

King’s Research Portal

DOI:
10.1016/j.future.2016.12.003

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Barakat, L., Miles, S., & Luck, M. (2016). Adaptive composition in dynamic service environments. DOI:
10.1016/j.future.2016.12.003

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 05. Nov. 2018

https://doi.org/10.1016/j.future.2016.12.003
https://kclpure.kcl.ac.uk/portal/en/publications/adaptive-composition-in-dynamic-service-environments(c1ddfc22-c372-404c-9a94-c693c6226bce).html

Accepted Manuscript

Adaptive composition in dynamic service environments

Lina Barakat, Simon Miles, Michael Luck

PII: S0167-739X(16)30723-3
DOI: http://dx.doi.org/10.1016/j.future.2016.12.003
Reference: FUTURE 3244

To appear in: Future Generation Computer Systems

Received date: 24 June 2016
Revised date: 5 November 2016
Accepted date: 2 December 2016

Please cite this article as: L. Barakat, S. Miles, M. Luck, Adaptive composition in dynamic
service environments, Future Generation Computer Systems (2016),
http://dx.doi.org/10.1016/j.future.2016.12.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2016.12.003

Adaptive Composition in Dynamic Service Environments

LINA BARAKAT, SIMON MILES, and MICHAEL LUCK

Department of Informatics, King’s College London, UK, WC2R 2LS

Abstract

Due to distribution, participant autonomy and lack of local control, service-based sys-

tems operate in highly dynamic and uncertain environments. In the face of such dy-

namism and volatility, the ability to manage service changes and exceptions during

composite service execution is a vital requirement. Most current adaptive composi-

tion approaches, however, fail to address service changes without causing undesirable

disruptions in execution or considerably degrading the quality of the composite appli-

cation. In response, this paper presents a novel adaptive execution approach, which

efficiently handles service changes occurring at execution time, for both repair and op-

timisation purposes. The adaptation is performed as soon as possible and in parallel

with the execution process, thus reducing interruption time, increasing the chance of

a successful recovery, and producing the most optimal solution according to the cur-

rent environment state. The effectiveness of the proposed approach is demonstrated

both analytically and empirically through a case study evaluation applied in the frame-

work of learning object composition. In particular, the results show that, even with

frequent changes (e.g. 20 changes per service execution), or in the cases where in-

terference with execution is non-preventable (e.g., when an executed service delivers

unanticipated quality values), our approach manages to recover from the situation with

minimal interruption.

Keywords: service composition, adaptive service execution, quality of service,

request-based dominance

URL: lina.barakat, simon.miles, michael.luck@kcl.ac.uk (LINA BARAKAT,
SIMON MILES, and MICHAEL LUCK)

Preprint submitted to Journal of LATEX Templates December 5, 2016

1. Introduction

Service-oriented computing (SOC) is a suitable paradigm for the sharing of re-

sources and functionalities in large-scale open distributed environments (e.g. the web,

computational Grids, and peer-to-peer systems). In this paradigm, providers encap-

sulate their offerings, ranging from expensive hardware components to entire applica-5

tions, within services and expose them through uniform, machine-readable interfaces

(or metadata) on a network of customers. Via their accessibility, reusability, and loose

coupling, services provide the building blocks for rapid and low-cost development of

complex distributed applications spanning organisational boundaries. A key feature

enabled by SOC is the dynamic binding mechanism. Based on this, a composite ap-10

plication (e.g. a business process, scientific workflow, or e-learning experience) can be

structured as a collection of interdependent abstract tasks, with concrete services being

selected for these tasks at run time according to service availability and specific user

quality of service (QoS) needs, thus achieving great flexibility and personalisation.

Open distributed service-based systems, however, exhibit high degrees of dynamism15

and uncertainty for several reasons, either intentional or unintentional. Specifically,

existing service providers, being autonomous and self-interested, may choose not to

fulfil their promises (e.g. announce false capabilities to attract more customers), to

upgrade/degrade their quality offerings (e.g. driven by competition), or to discon-

nect from the system at any time, while new providers could join instead. Even20

with long-standing and cooperative providers, availability and quality estimates of ser-

vices could still frequently change due to other factors. For instance, a service’s re-

sponse time could be significantly affected by the provider’s load and network traffic

at that moment. Similarly, a service might suddenly become unavailable due to net-

work/hardware failure.25

Although the dynamic binding of services offers some tolerance against such dy-

namism and uncertainty, it does not guarantee the successful execution of the compos-

ite application, i.e. that the selected component services, for composition, behave as

expected. This is because the selection step normally takes place before the start of

execution, i.e. services are selected for all tasks in advance, to reason effectively about30

2

the satisfaction of global (application-level) quality criteria (e.g. total price and total

time). Hence, changes to a selected service could occur at any time before the actual

invocation of this service, especially when executing complex applications involving

many tasks (the case with most realistic applications), or better services could emerge,

making the selected service combination no longer valid or no longer the best option.35

Consequently, to accommodate service volatility, it is essential for the compos-

ite application to be equipped with adaptation capabilities at execution time. This is

especially important for increasing the satisfaction of the end-user (customer), by im-

proving the quality of the selected solution, and eliminating any inefficiencies from the

customer perspective. In light of this, adaptation capabilities should include the follow-40

ing goals: (G1) recovering from unexpected situations on their occurrence, so that the

application continues its intended execution, or at least terminates in a consistent state,

in spite of the occurrence of failure or violation; (G2) exploiting new emerging op-

portunities to enhance the quality of the selected solution at any execution stage; (G3)

proactively preventing future breaches and faulty behaviour by performing early cor-45

rective actions, since a late reaction (i.e. after faulty or quality violating services have

been executed) might result in an inability to find a suitable recovery from that point,

or a re-selected solution of lower quality compared to one that could be obtained when

reacting to changes earlier; (G4) producing an optimal solution for any instantiated

service re-selection process to avoid low-quality solutions; and (G5) keeping triggered50

adaptations transparent to the end user (i.e. eliminating execution interruption), since

an interruption to the composite service execution could be highly undesirable, espe-

cially in the case of time-sensitive applications.

Existing approaches to adaptation usually achieve some of the above goals at the

expense of others (see Figure 1 for a comparison). Specifically, current approaches55

(e.g. [1, 2, 3, 4, 5, 6]) can mostly be classified as reactive, performing corrective ac-

tions only after an exception has already occurred, thus lacking any ability to avoid

erroneous behaviour or to improve performance, when possible. In addition, an in-

terruption to the execution process is incurred until the corrective actions (usually

through costly re-planning) are completed. Attempts to reduce such an interruption60

include applying fast heuristics (e.g. [4, 5]) or pre-computing backup plans before-

3

G1 G2 G3 G4 G5

Current proactive attempts [9] 3 7 3 7 partially

Reaction on violation:

execution-time heuristic re-selection [5] 3 7 7 7 partially

execution-time optimal re-selection [3] 3 7 7 3 7

pre-computed backups [6] partially 7 7 7 3

Figure 1: Current adaptive composition approaches

hand (e.g. [2, 6]). While the former affects the solution quality, the constant changes

of the service landscape may invalidate the latter, making the backups no longer ap-

plicable or poor-quality choices. Despite some recent efforts on proactive adaptation

(e.g. [7, 8, 9]), they mostly focus on the early detection of exceptions, ignoring the65

actual adaptation process.

In response, this paper proposes an early, efficient, and optimality-retaining execution-

time adaptive behaviour, capable of achieving all of the above goals during composite

service execution. In particular, the paper makes the following contributions.

• Parallel-to-execution reaction. The adaptation process is instantiated at the ear-70

liest possibility during a component execution, so that the chance of completing

the adaptation before the component execution terminates is maximised, and

thus execution disruptions are minimised (G5). This early adaptation is instan-

tiated for both corrective (G1) and optimising (G2) purposes. In particular, as

opposed to existing approaches where the adaptation is mainly corrective, our75

adaptation is also triggered whenever an optimisation opportunity is identified

(e.g. availability of new, better services), so that such an opportunity is exploited

to improve the current solution. Moreover, since reaction to service changes is

performed as soon as these occur in the environment, problems encountered in

services scheduled for future execution are dealt with as early as possible (G3),80

before reaching erroneous execution points where recovery opportunities are of

lower quality or not possible.

• Change prioritisation. Each service change encountered during execution goes

through an assessment process to derive its priority regarding the situation at

4

hand. Specifically, changes potentially affecting action points in the near future85

are handled urgently, while the adaptation to those of less importance is allowed

to be carried out during the next component execution, without causing interrup-

tion (G5). Through such a novel and comprehensive analysis of changes, and

the corresponding behaviour of the executing system, inefficiencies are avoided,

unless necessary.90

• Light and optimality-retaining re-selection. Our service re-selection algorithm

repairs the affected part of an already existing search graph, without expensive

recalculations from scratch, thus facilitating a fast adaptation (with almost no

interruption) (G5). Moreover, the combination of services produced by this re-

selection process is always the best possible, given the tasks already executed95

and the current environment state (G4).

This re-selection algorithm is built on our previous reactive service selection

model [10], where efficient repair rules are introduced to incorporate reaction

capabilities into static service selection [11] (which generates the original search

graph at selection time). Here, however, we adjust this model so that repair re-100

mains possible at execution time, by assuming a reverse version of the search

graph. This allows keeping the search graph at execution time up-to-date with

the most recent environment state, via continuous light repair actions, thus fa-

cilitating fast reaction to any change during execution, especially in the critical

case where the change concerns the task being invoked.105

The paper is organised as follows. Section 2 discusses related work. The basic

service selection model is summarised in Section 3, followed by a motivating example

in Section 4. A classification of changes is introduced in Section 5, based on which the

adaptive behaviour of the system is analysed in Section 6, and an efficient re-selection

algorithm is outlined in Section 7. Sections 8 and 9 provide a theoretical and empirical110

analysis, respectively, and Section 10 concludes the paper.

5

2. Related Work

Quality-based service selection has gained much attention from others. Like us, Yu

et al. [12] and Li et al. [13] model it as a multi-constrained optimal path problem, and

present heuristic algorithms to improve efficiency. In contrast, Canfora et al. [14] take115

a genetic algorithm approach. However, neither addresses adaptation to changes in a

dynamic world.

To address the volatility of service environment, some efforts are aimed at fault

avoidance, introducing preventive measures to reduce failures and quality deviations

during execution, e.g. through redundant execution of services [15] or by providing120

accurate quality estimations [16]. Yet, since complete avoidance of execution-time

exceptions is not possible, the ability to adapt to changes remains a critical requirement.

Many other efforts thus focus on achieving fault-tolerant behaviour to ensure that

the system continues its intended execution, or at least terminates in a consistent state,

in spite of the occurrence of failure or violation. In this regard, a number of approaches125

are concerned with incorporating exception handling mechanisms into the composition

modeling language itself [17, 18], allowing the designer (or user) to control recovery

actions at execution time. Although effective for specific exception types (e.g. invalid

input/output parameters), language-integrated adaptation may not be suitable for some

other types (e.g. additions, deletions, or changes in quality values of services). This is130

because such environment changes are difficult to predict by the designer, and would

result in an explosion of the exception handler complexities. Therefore, in this paper,

adaptation is achieved at the middleware level.

Satisfying particular transactional patterns by the composite service has also been

proposed in order to increase composition reliability and fault tolerance at execution135

time [19, 20]. These efforts aim to minimise the risk for consumers by ensuring that the

execution terminates in a consistent state even when failures occur, achieved through

compensation policies allowing the effects of executed services to be undone. Such

approaches, however, offer rather extreme and costly exception-handling capabilities,

which may not be necessary in many situations, and are constrained to cooperative140

environments. Nevertheless, accounting for transactional properties can be considered

6

an interesting extension to our approach.

A popular way of recovering from unexpected situations during execution (and

the closest to our work) is by triggering re-planning actions in response. Some such

efforts apply, during the re-planning stage, the same selection algorithm used to pro-145

duce the initial solution, but incorporating the current execution status. For exam-

ple, Zeng et al. [21] recalculate assignments for the non-executed part of a work-

flow each time a change occurs during execution by adopting Integer Programming.

A re-planning triggering algorithm is introduced by Canfora et al. [1] to recalculate

quality values of a composite service according to the new information at execution150

time (e.g., actual service qualities, or actual number of loop iterations), and if the new

qualities differ considerably from previously estimated ones, execution is stopped and

genetic-algorithm-based re-planning is triggered for remaining workflow tasks. A sim-

ilar execution-time re-planning approach, but based on Integer Programming, is pre-

sented by Ardagna et al. [3]. Others introduce heuristic methods for the re-selection155

process to reduce its computational complexity. For example, Berbner et al. [4] use the

H1 RELAX IP heuristic, backtracking on the results of a relaxed integer program, to

re-plan the remaining part of the workflow in a timely manner. Likewise, Lin et al. [5]

propose a region-based heuristic re-selection algorithm, which iteratively expands the

sub-process to be reconfigured until a satisfactory replacement is found. All these ap-160

proaches can be categorised as reactive, performing corrective actions only after faulty

or quality-violating services are executed, thus ignoring emerging better opportunities,

lacking the ability to prevent erroneous behaviour (even when such behaviour can be

detected at an early stage), and causing an interruption to execution until re-selection

is performed. That is, as opposed to our work, these approaches fail to achieve goals165

G2, G3, and G5.

In order to eliminate the undesired re-selection delay at execution time (goal G5),

some approaches (e.g. [2, 22, 6]) suggest supporting the composite application with

pre-computed backup services to ensure its continuous execution without any extra

delay in the face of component failures. However, the problem with such approaches170

is that, due to the dynamic nature of services, the backups produced during selection

may no longer remain optimal, satisfactory, or even available during execution. As a

7

result, the execution could be faced with either a low-quality alternative, or a costly

re-planning process to achieve a successful (or better) recovery.

Finally, although there are recent attempts towards achieving proactive adaptation175

(i.e. to prevent future failure or improve performance), these are still very limited

and mainly focus on the change detection part, giving little or no consideration to the

actual adaptation process. Proposed proactive change detection methods include ap-

plying performance prediction techniques [8, 23, 9], testing the behaviour of services

using generated test cases [7, 24], and subscribing to change requests with the reg-180

istry [25]. Such detection efforts can be considered complementary to our work (which

focuses instead on the latter change handling step). Like us, a few approaches also

consider subsequent proactive adaptation actions (e.g. [8, 9, 26]), but these actions are

mostly instantiated for corrective purposes, to prevent an anticipated problem, ignoring

optimisation opportunities (G2). Furthermore, no proper modeling and management of185

the adaptation process, to avoid its interference with the application’s execution (G5),

is provided. These issues are addressed in our approach, achieving all goals (G1..G5),

as summarised in Section 1 and detailed below.

3. Basic Model

This section summarises the main components involved in the quality-based service190

selection problem, including our selection algorithm to solve this problem, originally

introduced in [11]. See Figure 2 for the notation used.

3.1. Planning Knowledge Model

The planning knowledge for a particular objective can be represented as a task

hierarchy (T, tr, tf , tg), where: T is a finite set of the tasks involved; tr is the root195

of the hierarchy (the goal task); tf is a functionality description function, assigning

to each task t ∈ T a semantic specification of its functional requirements; and finally

tg is a task decomposition function, which maps each non-leaf task t ∈ T to a set of

directed acyclic graphs, each specifying a different way of decomposing t into finer-

grained sub-tasks and their partial ordering constraints (execution order). An example200

8

Set Description Function Description

AD Services to be added to rcnd ion Node’s index in a path

AN Quality attribute names nodes Path’s nodes

AR Constrained attributes oi Task’s optimal instances

RM Services to be removed from rcnd rc Request’s quality constraints

S Available services rcnd Task’s non-dominated services

SPLN Request-based selection plans rt Requested task

T Hierarchy tasks rw Request’s quality weights

Function Description sai Service appearing at an index

abspln Requested task’s abstract plans srdd Services dominated by a service

cmp Requested task’s composite services srds Services dominating a service

cnd Task’s candidate services su Service utility

cu Comp. service utility sv Service’s quality values

cv Comp. service quality values tmn Task’s min quality values

en Path’s last node tmx Task’s max quality values

es Instance’s last service vldprd Task’s valid predecessors

ins Path’s possible instances

Figure 2: Sets and functions used throughout the paper

planning knowledge for goal task plan holiday is shown in Figure 3. In this Figure,

task A can be either decomposed into sub-tasks B, C, and D (executed in sequence), or

into sub-tasks G, C, and D (executed in sequence). Sub-task D is further decomposed

into finer sub-tasks E and F (executed in sequence).

Note that task definition is kept generic to be applicable to a wide range of domains.205

It may refer, for example, to an operation signature (in terms of input and output pa-

rameters), to a resource specification, or simply to a term of an ontology agreed within

a community. Moreover, different mechanisms are possible for discovering suitable

(candidate) services for each task: by consulting a central service repository storing

service metadata (e.g., a semantic search over SAWSDL1 descriptions of web services210

advertised in a UDDI registry); or by calling for service proposals over the network

(e.g., using the contract net protocol [27]). We make no assumptions in our model

about any specific technology or service discovery and matching mechanism, and leave

1http://www.w3.org/TR/sawsdl/

9

A: Plan

holiday
B: book

flights

G: book

trains

C: Apply

for visa

D: Book hotel

& sightseeing

E: Book

hotel

F: Book

sightseeing

Figure 3: Planning knowledge for plan holiday task

this to the application domain, focusing instead on the generic problem of how to effi-

ciently select and maintain the best combination of the available (discovered) services215

under the dynamism and uncertainty inherent in many such domains.

3.2. Service Model

The space of available services can be defined as a tuple, (S, sf, sv), where: S is

the set of all available services; sf is a functionality description function, which assigns

to each service s ∈ S a semantic specification of its functionality, e.g. in OWL-S or220

WSDL-S; and finally sv is a quality of service (non-functional properties) specification

function, which assigns to each service s ∈ S its value for a quality attribute a ∈ AN
(AN is the set of all quality attributes).

Based on this, the candidate services for task t ∈ T , denoted cnd(t) ⊂ S, are

those services s ∈ S whose functional description, sf(s), semantically matches the225

functional requirements of task t, tf(t).

3.3. Request Model

A composition request can be defined as a triple, (rt, rc, rw). Task rt ∈ T is the

goal task to be accomplished. Function rc represents the QoS constraints imposed for

task rt, and maps attribute a ∈ AN to an upper or lower user-defined bound for its230

value, depending on the attribute direction. That is, rc(a) is the minimum allowed

value for attribute a if this attribute has an increasing direction (a higher value is bet-

ter), or the maximum allowed value if attribute a’s direction is decreasing (a lower

value is better). For simplicity, henceforth we assume that all quality attributes are

decreasing. Note that rc(a) = undf in case of no restrictions on the value of attribute235

10

a by the user. Finally, function rw specifies the user’s preferences regarding differ-

ent quality attributes, and assigns to each attribute a ∈ AN , a user-defined weighting

factor rw(a) ∈ [0, 1] reflecting its relative importance, s.t.
∑
a∈AN rw(a) = 1.

3.3.1. Request-based Selection Plans

Based on the planning knowledge model, multiple alternative abstract plans may240

be available for achieving the requested task rt. These plans, denoted abspln(rt),

correspond to all the possible expansions of the requested task, derived by recursively

replacing task nodes with their decomposition graphs. For example, according to the

planning knowledge hierarchy of Figure 3, task A has five possible abstract plans:

plan1: A; plan2: B-C-D; plan3: G-C-D; plan4: B-C-E-F; and plan5: G-C-E-F. Yet,245

not all these plans are necessarily interesting with respect to the user request at hand.

That is, a plan whose available instances are all guaranteed to violate the quality con-

straints can be filtered out from the planning search space of the current request without

affecting the ability to find an optimal solution. Formally, given a user request, the ab-

stract plans to be considered for the selection process, denoted SPLN , are given as250

SPLN = {p ∈ abspln(rt) | ∀a ∈ AR,
aggrt∈nodes(p)(tmn(t, a)) ≤ rc(a)}. Here, AR is the set of constrained quality at-

tributes; nodes(p) returns the task nodes of plan p; tmn(t, a) associates task t with

the best (minimum value) offered for attribute a by this task’s candidate services, i.e.

min
s∈cnd(t)

(sv(s, a)); and aggr is some aggregation function that depends on the attribute255

considered. For example, possible aggregation functions for the quality attributes ex-

ecution time, reliability, and throughput are the summation, multiplication, and mini-

mum functions, respectively.

3.3.2. Request-based Non Dominated Services

The set of alternative composite services for achieving the requested task, denoted

cmp(rt), is derived by instantiating plans SPLN (i.e. replacing the task nodes in each

plan p ∈ SPLN with a particular combination of their candidate services). With the

increasing number of services per task, the number of such alternative compositions

|cmp(rt)| can be exponential. However, this number could be reduced considerably

11

by filtering out from the candidate space of each task, all the services uninteresting

for the current request. Such uninteresting services are those request-based dominated

by another candidate service for the same task, with a service sj ∈ cnd(t) request-

based dominating (r-dm) service si ∈ cnd(t) iff si is worse than sj regarding all the

constrained quality attributes AR, and the overall utility value su, i.e.

[∀a ∈ AR, sv(si, a) ≥ sv(sj , a)] ∧ [su(t, si) ≤ su(t, sj)]∧

[∃a ∈ AR, (sv(si, a) > sv(sj , a)) ∨ (su(t, si) < su(t, sj))]

Here function su(t, s) ∈ [0, 1] returns the overall utility of service s ∈ cnd(t) regarding260

the user’s request, s.t. su(t, s) =
∑
a∈AN (rw(a)∗ tmx(t,a)−sv(s,a)

tmx(t,a)−tmn(t,a)), where tmx(t, a)

is the maximum (and tmn(t, a) the minimum) value offered for attribute a by task t’s

candidate services.

Request-based dominated services are not potential candidates for the optimal so-

lution, and thus can be ignored when instantiating plans SPLN .265

3.4. Service Selection Problem

The service selection problem involves finding the best composite service to achieve

the requested task, that both satisfies the user’s imposed quality constraints and max-

imises the overall utility with respect to user-defined quality weights.

The value offered by a composite service cs ∈ cmp(rt) for a particular quality270

attribute a, cv(cs, a), is some aggregation aggr of the corresponding quality values for

the component services, where aggr depends on the attribute considered. Based on

this, the set of satisfactory composite services for the user’s request, can be defined as

SCS = {cs ∈ cmp(rt) | ∀a ∈ AN, (rc(a) 6= undf)⇒ (cv(cs, a) ≤ rc(a))}.
The solution composite service cssol for the user request is that satisfying: cssol ∈275

SCS such that cu(cssol) = max
cs∈SCS

(cu(cs)), where function cu(cs) ∈ [0, 1] represents

the overall utility of composite service cs, s.t. cu(cs) =
∑
a(rw(a)∗ rmx(a)−cv(cs,a)rmx(a)−rmn(a)).

Here, rmx(a) returns the maximum (and rmn(a) the minimum) value offered for

attribute a by the requested task’s actual plans (these maximum/minimum values can

be estimated by aggregating for each abstract plan the tmx/tmn values of its tasks, and280

then calculating the maximum/minimum of these aggregated values).

12

start C
G

B D

E

dest dest

A

F

Figure 4: Plan paths graph for plan holiday task

3.5. Service Selection Algorithm

We model the service selection problem as a multi-constrained optimal path se-

lection problem in a directed graph, called the plan paths graph (VPK , EPK), where

each path corresponds to an alternative abstract plan for achieving the requested task.285

We assume all abstract plans have a sequential structure (other structures can be trans-

formed to the sequential structure using existing techniques [28]). Figure 4 provides

the plan paths graph for the planning knowledge of Figure 3. Note that this selection

model views each abstract plan as an individual plan (with potential node overlap with

other plans), and thus remains valid even if the planning knowledge is not hierarchical.290

Based on the multi-constrained Bellman-Ford algorithm [29], our service selection

algorithm is as follows. Each node v in the plan paths graph stores the optimal in-

stances, denoted as oi(v, pv), for each path pv + v discovered so far from the start

node to v (an instance of a path is a possible replacement of its task nodes with candi-

date services). In order to maximise utility, the concept of optimal paths in the original295

Bellman-Ford algorithm is updated so that an instance of path p is considered optimal if

no other possible instance of the same path has both better values for all the constrained

attributes and better utility. Moreover, to reduce the number of optimal instances, only

those satisfying the quality constraints are maintained in each node. After traversing

all graph nodes in topological order, the solution is the optimal composite service that300

has the best utility at the destination node.

In order to ensure that only plans SPLN are considered during selection, each node

v in the plan paths graph is associated with the set of its valid predecessors vldprd(v),

which can be defined as follows: given a path pv+v from the start node to v, path pv is

considered a valid predecessor of node v if there exists at least one path pi from v to the305

13

Node A B C D E F G

rcnd ∅ sB1(20, 30)sC1(15, 50) ∅ sE1(27, 5) sF1(30, 10)sG1(86, 5)

(ex,pr) sB2(30, 12)sC2(30, 30) sE2(15, 20)sF2(20, 40)

vldprd ∅ S SB ∅ SBC SBCE ∅

Figure 5: Request-based non-dominated services and valid predecessors for the nodes of Figure 4

destination node, such that pv+pi is a satisfactory abstract plan, i.e. pv+pi ∈ SPLN .

Based on this, when processing an edge (u, v), only the optimal composite services

stored in u that are instances of v’s valid predecessors are considered. More details on

this selection algorithm can be found in [11].

4. Example of Service Changes310

Consider an example in which the user has issued a request to achieve task A,

and is interested in minimising price (pr) while satisfying the constraint that execu-

tion time (ex) is less than 100. The plan paths graph for the requested task, and the

request-based non-dominated candidate services of the sub-tasks involved are depicted

in Figures 4 and 5, respectively. Based on this, the set of plans to be considered for se-315

lection SPLN = {BCEF} (plans A, BCD, GCD, and GCEF are excluded since

tasks A and D do not have any available services, and all the available instances of

plan GCEF violate the execution time constraint). Given set SPLN , the valid pre-

decessors of the nodes are as shown in Figure 5. The optimal solution for the user is

instance sB1sC2sE2sF1(ex:95, pr:90) which has the lowest price. In what follows, we320

give three example scenarios of service changes during the execution of the selected

composite service sB1sC2sE2sF1.

Scenario 1: While executing service sB1 of composite service sB1sC2sE2sF1, a new

service sD1(ex:40, pr:10) joins the candidate services of task D. As a result, plan

BCD is added to set SPLN , and two additional instances of this plan are satisfactory325

from this point, of which composite service sB1sC2sD1(ex:90, pr:70) is better than the

selected composition sB1sC2sE2sF1 for both price and execution time.

Scenario 2: While executing service sB1 of composite service sB1sC2sE2sF1, service

sC2 becomes unavailable. Here, simply replacing sC2 with sC1 will result in composi-

14

tion sB1sC1sE2sF1(ex:80, pr:110), which is not optimal regarding price. Hence, both330

sC2 and sE2 should be substituted in this case in order to obtain the new optimal satis-

factory solution, which is service sB1sC1sE1sF1(ex:92, pr:95).

Scenario 3: While executing service sB1 of composite service sB1sC2sE2sF1, ser-

vice sC2 changes its quality values to (ex:50, pr:20). From this point, the selected

composite service is no longer satisfactory, and the new optimal satisfactory one is335

sB1sC1sE1sF1(ex:92, pr:95).

5. Service Change Categorisation

As illustrated above, a change to the service landscape during execution may cause

corresponding changes in the optimal composite services possible from that point (and

potentially affecting the best solution), thus necessitating their recalculation in response340

(which we refer to as the re-selection process). Generally, the importance and urgency

of responding to an encountered service change, i.e. triggering the re-selection pro-

cess, vary depending on whether this change affects the non-dominated services of the

respective task and other factors. Based on this, we propose categorising execution-

time service changes into changes not to be considered and changes to be considered.345

These categories are detailed next after modelling the effect of a service change on the

request-based non-dominated services of the task affected. In what follows, αo and αn

represent α before and after a change occurrence.

5.1. The effect on non-dominated services

A change to the available services of task tch ∈ VPK , might affect this task’s set of350

request-based non-dominated services rcnd(tch), causing the addition of new services

AD while removing existing ones RM , i.e. rcndn(tch) = (rcndo(tch) \RM)∪AD.

The definition of sets AD and RM depends on the type of change that occurred.

In particular, where a new service sn joins the candidate services of task tch, ser-

vicesAD to be added to rcndo(tch) is service sn if it is not request-based dominated by355

an existing service in rcndo(tch), while services RM to be removed from rcndo(tch)

are those existing services in rcndo(tch) that are request-based dominated by sn.

15

Where a candidate service so of task tch becomes unavailable, services RM to be

removed from rcndo(tch) is service so if it is a member of rcndo(tch), while services

AD to be added to rcndo(tch) are task tch’s candidate services that are request-based360

dominated by so, and which, as a result of eliminating so, become non-dominated

according to current request.

Where a candidate service so of task tch changes its quality values, with sch denot-

ing this service after the change, the case can be treated as a deletion of so, followed

by a subsequent addition of sch.365

Formal definitions of sets AD and RM per each change type can be found in [30].

5.2. Changes not to be considered

A change to the available services of task tch while executing task tinv (the task

currently invoked of the selected solution) need not be considered, i.e. does not trigger

the re-selection process, iff one of the following is satisfied.370

• Task tch is already executed. That is, tch = tinv or tch appears before tinv

according to the topological order of the plan paths graph. Note that we concen-

trate, in our work, on a forward recovery mechanism, where only the tasks that

are not yet executed can be re-assigned to other services or replaced with other

tasks from an alternative plan, while those already executed are considered final375

with their assignments being unchangeable. This is a plausible assumption for

some types of services (examples of which are the learning objects evaluated in

Section 9, where it does not seem reasonable to make the user repeat the learning

process for an already acquired concept). Extending our mechanism to allow for

the possibility of rolling back the execution to a previous point in time is the380

focus of future work (see Section 10).

• The request-based non-dominated services of task tch are not affected by the

change, i.e. AD = RM = ∅. Since non-dominated services are the only candi-

dates for the optimal solution, there is no need to respond to this change.

• Task tch is not part of the plan being executed (psel) and does not belong to any385

satisfactory plan after the change. That is, (tch /∈ nodes(psel))∧(vldprdn(tch) =

16

∅). In this case, there is no need to respond to the change even if it impacts the

request-based non-dominated services of task tch, since this task is not part of

any plan that will lead to a satisfactory solution for the current request.

5.3. Changes to be considered390

A change to the available services of task tch while executing task tinv needs to be

considered, i.e. triggers the re-selection process, iff all of the following are satisfied:

task tch is not executed yet, i.e. tch appears after tinv according to the topological order

of the plan paths graph; tch belongs to the plan being executed (psel) or belongs to at

least one satisfactory plan after the change, i.e. (tch ∈ nodes(psel))∨(vldprdn(tch) 6=395

∅); and the request-based non-dominated services of task tch are affected by the change,

i.e. (AD 6= ∅) ∨ (RM 6= ∅). Changes to be considered are further divided into non-

affecting changes and affecting changes, as detailed next.

5.3.1. Non-affecting changes

A change is non-affecting if it has an impact on the optimal composite services pos-400

sible from that point, but does not affect the best solution (the need to respond to this

category of change is justified in Section 7). Having no effect on the best solution, this

category of change does not cause any delay to the execution process. In other words,

the solution composite service can continue its execution even if the re-selection pro-

cess in response to the change is still running. Generally, a change to be considered405

is regarded as non-affecting in the following cases: the deletion of a non-selected ser-

vice (a service that is not part of the current best solution); and changes in the quality

values of a non-selected service so (sch denotes this service after the change) such that

(so r-dm sch) or ((so is incomparable with sch) and (sch /∈ AD)).

5.3.2. Affecting changes410

A change is affecting if it has an impact on the optimal composite services possible

from that point, and could cause a modification to the best solution. This category is

further divided into non-interrupting changes and interrupting changes.

Non-interrupting changes are those affecting changes, the reaction to which does

not cause any interruption between service executions, since the next service to be415

17

executed can be identified without the need for re-selection to be completed. Specifi-

cally, an affecting change to the services of task tch is non-interrupting iff task tch is

the next task to be executed according to the current solution, with service ssel being

the currently selected service for this task, and one of the following is satisfied: the

change that occurred is the addition of a new service sn such that sn r-dm ssel; or the420

change is a modification in the quality values of service so (sch denotes this service

after the change) such that sch r-dm ssel (note that ssel might be the service affected

by the change, i.e. so = ssel). Intuitively, responding to such changes will result in

replacing service ssel with service sn (in the addition case), and with service sch (in

the modification case). Hence, the next service can be anticipated without requiring425

interruption.

Interrupting changes are those affecting changes, the reaction to which might result

in an interruption to the composite service execution. This is because the next service to

be executed cannot be identified prior to performing re-selection, thus causing the exe-

cution process to stop until re-selection is completed. Specifically, an affecting change430

to the services of task tch is interrupting in the following cases. Case 1: the addition

of a new service sn such that one of following is satisfied: tch is not part of the plan

being executed; tch belongs to the plan being executed and sn is incomparable with

ssel (the currently selected service for task tch); or tch belongs to the plan being exe-

cuted, but is not the next task in the execution sequence, and sn r-dm ssel. Case 2: the435

deletion of a selected service. Case 3: changes in the quality values of a non-selected

service so (sch denotes this service after the change) such that all of the following are

satisfied: [sch r-dm so]∨ [(sch is incomparable with so)∧ (sch ∈ AD)]; and [tch is not

the next task to be executed] ∨ ¬[sch r-dm ssel], where ssel is the currently selected

service for task tch. Case 4: changes in the quality values of a selected service ssel (sch440

denotes this service after the change) such that tch is not the next task to be executed or

¬(sch r-dm ssel). Note that all the three change scenarios in Section 4 are considered

interrupting, satisfying Case 1, Case 2, and Case 4, respectively.

18

6. Adaptive Execution Behaviour

Delaying the re-selection process until a violating behaviour is invoked results in445

undesired effects at execution time. For instance, observing the unavailability of ser-

vice sC2 in Scenario 2 only when trying to invoke this service causes execution to

stop until re-selection is performed. Similarly, in Scenario 3, detecting the changes in

the quality values of service sC2 only after its execution results in an unrecoverable

situation, since no satisfactory solution can be found from this point (all the service450

combinations including services sB1 and sC2 violate the user’s execution time con-

straint).

To tackle this, we propose an early, parallel-to-execution adaptive system behaviour,

where adaptation to changes is performed as soon as these changes occur in the envi-

ronment, concurrently with the execution of the current service, thus reducing the delay455

between service executions, and increasing the chance of a successful recovery. For in-

stance, in Scenario 2, re-selecting services for tasks C, E and F in response to the

deletion of service sC2 can be achieved while executing service sB1, without causing

extra delay.

Based on the change categories introduced, such an adaptive execution behaviour460

can be modelled using the finite state automaton in Figure 6, which consists of five

states. States ex− α indicate that a component service of the best solution is currently

running and, at the same time, the following is satisfied according to the value of α:

when α = nch, no re-selection is being performed by the system; when α = naff, a

re-selection is being performed in response to a set of non-affecting changes; when465

α = nint, a re-selection is being performed in response to a set of changes including at

least one non-interrupting change and no interrupting changes; and finally, when α =

int, a re-selection is being performed in response to a set of changes including at least

one interrupting change. State nex indicates that the best solution execution is currently

interrupted until re-selection is completed.470

The behaviour of the system is interpreted as follows. The execution begins in

state ex-nch, by invoking the first component service. With the occurrence of a change

to be considered during a component execution, the system transitions to one of the

19

nex

e-ex ^

e-ex
e-ex-v

e-ch

e-ch

naff

e-ch
e-ch

int
nint

nint

naff

naff

nint

int

naff

naf

f nint

int

e-ex

e-ex-v

e-ex-v

e-ex

int

e-ex ^
e-ex-v

nint int

|dominating(snxt)|=1

|dominating(snxt)|≠1

ex-naff

ex-nch

ex-nint ex-int

Figure 6: Adaptive behaviour during execution

states ex-naff, ex-nint, or ex-int, based on the change category, which could be a non-

affecting change (event naff), an affecting and non-interrupting change (event nint),475

or an affecting and interrupting change (event int). The change category is identified

with respect to the currently selected solution (we assume that the time required for

this identification is negligible, especially when compared to re-selection time). The

selected solution may be updated each time a re-selection is completed (event e-ch),

causing the system to return to state ex-nch.480

After the successful execution of a component service (event e-ex), the state into

which the system transitions is determined based on its current state, as follows. If the

system is in state ex-nch, i.e. no re-selection is being performed, the next service in the

currently selected solution is invoked, without changing the state of the system. If the

system is in state ex-naff, i.e. the re-selection being performed will not affect the cur-485

rently selected solution, the next service in this solution is invoked, without changing

the state of the system. In other words, the re-selection is carried on while executing

the next service. If the system is in state ex-int, i.e. the next service to be executed

cannot be identified before completing the re-selection being performed, the system

20

transitions to state nex, and remains in this state until re-selection is completed and490

the next service to be invoked is determined. Finally, if the system is in state ex-nint,

two cases are distinguished according to set srds(snxt), the set of services dominating

the currently selected service snxt for the next task in the execution order, among the

request-based non-dominated services of this task. Case 1: |srds(snxt)| = 1, in which

the next service to be executed can be estimated without the need for re-selection to be495

completed. This service, snxt−new ∈ srds(snxt), is thus invoked without delaying ex-

ecution, causing the system to transition to state ex-int. In other words, the re-selection

is continued while executing service snxt−new, but is considered interrupting since the

next service to invoke after service snxt−new cannot be known prior to completing re-

selection. Case 2: |srds(snxt)| 6= 1, in which the next service to be executed cannot500

be determined before the re-selection is completed. Therefore, the execution process is

interrupted by moving to state nex to continue the re-selection.

The case where the current component service delivers unexpected quality values

(event e-ex-v) is considered an interrupting change, and thus also causes the system to

enter state nex, regardless of its current state.505

Example. Consider Scenario 2 of Section 4, with the initial solution sB1sC2sE2sF1.

Invoking sB1 initiates the adaptive execution behaviour at state ex-nch. Since the

deletion of sC2 while executing sB1 is an interrupting change, it triggers the tran-

sition of the system to state ex-int to indicate a running re-selection. Once the re-

selection is completed, the system goes back to state ex-nch, updating the solution to510

sB1sC1sE1sF1.

7. Efficient Service Reselection

The adaptive behaviour proposed above triggers re-selection in response to changes

in parallel with execution, in order to avoid extra delays. However, a costly re-selection

process could still cause an interruption to execution, especially if the change is only515

discovered at a late stage or (in the worst case) at the end of the current component

execution. In response, we introduce here a light re-selection approach, applying effi-

cient repair rules to an already existing search graph (the graph produced by the initial

21

selection process), without expensive recalculations from scratch. The idea is to ap-

ply the selection algorithm (of Section 3.5) prior to execution, in order to generate the520

search graph (i.e. generate the optimal instances for each task node), and to select

the initial solution. The search graph is then kept valid during execution by contin-

uously adjusting it with respect to the environment state (which justifies the need to

account for non-affecting changes). Maintaining the graph validity ensures that, when-

ever any change occurs (especially a critical, affecting one), only a minimal number525

of modifications to the affected part of the graph are required in response, thus in-

creasing the chance that the adaptation to the change terminates before the end of the

current component execution. Next, we first introduce the search graph enabling ef-

ficient execution-time adaptivity, followed by the graph repair rules in response to a

change (i.e. the re-selection algorithm).530

7.1. Execution-time Search Graph

In the simplest case, with no changes encountered, the validity of the search graph

should be maintained against the execution progress of the selected solution. This,

however, could be costly to achieve with the forward version of the plan paths graph,

where the task nodes are processed (by the selection algorithm) according to their ex-535

ecution order. To illustrate, consider the example of Section 4, with the forward plan

paths graph in Figure 4, and the initial solution sB1sC2sE2sF1. Once service sB1

is invoked, the optimal instances recorded at the remaining, non-executed task nodes

(i.e. tasks nodes C, D, E, and F) are no longer valid. This is because these instances

(which correspond to paths beginning with node B) account for service sB2 as a pos-540

sible candidate for executing task B, no longer the case after sB1’s execution.

To tackle this, we apply the selection algorithm on the reverse version of the plan

paths graph, generated by reversing the direction of edges in the original plan paths

graph (i.e. the start node of the reverse plan paths graph is the end node of the original

one). For example, the reverse graph for the plan paths graph of Figure 4 is provided545

in Figure 7. Such modified selection produces the same best solution, while maintain-

ing the validity of optimal instances at the non-executed task nodes as the execution

advances, due to the reverse processing order of nodes. For instance, in our example,

22

start C

E

D

F

B

G

dest dest

A

Figure 7: Reverse plan paths graph for plan holiday task

when selection is performed on the reverse graph of Figure 7, executing service sB1

does not affect the optimal instances of task node C which, in this case, records in-550

stances of pathsDC and FEC. The same holds for the other, non-executed task nodes

D, E and F . Only the optimal instances of the node executed, B, are affected, and

would need to be re-computed if a change occurs (see Section 7.2).

Based on this, each time a new component service, sinv , of the selected solution,

insex+sinv+ insuex, is invoked (where insex and insuex correspond to the executed555

and non-executed parts of this solution, respectively), only the following adjustments

are required to the search graph: changing the destination node to task tinv (the task

being executed), with its request-based non-dominated services being set to instance

insex+sinv; and updating the valid predecessors of nodes through adjusting the selec-

tion plans SPLN , such that all the plans not beginning with the already executed path560

are removed from set SPLN , since these are invalid from this point. In our example,

reflecting the execution of service sB1, on the reverse search graph, would only involve

changing the destination node to nodeB, and adjusting rcnd(B) to rcnd(B) = {sB1}.
Here, no modification is required to set SPLN (and consequently the valid predeces-

sors) since only plan BCEF , currently under execution, is included in this set.565

7.2. Search Graph Repair Rules

To account for a service change to be considered at task node tch, while executing

service sinv (of task tinv), we apply only the necessary updates to the optimal in-

stances at the nodes of the reverse search graph, without re-computing these instances

from scratch. This is achieved by associating each valid predecessor pu, of each node570

u, with three mutable sets capturing the updates required: an additional services set

as(u, pu) ⊂ rcnd(u) specifying what services of node u need to be joined with path

23

Node F E D C B A G

vldprd S SF ∅ SFE SFEC ∅ ∅
as ∅ {sE3} − ∅ {sB1} − −
ai ∅ ∅ − {(sE3, index = 2)} ∅ − −
dc ∅ ∅ − ∅ ∅ − −

Figure 8: Sets as, ai, and dc in the running example

pu’s optimal instances when updating the optimal instances of path pu + u; an addi-

tional instances set ai(u, pu, i ∈ Z+) ⊂ S specifying what optimal instances of path

pu need to be joined with node u’s services when updating the optimal instances of575

path pu + u (i.e. s ∈ ai(u, pu, i) indicates that, of the additional optimal instances

ins of path pu to be combined with node u’s services, are those including service s

at position i); and a domination check set dc(u, pu) ⊂ ins(pu + u) specifying what

optimal instances of path pu + u become unavailable, thus, when updating the optimal

instances of path pu+u, all its instances previously dominated by at least one instance580

in dc(u, pu) should be checked for optimality.

Algorithm 1 summarises the repair process of the optimal instances of path pu+u at

node u, according to above semantics. Procedure check-instance-optimality(ins, u, pu)

assesses the optimality of instance ins against those already recorded at node u for path

pu + u. Note that as(u, pu) = ai(u, pu, i ∈ Z+) = dc(u, pu) = ∅, when no modi-585

fications to the optimal instances of path pu + u are required. Once the repair for the

nodes is completed, the new best solution is the one with the highest utility among the

adjusted optimal instances at node tinv (the current end node).

The instantiation of sets as, ai, and dc, for each valid predecessor, depends on the

change type, and full details of such an instantiation can be found in [30].590

Example. Suppose that while service sB1 of the initial solution sB1sC2sE2sF1 of

Section 4 is executed, service sE3(10, 50) joins the services of node E. This change

is a change to be considered with AD = {sE3}, RM = {∅}, and no effect on the

valid predecessors of nodes. Given the search graph of Figure 7, the instantiation of

sets as, ai, and dc, for the valid predecessors, in response to this change, is provided595

in Figure 8.

24

Algorithm 1 repair-optimal-instances(u,pu)
1: v ← en(pu)

2: pv ← pu − v

3: if dc(u, pu) 6= ∅ then

4: for each s ∈ rcnd(u) \ as(u, pu) do

5: for each insv ∈ oi(v, pv) s.t. ∀i ∈ Z+, sai(insv , i) /∈ ai(u, pu, i) do

6: if ∃ins ∈ dc(u, pu), ins r-dm insv + s then

7: check-instance-optimality(insv + s,u,pu)

8: if ∃i ∈ Z+, ai(u, pu, i) 6= ∅ then

9: for each insv ∈ oi(v, pv) s.t. ∃i ∈ Z+, sai(insv , i) ∈ ai(u, pu, i) do

10: for each s ∈ rcnd(u) \ as(u, pu) do

11: if ∀a ∈ AR, cv(insv + s, a) is-better-than rc(a) then

12: check-instance-optimality(insv + s,u,pu)

13: if as(u, pu) 6= ∅ then

14: for each s ∈ as(u, pu) do

15: for each insv ∈ oi(v, pv) do

16: if ∀a ∈ AR, cv(insv + s, a) is-better-than rc(a) then

17: check-instance-optimality(insv + s,u,pu)

18: as(u, pu)← ∅; ai(u, pu, i ∈ Z+)← ∅; dc(u, pu)← ∅

Procedure 2 check-instance-optimality(ins,u,pu)
1: optml← 1

2: for each optimal instance insu ∈ oi(u, pu) do

3: if insu r-dm ins then

4: optml← 0

5: break

6: else if ins r-dm insu then

7: remove insu from the instances at oi(u, pu)

8: if optml=1 then

9: add ins to the instances oi(u, pu)

8. Analytical Study

This section analyses the time complexity of the proposed repair-based re-selection

algorithm, and compares it against re-selection from scratch (also assumed to be ap-

plied on the reverse version of the plan paths graph for ease of comparison). We focus600

here on the step of optimal instances modification in response to a change since, when

25

compared to this step, the time required for the other change handling steps (e.g. up-

dating the request-based non-dominated services of affected nodes and identifying the

change category) is negligible.

Since the valid predecessors at each node are processed independently, the analysis605

assumes for simplicity one valid predecessor per node (the specific case of one abstract

plan). This still allows demonstration of the efficiency gain achieved by our approach

for any affected valid predecessor, and can easily be generalised to handle the case of

multiple valid predecessors (i.e. multiple abstract plans). Note that, in such a general

case, our approach achieves further time reduction due to reprocessing only the affected610

valid predecessors per each node, compared to the re-selection from scratch which

reprocesses all the valid predecessors.

Next, the time of the pre-execution selection algorithm is analysed in order to pro-

vide the basis for the subsequent analysis of re-selection approaches.

8.1. Selection Algorithm615

Consider a sequential abstract plan comprising k tasks, v1v2...vk, each with n avail-

able candidate services. To select the best solution (the best instance of path v1v2...vk),

each node vi>1 records the optimal instances of path v1v2...vi, denoted oi(vi). Hence,

selection time τ(sel) is:

τ(sel) =
k∑

i=2

τ(oi(vi)) (1)

The time required to calculate oi(vi), τ(oi(vi)), depends on the sizes of oi(vi−1) and

rcnd(vi), which can be defined in terms of the following pruning rates: spri ∈ [0, 1],

denoting the percentage of candidate services pruned per task node vi prior to selec-

tion, i.e. |rcnd(vi)| = n × sri, where sri = 1 − spri; and cpri ∈ [0, 1], denoting

the percentage of instances pruned per path v1v2...vi when computing the optimal in-

stances at node vi, i.e. |oi(vi)| = |oi(vi−1)| × |rcnd(vi)| × cri, where cri = 1− cpri.
Since |oi(v1)| = |rcnd(v1)| = n× sr1,

|oi(vi)| = ni ×
i∏

m=1

srm ×
i∏

m=2

crm (2)

26

Based on this, τ(oi(vi>1)) is given as follows:

τ(oi(vi)) is O((|oi(vi−1)| × |rcnd(vi)|)2)

is O((ni−1 ×
i−1∏

m=1

srm ×
i−1∏

m=2

crm × n× sri)
2)

is O(n2i ×
i∏

m=1

sr2m ×
i−1∏

m=2

cr2m) (3)

From Equations 1 and 3, the time complexity of selection τ(sel) isO(n2k×
k∏

m=1

sr2m×

k−1∏

m=2

cr2m). Note here that k � n.

Assuming for simplicity that ∀i, sri = cri = r , τ(sel) isO(n2k×r4k−4). Hence,

our service selection achieves a time complexity of O(nα) if rate r = 4k−4
√
nα−2k.

For example, in order for selection to be of linear time complexity, i.e. α = 1, when620

n = 100 and k = 5, rate r should be: r = 16
√

100−9 = 0.08. That is, the pruning rate

(1-r) should be at least 92%.

8.2. Reselection from scratch

The re-selection from scratch approach recalculates the optimal instances of all

non-executed nodes from scratch, in response to a change to be considered at node vch

while executing node vinv . Thus, its time complexity, τs(resel), is:

τs(resel) =

inv−1∑

i=1

τs(oin(vi)) (4)

Here, τs(oin(vi) is the time required for recomputing the optimal instances at node vi,

given as (see Equation 3):

τs(oin(vi<ch)) is O(n2i ×
i∏

m=1

sr2m ×
i−1∏

m=2

cr2m)

τs(oin(vi≥ch)) is O(n2(i−1) × n′2 ×
i∏

m=1

sr2m ×
i−1∏

m=2

cr2m)

where n′ = |cndn(vch)|, i.e. n′ = n + 1 in case of service addition; n′ = n − 1 in

case of service deletion; and n′ = n in case of changes in service qualities. Based on

this and Equation 4, we can conclude that (inv ≤ k):

τs(resel) is O(n2(inv−1) ×
inv−1∏

m=1

sr2m ×
inv−2∏

m=2

cr2m) (5)

27

8.3. Repair-based Reselection

The proposed repair-based re-selection approach only makes the updates necessary

to the affected optimal instances, in response to a change to be considered at node vch

while executing node vinv , without recalculating those instances from scratch. Thus,

its time complexity, τ r(resel), is:

τr(resel) =

inv−1∑

i=ch

τr(oin(vi)) (6)

Here, τ r(oin(vi)) is the time required for modifying the optimal instances at node vi.625

The modification depends on the type of change that has occurred, and is analysed next

for the addition case, i.e. addition of a request-based non-dominated service sn at node

vch (the deletion and quality changes cases can be analysed similarly).

For node vch, the modification involves combining the optimal instances of node

vch−1 with service sn, and then checking the optimality of the resulting combinations

against those already recorded at node vch, i.e. τ r(oin(vch)) is:

O(|oio(vch−1)| × |oio(vch)|)

is O(nch−1 ×
ch−1∏

m=1

srm ×
ch−1∏

m=2

crm × nch ×
ch∏

m=1

srm ×
ch∏

m=2

crm)

is O(n2ch−1 ×
ch−1∏

m=1

sr2m ×
ch−1∏

m=2

cr2m × srch × crch) (7)

Similarly, for node vi>ch, updating oi(vi) involves checking the optimality of the

newly available instances (obtained by joining the optimal instances containing service

sn at node vi−1, oin(vi−1)sn , with node vi’s services), against those already computed

at node vi, i.e. τ r(oin(vi>ch)) is:

O(|oin(vi−1)
sn | × |rcnd(vi)| × |oin(vi)|)

is O(

ni−2 × n′ ×
i−1∏

m=1

srm ×
i−1∏

m=2

crm

n′ × srch
× n× sri × ni−1 × n′ ×

i∏

m=1

srm ×
i∏

m=2

crm)

is O(n2(i−1) × n′ ×
i∏

m=1
m 6=ch

sr2m ×
i−1∏

m=2

cr2m × srch × cri) (8)

28

Here, n′ = n + 1, and |oi(vi)sn | = |oi(vi)|
|rcnd(vch)| . From Equations 6, 7 and 8, we

conclude that τ r(resel) is:

O(n2inv−3 ×
inv−1∏

m=1
m 6=ch

sr2m ×
inv−2∏

m=2

cr2m × srch × crinv−1) (9)

This is applicable as long as ch < inv (the node affected by the change is not the node

being executed). Yet, when ch = inv (the invoked service delivers unexpected quali-

ties), reselection only involves recombining the optimal instances already recorded at

node vinv−1 with the modified invoked instance, and thus τ r(resel) isO(|oio(vinv−1)|),
i.e.

τr(resel) is O(ninv−1 ×
inv−1∏

m=1

srm ×
inv−1∏

m=2

crm) (10)

8.4. Comparison630

To analyse the efficiency gain achieved by the proposed repair-based re-selection

(compared to reselection from scratch), we make the simplifying assumption that ∀i, sri =

cri = r. As a result, comparing time complexities τs and τ r, leads to:

ch < inv :
τs(resel)

τr(resel)
=
n2inv−2 × r4inv−8

n2inv−3 × r4inv−8
= n

ch = inv :
τs(resel)

τr(resel)
=
n2inv−2 × r4inv−8

ninv−1 × r2inv−3

= ninv−1 × r2inv−5

In other words, when the change occurs at a non-executed node, the proposed approach

reduces reselection time by a factor of n. The reduction factor further increases to

ninv−1 × r2inv−5 in the case where the change affects the node being executed (i.e.

cannot be anticipated in advance).

9. Empirical Study635

The goal of this section is to assess the efficiency of our repair-based re-selection

algorithm, the gain in utility by responding to changes ahead of time, and the reduc-

tion in execution interruption by performing re-selection without interfering with the

execution process (unless necessary).

29

9.1. Experimental Setup640

We perform the evaluation in domain of learning object composition [31], where

the goal is to fulfill a particular learning objective by automatically compositing ex-

isting reusable learning objects (the candidate services in our model) into a respective

course, taking learner (user) preferences and constraints into consideration (full details

on this case study can be found elsewhere [30]). Learning objects (LOs) are published645

through learning object repositories, where hundreds of learning objects with different

properties can be available for each concept, and are usually heterogeneous in their

granularities, i.e. they can range from a single image to a whole module. Thousands

of new learning objects are made available every day, while existing learning objects

can be updated or become unavailable at any time. Such changes in the repository can650

occur during the delivery (execution) of a selected course (a composition of learning

objects), thus possibly necessitating the re-selection of learning objects for concepts

not yet presented, in order to guarantee the most suitable learning experience for the

user.

The metadata elements (quality of service properties) of 36956 learning objects655

were collected from 10 different repositories, using the OAI-PMH2 protocol. Of those

elements, we selected the following for the global-level constraints and utility function:

interactivity type, semantic density, difficulty, typical learning time, size, and cost. The

planning knowledge adopted is a hierarchical representation of the Algorithms and

Data Structure domain, where the tasks correspond to domain concepts. It comprises 3660

hierarchical levels, with up to 11 concepts (tasks) per abstract plan in the search graph.

Learning objects are examples of services with long execution durations execT ime

(corresponding to learning time). For such long-running services, where execT ime >>

rslScrtch (rslScrtch is the time anticipated to perform the most costly re-selection

from scratch, for the non-executed tasks), the proposed continuous adaptive behaviour665

may cause an unnecessary overhead from the composite service provider perspective.

This is because, when a service execution spans a long period of time [ts, te], it be-

comes unnecessary to continuously react to changes for this entire duration. Instead, all

2http://www.openarchives.org/OAI/openarchivesprotocol.html

30

0	

200	

400	

600	

800	

1000	

1200	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Co
m
pu

ta
(o

n	
Ti
m
e	
(m

s)
	

Execu(on	Posi(on	

Reselec1on	from	Scratch	
Repair-based	Reselec1on	

Figure 9: Reselection time in response to a random change

changes could be ignored until tcrt = te− rslScrtch, at which point re-selection from

scratch for the remaining tasks should be instantiated to restore a valid instance of the670

search graph with respect to the new environment state. From this point, the execution

should continue in the proposed light repair-based manner, efficiently accommodating

all the changes occurring during the critical interval [tcrt, te] (the interval signaling the

end of the current service execution). This adaptation of the execution behaviour saves

the cost of maintaining the search graph and triggering re-selection a potentially very675

large number of times. Given this, only the critical short interval [tcrt, te] is relevant for

the purpose of evaluating our approach, and therefore we assume next a short execution

time per learning object, ignoring the irrelevant long interval [ts, tcrt]. This simplifies

the experiments and facilitates averaging the results over multiple runs. All the results

reported are averaged over 30 randomly-generated requests (with two global-level con-680

straints and a utility optimisation requirement).

9.2. Re-selection Time Results

To assess the gain in performance obtained by the proposed approach, we first

study the time required for re-selecting services for the remaining tasks in response to

an affecting change at execution time. We compare two strategies:685

31

0	

200	

400	

600	

800	

1000	

1200	

1400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Co
m
pu

ta
(o

n	
Ti
m
e	
(m

s)
	

Execu(on	Posi(on	

Reselec1on	from	Scratch	
Repair-based	Reselec1on	

Figure 10: Reselection time in response to a violation in the executed LO’s qualities

• Reselection from scratch. This strategy recalculates the optimal instances for the

non-executed nodes from scratch, in response to a change. It is based on the

multi-constrained Bellman-Ford algorithm, and is originally introduced in [11].

• Repair-based Reselection. This is the proposed re-selection strategy in this pa-

per, where adaptation to a change is achieved by only making the necessary690

updates to the optimal instances already recorded at nodes.

Here, the number of learning objects (i.e. services) considered per task is fixed at 500,

while the execution position (the index of the learning object being executed) when the

change occurs is varied between 1 and 10 (11 is the total number of tasks per abstract

plan). Figures 9 and 10 compare the two strategies in terms of running time, aver-695

aged over a number of different random requests. In Figure 9, change types (addition,

deletion, or changes in qualities) and locations (the tasks and services affected) at each

execution position are selected randomly, whereas those considered in Figure 10 are

receiving unexpected quality values from the executed services. As can be seen, the

repair-based re-selection significantly outperforms the re-selection from scratch, espe-700

cially when the change is discovered at an early stage of execution. Moreover, both

strategies require less time with the increasing execution position. This is because, as

32

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

O
p#

m
al
ity

	

Execu#on	Posi#on	

Immediate	Reac6on	

Delayed	Reac6on	

Figure 11: Deletion of the selected learning object at position 11

more services are executed, the number of remaining graph nodes to be considered in

the re-selection process decreases (e.g. 10 nodes at execution position 1, 9 nodes at

execution position 2, etc.), and so does the number of their optimal instances. We can705

also observe from the situation studied in Figure 10, in which it is not possible to per-

form the adaptation process in parallel with execution since the erroneous behaviour

cannot be discovered prior to its occurrence, that almost no interruption in execution

will be caused by the repair-based approach proposed.

9.3. Optimality Results710

To assess the gain in utility obtained by the proposed approach, we compare here

two strategies:

• Delayed Reaction. This strategy delays the reaction to a change, i.e. until when

the unavailable learning object is invoked or after the quality violating learn-

ing object is executed. The re-selection of services in reaction to the change715

is conducted by enumerating all possible service combinations for the remain-

ing tasks, and selecting the best possible alternative. This strategy provides an

upper bound for the performance, in terms of solution optimality, of existing

33

0.55	

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

O
p#

m
al
ity

	

Execu#on	Posi#on	

Immediate	Reac6on	

Delayed	Reac6on	

Figure 12: Changes in the qualities of the selected learning object at position 11

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

O
p#

m
al
ity

	

Change	Posi#on	

Delayed	Reac5on	

Immediate	Reac5on	

Figure 13: Deletion of a selected learning object (Exec. Pos. =1)

34

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

O
p#

m
al
ity

	

Change	Posi#on	

Immediate	Reac6on	
Delayed	Reac6on	

Figure 14: Changes in the qualities of a selected learning object (Exec. Pos. =1)

reactive approaches in the literature, including optimal re-selection reactive ap-

proaches [3], heuristic re-selection reactive approaches [5], and pre-computed720

backups reactive approaches [6]. In particular, the solution optimality of this

strategy equals that of optimal re-selection reactive approaches, while the per-

formance of heuristic-based and backup-based reactive re-selection approaches

may be lower due to providing close-to-optimal (rather than optimal) solutions

as outlined in Section 2.725

• Immediate Reaction. This is the early reaction to changes proposed in this paper,

i.e. reacting to a change in the selected learning objects as soon as it occurs in

the environment.

The solution optimality is estimated as cuact

cuopt
, where cuact is the actual utility achieved

by re-selecting services for the non-executed tasks, and cuopt is the optimal utility as-730

suming no task is executed (i.e. the utility of the best solution according to the current

environment state, and given that no task is executed). Figures 11 and 12 show the

results in the cases where the last service in the selected solution becomes unavail-

able, and changes its qualities, respectively, varying the execution position at which

the change occurs (i.e. at which the re-selection is triggered by the early approach735

35

0	

50	

100	

150	

200	

250	

300	

350	

400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

In
te
rr
up

(o
n	
Ti
m
e	
(m

s)
	

Execu(on	Posi(on	

Figure 15: Interruption time with respect to execution position

to change handling) between 1 and 10 (each solution composite service is comprised

of 11 services). As expected, the earlier change adaptation is performed, the better

the utility of the resulting solution, which emphasises the importance of responding to

changes as early as possible. This is further highlighted in Figures 13 and 14, where the

execution position at which the change is observed is fixed at 1 (i.e. the change occurs740

while executing the first service of the selected solution), while the change location

(the index of the task affected by the change) ranges between 2 and 11. Clearly, the

optimality achieved by delayed re-selection decreases as more services are executed.

9.4. Interruption Time Results

Finally, the last part of the experiments evaluates the reduction in interruption time745

between component service executions, achieved as a result of reacting to changes in

the environment as soon as they occur, in parallel with the execution of the current com-

ponent service. This parallelism is simulated using multi-threading on the composite

service provider side, with the execution of a component service being simulated by

invoking a service on a remote computer, which simply sleeps for a certain amount750

of time execT ime (service execution time) before returning a result. Changes occur-

ring during execution are generated randomly in the interval [start, end = start +

(execT ime ∗maxNum)], where start is the start time of the composite service exe-

36

0	

200	

400	

600	

800	

1000	

500	 1500	 2500	 3500	 4500	 5500	

In
te
rr
up

(o
n	
Ti
m
e	
(m

s)
	

Learning	Object	Execu(on	Time	(ms)	

5	changes	
10	changes	
15	changes	
20	changes	
25	changes	

Figure 16: The effect of the number of changes per learning object execution

cution, while maxNum is the maximum number of component services (learning ob-

jects) in a composite solution. The type of each change (addition, deletion, or changes755

in qualities), and its location (the task and the learning object affected by the change)

are also selected randomly. Figure 15 shows the delay time after completing the ex-

ecution of each learning object in the composite solution, averaged over a number of

different runs. In each run, 20 changes to be considered are introduced during each

component service execution, while the number of services per task, service execu-760

tion time execT ime, and the number of tasks per abstract plan maxNum, are fixed

at 500, 5 seconds, and 11 tasks, respectively. The results indicate that, even with this

large number of changes, the interruption time achieved is small (i.e. the re-selection

process in response to the changes is almost completed before the current component

service finishes its execution), especially with the increasing execution position (the re-765

selection process requires less time when more component services become executed,

due to the decreased number of nodes to be considered in the re-selection process).

The interruption time is further evaluated in Figures 16 and 17 with respect to

service execution time execT ime. Figure 16 shows the interruption time between

the first and second component service executions, varying the number of changes770

introduced during the first service execution between 5 and 25 (all the changes are

37

0	

50	

100	

150	

200	

250	

300	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	

In
te
rr
up

(o
n	
Ti
m
e	
(m

s)
	

Time	Slot	

LO	exec.	/me	=	500	ms	 LO	exec.	/me	=	400	ms	
LO	exec.	/me	=	300	ms	 LO	exec.	/me	=	200	ms	
LO	exec.	/me	=	100	ms	

Figure 17: The effect of the time slot within which the change occurs

assumed to be interrupting). As expected, the interruption time decreases with the

decreasing number of changes and the increasing service execution time. Figure 17,

on the other hand, shows the effect of varying the time slot within which the change

occurs, on interruption time. For this purpose, the service execution time execT ime is775

divided into 25 equal time intervals, during which an interrupting change is introduced

while executing the first component service. Intuitively (as shown in Figure 17), the

earlier the change occurs during a service execution, the more likely that no interruption

will be caused by the corresponding re-selection.

10. Conclusion and Future Work780

In this paper, we have presented a novel adaptive execution algorithm, capable of

handling execution-time service changes for both repairing and optimisation purposes.

To achieve a light adaptation process, the algorithm reuses the optimal instances gener-

ated during the selection process. For this purpose, it assumes a reverse version of the

search graph, which allows response to changes by applying only a minimal number of785

modifications to the graph, without the need to perform re-selection from scratch. The

adaptation process is triggered as soon as changes occur in the environment, without

interfering with the execution process, unless necessary. This need is identified based

38

on a categorisation of changes, specifying their urgency and importance, and guid-

ing the behaviour of the executing system. Via such an early, parallel-to-execution,790

and light reaction approach, the chances of a successful recovery are maximised and

solution optimality is increased, while reducing execution disruptions as much as pos-

sible, as demonstrated through the evaluation conducted. In particular, the results show

that, even with changes as frequent as 20 changes (to be considered) during a ser-

vice execution, the interruption time remains marginal, and decreases with increasing795

service execution time. Moreover, in the cases where interference with execution is

non-preventable (e.g. when an executed service delivers unanticipated quality values),

the algorithm manages to recover from the situation with minimal interruption.

Despite generally proving to achieve efficiency, the pruning in this paper is largely

dependent on the quality distributions of services and the imposed request, and hence800

may not scale well in some specific situations (e.g., particular quality settings where no

service dominates another due to negatively related attributes). Therefore, it would be

valuable to investigate suitable heuristic-based alternatives for such situations. Also,

the current version of this work does not provide any support for reasoning about the

degree of reliability of service offerings when performing service selection. That is,805

all services are assumed to have the same credibility regarding their promised quality

values. We plan to investigate how trust and reputation models could be adopted in the

context of our work in order to improve the service re-selection process. Moreover,

we have concentrated on a forward recovery mechanism, i.e. only the tasks that are not

yet executed can be re-assigned to other services or replaced with other tasks from an810

alternative plan. We plan to extend our recovery mechanism to allow for the possibility

of rolling back the composite service execution to a previous point in time, applicable

in the cases where the effects of executed services could be undone.

References

[1] G. Canfora, M. Penta, R. Esposito, M. Villani, QoS-Aware replanning of compos-815

ite web services, in: Proc. IEEE Int. Conf. on Web Services, 2005, pp. 121–129.

doi:http://dx.doi.org/10.1109/ICWS.2005.96.

39

[2] T. Yu, K. Lin, Adaptive algorithms for finding replacement services in autonomic

distributed business processes, in: Proc. Int. Symp. on Autonomous Decentralized

Systems, 2005, pp. 427–434.820

[3] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, IEEE

Trans. Softw. Eng. 33 (2007) 369–384.

[4] R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz, Dynamic replan-

ning of web service workflows, in: Proc. IEEE Int. Conf. on Digital Ecosystems

and Technologies, 2007, pp. 211–216.825

[5] K. J. Lin, J. Zhang, Y. Zhai, B. Xu, The design and implementation of service pro-

cess reconfiguration with end-to-end QoS constraints in SOA, Service Oriented

Computing and Applications 4 (3) (2010) 157–168.

[6] F. Wagner, B. Kloepper, F. Ishikawa, S. Honiden, Towards robust service com-

positions in the context of functionally diverse services, in: Proc. Int. Conf. on830

World Wide Web, 2012, pp. 969–978.

[7] J. Hielscher, R. Kazhamiakin, A. Metzger, M. Pistore, A framework for proactive

self-adaptation of service-based applications based on online testing, in: Proc.

Euro. Conf. on Towards a Service-Based Internet, 2008, pp. 122–133.

[8] Y. Dai, L. Yang, B. Zhang, QoS-driven self-healing web service composition835

based on performance prediction, Computer Science and Technology 24 (2009)

250–261.

[9] R. Aschoff, A. Zisman, QoS-driven proactive adaptation of service composition,

in: Proc. Int. Conf. on Service-Oriented Computing, 2011, pp. 421–435.

[10] L. Barakat, S. Miles, M. Luck, Reactive service selection in dynamic service840

environments, in: Proc. Euro. Conf. on Service-Oriented and Cloud Computing,

2012, pp. 17–31.

[11] L. Barakat, S. Miles, I. Poernomo, M. Luck, Efficient multi-granularity service

composition, in: Proc. IEEE Int. Conf. on Web Services, 2011, pp. 227–234.

40

[12] T. Yu, Y. Zhang, K. Lin, Efficient algorithms for web services selection with end-845

to-end QoS constraints, ACM Transactions on the Web 1 (1).

[13] L. Li, J. Wei, T. Huang, High performance approach for Multi-QoS constrained

web services selection, in: Proc. Int. Conf. on Service-Oriented Computing, 2007,

pp. 283–294.

[14] G. Canfora, M. Penta, R. Esposito, M. Villani, An approach for QoS-aware ser-850

vice composition based on genetic algorithms, in: Proc. Genetic and Evolutionary

Computation Conf., 2005, pp. 1069–1075.

[15] S. Stein, T. Payne, N. Jennings, Flexible provisioning of web service workflows,

ACM Transactions on Internet Technology 9 (1) (2009) 1–45.

[16] D. Ivanovic, M. Carro, M. Hermenegildo, Towards data-aware QoS-driven adap-855

tation for service orchestrations, in: Proc. Int. Conf. on Web Services, 2010, pp.

107–114.

[17] M. Colombo, E. Nitto, M. Mauri, SCENE: A service composition execution en-

vironment supporting dynamic changes disciplined through rules, in: Proc. Int.

Conf. on Service-Oriented Computing, 2006, pp. 191–202.860

[18] R. Tolosana-Calasanz, J. A. Banares, O. F. Rana, P. Álvarez, J. Ezpeleta, A. Ho-

heisel, Adaptive exception handling for scientific workflows, Concurrency and

Computation: Practice and Experience 22 (5) (2010) 617–642.

[19] S. Bhiri, O. Perrin, C. Godart, Ensuring required failure atomicity of composite

web services, in: Proc. Int. Conf. on World Wide Web, 2005, pp. 138–147.865

[20] J. Hadad, M. Manouvrier, M. Rukoz, TQoS: Transactional and QoS-aware se-

lection algorithm for automatic web service composition, IEEE Transactions on

Services Computing 3 (1) (2010) 73–85.

[21] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-

aware middleware for web services composition, IEEE Trans. Softw. Eng. 30 (5)870

(2004) 311–327.

41

[22] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, B. Srivastava, Adaptation in web

service composition and execution, in: Proc. IEEE Int. Conf. on Web Services,

2006, pp. 549–557.

[23] L. Yang, Y. Dai, B. Zhang, Performance prediction based EX-QoS driven ap-875

proach for adaptive service composition, Information Science and Engineering

25 (2) (2009) 345–362.

[24] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, K. Pohl, Usage-based

online testing for proactive adaptation of service-based applications, in: Proc.

IEEE 35th Annual Conf. on Computer Software and Applications, 2011, pp. 582–880

587.

[25] A. Zisman, J. Dooley, G. Spanoudakis, Proactive runtime service discovery, in:

Proc. IEEE Int. Conf. on Services Computing, 2008, pp. 237–245.

[26] R. R. Aschoff, A. Zisman, Proactive adaptation of service composition, in: Proc.

ICSE Workshop on Software Engineering for Adaptive and Self-Managing Sys-885

tems, 2012, pp. 1–10.

[27] R. Smith, R. Davis, Frameworks for cooperation in distributed problem solving,

IEEE Trans. Syst., Man, Cybern. 11 (1981) 61–70.

[28] J. Cardoso, J. Miller, A. Sheth, J. Arnold, Quality of service for workflows and

web service processes, Web Semantics 1 (2004) 281–308.890

[29] X. Yuan, X.Liu, Heuristic algorithms for multi-constrained quality of service

routing, IEEE/ACM Trans. Netw. 10 (2) (2002) 244–256.

[30] L. Barakat, Efficient adaptive multi-granularity service composition, Ph.D. thesis,

King’s College London (2013).

[31] R. Farrell, S. Liburd, J. Thomas, Dynamic assembly of learning objects, in: Proc.895

Int. Conf. on World Wide Web, 2004, pp. 162–169.

42

Lina Barakat received the PhD degree in Computer Science from King’s College London in

2013, where she now works as a research associate in the Agents and Intelligent Systems group

of the Department of Informatics. Her research focuses on the issues and challenges related to

QoS-aware service modelling and composition in large-scale and open service- based settings.

Simon Miles is a Reader in Computer Science and head of the Agents and Intelligent Systems

group at King’s College London. He received his PhD in Computer Science from University of

Warwick, has twice been an organising committee member for the Autonomous Agents and

Multi-Agent Systems conference series, co-organised the Provenance Challenge international

series, and was a member of a W3C working group which published a standard for modelling and

exchanging provenance data, PROV. He is investigator on a number of research projects

including DIET4Elders and Justified Assessments of Service Provider Reputation, and has over

130 publications.

Michael Luck is a Professor of Computer Science at King’s College London, where he is also

Dean of the Faculty of Natural and Mathematical Sciences. He received his PhD from University

College London in 1993, and has over 200 publications, including 12 books. He was previously

Coordinator of AgentLink II, the European network for Agent-Based Computing, lead author of

the AgentLink Roadmaps, and a member of the Board of the International Foundation for

Autonomous Agents and Multiagent Systems (2008-2014). He is a Fellow of the British

Computer Society.

*Biographies (Text)

Lina Barakat
Click here to download high resolution image

Simon Miles
Click here to download high resolution image

Michael Luck
Click here to download high resolution image

• HIGHLIGHTS

• An early, efficient, and optimality-retaining adaptive service
composition behavior is proposed.

• In situations where it is not possible to prevent undesired behaviour prior
to its execution, our approach allows efficient recovery (with almost no
interruption), yet effectively reasoning about the best forward
replacement available.

• Whenever an optimisation opportunity is identified (e.g. due to the
availability of new, better services), adaptation is triggered to improve
the current solution, as opposed to existing approaches where the
adaptation is mainly corrective.

• Reaction to changes is performed as soon as these occur in the
environment. Hence, problems encountered in services scheduled for
future execution are dealt with as early as possible, before reaching
erroneous execution points where recovery opportunities are of lower
quality or not possible.

• Adaptation transparency is achieved through: a parallel-to-execution
reaction, triggering the adaptation process in parallel with the current
component’s execution; a novel light reselection algorithm, applying
efficient repair rules to an already existing search graph, thus facilitating
a fast adaptation; and a novel prioritisation of changes, assessing the
importance and urgency of each change encountered, and guiding the
behavior of the executing system correspondingly.

