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Abstract 

This study presents an efficient approach for incomplete data classification, where the entries of samples are missing or 
masked due to privacy preservation. To deal with these incomplete data, a new kernel function with asymmetric intrinsic 

mappings is proposed in this study. Such a new kernel uses three-side similarities for kernel matrix formation. The similarity 

between a testing instance and a training sample relies not only on their distance but also on the relation between the testing 

sample and the centroid of the class, where the training sample belongs. This reduces biased estimation compared with typical  
methods when only one training sample is used for kernel matrix formation. Furthermore, centroid generation does not involve 

any clustering algorithms. The proposed kernel is capable of performing data imputation by using class-dependent averages. 

This enhances Fisher Discriminant Ratios and data discriminability. Experiments on two open databases were carried out for 

evaluating the proposed method. The result indicated that the accuracy of the proposed method was higher than that of the 
baseline. These findings thereby demonstrated the effectiveness of the proposed idea. 
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1. Introduction 

Incomplete data analysis has become a research hotspot with the recent increasing demand for big data processing, 

in addition to complexity problems due to huge volumes. Take Internet of Things for example. Data collected by 

large-scale sensor networks could reach trillions in the future. However, when sensors fail, defective data are 

recorded in the dataset, subsequently resulting in biased estimation. In cloud computing, the same problem arises 

not merely because of erroneous samples, but because of privacy protection. Sensitive personal data, such as health 

records, faces, and names, are intentionally removed from the original data to avoid being maliciously manipulated 

[1-3]. These defective or masked data subsequently form an incomplete dataset. A systematic approach for 

conquering incomplete data problems is evitable. 

Actually, as far back as the earlier 1970s [4], this problem already aroused much attention from scientists when 

they dealt with nonresponses in surveys. Missing data usually result from physically mechanical failure or human 

factors. For instance, subjects neglect questions in questionnaires deliberately or unintentionally. 

To handle such a problem, data imputation is one of the most commonly used techniques when scientists face 
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missing data. Imputation is a statistical term that describes the process of replacing missing data with substituted 

values [5]. Data deletion is a straightforward and easy approach for incomplete data processing. Once a missing 

value appears in an attribute/field/variable, the entire attribute is removed from the data. However, if the deleted 

attribute contains key information, discriminability may degrade. To improve such a problem, single imputation 

and multiple imputation were developed. The former replaces a sample that contains missing entries with a similar 

instance. This type of approaches include hot decks (i.e., inserted values are selected based on the same dataset), 

cold decks (i.e., insertion is derived from another dataset), stochastic regression (e.g., interpolation), subspace-

based reconstruction [6, 7], and fixed-value replacement (e.g., means or medians). Single imputation has been 

widely used because of its efficiency and simplicity although it generates values that cannot fully reflect uncertainty. 

Multiple imputation accommodates such a point by considering the insertion as a set of stochastic numbers, or 

values with random noise. Thus, inserted values along with unmissing entries satisfy the distribution of complete 

data. Multiple imputation is performed by randomly taking values from a set of stochastic numbers and then filling 

in all the missing fields in the dataset L times [8]. Therefore, L complete datasets are duplicated based on the 

original incomplete dataset. Each complete dataset is individually analyzed. The final result comes from the fusion 

of L analyses since there are L datasets. Multiple imputation was proposed by Donald B. Rubin, and this technique 

created a milestone for incomplete data analysis. 

Compared with single imputation, multiple imputation yields results that approximate actual data distributions. 

Nevertheless, to approach real distributions, Monte Carlo methods [9] or Markov Chain Monte Carlo (MCMC) 

were frequently adopted to simulate theoretical scenarios by using finite sampling. For small datasets, multiple 

imputation is an effective and efficient solution to incomplete data analysis. When the volume of data becomes 

excessively large, generation of L complete datasets requires a delicate mechanism. 

Much research related to machine learning was examined for the performance comparison of data imputation. 

For example, Troyanskaya et al. [6] examined data imputation by using K-Nearest Neighbors (KNNs) and Singular 

Value Decomposition (SVD). The result showed that when the percentage of missing values reached 20%, the 

normalized root-mean-squared errors (RMSEs) were below 0.18, both lower than those methods with zero-padding 

and average-filling techniques. Farhangfar et al. [10] compared several imputation methods, including hot decks, 

polytomous regression, Naïve Bayesian regressors, and mean insertion. Classification on incomplete data was 

carried out by testing C4.5, Support Vector Machines (SVMs), Naïve Bayesian classifiers, and KNNs. SVMs with 

polynomial kernels and mean insertion outperformed SVMs with Radial Basis Functions (RBFs) and the other 

classifiers. In big incomplete data analytics, both effectiveness and efficiency should receive highly attention since 

big data imputation jointly considers accuracy and complexity. Anagnostopoulos and Triantafillou [11] investigated 

the scalability of imputation. They evaluated accuracy and efficiency of big data imputation by analyzing whether 

or not a group of clustered computers worked better than a single powerful machine. They devised weighted KNNs 

and sequential multivariate regression for imputation. The experiment indicated their proposed distributed method, 

i.e., weighted imputation, was better than naïve MapReduce mechanisms and superior to centralized processing. 

Kung and Wu [12] focused on kernelized methods and devised a zero-padding method for single imputation. After 

filling in missing entries with substituted values, the Partial Fisher Discriminant-Ratio of each attribute was 

calculated and sorted, so that discriminant attributes could be selected. 

Regarding big data analysis, two types of machine-learning approaches are frequently investigated in literature. 

One is divide-and-conquer [13-16], and the other is incremental [17-23]. The former focuses on recursively 

dividing the original problem into subproblems. The solution to each subproblem is computed in parallel and then 

combined to give a solution for the original problem [24]. To relieve computational burdens and enhance the 

performance, entire data are usually divided into smaller sets so that individual computers can share the load. 

Unlike the divide-and-conquer methods, the latter type does not involve processing subproblems in a distributed 

way, but the data are sequentially fed into the same classifier. Incremental learning requires a mechanism for 

updating model parameters without retraining the entire model. It is also called online learning. Both divide-and-
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conquer and incremental methods can be applied to big incomplete data analysis. 

Unlike the abovementioned strategies, this study presents a novel mechanism for big incomplete data analysis, 

where Fast Kernel Ridge Regression (Fast KRR) powered by the proposed asymmetric imputation kernel is used 

during data processing. Fast KRR aims at rapid data processing, and asymmetric imputation kernels focus on 

imputation, where privacy data can be masked and filled in with substituted values by using the proposed 

asymmetric imputation kernel.  

The advantage of the proposed methodology is that class information is considered during imputation. This is 

conducive to discriminability enhancement when the system fills in missing entries with substituted values. Second, 

kernel matrices no longer rely on the similarity between pairwise samples. Instead, three-side similarities are 

adopted, where the third side comes from the centroid of a class. This improves robustness against incomplete 

information. Furthermore, centroid generation does not involve any clustering algorithms. 

The rest of this paper is organized as follows. Section II introduces the proposed asymmetric data imputation 

kernel. Sections III then describes the details of Fast KRR. Next, Section IV summarizes the performance of the 

proposed method and the analytic results. Conclusions are finally drawn in Section V. 

 

2. Asymmetric Imputation Kernel 

This study followed the method ―Kernel Approach to Incomplete Data Analysis (KAIDA)‖ [12] with several 

enhanced modifications for data imputation. The original imputation mechanism [12] is fulfilled by zero-padding a 

vector that contains missing values. Let B represent a mask that performs imputation. Then,  
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where ι denotes the ι–th dimension of a vector, and   is the element-wise operator, i.e., Hadamard operators. 

However, zero-padding results in a decrease of Partial Fisher Discriminant-Ratios, shown as follows. Let F 
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where μ and σ are respectively the partial mean and the partial variance of the ι–th dimension. Classes ―+‖ and ―-‖ 

respectively refer to positive and negative samples. The Fisher Discriminant-Ratio measures the discrepancy 

between two distributions. When the ratio becomes higher, the discrepancy is larger. This implies higher 

discriminability. 

Assume that the number of unmissing entries in the ι–th dimension of class ―+‖ is n
 . The incremental 

computation of the mean and the variance is 
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where [] is the iteration, and η is the value of an entry or an attribute in an instance. 

If η is zero as (1) does, (4) and (5) yield 
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This causes a decrease of (3). Namely, 
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This indicates that when more zero-padding performs, discriminability in the ι–th dimension diminishes. 

As our focus is upon data classification, discriminability is the first priority when imputed data are generated. To 

prevent Partial Fisher Discriminant-Ratios from decreasing, let n       . Subsequently, (4) and (5) respectively 

become 
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This does not decrease Partial Fisher Discriminant-Ratios since the nominator remains unchanged, and the 

denominator is smaller. In terms of Signal-to-Noise Ratios (SNRs) [25], the denominator, i.e., variance, is noise. 

When variance diminishes, SNRs are enhanced. 
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Fig. 1.  Illustration of Fisher Discriminant-Ratios 

 

Typically, a kernel matrix measures the similarity between two vectors. However, when the system, e.g., [12], 

calculates such a matrix, no class information is used. Take the cosine-similarity function for example. The kernel 

matrix is formed by calculating 
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where i and j respectively specify the indices of two instances, T means the transpose operator, and ||∙||
2 
calculates 

the 2-norm distance. When these two vectors contain missing entries, it involves nonvectorial similarities and 

results in biased estimation. Thus, the Masked Partial-Cosine (MPC) function mentioned in [12] was used for 

nonvectorial similarities. 
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The idea of the cosine similarity in (8) can be further extended to Pearson’s correlations, where the similarity is 

standardized. 
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where rz  and qz respectively represent the estimated centroids of training class r and q. Besides, ix  and jx  are the 

instances of class r and q, respectively. Equation (10) works well during the training phase because class 

information is given in the dataset. Nonetheless, the testing phase does not provide class information for testing 

inputs. This requires estimation of centroids, like K-means or spectral clustering. It could create much 

computational time when data sizes are huge. 
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To alleviate such a problem, since class information is conducive to discriminability, this study proposes a new 

mechanism, where class information is indirectly embedded in the kernel matrix. Rather than using two-side 

similarities, this study adopts a three-side comparison, where the third one is the centroid of a training class. Such a 

third party z can provide an additional clue and compensates the bias when missing entries appear in the two-side 

similarity, applicable both at the training and testing stages. Regardless of the class information of ,ix the system 

can use the training information 
jx  to obtain .qz In other words, either at the training stage or the testing stage, 

ix  

needs to consider both 
jx  and .qz  For efficiency, centroids are computed simply based on the mean of the training 

samples in this work, where missing attributes are directly ignored. 

The following equation shows the details of the proposed Masked Partial Three-Side Cosine (MPT) function. 
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At the testing stage, 
ix signifies a testing vector, and 

jx  represents a training sample, of which the class 

information is present. As these centroids are derived from the training data with missing entries, therefore, 
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where μ
q
 refers to qz in (11). This creates imputation with a class-dependent average in the same attribute. The 

effect of j qx z  indicates that the similarity between ix  and jx  should also consider the similarity between ix  and 

the class centroid of .jx  Second, the missing entries are filled with .qz  

Equation (11) can be extended into polynomial kernels and RBFs, i.e., 
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where τ
2 

is the variance of the distribution, and p is the kernel order. 

3. Kernel Ridge Regression 

KRR extends linear regression techniques, in which a ridge parameter is imposed on the objective function to 
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regularize a model [25]. KRR has two types of operation modes. One is intrinsic space, and the other is empirical 

space. After a kernel function  maps features onto hyperspace, intrinsic-space computation yields favorable 

complexity if the number of data N is far larger than the feature dimension M. Otherwise, empirical-space 

operations should be used. 

 

3.1. Intrinsic Space 

Intrinsic space is used to describe dispersion matrices, also called intrinsic covariance matrices, computed based on 

intrinsic dimensions of a sample [25, 26]. Let {(xi,yi)| i = 1,…,N} denote a pair of an M-dimensional feature vector 

xi and its corresponding label yi, where i specifies the indices of N training samples. The objective of a linear 

regressor is to minimize the following cost function of least squares errors (LSEs). 
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where EKRR is the cost function, u represents a J-by-1 weight vector, (xi) denotes the intrinsic-space J-by-1 feature 

vector of xi, b is a bias term, and ρ specifies the ridge parameter. Notably, J is the degree of intrinsic space when 

feature vectors are transformed by a kernel function. 

Equation (15) can be rewritten as a matrix form, i.e., 
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Individually differentiating (16) with respect to u and b followed by zeroing both equations gives 
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Notice that K = Ф
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 mentioned in (17). The solution to (17) and (18) can be obtained by 

solving a system of linear equations in (19). 
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3.2. Empirical Space 

Empirical space refers to dispersion matrices, also called empirical covariance matrices, computed based on the 

number of samples [25, 27]. According to the Learning Subspace Property in [25], the weight vector u has the 

following relation with Ф and an unknown N-dimensional vector a. 
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Combining (16) and  (20) yields 
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Rearranging the equations after differentiating (21) with respect to a and b yields 
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4. Experimental Result 

Experiments on two datasets were carried out for evaluating the performance. The information of these datasets is 

listed in Table I. The first column shows the name. The rest columns specify the number of classes, samples, and 

dimensions, respectively. Dataset ―MIT/BIH ECG‖ is available at PhysioNet (www.physionet.org), and ―ALL-

AML‖ is downloaded from the UC Irvine (UCI) Machine Learning Repository (archive.ics.uci.edu/ml/). The 

datasets show two typical data, where both N > M and M > N are presented, respectively. 
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Fig. 2.  ECG: Accuracy comparison between KAIDA and the proposed 

method with the linear kernel in intrinsic space. For the definitions of 

the abbreviations, please refer to the content in Section IV. 

Fig. 3.  ECG: Accuracy comparison between KRR and SVMs based on the 

proposed method with the linear kernel in intrinsic space. For the definitions 

of the abbreviations, please refer to the content in Section IV. 

  

Fig. 4.  ECG: Accuracy comparison between KAIDA and the proposed 

method with the poly3 kernel in intrinsic space. For the definitions of 

the abbreviations, please refer to the content in Section IV. 

Fig. 5.  ECG: Accuracy comparison between KRR and SVMs based on the 

proposed method with the poly3 kernel in intrinsic space. For the definitions 

of the abbreviations, please refer to the content in Section IV. 

  

Fig. 6.  ECG: Accuracy comparison between KAIDA and the proposed 

method with the RBF in empirical space. For the definitions of the 

abbreviations, please refer to the content in Section IV. 

Fig. 7.  ECG: Accuracy comparison between KRR and SVMs based on the 

proposed method with the RBF in empirical space. For the definitions of the 

abbreviations, please refer to the content in Section IV. 

 

 



10  

 

  

Fig. 8.  ALL-AML: Accuracy comparison between KAIDA and the 

proposed method with the linear kernel in empirical space. For the 

definitions of the abbreviations, please refer to the content in Section IV. 

Fig. 9. ALL-AML: Accuracy comparison between KRR and SVMs 

based on the proposed method with the linear kernel in empirical space. 

For the definitions of the abbreviations, please refer to the content in 

Section IV. 

  

Fig. 10.  ALL-AML: Accuracy comparison between KAIDA and the 

proposed method with the poly3 kernel in empirical space. For the 

definitions of the abbreviations, please refer to the content in Section IV. 

Fig. 11.  ALL-AML: Accuracy comparison between KRR and SVMs 

based on the proposed method with the poly3 kernel in empirical space. 

For the definitions of the abbreviations, please refer to the content in 

Section IV. 

  

Fig. 12.  ALL-AML: Accuracy comparison between KAIDA and the 

proposed method with the RBF in empirical space. For the definitions of 

the abbreviations, please refer to the content in Section IV. 

Fig. 13.  ALL-AML: Accuracy comparison between KRR and SVMs 

based on the proposed method with the RBF in empirical space. For the 

definitions of the abbreviations, please refer to the content in Section IV. 
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Table I 

Attributes of the Datasets 

Name #Classes #Instances #Dimensions 

ECG 2 104033 21 

ALL-AML 2 72 7129 

 

 
Table II 

Missing Values 

Name Percentage of Missing Values Mask Mode 

Proposed 00.00%–40.00% Double Mask 

KAIDA 00.00%–40.00% Double Mask 

 

Table III 
Kernels 

Name Kernels 

Proposed MPT Linear, MPT Poly3, & MPT RBFs 

KAIDA MPC, Masked Poly3, & Masked RBFs 

 
Table IV 

Parameters of KRR and SVMs 

Name Variance in Poly3 Variance in RBFs Ridge ρ Penalty C 

Proposed 1.00 1.00 5.00 1.00 

KAIDA 1.00 1.00 5.00 1.00 

 

 

During the data imputation, 80.00% of the datasets were randomly selected for training, and the rest were used for 

testing. Two approaches — KAIDA [12] and our proposed method — were employed for assessment. The double 

mask was used in KAIDA and our method. The percentage of missing values ranged from 0.00% to 40.00%. 

Missing entries were randomly and uniformly generated. Notably, missing entries for training incomplete data and 

testing incomplete data were not exactly the same to guarantee randomness. 

Regarding KRR, different kernels, including the linear kernel, the third-order polynomial (i.e., poly3) kernel, and 

RBFs, were applied to the MPC and MPT. The ridge parameter ρ for KRR was 5.0. For high dimensional data, the 

top 200 dimensions with highest FDRs were selected during testing and training after imputation. Table II–Table 

IV respectively summarize the settings. 

Fig. 2–Fig. 7 show the accuracy of KAIDA and our proposed method when ECG data were tested. Fig. 8–Fig. 

13display the results of ALL-AML data. Each figure was independently generated as the training and testing 

subdatasets were randomly selected. 

Symbols ―I‖ and ―C‖ respectively denote incomplete data and complete data (i.e., without missing values). When 

they are combined (i.e., II, IC, CI, and CC), the first symbol represents the training stage, and the last symbol 

signifies the testing phase. For example, ―IC‖ means to perform training with complete data and to test the system 

with incomplete data. 

Closely examining the results indicates that our proposed method generated higher accuracy, especially when 

high-order feature mapping functions were used, in contrast to KAIDA. However, both methods failed to maintain 

the accuracy when RBFs were used for testing ALL-AML data. The possible reason was that ALL-AML was high-

dimensional data, and poly3 kernels already successfully delineated the distribution of the samples. The RBFs 

yielded overfitting hyperplanes. Table V–Table X summarize the numeric results of the figures. The accuracy in 

these tables was collected based on KAIDA and our proposed method, both with incomplete training data and 

incomplete testing data. 

Another finding from our experimental results is the accuracy comparison between KRR and SVMs. When the 

linear and the poly3 kernels were used, the accuracy of KRR in classification was approximately near that of SVMs. 
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When RBFs were applied, SVMs were superior to KRR. Nevertheless, the computational time was more than that 

of KRR if N > M. Interestingly, we observed the accuracy of ―II‖ was better than that of ―CC‖ in some of the 

experimental results. The possible reason was overfitting caused by dimensionality, as earlier mentioned. 

Furthermore, we increased the discriminability of incomplete data by filling in with class-dependent averages. 

Based on the equation of Partial Fisher Discriminant-Ratios in (3), such a procedure enhanced classification 

accuracy. 

 

 

 

 

 
Table V 

Accuracy comparison using the ECG dataset and the linear kernel in intrinsic space 
Missing Rate (%) 0 10 20 30 40 

Proposed (%) 84.13 82.69 83.29 77.88 80.05 

KAIDA (%) 83.17 80.89 81.37 77.04 80.05 

Results with incomplete training data and incomplete testing data were selected 

 

Table VI 

Accuracy comparison using the ECG dataset and the poly3 kernel in intrinsic space 

Missing Rate (%) 0 10 20 30 40 

Proposed (%) 92.67 90.38 90.14 87.98 81.49 

KAIDA (%) 92.19 87.14 83.65 84.25 82.09 

Results with incomplete training data and incomplete testing data were selected 

 

Table VII 

Accuracy comparison using the ECG dataset and the RBF in empirical space 

Missing Rate (%) 0 10 20 30 40 

Proposed (%) 85.34 82.93 84.25 83.17 83.65 

KAIDA (%) 75.00 76.20 79.81 84.98 84.98 

Results with incomplete training data and incomplete testing data were selected 

 

Table VIII 

Accuracy comparison using the ALL-AML dataset and the linear kernel in empirical space 

Missing Rate (%) 0 10 20 30 40 

Proposed (%) 100.00 98.21 96.43 94.64 96.43 

KAIDA (%) 100.00 98.21 96.43 92.80 96.43 

Results with incomplete training data and incomplete testing data were selected 

 

Table IX 

Accuracy comparison using the ALL-AML dataset and the poly3 kernel in empirical space 

Missing Rate (%) 0 10 20 30 40 

Proposed (%) 96.43 98.21 98.21 100.00 100.00 

KAIDA (%) 82.14 91.07 83.93 83.93 78.57 

Results with incomplete training data and incomplete testing data were selected 

 

Table X 

Accuracy comparison using the ALL-AML dataset and the RBF in empirical space 

Missing Rate (%) 0 10 20 30 40 

Proposed (%) 85.71 80.95 83.33 69.05 66.67 

KAIDA (%) 64.29 64.29 64.29 64.29 64.29 

Results with incomplete training data and incomplete testing data were selected 
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5. Conclusion 

This work presents a novel learning method for processing large-scale data with missing values. To effectively 

recover the discriminability of the data, this study proposes kernel-based data imputation, where the imputation 

focuses on discriminability enhancement of the multiside similarity between test and training samples. The 

proposed method takes advantage of teacher information in the training phase, where missing entries of the 

centroids are filled in with class-dependent substituted values. Then, a training sample is combined with its class 

centroid (generated without involving any clustering algorithm), and this correspondingly generates substituted 

values for training patterns. The equation shows that such imputation does not reduce Fisher Discriminant-Ratios, 

which indicate the discrepancy between two distributions. The proposed method can increase the discriminability of 

the training data by diminishing the variance. In terms of SNRs, the noise is minimized. Although a test sample still 

uses masks to zero-pad its missing entries, the three-side kernel matrix compensates the drawback of zero-padding. 

Experiments were conducted by evaluating two open datasets. Each dataset represents one type of big data. The 

result showed that the difference in accuracy between the proposed method and the baseline increased when high-

order kernels were used. Besides, our proposed method yielded better results than the baseline did. Such findings 

indicated that the proposed methods were more effective than the baseline for handling missing data, thereby 

demonstrating the feasibility of the proposed idea. 
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