
Adaptive and Context-Aware Service Composition for IoT-based Smart Cities

A. Urbietaa,∗, A. González-Beltránb, S. Ben Mokhtarc, M. Anwar Hossaind, L. Caprae

aIK4-Ikerlan Technology Research Centre, Information and Communication Technologies Area, Po J.M.Arizmendiarrieta 2, 20500
Arrasate-Mondragón, Spain

b University of Oxford, Oxford e-Research Centre, 7 Keble Road, Oxford, OX1 3QG, United Kingdom
cINSA de Lyon, LIRIS, DRIM Research Group, 20 Avenue Albert Einstein, 69621 Villeurbanne, France

d King Saud University, College of Computer and Information Sciences, Department of Software Engineering, Riyadh 11543, KSA
eUniversity College London, Department of Computer Science, Gower Street, London WC1E 6BT, United Kingdom

Abstract

Smart Cities are advancing toward an instrumented, integrated, and intelligent living space, where Internet of Things
(IoT), mobile technologies and next generation networks are expected to play a key role. In smart cities, numerous
IoT-based services are likely to be available and a key challenge is to allow mobile users perform their daily tasks
dynamically, by integrating the services available in their vicinity. Semantic Service Oriented Architectures (SSOA)
abstract the environment’s services and their functionalities as Semantic Web Services (SWS). However, existing
service composition approaches based on SSOA do not support dynamic reasoning on user tasks and service
behaviours to deal with the heterogeneity of IoT domains. In this paper, we present an adaptive service composition
framework that supports such dynamic reasoning. The framework is based on wEASEL, an abstract service model
representing services and user tasks in terms of their signature, specification (i.e., context-aware pre-conditions,
post-conditions and effects) and conversation (i.e., behaviour with related data-flow and context-flow constraints).
To evaluate our composition framework, we develop a novel OWLS-TC4-based testbed by combining simple and
composite services. The evaluation shows that our wEASEL-based system performs more accurate composition and
allows end-users to discover and investigate more composition opportunities than other approaches.

Keywords: Internet of Things; Smart Environments; Smart Cities; Smart Services; Real-Time and Semantic Web
Services; System Design; and Service Modeling

1. Introduction

The smart cities [1, 2] are gradually advancing to-
ward reality, thanks to the advancement of IoT (inter-
connected RFID, GPS, IR, camera, laser scanners, etc.),
mobile technologies and next generation networks (e.g.
emerging 5G). In smart cities, various IoT devices and
associated services for location, intelligent recognition,
tracking, monitoring and management are becoming
available for the citizens to consume. One of the chal-
lenges of these kind of environments is to allow mobile
users to seamlessly consume and often combine func-
tionalities offered by software and hardware resources

∗Corresponding author
Email addresses: aurbieta@ikerlan.es (A. Urbieta),

alejandra.gonzalezbeltran@oerc.ox.ac.uk (A.
González-Beltrán), sonia.ben-mokhtar@liris.cnrs.fr (S. Ben
Mokhtar), mahossain@ksu.edu.sa (M. Anwar Hossain),
l.capra@cs.ucl.ac.uk (L. Capra)

anywhere and at anytime. In the following, we provide
a scenario to better exemplify the context of services,
combination of services, and service consumption with
respect to a smart city resident.

Carla is taking a long haul flight to Australia, where
she has to attend an important seminar. For such a
trip, Carla nowadays carries a single smart phone
called wEASEL-Com, which is capable of connecting
to many different devices and services and coordinate
them on a centralized way. Today, exceptionally,
Carla arrives early at the airport and when she enters
the waiting lounge, it is almost empty. She decides
to watch a movie while waiting for the boarding
announcement and have a massage in a massage chair.
Her wEASEL-Com device uses the wEASEL-Film
application, one of the various embedded applications
on Carla’s tiny smart phone, which is able to discover
video services for browsing the content of available

Preprint submitted to Future Generation Computer Systems December 16, 2016



video servers. Carla’s device is also able to discover
services that can select the most appropriate display
devices in her surrounding (e.g., the one having the
largest display). Furthermore, wEASEL-Film is able
to adapt the surrounding environment according to
Carla’s preferences (e.g., room lighting, film sound
level). Hence, wEASEL-Film starts displaying the film
selected by Carla (based on a recommended list) on
a large LED display that was disseminating the news.
Half an hour later, wEASEL-Com informs Carla that
she has to go for boarding. After boarding on the plane
and paying attention to the security demonstration,
Carla is asked by wEASEL-Film whether she would
like to continue watching the film on the personal LED
panel mounted on the back of the seat in front of her.

Engineering a software system as above involves
dealing with challenges peculiar to IoT-based smart en-
vironments and cities, namely heterogeneity and dy-
namics. Indeed, heterogeneous technologies and lan-
guages are used by hardware and software resources
and the dynamics stem from users’ mobility, which im-
plies that the resources and functionalities available may
change overtime. In order to develop pervasive software
and hardware systems for smart city residents that seam-
lessly integrate the environment’s heterogeneous func-
tionalities and that adapt to their dynamics, it is required
to model each resource as an autonomous component,
the environment’s functionalities as functions of time
and to reason about their context.

Resources are modelled as services. A service is an
autonomous and loosely coupled unit of functionality.
Service Oriented Architecture (SOA) is an architectural
style that offers a set of design principles and abstrac-
tions for the integration of independent services. The
SOA style can be implemented using Web Service (WS)
standards and specifications, or other service-based
technologies. Furthermore, Semantic Service Oriented
Architecture (SSOA) or Ontology-Enabled Service Ori-
ented Architecture (OSOA) combines WS standards
with the expressive power and the formal ground of Se-
mantic Web (SW) technologies, such as the Web Ontol-
ogy Language (OWL1). An ontology is a formal repre-
sentation of the concepts and relationships within a do-
main. Thus, SSOA allows tackling the semantic hetero-
geneity of service descriptions by relying on established
ontology specifications.

In the context of SSOA, a number of semantic service
description and composition languages have been pro-

1OWL: http://www.w3.org/2004/OWL/

posed (e.g. OWL-S2, WSMO3, SWSF4, SAWSDL5).
Most of these languages allow to specify services as a
set of provided capabilities, which are the set of func-
tionalities provided by the services of the smart en-
vironment or required for the realisation of the user
tasks6. A capability has a signature (i.e., the set of in-
puts consumed and outputs produced by the capability)
and a behavioural specification (required pre- and post-
conditions, and generated effects). Pre-conditions are
assertions that must be satisfied before a capability can
be invoked. An effect refers to the result of invoking
a capability, where post-conditions are the conditions
that determine which effect is achieved. Simple capabil-
ities identify a single functionality. Service capabilities
can also be orchestrated in a conversation, which deter-
mines the order in which the capabilities are executed,
to provide composite capabilities.

However, current composition approaches that can be
applied to smart city environment have a number of lim-
itations:

1. For matching service conversations, most of the
existing solutions assume that either the service re-
quest or the service advertisement do not have an
associated conversation, thus leading to simple ca-
pability aggregation mechanism.

2. Description-based service composition algorithms
are mainly based on just inputs and outputs, with-
out considering pre-conditions, post-conditions
and effects. Consequently, it is not possible to
deploy context-aware services. Additionally, they
use conversation-driven service selection, where
the pervasive services are described by means of
simple-capability services.

In this paper, we contribute to present a composi-
tion framework based on wEASEL (which stands for
contExt Aware web Service dEscription Language), an
abstract service model for pervasive software systems
that we introduced in [3]. wEASEL supports the spec-
ification of services in terms of their semantic signa-
ture, context-aware behavioural specification and con-
versation. As part of our wEASEL-based framework, in

2Semantic Markup for Web Services (OWL-S): http://www.w3.
org/Submission/OWL-S/

3Web Service Modeling Ontology (WSMO): http://www.w3.
org/Submission/WSMO/

4Semantic Web Services Framework (SWSF): http://www.w3.
org/Submission/SWSF-SWSO/

5Semantic Annotations for WSDL (SAWSDL): http://www.

w3.org/2002/ws/sawsdl/
6Web Service Architecture: http://www.w3.org/TR/

ws-arch/

2

http://www.w3.org/2004/OWL/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/SWSF-SWSO/
http://www.w3.org/Submission/SWSF-SWSO/
http://www.w3.org/2002/ws/sawsdl/
http://www.w3.org/2002/ws/sawsdl/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/


[3] we developed a set of signature and context-aware
specification-based matching algorithms. However,
while signature and context-aware specification match-
ing holds between two services, it still demands a way
to match a required service conversation by the integra-
tion of a set of provided service’s conversations. There-
fore, as a natural subsequent step within the wEASEL
framework, here we introduce a conversation-based ser-
vice composition framework that features three levels of
composition flexibility:

1. Flexible conversation integration, where frag-
ments of the provided services’ conversations are
integrated towards the realisation of the user task
conversation.

2. Flexible conversation interleaving, which supports
the interleaving of the provided services’ conversa-
tions by fulfilling the data and control constraints
of each individual service.

3. Adaptive task conversation reshuffling allows the
adaptation of the requested service conversation
by reshuffling capabilities. If the capabilities do
not have any data or context dependencies among
them, reshuffling can occur without restrictions.
On the other hand, if there are data or context
dependencies among the capabilities, these de-
pendencies constitute constraints to the adaptation
process. The adaptive composition algorithm in-
creases the chance of finding service compositions.

We evaluate our composition framework by devel-
oping a testbed of simple and composite services. To
the best of our knowledge, this is the first available
testbed including composite services that has been cre-
ated based on OWLS-TC4. When evaluating the trade-
off between performance and correctness, we select the
most appropriate variant of the composition framework
to be applied in smart environments.

The remainder of this paper is structured as follows:
Section 2 presents a categorisation of related research
efforts for the dynamic realisation of user tasks in smart
environments. Then, we describe our service composi-
tion framework in Section 3, before evaluating our over-
all framework both theoretically and practically in Sec-
tion 4. Finally, our concluding remarks and future work
are discussed in Section 5.

2. Related Work

The description-based service composition solutions
can be classified into two main categories, depending on

whether they are based on the service interfaces or on
the service conversations. Interface-based service com-
position assumes that services are described with a list
of independent capabilities, without associated conver-
sations. On the other hand, conversation-based service
composition assumes that services have associated con-
versations. In both categories, user tasks may be spec-
ified with or without an associated conversation. In the
following sections, we describe both categories.

2.1. Interface-Based Service Composition
Interface-based service composition (see the second

column of Figure 1) is implemented as service chaining
algorithms or conversation-driven service selection al-
gorithms, according to whether the task is specified with
or without an associated conversation, respectively.

In service chaining (when both networked services
and the target user task have no conversations) [4, 5], in-
cluding forward and backward chaining, individual ser-
vice capabilities are combined with each other based on
the conformance of their signatures. The objective is
to obtain a composite service that conforms to the sig-
nature specification of the user task. Forward chaining
starts by selecting services that match the task’s pro-
vided inputs (and pre-conditions) and chains services
forward based on their signature compatibility until all
the task’s required outputs (and effects) are generated.
On the other hand, backward chaining starts by se-
lecting services that generate the task’s required out-
puts (and effects) and chains services backward until
all the inputs (and pre-conditions) of the selected ser-
vices can be satisfied by the task’s provided inputs (and
pre-conditions). While chaining allows to combine ser-
vices without any previous knowledge about how ser-
vices should be chained, its complexity is high as all
the possible combinations need to be investigated. Fur-
thermore, as the chaining process is ”blind” (i.e., capa-
bilities are chained only on the basis of the compatibil-
ity of their signature and/or specification), unexpected
capabilities may be employed, which generates uncer-
tainty regarding how user’s information is manipulated.
Some approaches improve this by providing task de-
composition rules in order to orient the service chain-
ing process [6]. Most approaches use a single type of
chaining, however Yu and Reiff-Marganiec [7] combine
both chaining types, first using forward chaining to de-
termine which are the candidate services for each step
and then backward chaining for each step to select the
better service that fulfils the defined context criteria.

Conversation-driven service selection assumes user
tasks are described with an associated conversation and
services described as independent capabilities. This

3



model has been often employed for dynamic service
composition in smart environments [8, 9, 10, 11, 12,
13]. Provided service capabilities are matched against
capabilities required in the target user task. The var-
ious approaches vary according to the expressiveness
of the service description language and its associated
matching algorithm. As this approach follows a user
task conversation specification, the resulting compo-
sition meets the user’s requirements without unobtru-
sively using user provided information through the em-
ployment of unexpected capabilities. However, this
model does not consider the behaviour of services when
integrating them, which does not guarantee their correct
composition.

2.2. Conversation-Based Service Composition

Conversation-based service composition assumes
that services to be combined have a complex behaviour
(see the third column of Figure 1). It is divided in
three different cases, namely: goal-driven conversa-
tion selection, goal-driven conversation integration and
conversation-driven conversation integration. On the
former two the user task is specified without an asso-
ciated conversation and on the latter one both services
and tasks are specified with associated conversations).

Goal-driven conversation selection allows the selec-
tion of a service conversation that satisfies a user task
specified as a single required capability [14]. A pro-
cess query language, i.e. PQL, is employed to find ser-
vice conversations that contain a fragment that satisfies
the user task. Thus, it is implicitly assumed that the
user’s request can be performed by a single service as
opposed to integrating multiple service conversations.
More recently, Kiefer and Berstein [15] proposed to use
SPARQL to represent the goal, using similarity measure
techniques combined with machine learning techniques.

On the other hand, goal-driven conversation integra-
tion [16] aims at integrating a set of service conversa-
tions to realise a user task described as a single required
capability. The conversations of a set of pre-selected
services are integrated so that the resulting composi-
tion satisfies some properties (e.g. deadlock freedom)
and conforms to the target user task by consuming all
its provided inputs and generating all its required out-
puts. The approach by Sirbu et al. [17, 18] proposes
to use pervasive process fragments, which represent a
service-based tool that allows to model incomplete and
contextual knowledge. In this way, encoding process
knowledge, domain knowledge and goals into an Ar-
tificial Intelligence (AI) planning problem, the system
is able to automatically compose such fragments into

complete processes, according to a specific context and
specific goals.

As in chaining algorithms, the last two composition
models generate a degree of uncertainty regarding the
way networked services are combined. Indeed, verify-
ing that the resulting service composition is deadlock-
free does not guarantee that the user’s information has
not been transformed using unexpected and inappropri-
ate capabilities (e.g., capabilities that a user would not
have employed themselves to achieve their objective)
just in order to meet the target user task’s input/output
specification.

Figure 1: Composition Models

The final composition model, i.e. conversation-
driven conversation integration, assumes a complex be-
haviour for both user tasks and services. Conversations
of networked services are integrated towards the reali-
sation of the user task’s conversation. This composition
model is the most comprehensive as it supports maxi-
mum expressiveness for task and service functional de-
scriptions. The benefits of this composition model are:
1. The user task’s behaviour is used as a basis for service
composition, which ensures that the user requirements
are satisfied by construction. 2. A valid consumption of
the composed services is ensured as their conversations
are fulfilled.

Further, as shown in Figure 2, conversation-driven
service integration allows reconstructing the user task
conversation using different composition schemes. In

4



this figure, a user task, depicted in the middle of the fig-
ure, is composed of four different smart environments
using four different scenarios. In the first scenario, the
task is realised through the integration of individual ca-
pabilities of pervasive services. The second scenario de-
scribes the case where a single service that conforms to
the user task conversation is selected. The third sce-
nario represents the case where the user task is realised
through the composition of fragments from two service
conversations. The last composition scheme is the most
flexible where the realisation of the user task is per-
formed through the interleaving of two service conver-
sations.

1

6

2
4

5

3

1

6

2

4

5

3

1

6

2 4

53

1

6

2 4

53

1

6

2 5

4

3

3) Integration of Service 
Conversations

4) Interleaving of 
Service Conversations

1) Composition of 
Individual Capabilities

2) Using a Single 
Service

User Task

Figure 2: Flexibility of the Conversation-Driven Conversation Inte-
gration

Conversation-driven service integration is first inves-
tigated in [19], where service conversations are rep-
resented as finite-state automata. In this approach,
the authors propose an exponential-time algorithm that
searches for a possible service composition by reduc-
ing this problem to the satisfiability of a Deterministic
Propositional Dynamic Logic (DPDL) formula. How-
ever, this solution considers neither service semantic
specifications nor service and task non-functional prop-
erties. Furthermore, this algorithm employs costly for-
mal verification algorithms, the efficiency of which is
not assessed for resource-constrained devices. Ben
Mokhtar et al. [20] also investigate this model in the
COnversation-based Service COmposition in PervAsive
Computing Environments with QoS Support (COCOA)
system: the service composition is carried out by means
of automata simulation based on IO-based (Input- and
Output-based) semantic service descriptions, where the
system offers a high grade of scalability for resource
constrained devices. The approach proposed by Be-
natallah et al. [21] also uses automata simulation to
find compatibility and replaceability properties between
pairs of compositions, however this approach does not
use semantics nor is oriented to integrate several com-

positions into one. A similar work to the one proposed
by Ben Mokhtar et al. is defined by Hashemian and
Mavaddat [22], where a graph-based approach is used
to compose OWL-S process models, modeling both ser-
vices and the client query as interface automata. Finally,
Mancioppi et al. [23] propose an approach that uses De-
terministic Finite Automata (DFA) enriched with time
conditions on the transitions, which that in contrast to
the approach of Benatallah et al. is a multi-party ap-
proach. However this approach does not support seman-
tics nor contextual information.

2.3. Discussion

Considering the previous classification of service
composition approaches and the survey of the main ser-
vice composition approaches for smart environments
carried out in a previous work [24] and extended by
Stavropoulos et al. in [25], we conclude that:

• Most of the approaches are purely IO-based with-
out considering contextual information (using PEs:
Preconditions and Effects). Thus, it is not possi-
ble to deploy context-aware service composition:
using just IOs the problem of composition is re-
duced to a problem of IOs chaining and not a prob-
lem that involves contextual changes that can be
chained to create complex behaviours, as it is re-
quired in smart environments.

• Most of the approaches are based on conversation-
driven service selection, where the services are
described by means of simple-capability services.
We consider that both, user task and pervasive ser-
vices have to be described by means of conversa-
tions. This allows to fulfil the requested contex-
tual requirements taking into account global and
local behaviours of each of the capabilities of the
conversation. In this way, the composition will be
closer to what the user task needs. Therefore, the
approach that better fits the smart environments re-
quirements is the conversation-driven conversation
integration approach.

Hence, the quest is still open for a solution to service
composition that supports the integration of service con-
versations to realise the conversation of a user task. This
functionality should support the semantic specification
(PEs) and semantic signature (IOs) of service and task
capabilities, and provide the means to adapt its flexibil-
ity according to the required efficiency with respect to
the resources of thin devices.

5



3. Dynamic Service Composition

The dynamic realisation of user tasks may involve
many networked services from the environment. The
service composition process involves selection and co-
ordination (not the composition execution process, i.e.,
the user task realization execution derived from the
composition process is out of the scope of the present
manuscript). Given a user task description, the service
composition client hosted on the user’s mobile device
discovers the available services and filters out those that
will not be useful for the target user task realisation
(Section 3.1). Then, the selected services are coordi-
nated to find possible compositions of the user task.
Service coordination can be done using three different
flexibility levels (Section 3.2) that differ in the overhead
they incur in users’ mobile devices.

3.1. Service Selection
The selection process chooses services whose capa-

bilities conform to the user task’s capabilities, in terms
of signature and specification. More formally, accord-
ing to our wEASEL model [3], consider a user task T
described as a composite capability with an associated
automaton AT =< QT ,ΣT , δT , st0T , FT > where QT is
a set of states, including an initial state st0T and FT a
set of final states, δT is the transition function and ΣT

is the set of symbols, which contains the capabilities
that constitute the task’s conversation. These capabili-
ties, called required capabilities, are assumed to be sim-
ple (not composite). Figure 3 shows the conversation
of the wEASEL-Movie User Task, inspired from the
scenario introduced in Section 17. The data-flow con-
straints express the data dependency between two capa-
bilities where an output produced by a capability is used
as one of the inputs consumed by another capability.

Data-flow constraint

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Display MM
Resource

Get MM 
Resource

Search 
Display

Search MM 
Resource

Light 
Controller

Figure 3: User Task Conversation

Figure 4 depicts the conversations of the pervasive
services of the environment, where the context-flow

7For readability, the transitions in the conversations are labelled
with capability names.

constraints express the dependency between two capa-
bilities where one of the effects produced by the execu-
tion of a capability validates one of the pre-conditions
or post- conditions necessary to execute another capa-
bility.

Get Audio
Resource

Get Audio 
ResourceSearch Audio 

Resource

Smart Environment 
Controller. Light 

Controller

LED Display. 
Display MM 
Resource

Get Video
Resource

Get Video 
Resource

Search Video 
Resource Display MM 

Resource

Local Display 
MM Resource

Search 
Display

Video Server LED Display

SmartphoneCarla Music Server

Smart Environment Controller

Light Controller

Lamp

LED Display. 
Display MM 
Resource

Data-flow constraint

Context-flow constraint

Figure 4: Pervasive Services’ Conversations

The service selection returns a list of services to the
client application, where each service offers at least one
capability semantically conforming to a capability of
the user task. More formally, the service selection pro-
cess can be modelled with the following function:

S erviceS election : T −→2S

T ∈ T 7−→{s1, ..., sI}
(1)

such that:

∀si ∈ {s1, ..., sI} : ∃cT ∈ ΣT ,∃csi ∈ Σsi :
S igMatch(S igsi , S igT )∧
S peMatch(S pesi , S peT )

(2)

where T is a set of tasks, S is a set of pervasive
services defined as s1, ..., sI , and the pair of relations
SigMatch(S ig1, S ig2) (signature-based matching), Spec-
Match(S pe1, S pe2) (specification-based matching) are
defined in [3], where a thorough description of the dif-
ferent matching types is given.

Considering the user task from Figure 3, the Service-
Selection(T ) function selects all the services in Figure 4,
as they offer at least one capability semantically con-
forming to one of the user task required capabilities
(note that if there are several semantically equivalent

6



services in the environment, all of them are selected as
candidates). Table 1 shows those services that have been
selected during the service selection process.

Table 1: Matching Between Capabilities of the wEASEL-Movie User
Task and Selected Pervasive Services

Task Capability Service Capability Service
Search MM Resource Search Video Re-

source
Video Server

Search Audio Re-
source

Carla Music Server

Search Display Search Display Smartphone
Get MM Resource Get Video Resource Video Server

Get Audio Resource Carla Music Server
Local Display MM
Resource

Local Display MM
Resource

Smartphone

Display MM Re-
source

Display MM Re-
source

LED Display

Light Controller Light Controller Smart Environment
Controller

Light Controller Lamp

3.2. Service Coordination
Service coordination is responsible for generating a

set of concrete realisations of the user task. Each of
these realisations refers to pervasive services’ capabili-
ties. We present three composition flexibility levels for
the dynamic realisation of user tasks:

• Integrating service conversations in Section 3.2.3:
the selected services are integrated without the sup-
port of conversation interleaving.

• Conversation interleaving in Section 3.2.4: allows
integrating service conversations by enabling the
interleaving of their conversations.

• Adaptive user tasks in Section 3.2.5: adjusts the
user task’s conversation according to its data-flow
and context-flow specification to further increase
the probability of finding a composition. Besides,
this solution can be combined with the previous so-
lutions to obtain a higher number of user task real-
isations.

By distinguishing between these three alternatives,
we can provide the user with the most appropriate so-
lution with respect to the available computing resources
available on his/her device. In a resource rich environ-
ment, the most flexible solution, which increases the
probability of finding a user task realisation, would be
employed. However, a less flexible solution would be
used in a resource constrained environment. Next, we
formally define the problem of task realisation, and then
detail each of the three flexibility levels.

3.2.1. Problem Definition
Let AT be the automaton describing the conversa-

tion of the user task T . The set of candidate services
for the composition of T are given by the ServiceSe-
lection(T ) function (Equation 1). The service coordina-
tion functionality aims at finding a ranked list of con-
crete realisations of the user task: T1, ...,TJ such that
∀AT j =< QT j ,ΣT j , δT j , st0T j , FT j > associated with T j:

− QT j = QT

− ΣT j ⊂ ∪Σsi ∀si ∈ S erviceS election(T )
− δT j = δT

− FT j = FT

−ConvDoM(AT , AT j ) < ConvDoM(AT , AT j+1 )

(3)

where si represents a concrete pervasive service of the
set S = s1, ..., sI . Furthermore, the concrete realisations
of the user task are ranked according to their degree of
matching with the initial task using the ConvDoM(A1, A2)
function defined in the following section.

3.2.2. Conversation Matching of Service Capabilities
The matching of service conversations is done using

automata compatibility checking algorithms. Specifi-
cally, we define the relation ConvMatch(A1, A2) to com-
pare two service conversations specified using finite
state automata. Let A1 =< Q1,Σ1, δ1, st01, F1 >,
A2 =< Q2,Σ2, δ2, st02, F2 > be two automata, Con-
vMatch(A1, A2) is defined as:

∃ R on Q1 × Q2 such that :
∀ < st1, st2 >∈ R,∀c1 ∈ Σ1 :
δ1(st1, c1) = st′1 ⇒ ∃c2 ∈ Σ2 :
S igMatch(S ig1, S ig2)∧
S peMatch(S pe1, S pe2)∧
δ2(st2, c2) = st′2∧ < st′1, st′2 >∈ R

(4)

where R is a binary relation defined over the set Q1×Q2.
R is called automata simulation, and it is said that A2
simulates A1 or that A1 is simulated by A2.

The ConvDoM(A1, A2) function allows the evaluation
of the degree of match between two conforming conver-
sations. It is defined as the sum of the degree of match of
each pair of capabilities that match from the first and the
second conversation divided by the number of required
capabilities. More formally, if we consider a required
conversation A1 and a provided conversation A2 associ-
ated with the sets of capabilities ΣA1 and ΣA2 are ordered

7



in the form: ΣA1 = {c1A1
, ..., cPA1

}, ΣA2 = {c1A2
, ..., cPA2

}

such that ∀p ∈ {1, ..., P}: SigMatch(S igpA1
, S igpA2

) and
SpeMatch(S pepA1

, S pepA2
). The ConvDoM(A1, A2) func-

tion is defined as:

∑P
p=1 CapabilityDoM(cpA1

, cpA2
)

P
(5)

where P=
∣∣∣ΣA1

∣∣∣ is defined as the number
of required capabilities of automaton A1,∏p=P

p=1 CapabilityDoM(cpA1 , cpA2 ) > 0 and Capa-
bilityDoM(A1, A2) (which is defined in [3]) is the
function that returns the degree of match between two
service capabilities c1 and c2.

3.2.3. Integrating Service Conversations
When integrating service conversations, we first build

an automaton that combines the automata of the selected
services. The resulting decidable automaton is called
raw automaton and denoted as RAIG. RAIG contains a
new initial state and empty transitions (ε) connecting it
with the initial states of all selected automata. RAIG also
contains empty transitions connecting the final states of
each automaton with the new initial state. This allows,
if needed, the integration of the same service multiple
times in the composition.

More formally, consider a set of services s1, ..., sK

selected by the ServiceSelection(T ) and their associated
service conversations A1, ..., AK , where Ak =< Qk,
Σk, δk, st0k, Fk >. Thus, the raw automaton RAIG =<
QRA,ΣRA, δRA, st0RA, FRA > is generated by the function
RawAutomatonIG(s1, ..., sK) defined as:

− QRA = ∪K
k=1Qk ∪ st0RA

− ΣRA = ∪K
k=1Σk ∪ {ε}

− δRA : QRA × ΣRA → QRA

st, c 7→ δRA(st, c)

− FRA = ∪K
k=1Fk

(6)

such that:

δRA(st, c) =


δk(st, c) st ∈ Qk ∧ c ∈ Σk

st0k st = st0RA ∧ c = ε
st0RA st ∈ FRA ∧ c = ε

(7)

Figure 5 presents the RAIG built from the services se-
lected according to the user task of Figure 3. Based
on RAIG, service coordination uses the relations Con-
vMatch(A1, A2) defined in Section 3.2.2 to find user task

realisations. Specifically, there exists a realisation of
the user task if RAIG simulates the task automaton AT .
More formally, this can be represented by the function
ConvInteg(T, s1, ..., sK) as follows:

ConvInteg : T × SK −→2T

< T, s1, ..., sK >7−→{T1, ...,TJ}
(8)

such that:

RAIG = RawAutomatonIG(s1, ..., sK)∧
∀T j ∈ T , j = 1, ..., J ∃AT j :
S ubAutomaton(RAIG, AT j ),
ConvMatch(AT , AT j )

(9)

Get Audio
Resource

Get Audio 
ResourceSearch Audio 

Resource

Video Server. 
Get Video
Resource

Video Server. 
Search Video 

Resource

LED Display. Display 
MM Resource

Smartphone. 
Local Display 
MM Resource

Smartphone. 
Search Display

Lamp. Light 
Controller LED Display. 

Display MM 
Resource

Smart Environment 
Controller. Light 

Controller

LED Display. 
Display MM 
Resource

Video Server. 
Get Video
Resource

Figure 5: Raw automaton for Conversation Integration

where SubAutomaton(A1, A2) is a function that defines
if an automaton A2 is a subautomaton of an automa-
ton A1, which is defined as follows. Let A1 be de-
scribed as A1 =< Q1,Σ1, δ1, st01, F1 > and A2 as A2 =<
Q2,Σ2, δ2, st02, F2 >:

− Q2 ⊆ Q1

− Σ2 ⊆ Σ1

− δ2 : Q2 × Σ2 → Q2

st, c 7→ δ2(st, c) = δ1(st, c)
− ∀st ∈ Q2,∀c ∈ Σ2 : δ2(st, c) = ∅ ⇒ st ∈ F2

− st02 = st01

− F2 ⊂ F1

(10)

After generating RAIG, the next step is to define the
whole set of user task realisations (Figure 6), i.e., the
set of automata that simulates AT

8 based on the user

8When calculating the set of automata that simulates AT it is pos-
sible to obtain realisations that are exact matching to the user task but
also realisations that are compatible to the required one.

8



task (Figure 3) and the pervasive services (Figure 4).
As we can see in Figure 6, there are two user task reali-
sations, which means that there are two service compo-
sitions that are semantically compatible matching to the
user task.

Smartphone.Local 
Display MM 
Resource

Smartphone
.Search 
Display

Carla Music 
Server. Search 
Audio Resource

Video Server . Get 
Video Resource

Carla Music 
Server. Search 
Audio Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Carla Music 
Server. Get Audio 

Resource

Carla Music 
Server. Get Audio 

Resource

Smartphone
.Search 
Display

LED Display. 
Display MM
Resource

Lamp. Light 
Controller

LED Display. 
Display MM
Resource

Lamp. Light 
Controller

Carla Music 
Server. Get Audio 

Resource

Figure 6: Conversation Integration User Task Realisations

3.2.4. Conversation Interleaving
In this section, we describe the second solution for

dynamic user task realisation that supports interleav-
ing of pervasive service conversations. Again, we build
a raw automaton RAIL from the set of selected ser-
vices. However, this decidable automaton differs from
that of the integration solution. RAIL represents the
asynchronous free product of the selected services au-
tomata. More formally, let s1, ..., sK be the set of se-
lected services and A1, ..., AK their associated conver-
sations, where Ak =< Qk,Σk, δk, st0k, Fk >. RAIL =<
QRA,ΣRA, δRA, st0RA, FRA > is defined as:

− QRA = Q1 × ... × QK

− ΣRA = ∪K
k=1Σi ∪ {ε}

− δRA : QRA × ΣRA → QRA

(< st1, ..., stL >, c) 7→ δRA(< st1, ..., stL >, c)
− st0RA =< st01, ..., st0L >

− FRA = {< st1, ..., stL >∈ QRA |

st1 ∈ F1 ∧ ... ∧ stL ∈ FL}

(11)

such that:

δRA(< st1, ..., stL >, c) =< st′1, ..., st′L >
i f ∃ l1, l2 ∈ {1...L} : st′l2 = stl2
∀l2 , l1 ∧ δl1 stl1 , c = st′l1

(12)

The previous definition allows to create the asyn-
chronous free product automaton of a set of conver-
sations. But it only supports the full execution of all
the conversations and it does not allow the full execu-
tion of a subset of all them. Thus, in order to sup-
port full execution of a subset, it is necessary to re-
define which are the final states of the asynchronous
free product automaton by means of an adaptation in
the FRA clause, replacing its definition by the next one:
FRA = {< st1, ..., stL >∈ QRA | ∀stl = Fl ∨ st0l}.

Based on this raw automaton, service coordination
uses the relation ConvMatch(A1, A2) defined in Section
3.2.2 to find user task realisations. Specifically, there
exists a realisation of the user task if the raw automaton
RAIL simulates the user task automaton AT . More for-
mally, this can be represented by the function ConvIn-
ter(T, s1, ..., sK) as follows:

ConvInter : T × SK −→2T

< T, s1, ..., sK >7−→{T1, ...,TJ}
(13)

such that:

RAIL = RawAutomatonIL(s1, ..., sK)∧
∀T j ∈ T , j = 1, ..., J ∃AT j :
S ubAutomaton(RAIL, AT j ),
ConvMatch(AT , AT j )

(14)

Figure 7 presents a simplified version (using only a
subset of the selected services) of the raw automaton
built from the services of the environment that have
been previously selected according to the user task of
Figure 3. The Figure 7 only shows the asynchronous
free product automata of the S mart Environment
Controller, Lamp and two LED Display pervasive ser-
vices.

Figure 6 shows the concrete realisations of the user
task of Figure 3 for conversation integration and Fig-
ure 8 shows the concrete realisations of the user task of
Figure 3 for conversation interleaving. While service
conversation manages to find only two task realisations,
service interleaving offers the possibility to the mobile
user of choosing among four realisations (i.e., using ei-
ther the music service offered by Carla or the video ser-
vice offered by the environment video server). Thus, we
can see that the conversation interleaving method offers
more realisations than the integration method.

9



(b) Smart Environment Controller. Light Controller

(a) LED Display. Display MM Resource

(d) LED Display. Display MM Resource

(c) Lamp. Light Controller

(a)

(b)
(c)(c) (c)

(a)

(b)

(d)(d)

(d)

(c)(c) (c)
(a) (b)

(b)(a)

(d)

(d)(d)

Figure 7: Raw automaton for Conversation Interleaving

Smartphone.Local 
Display MM 
Resource

Smartphone
.Search 
Display

Carla Music 
Server. Search 
Audio Resource

Video Server . Get 
Video Resource

Carla Music 
Server. Search 
Audio Resource

Video Server. 
Search Video 

Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Smartphone.Local 
Display MM 
Resource

Carla Music 
Server. Get Audio 

Resource

Carla Music 
Server. Get Audio 

Resource

Video Server . Get 
Video Resource

Video Server . Get 
Video Resource

Video Server . Get 
Video Resource

Smartphone.Local 
Display MM 
Resource

Video Server. 
Search Video 

Resource

Smartphone
.Search 
Display

LED Display. 
Display MM
Resource

Lamp. Light 
Controller

LED Display. 
Display MM
Resource

Lamp. Light 
Controller

LED Display. 
Display MM
Resource

Lamp. Light 
Controller

LED Display. 
Display MM
Resource

Lamp. Light 
Controller

Carla Music 
Server. Get Audio 

Resource

Carla Music 
Server. Get Audio 

Resource

Video Server . 
Search Video 

Resource

Video Server . 
Search Video 

Resource

Figure 8: Conversation Interleaving User Task Realisations

3.2.5. Adaptive User Tasks
In this section, we present the last solution to the dy-

namic realisation of the user task. This solution allows
finding a greater number of concrete realisations of the
user task than the first two. It is based on the following
observation: The user task is defined by a service de-
veloper. Its conversation represents one of the possible
ways of satisfying the user’s intention. Specifically, in

the dynamic realisation of user tasks it may be possi-
ble to change the structure of the user task to increase
the probability of finding a composition (this kind of
adaptation is performed offline and does not imply any
online adaptation technique, because it is not made on
execution). The modification in the structure of the task
constitutes in changing the order between capabilities,
which can be done under three premises:

• Those capabilities that are not related with any
data- or context-flow can be moved through the
structure of the task, more precisely through the
structure of the execution block (an execution
block is defined as the path represented between
the initial state of the automaton and the first
branch; two structural branches without a branch
in between; or between the beginning of the last
branch and the final state of the automaton) where
they are.

• Those capabilities that are part of a data- or
context-flow can be moved in the next ways: If
the capability is the source of the flow, it can be
moved through the execution block, but it cannot
be moved to a position that is after the capability
that is the target of the flow. If the capability is the
target of the flow, it can be moved through the ex-
ecution block, but it cannot be moved to a position
that is before the capability that is the source of the
flow.

• The execution blocks cannot be moved through the
automaton.

Based on the above definitions, a set of automata
is generated from the user task conversation that con-
tains all the rescheduling possibilities fulfilling the task
data- and context-flow specifications, which represent
different ways to achieve the same user task. These
automata, called the rescheduling automata, created
by the ReschedulingAutomaton(T ) function, and noted
S A in the following, are built based on a dependency
graph between capabilities (where the complexity of the
rescheduling process is related to the complexity of the
user task). In order to create these automatons, it is nec-
essary to follow a set of steps described as follows (us-
ing as an example the user task of Figure 3):

1. Define the Flow Dependency Graph, Figure 9, ex-
tracting from the graphical representation of the
data- and context-flow of the user task by remov-
ing the automaton states as well as those transi-
tions that are not part of a data- or context-flow.

10



This graph represents the constraints related with
those capabilities that are part of at least a data- or
context-flow.

Figure 9: Flow Dependency Graph

2. Define the Block Dependency Graph, Figure 10, a
graph where the capabilities are grouped by execu-
tion blocks. This graph represents the constraints
related with the execution blocks, in order to define
the range where the capabilities can be moved on.

Figure 10: Block Dependency Graph

3. Define the Integrated Dependency Graph, Figure
11, a graph that integrates the previous two graphs.
This offers a vision of the two types of restrictions
(flows and execution blocks).

Figure 11: Integrated Dependency Graph

4. Define the Final Dependency Graph, Figure 12,
representing only the flows whose source and tar-
get are located in the same execution block. To
create this graph it is necessary to remove from the
previous graph those flows whose target or source

are located in different execution blocks, because
the execution blocks itself are more restrictive than
the flows.

Figure 12: Final Dependency Graph

5. Once the Final Dependency Graph is defined, the
next step is the generation of the set of possible
combinations for each of the blocks where the ca-
pabilities can be moved. In this case, the only ex-
ecution block whose capabilities can be moved is
the one where the capabilities Get MM Resource,
S earch Display, Light Controller and Display
MM Resource are chained. As a result of this
process and taking into account the three premises
described before, the graph Combination Graph
is generated. In the Figure 13 we can see that
eight possible combinations are defined based on
the block whose capabilities can be moved.

The rescheduling automata built from the previous
process are depicted in Figure 14. A set of eight user
tasks, with different order of capabilities invocation but
same behaviour, has been generated from a user task,
respecting the constraints represented by the data- and
context-flows. In this way, instead of having one user
task to find its realisations, we have a set of user tasks
to use, thus we have more chances to find user tasks re-
alisations.

The rescheduling automata can then be compared us-
ing the conversation match method ConvMatch(A1, A2)
with either the raw automaton RAIG or RAIL to find
user task realisations with or without the support of
conversation interleaving, respectively. This gener-
ates two additional solutions to the user task realisa-
tion that support the adaptation of the user task, de-
fined with the two functions AdaptInteg(T, s1, ..., sK) and
AdaptInter(T, s1, ..., sK) as follows (where M represents
the number of user task combinations generated by
the ReschedulingAutomaton(T ) function). Thus Adapt-

11



Figure 13: Combination Graph

Integ(T, s1, ..., sK) is defined as follows:

AdaptInteg : T × SK −→2T

< T, s1, ..., sK >7−→{T1, ...,TJ}
(15)

such that:

RAIG = RawAutomatonIG(s1, ..., sK)∧
S A = ReschedulingAutomaton(T )∧
∀T j ∈ T , j = 1, ..., J ∃AT j :
S ubAutomaton(RAIG, AT j ),
ConvMatch(S Am, AT j ) : m = 1, ...,M

(16)

And AdaptInter(T, s1, ..., sK) as:

AdaptInter : T × SK −→2T

< T, s1, ..., sK >7−→{T1, ...,TJ}
(17)

such that:

RAIL = RawAutomatonIL(s1, ..., sK)∧
S A = ReschedulingAutomaton(T )∧
∀T j ∈ T , j = 1, ..., J ∃AT j :
S ubAutomaton(RAIL, AT j ),
ConvMatch(S Am, AT j ) : m = 1, ...,M

(18)

Computed realisations will not exactly conform to the
initial task conversation, but they will still fulfil the task
data-flow and context-flow specification. While this so-
lution increases the probability of finding service com-
positions, it is more costly than the first and second so-
lutions, as there are more automata used as input of the
ConvMatch(A1, A2) function.

4. Evaluation and Assessment

To evaluate the composition framework and its four
composition variants (Integration, Integration + User
Task Adaptation, Interleaving and Interleaving + User
Task Adaptation), we first describe the methodology
used to generate the collection of composite wEASEL
services. After that, we introduce the metrics defined for
the assessment of our framework and finally, we present
the results of the evaluation of the composition mecha-
nisms. The evaluation was carried out on a Raspberry
Pi 3 Model B with a 1.2GHz 64-bit quad-core ARMv8
CPU and 1GB of RAM memory.

4.1. Simulation setup: generation of composite
wEASEL services

We built a composite service test collection combin-
ing simple-capability services9. In order to do that,
we analysed the data-flows of the simple-capability

9Available at http://tinyurl.com/wEASEL-site

12



Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Local Display 
MM Resource

Get MM
Resource

Local Display 
MM Resource

Search MM 
Resource

Display MM
Resource

Get MM 
Resource

Search 
Display

Light 
Controller

Display MM
Resource

Get MM 
Resource

Search 
Display

Light 
Controller

Display MM
Resource

Get MM 
Resource

Search 
Display

Display MM
Resource

Get MM 
Resource

Search 
Display

Light 
Controller

Display MM
Resource

Search 
Display

Get MM 
Resource

Light 
Controller

Display MM
Resource

Search 
Display

Get MM 
Resource

Light 
Controller

Display MM
Resource

Search 
Display

Get MM 
Resource

Display MM
Resource

Search 
Display

Get MM 
Resource

Light 
Controller

Light 
Controller

Light 
Controller

SA1 SA2

SA3 SA4

SA5 SA6

SA7 SA8

Figure 14: Rescheduling Automatons

wEASEL services converted from the OWLS-TC4 col-
lection10 in [3]. In other words, we applied our match-
ing framework, defined in [3], to find output-input re-
lationships between every simple-capability pair of ser-
vices for each domain (matching one by one each of the
services of a domain against all of the services of that
domain). The IOPE Hybrid-Cosine method was chosen
as it offers the best precision/recall results [3]. Besides,
we only used the set of descriptions that are in the ser-
vices folder of OWLS-TC4, rather than the ones that are
in the queries folder. As the number of descriptions that
are divided in domains is too small, they offer less pos-

10OWLS-TC4 is a test collection built to support the evaluation of
OWL-S service matchmaking mechanisms. The OWLS-TC4 services
are written in OWL-S 1.1. and are divided into nine different domains:
communication, economy, education, food, geography, medical, sim-
ulation, travel and weapon. The collection is composed of 1.083 ser-
vices and 42 queries. The queries are associated with relevance sets
to allow for performance and correction evaluation experiments.

sible combinations to create composite services for the
testbed.

Considering the results from the matching frame-
work, we analysed the total number of output-input
combinations of the simple-capability services that
would produce composite services. Table 2 shows the
number of possible composite services per number of
capabilities, ranging from 1 (for simple capability) to
4, found for each domain. We decided to set 4 as the
maximum length of execution blocks (i.e., the maxi-
mum number of paths in a sequence for pervasive ser-
vices), as this maximum is enough to build a rich set
of composite services). As an example from Table 2,
in the travel domain, we observed that there are 165
simple-capability services, 546 composite services with
two capabilities that can be built using pairs of simple-
capability services with an output-input matching, and
14.246 composite services with four capabilities. It is
noted that while in some domains, e.g. economy and

13



geography, the number of data-flows increases signif-
icantly per number of capabilities, other domains as
communication, food and weapon, have no data-flows
combining 2 or more capabilities.

Table 2: Number of services per number of capabilities, divided by
domain

Services
1 Capab. 2 Capab. 3 Capab. 4 Capab.

communication 58 0 0 0
economy 359 8.540 172.881 4.337.199
education 285 2.817 7.076 8.894

food 34 0 0 0
geography 60 7.773 748.719 63.872.720

medical 73 2.007 138.224 9.570.152
simulation 16 98 34 34

travel 165 546 2.761 14.246
weapon 40 0 0 0

In order to create the semantic service testbed includ-
ing composite services by taking into account the results
in Table 2, we selected the travel domain because of the
following two reasons:

• It is the one that offers services descriptions that
are closest to the scenario described in Section 1.

• It has an equilibrated number of data-flows for
each transition length, i.e., from the set of simple-
capability services it is possible to create sets of
composite services of different lengths that are not
as large (thus distributed) as the economy, geogra-
phy and medical domains nor as small as commu-
nication, education, food, simulation and weapon
domains.

Considering services from the travel domain, we cre-
ated a smart environment-oriented testbed with three
subsets of service types:

• 20 randomly selected simple services (services
with one capability)

• 120 randomly selected composite services with
several capabilities in sequence and just one ex-
ecution branch. These services were built com-
bining the 20 simple services of the travel do-
main. The 120 services were grouped according to
their length, generating 40 services per each of the
lengths. Additionally, and for each length, the 40
services were divided in two groups, where 20 of
the services were represented with data-flow infor-
mation and the other 20 were not represented with
data-flow information. This is because in smart en-
vironments not all the services will be described
using data-flow information.

• 240 randomly selected composite services with
several capabilities but with more than one exe-
cution branch (constituting a choice). These ser-
vices, in the same way as the ones mentioned be-
fore, were constructed combining the 20 services
of the travel domain. In this case, the services
are grouped according to the total number of ca-
pabilities in the composition and to the arity of
the composition tree, i.e., the number of execution
branches. Based on these two factors, we defined
six composition groups: 3-2, 4-2, 4-3, 5-2, 5-3 and
5-4, where the first value represents the number of
capabilities and the second value represents the ar-
ity of the composition tree. For example, the group
5-3 means that each service has five capabilities
and the tree arity is three. For each group, we cre-
ated 40 composite services, 20 composite services
with data-flow information and other 20 without it
as before.

Combining all the services of the previously de-
scribed three subsets, we obtained a testbed of 380
(20+120+240) services. Where we created random sub-
sets of 50 services (simple and composite), assuming
that it is not common to find more than 50 services in a
smart environment. These random subsets were used as
input for the evaluation units described in Section 4.2.

4.2. Metrics

In order to evaluate the situation heterogeneity and
dynamism characteristics, we evaluated two aspects of
the service composition mechanism: its performance
(to evaluate the capacity of the composition engine to
respond to the appearance of new services in the en-
vironment and thus to calculate if those services can be
part of new user task realizations) and its correctness (to
evaluate the capacity of the composition engine to deal
with heterogeneously described services). The present
manuscript deals with the correctness of the conversa-
tion matching of user task realizations but also with
the semantic correctness of the capabilities of the user
tasks. However, the semantic correctness used in this
manuscript is presented and thoroughly evaluated in [3],
where the best precision/recall balance is achieved by
the IOPE Hybrid-Cosine variant, which is also used as
the grounding matchmaking algorithm for the compo-
sition variants. In the present manuscript the semantic
correctness is achieved through the SigMatch(S ig1, S ig2)
and SpecMatch(S pe1, S pe2) relations that are used in
the ConvMatch(A1, A2) definition, which is presented on
Equation 4.

14



For the performance evaluation we measured the time
that the composition mechanism takes to return user
task realisations, where we considered the following
two aspects:

• We evaluated the average time for each of the four
stages in the composition process (i.e., Candidate
Selection, Raw Automaton Generation, User Task
Adaptation and computation of the user task reali-
sations list, namely Automata Simulation), in order
to determine the for each variant which is the most
time-consuming stage.

• We evaluated the average total time required by
the service composition framework for each of the
composition variants, in order to determine the
variant that offers better performance.

The evaluation of the correctness consisted on cal-
culating the average number of user task realisations
retrieved for each composition variant. Therefore, we
could determine which is the variant offering the best
performance/correctness rate for smart environments.

We divided the evaluation process in evaluation units
composed of:

• Services of the environment: we randomly selected
a subset of 50 services (as it has been stated in Sec-
tion 4.1) from the all services in the testbed.

• User Task: a service was randomly selected from
the all services in the testbed.

A total of 100 evaluation units were built, and the
combined results of the evaluation units were used to
extract the average values shown in Section 4.3.

4.3. Results

In this section, we describe the results of the evalua-
tion of performance and correctness, for a total of 100
units of evaluation of the travel domain. Figure 15(a)
shows the results of average time for each of the stages
per composition variant, from which we can obtain the
following conclusions:

• The stage that takes more time for the variants that
use Integration is the process of Automata Simula-
tion, while the Raw Automaton Generation is the
subprocess that takes more time for the variants
that use Interleaving, as it is a very time-consuming
activity.

• The subprocess of Candidate Selection is negligi-
ble for the variants that use it, and the subprocess

of User Task Adaptation is negligible (due to the
simplicity of the subprocess of the adaptation, but
mainly due to the low efficiency of the Raw Au-
tomaton Generation) for the two variants that use
it.

• The subprocess of Candidate Selection is quite
costly for the Integration variants, but is negligible
for the Interleaving variants.

From the evaluation of the total average time for the
composition process per each variant (see Figure 15(b)),
we conclude that:

• The variants that use Interleaving are much slower
(between 56 to 91 times slower) than the ones that
use Integration. This is due to the point of the sub-
process of Raw Automaton Generation on the In-
tegration variants.

• However, as the Raw Automaton Generation sub-
process is very simple for the Integration vari-
ants, it implies that these variants are very fast and
that the Automaton Simulation subprocess is much
faster than for the variants that use Interleaving.
Both of the variants that use Integration offer a very
similar performance.

For the correctness evaluation, we considered all the
composition variants against the same set of 100 evalua-
tion units, recording the number of user task realisations
retrieved for each pair of variant and unit. After that, we
calculated the average number of user task realisations
obtained by each variant. In Figure 16, we can appre-
ciate that the Interleaving + User Task Adaptation com-
position variant is the one that offers a higher number of
average number of user task realisations but in contrast
it offers also the worst performance. On the contrary,
the Integration variant is the one that offers the smallest
set of average user task realisations but offers the high-
est efficiency followed by the Integration + User Task
Adaptation and Interleaving variants.

In smart environments, it is more important to re-
trieve the results in a fast way (in order to invoke the
selected service) than to retrieve all the possible user
task realisations. Thus, according to the previous anal-
ysis of the relation between the correctness and the per-
formance of the composition variants, we conclude that
the Integration + User Task Adaptation variant is the
one that better fulfils those requirements. The Integra-
tion + User Task Adaptation variant offers an average
of almost 20 user task realisations in less than 200 ms.
It shows similar performance to the Integration variant
but it offers a higher correctness (an average of 4 times

15



(a) Subprocesses average proportionality per variant

(b) Average time (ms) for the composition process per variant

Figure 15: Efficiency evaluation results

more realisations). In comparison to the variants that
use Interleaving, it is near 75 (for Interleaving + User
Task Adaptation) and 56 times faster (for Interleaving)
but it only offers an average of seven (for Interleaving +

User Task Adaptation) and an average of two (for Inter-
leaving) times less user task realisations.

In the present section we have shown the evaluation
results for the travel domain. However, we have also
carried out the same evaluation process for the rest of
the domains and even if the results are different, the pro-
portionality between the different techniques is equiva-
lent. That is to say, the results are equivalent for dif-
ferent domains, thus, the composition mechanism is do-
main independent.

5. Conclusion

The large number of IoT devices with increasing
computing power and networking capabilities is allow-
ing the smart city vision to become a reality. How-
ever, the ability to integrate functionalities offered by
IoT devices in the vicinity of mobile users is still an un-
resolved challenge. To achieve this, the context of the
service is of paramount importance. In this paper, we

Figure 16: Average user task realisations per variant

proposed a framework that deals with the composition
of context-aware services based on our previously pub-
lished wEASEL abstract service model and matchmak-
ing engine [3], producing the following contributions:

• a novel dynamic and adaptive service composi-
tion framework that allows several variants: ser-
vice conversation integration, service conversation
interleaving and user task adaptation,

• a testbed of composite semantic services derived
from the single-capability services of OWLS-TC4
and a methodology to build it,

• a thorough evaluation of our service composition
framework algorithms, considering both the per-
formance and the quality of the results.

In light of the results and analysis, as part of future
work we aim to:

• Develop techniques to create the raw automaton
on-the-fly instead of building the product automa-
ton for the interleaving technique.

• Extend the composition framework to support user
task realizations where the number of their capa-
bilities is greater than the required ones

• Integrate the composition variants with compo-
sition engines in order to deploy wEASEL-Com
alike devices that are able not only to construct the
composition but also to deploy it on the available
devices and control them on a centralized way.

• Apply the proposed approach on a different sce-
nario (e.g Industry 4.0 environment), in order to
validate its viability. One of these projects is
the CREMA11 H2020 RIA project, where IK4-
IKERLAN is participating.

11Cloud-based Rapid Elastic MAnufacturing (CREMA): http://
www.crema-project.eu/

16

http://www.crema-project.eu/
http://www.crema-project.eu/


To conclude, we state that our wEASEL-based com-
position framework allows us to be closer to the smart
cities vision, thanks to the different variants of the pro-
posed service composition. More specifically, the com-
bination of the two different composition variants, Inte-
gration + User Task Adaptation, is the one that better
fulfills the smart cities service integration requirements.

Acknowledgements

This work is partially supported by the Commission
of the European Union within the CREMA H2020-
RIA project (Grant agreement no. 637066) and by
the Basque Government’s Elkartek program within
the LANA II project (Grant agreement no. KK-
2016/00052).

References

[1] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis,
V. Foteinos, G. Poulios, P. Demestichas, A. Somov, A. R.
Biswas, K. Moessner, Enabling smart cities through a cognitive
management framework for the internet of things, Communica-
tions Magazine, IEEE 51 (6) (2013) 102–111.

[2] J. M. Hernández-Muñoz, J. B. Vercher, L. Muñoz, J. A. Galache,
M. Presser, L. A. H. Gómez, J. Pettersson, Smart cities at the
forefront of the future internet, Springer, 2011.

[3] A. Urbieta, A. González-Beltrán, S. B. Mokhtar, J. Parra,
L. Capra, M. A. Hossain, A. Alelaiwi, J. I. Vázquez, Hybrid
service matchmaking in ambient assisted living environments
based on context-aware service modeling, Cluster Computing
18 (3) (2015) 1171–1188.

[4] V. Ramasamy, Syntactical and semantical web services discov-
ery and composition, in: Proceedings of the cec-eee’06 conf.,
2006.

[5] R. Masuoka, B. Parsia, Y. Labrou, Task computing - the seman-
tic web meets pervasive computing, in: 2nd International Se-
mantic Web Conference (ISWC2003), 2003.

[6] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau, Automating
DAML-S web services composition using SHOP2, in: Proceed-
ings of 2nd International Semantic Web Conference (ISWC’03),
2003.

[7] H. Q. Yu, S. Reiff-Marganiec, A backwards composition context
based service selection approach for service composition, in:
IEEE International Conference on Services Computing, 2009,
2009, p. 419.
URL http://oro.open.ac.uk/24964/

[8] D. Chakraborty, A. Joshi, T. Finin, Y. Yesha, Service Compo-
sition for Mobile Environments, Journal on Mobile Network-
ing and Applications, Special Issue on Mobile Services 10 (4)
(2005) 435–451.

[9] R. Aggarwal, K. Verma, J. Miller, W. Milnor, Dynamic web ser-
vice composition in meteor-s, Tech. rep., LSDIS Lab, Computer
Science Dept., UGA (2004).

[10] W. L. C. Lee. S. Ko, S. Lee, A. Helal, Context-aware service
composition for mobile network environments, in: 4th Inter-
national Conference on Ubiquitous Intelligence and Computing
(UIC2007), 2007.

[11] A. Bottaro, J. Bourcier, C. Escoffier, P. Lalanda, Autonomic
context-aware service composition, in: 2nd IEEE International
Conference on Pervasive Services (ICPS’07), Istanbul, Turkey,
2007.

[12] N. Ibrahim, F. Le Mouel, S. Frenot, Mysim: a spontaneous
service integration middleware for pervasive environments,
Proceedings of the 2009 international conference on Pervasive
services (2009) 1–10.
URL http://portal.acm.org/citation.cfm?id=

1568201

[13] B. Lagesse, M. Kumar, M. Wright, Resco: A middleware
component for reliable service composition in pervasive sys-
tems, 2010 8th IEEE Int. Conf. on Pervasive Computing and
Communications Workshops (2010) 486–491.
URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5470620

[14] M. Klein, A. Bernstein, Toward high-precision service retrieval,
IEEE Internet Computing 8 (1) (2004) 30–36.
URL http://dx.doi.org/10.1109/MIC.2004.1260701

[15] C. Kiefer, A. Bernstein, The creation and evaluation of isparql
strategies for matchmaking, in: 5th European Semantic Web
Conference (ESWC 2008), Vol. 5021, Springer, 2008, p. 463.

[16] A. Brogi, R. Popescu, Towards semi-automated workflow-based
aggregation of web services, in: Proceedings of Third Interna-
tional Conference on Service Oriented Computing (ICSOC’05),
2005.

[17] A. Sirbu, J. Hoffmann, Towards scalable web service composi-
tion with partial matches, 2008 IEEE International Conference
on Web Services (2008) 29–36.
URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=4670156

[18] A. Sirbu, A. Marconi, M. Pistore, H. Eberle, F. Leymann,
T. Unger, Dynamic composition of pervasive process frag-
ments, 2011 IEEE International Conference on Web Services
(2011) 73–80.
URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6009374

[19] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, M. Mecella,
Automatic composition of web services in colombo, in: Pro-
ceedings of the 13th Italian Symposium on Advanced Database
Systems (SEBD’05), 2003.

[20] S. B. Mokhtar, N. Georgantas, V. Issarny, Cocoa: Conversation-
based service composition in pervasive computing environments
with qos support, Journal Of System and Software 80 (12)
(2007) 1941–1955.

[21] B. Benatallah, F. Casati, F. Toumani, Representing, analysing
and managing web service protocols, Data & Knowledge Engi-
neering 58 (3) (2006) 327–357.

[22] S. V. Hashemian, F. Mavaddat, A logical reasoning approach to
automatic composition of stateless components, Fundam. Inf.
89 (2008) 539–577.
URL http://dl.acm.org/citation.cfm?id=1497115.

1497123

[23] M. Mancioppi, M. Carro, W. Van den Heuvel, M. Papazoglou,
Sound multi-party business protocols for service networks,
Service-Oriented Computing–ICSOC 2008 (2008) 302–316.

[24] A. Urbieta, G. Barrutieta, J. Parra, A. Uribarren, A survey of
dynamic service composition approaches for ambient systems,
in: ACM First International Conference on Ambient Media and
Systems (Ambi-Sys 2008)- ACM First Workshop on Software
Organisation and MonIToring of Ambient Systems (Somitas
2008), ACM, ICST, 2008.

[25] T. Stavropoulos, D. Vrakas, I. Vlahavas, A survey of service
composition in ambient intelligence environments, Artificial In-
telligence Review.

17

http://oro.open.ac.uk/24964/
http://oro.open.ac.uk/24964/
http://oro.open.ac.uk/24964/
http://portal.acm.org/citation.cfm?id=1568201
http://portal.acm.org/citation.cfm?id=1568201
http://portal.acm.org/citation.cfm?id=1568201
http://portal.acm.org/citation.cfm?id=1568201
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470620
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470620
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470620
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470620
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470620
http://dx.doi.org/10.1109/MIC.2004.1260701
http://dx.doi.org/10.1109/MIC.2004.1260701
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670156
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670156
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670156
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670156
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6009374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6009374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6009374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6009374
http://dl.acm.org/citation.cfm?id=1497115.1497123
http://dl.acm.org/citation.cfm?id=1497115.1497123
http://dl.acm.org/citation.cfm?id=1497115.1497123
http://dl.acm.org/citation.cfm?id=1497115.1497123

	Introduction
	Related Work
	Interface-Based Service Composition
	Conversation-Based Service Composition
	Discussion

	Dynamic Service Composition
	Service Selection
	Service Coordination
	Problem Definition
	Conversation Matching of Service Capabilities
	Integrating Service Conversations
	Conversation Interleaving
	Adaptive User Tasks


	Evaluation and Assessment
	Simulation setup: generation of composite wEASEL services
	Metrics
	Results

	Conclusion

