hits. 100% indicates that all con-
tent requests were for content available on cache and 0% indi-
cates that all content requests were for content not available in
the cache. Efficiency is assessed in terms of the processing time
required to determine the content to be migrated. Regarding the
evaluation of file selection correctness, we considered two dis-
tinct metrics. The first is the percentage of files that each algo-
rithm correctly identifies as migration candidates, when com-
pared to the reference results produced by knapsack (compared
to the number of files). The second metric is the relative propor-
tion of “correct” content included in the migration (e.g. a 65%
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value means 35% of the migrated content was wrongly selected
for migration and 65% correctly selected).

The End-to-End Users Experience validation attempts to as-
sess the experience perceived by end users with and without
M-FMC, thus depicting the benefits that can be obtained when
using this model. It consists of two different metrics: 1.) aver-
age download time of a file within a certain group size (deter-
mined according to the settings in the YouTube and WebServer
scenarios) and 2.) users’ satisfaction. While the first metric is
straightforward, the second requires further explanation. Users’
satisfaction can be evaluated in multiple different ways and with
numerous methods, and it is often very subjective depending
on the users themselves. As we do not have real users in our
evaluation or even content transfer types that can easily match
common Quality of Experience (QoE) metrics, we propose that
a Sigmoid function [56] is used to approximate the users’ satis-
faction with respect to perceived QoS [57, 58]. Therefore, the
users’ satisfaction can be given by:

U(x) =
1

1 + e−α(x−β)
(2)

where U(X) ∈ [0, 1] is the satisfaction factor, x is the variable
representing calculated download bandwidth in Mbps and α and
β are constants that need to be defined to set the steepness and
center of the curve.

For the definition of α and β, common sense from a user’s
perspective was the strategy. Starting with β, the center of the
curve corresponds to a satisfaction factor of 0.5. We can assume
that the user will have an average satisfaction if the bandwidth
is more or less what it is expecting to be from its daily usage.
Therefore, it makes sense that an average download bandwidth
value is considered for β. From Akamai’s latest report on the
state of the Internet [59], a value of 5.6 Mbps is assumed to be
the average download bandwidth in the Internet. Thus, β = 5.6.
As for α, the steepness of the curve, we decided to use a value
of α = 0.4 because 0.9 satisfaction is achieved when download
bandwidth is around twice the average and 0.99 satisfaction is
achieved when download bandwidth is around triple the aver-
age.

The evaluation metrics presented so far, and summarized in
Table 3, include mainly functional aspects. The non-functional
aspects have also been evaluated and consider the service life-
cycle performance in a cloud context with the deployment, pro-
visioning and disposal phases. The deployment phase consid-
ers the time required to instantiate VMs (a.k.a. instances), while
the provisioning phase includes the necessary time for configur-
ing the deployed instances, for instance to set up the endpoints
of MOBaaS in the FMC Manager component. The disposal
phase considers the phase where all the deployed resources are
deleted from the cloud infrastructure.

5. Results

This section presents the evaluation results in terms of non-
functional results including the deployment of the complete
M-FMC model and the functional results including the perfor-
mance and accuracy results.

Table 3: Evaluation Metrics

Category Metric Meaning

Functional Accuracy
% of cache hits
% of files correctly selected
% of content volume correctly selected

Functional
Efficiency

Processing time of algorithms
Average download time

Functional
Experience

Average download time
Users’ Satisfaction

Non-
Functional

Perfor-
mance

Time of deployment, provisioning and
disposal phases of M-FMC model

5.1. Non-functional results

This subsection discusses obtained results, in terms of de-
ploying, provisioning and disposing the services included in the
M-FMC architecture. In Fig. 5 we illustrate the times taken for
these phases with a confidence level of 95%.
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Figure 5: Non-Functional evaluation

The deployment phase, as expected, is the one that has a
higher duration, since it includes the instantiation of VMs in the
OpenStack testbed, according to the settings described in sec-
tion 4.2.2. Is it also noticed that ICNaaS, since it has more in-
stances to create (i.e. 5 CCN routers and FMC components) has
an extended duration, in comparison to the remaining services,
such as MOBaaS or MaaS. Indeed, these services only deploy
a single instance. The E2E entity is used mainly to manage
the service orchestration between the diverse services of the M-
FMC. The deployment occurs in parallel, as illustrated in Fig. 5
for a specific run, where the deployment time is around 3 min-
utes. The provisioning phase is also longer in case of ICNaaS,
since this service requires the configuration of the endpoints
of MOBaaS, to allow MP Middleware to process the mobility
predictions, and of MaaS for monitoring the performance of the
several instances (e.g. number of interests received per minute).
Both MOBaaS and MaaS do not have any dependency on other
services. The disposal time takes a reduced time (below 2s) to
delete all the resources at OpenStack and OpenShift.
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5.2. Functional results

This section discusses obtained results, in terms of accuracy
and efficiency, assessing M-FMC as an enabler for content mi-
gration in ICN and Mobile Cloud Computing environments.

5.2.1. MOBaaS Accuracy

In this subsection, we depict the accuracy evaluation results
of the mobility prediction algorithms, which have significant
impact on the usefulness of content migration and the perfor-
mance of M-FMC evaluated below in Section 5.2.4. Our pre-
diction mechanism is a DBN-based network model, which can
be further presented as a simple first order MC that encodes
the frequency of transitions between the cells. The number of
valid states in the derived MC for each user highly depend on
the quality of the data trace in each day, so the trace dataset
plays a key role in the accuracy. In order to evaluate accuracy
of the proposed algorithms we selected, for each user, 50 ran-
dom states (representing the random times and IDs of the cells
that user has been there) out of the MC states derived for each
particular day of a week from the dataset of L. Afterwards, we
performed the calculation of predictions to find the future possi-
ble cells for those users in the next 20 minutes. We repeated the
predictions for the same random states in the data set of T. Af-
terwards, the Mean Absolute Error (MAE) for the correspond-
ing test points, chosen from the learning and testing datasets,
is computed in order to obtain accuracy of the predictions for
each user in a particular day of a week.
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Figure 6: Accuracy of proposed algorithm for some users per day.

Fig. 7 displays the overall accuracy of mobility prediction
for 100 users. For each user it represents the average accuracy
calculated for each single day of a week.

Accuracy of predictions effectively pertains to the quality of
mobility data traces used to derive the transition probability ma-
trix. Fig. 8, as an example, demonstrates states of two users’ in
the mobility data trace, leading to low (for user 6026) and high
(for user 5960) prediction accuracies, c.f. Fig. 7.
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Figure 7: The overall accuracy of mobility prediction for 100 users.

Figure 8: Quality of data trace for two different users.

5.2.2. Content Migration Accuracy
In this subsection we present and describe the accuracy re-

sults of the content migration algorithms. Table 4 presents the
results obtained with the Knapsack algorithm for each scenario
and for each cache size considered, depicting the optimal so-
lution determined by Knapsack in terms of number of content
objects and ratios of content requests corresponding to cache
hits. These results highlight the impact of the popularity dis-
tribution in the different scenarios. For instance, 47 files in the
YouTube scenario account for ≈71% of the requests received,
while for an equivalent value in the WebServer scenario 366
files are required. Recall that the main difference between these
scenarios relies on the size of the content objects per class.

It should be noticed that the Knapsack algorithm takes the
cache size as a parameter, and determines a different set of files
for each cache size. The MADM algorithms do not take the
cache size as a parameter, and being deterministic, the solution
for the different cache sizes is always the same. After obtaining
the ordered set of files from the MADM algorithms, the files to
have in cache are selected until the cache size limit is reached.
By taking into consideration the results obtained, it is possible
to see that the results from the MeTHODICAL algorithm are
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very close to the specific results of the Knapsack algorithm for
each cache size.

Table 4: Knapsack Results per Scenario

Cache
Size

Normal YouTube WebServer

Con-
tent
obj.

Cache
Hits
(%)

Con-
tent
obj.

Cache
Hits
(%)

Con-
tent
obj.

Cache
Hits
(%)

256MB
15 29.71 47 70.69 233 63.06

512MB
29 43.10 83 82.07 366 75.74

1GB 47 56.31 160 90.50 648 87.75

2GB 78 69.67 300 95.28 1202 96.32

4GB 156 80.60 558 98.12 1980 99.95

For the results that are not deterministic, the confidence inter-
val is presented over the average and shows what results can be
expected from further repetitions. It was determined with a con-
fidence level of 95% and allow us to not only show the consis-
tency of the good results while using MeTHODICAL, but also
that the performance of both DiA and TOPSIS is poor across
the Normal and YouTube scenarios, and highly variable in the
WebServer scenario.

Fig. 9 shows the ratio of files correctly selected by the
different MADM algorithms, compared to the optimal solu-
tion determined by the Knapsack algorithm for each scenario.
MeTHODICAL, for instance, selected around 90% of the files
identified as the optimal solution for the Normal scenario (i.e.
determined by knapsack), while DiA and TOPSIS only selected
around 5% and 10%, respectively.
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Figure 9: Number of Files Correctly Selected for Migration

Fig. 10 illustrates the relative volume of content correctly se-
lected for migration, compared to the total volume of content
actually migrated (including files which were wrongly selected
for migration). The higher these values are, the more accurate
the results provided by the MADM algorithm will be.

Considering the depicted results shown in Fig. 9 and Fig. 10,
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Figure 10: Volume of Content Correctly Selected for Migration

it is clear that MeTHODICAL is the best performing algorithm
independently of the cache size. On the other hand, the perfor-
mance of DiA and TOPSIS is not consistent and is impacted
with the cache size of routers, as they present a high standard
deviation. The low performance of DiA and TOPSIS is due to
the fact that both of these techniques do not correlate values to
determine optimal solutions. MeTHODICAL supports correla-
tion of values through the distance function, by correlating the
values through the mean and variance functions, as depicted in
Algorithm 1 in steps 5 and 6.
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Figure 11: Percentage of cache-hits in the Normal Scenario

Next, we look at the cache hits in the form of content requests
percentage that is served from the cache of routers. Cache hits
are considered for the various algorithms, scenarios and cache
sizes. In the Normal scenario (c.f. Table 1), MeTHODICAL
produces results almost as good as knapsack, as it can be ob-
served in Fig. 11. As the cache size increases, the percentage
of cache-hits also increases, since the cache can accommodate
more files. Both MeTHODICAL and Knapsack achieve cache
hit ratios of around 80% with 4GB caches. On the other hand,
both DiA and TOPSIS perform unsatisfactorily, with ratios be-
low 10%. In the Normal scenario the number of files to migrate
is lower and files are larger (c.f. Tables 1 and 4).
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Figure 12: Percentage of cache-hits in the YouTube Scenario

Results observed for the YouTube scenario follow the same
trend (c.f. Fig. 12), with Knapsack and MeTHODICAL achiev-
ing top cache hit ratios around 90%. The increased performance
is explained by the characteristics of the files in the YouTube
scenario, which are smaller than in the Normal scenario. It
should be noted that DiA and TOPSIS also improve their per-
formance, mainly due to the increased number of cached files.

In the WebServer scenario many more files can be cached
with a cache size of 4 GB, as depicted in Fig. 13. This fact
explains the cache hit ratios around 99% for Knapsack and
MeTHODICAL and 96% for DiA and TOPSIS. Indeed, with
2 GB cache size the cache hit ratio for DiA and TOPSIS also
increases to values of around 50%. The size of files in this
scenario is the lowest leading to the case where the cache can
accommodate almost all the files.

256MB
512MB

1024MB
2048MB

4096MB

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Knapsack MeTHODICAL DiA TOPSIS

63.06 62.40

5.36 6.51

75.75 73.78

12.81 15.42

87.75

80.96

25.20
28.07

96.32

88.58

47.53
50.73

99.96 99.12 96.55 97.50

Ca
ch
e	
Hi
t	R

at
io
(%
)

Figure 13: Percentage of cache-hits in the WebServer Scenario

Experiments for assessing accuracy suggest the selection of
Knapsack and MeTHODICAL algorithms to solve the NP-
complete problem of content migration in the M-FMC model,
as these algorithms consistently produce the best results for all
scenarios, also being less affected by cache size, file size or
number of files. However, as discussed next, it is still necessary
to determine the computational costs of both options to assess
their practical viability.

Table 5: Processing Time (s) of M-FMC Decision Algorithms in the Normal
Scenario

Algorithm
/ Cache

Size
256MB 512MB 1GB 2GB 4GB

Knapsack 612.8 1398.9 2845.6 5705.5 13094.2

MeTHOD. 0.003 0.003 0.003 0.003 0.003

DiA 0.102 0.102 0.102 0.102 0.102

TOPSIS 0.104 0.104 0.104 0.104 0.104

Table 6: Processing Time (s) of M-FMC Decision Algorithms in the YouTube
Scenario

Algorithm
/ Cache

Size
256MB 512MB 1GB 2GB 4GB

Knapsack 518.4 1054.6 2124.9 4262.1 8547.5

MeTHOD. 0.023 0.023 0.023 0.023 0.023

DiA 0.075 0.075 0.075 0.075 0.075

TOPSIS 0.075 0.075 0.075 0.075 0.075

5.2.3. Efficiency

Table 5 presents the processing time for the different algo-
rithms in the Normal scenario. The processing time of the
Knapsack algorithm increases with the size of the cache, which
is not the case of MeTHODICAL (MeTH) and related algo-
rithms. The same behavior can be observed in the YouTube and
WebServer scenarios regarding the processing time, as depicted
in Table 6 and Table 7, respectively.

The reason for the fact that MADM algorithms do not present
different processing times for each cache size is that they deter-
mine the same optimal solution for each cache size. The dif-
ference only relies on the number of files that can be selected
for migration. Hence, these algorithms are deterministic. As
long as the input is the same, they always output the same re-
sult. In this case, they output an ordered list of content ob-
jects to be moved, being the first element the most important
to be moved, i.e. the one that should be migrated first. Later
on, the list is iterated to add the files that can be moved until
the cache size limit is reached. As stated before, the M-FMC
model, which operates in the same fashion as a real-time ap-
plication, requires high-efficiency in terms of performance (not
using unnecessary resources) and processing time. The results
depicted so far demonstrate that MeTHODICAL is the most
accurate and efficient MADM algorithm, fulfilling the perfor-
mance requirements of the M-FMC model.

It is also demonstrated that in-network caching with cache
sizes as small as 512MB can provide improvements for users
and operators, since it becomes possible to achieve cache-hit
ratios around 50%, which meets the requirements of high per-
formance caching hardware implementing first-level of caching
mechanisms.
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Table 7: Processing Time (s) of M-FMC Decision Algorithms in the
WebServer Scenario

Algorithm
/ Cache

Size
256MB 512MB 1GB 2GB 4GB

Knapsack 645.2 1293.8 2590.4 6371.2 12004.5

MeTHOD. 0.031 0.031 0.031 0.031 0.031

DiA 0.096 0.096 0.096 0.096 0.096

TOPSIS 0.094 0.094 0.094 0.094 0.094

5.2.4. User perspective
The End-to-End user experience evaluation includes down-

load times and users’ satisfaction in the WebServer and
YouTube scenarios, as depicted in Fig. 14 and Fig. 15. As pre-
sented in Table 1 the number of files and their respective size
depends on the distribution associated with the specific sce-
nario. To facilitate the analysis of achieved results, files are
grouped according to their size, where 1MB includes files with
a size below 1.5MB, while 2MB includes files with size in the
range [1.5, 2.5[, and so on. In addition, download time is mea-
sured for each file, with and without M-FMC. This value is also
used to calculate bandwidth in Mbps and thus the satisfaction
factor. The aim of such evaluation is to demonstrate the perfor-
mance benefits of the M-FMC model and associated services
perceived by end users.
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Figure 14: Download Time in seconds for the WebServer Scenario

Independently of the size of files, download times are higher
when M-FMC is not employed. Indeed, M-FMC is able to re-
duce the download times by a factor of 2-5 (as perceived by
end users). It is also noticed that M-FMC is able to provide
consistent results for files with approximately the same size.
The download time increases in a linear fashion as the size of
grouped files increases. This is an expected result, as bigger
files required more time to download. The variation in the case
without M-FMC leads to dissatisfaction of users, who may ex-
perience inconsistent download times. For instance, for a file
with a size below 1MB, it can take a minimum of 6 and a max-
imum of 13 seconds. This is further validated by the users’ sat-

isfaction analysis. Even with small file sizes that have greater
overhead in ICN transfers, satisfaction with M-FMC is much
higher and in fact a size of 5MB is already enough to obtain a
satisfaction factor close to 0.9. It also shows that users’ satis-
faction is much more consistent with M-FMC, and hence that
users will have a greater experience overall.
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Figure 15: Download Time in seconds for the YouTube Scenario

The YouTube scenario is characterized by files with big-
ger sizes, i.e. sizes above 30MB. In the plot of Fig. 15 they
are grouped as 31MB, which considers file sizes in the range
[30.5,+∞[. In this scenario the difference between the file size
and the performance achieved with FMC is more evident, in
comparison to the WebServer scenario. The download time in-
creases linearly, for the cases with and without FMC, but has
high variations when FMC is not employed. FMC is able to
support stable download times irrespective of the file sizes. By
the contrary, higher variations and inconsistencies are observed
with bigger file sizes in the case where FMC is not employed.
As in the WebServer case, this behavior leads to the dissatisfac-
tion of users as the downloads vary a lot in time, without con-
sidering the impact that content requests may have in the core
network. Moreover, we can observe again that users’ satisfac-
tion with M-FMC is very consistent and much higher, and that
with a small size of 3MB the satisfaction is already achieving
values close to 0.9. In fact, even when file sizes are much higher
(30MB) the satisfaction with M-FMC is about 50% higher than
without it.

Considering the scenarios for which the M-FMC model is
intended, the perceived experience for users that follow pop-
ularity trends is improved, decreasing latency when obtaining
popular files while not decreasing the perceived experience of
other users. In addition, the M-FMC model also enhances core
networks by introducing bandwidth savings and allowing a bet-
ter usage of resources, i.e. cache of edge routers.

6. Conclusions

As users move to different locations, they still want to ac-
cess content on which they are interested with low latency and
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without delays or breaks, especially if dealing with multimedia
content. From the network perspective, this can only be granted
if caches exist at the edge of mobile networks and the content
kept in those caches (with limited resources) is the right con-
tent, i.e. popular content that local users will consume.

A number of related proposals already exist, but cannot be
applied to content (only to services) or have other limitations
such as assuming a very specific scenario or scope.Therefore, a
broader approach has been proposed – M-FMC –, able to deal
with content migration, handling multiple criteria decisions and
considering multiple factors that will trigger content migration.

In this paper, M-FMC has been introduced and validated as
an enabler for content migration in MEC networks. The per-
formed assessments took into account realistic requirements for
next-generation mobile networks and revealed up to fivefold
improvements in terms of reducing content download time, in-
creasing cache hit ratios and providing accurate results.

The M-FMC model was evaluated in multiple scenarios in
terms of the percentage of files correctly identified for migra-
tion and cache-hits enabled by those migrations. Results show
that the selected algorithm is efficient while providing an accu-
racy always above 80% when compared to the optimal solutions
determined by Knapsack. This results in a smooth operation
with real-time applications with the M-FMC model being able
to deliver content with lower latency to end-users while, simul-
taneously, allowing savings of network bandwidth and enabling
FI concepts such as ICN.
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