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Abstract

In the past few years, several studies proposed to reduce the impact of bushfires

by mapping their occurrences and spread. Most of these prediction/mapping

tools and models were designed to run either on a single local machine or a High

performance cluster, neither of which can scale with users’ needs. The process of

installing these tools and models their configuration can itself be a tedious and

time consuming process. In this research, to improve the efficiency of the fire

prediction process and make this service available to several users in a scalable

and cost-effective manner, we propose a scalable Cloud based bushfire prediction

framework, which allows forecasting of the probability of fire occurrences in

different regions of interest. The framework automates the process of selecting

particular bushfire models for specific regions and scheduling users’ requests

within their specified deadlines. The evaluation results show that our Cloud

based bushfire prediction system can scale resources and meet user requirements.
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1. Introduction

Due to human activities and climate changes, bushfires have increased dra-

matically in the last few years [1, 2]. Every year thousands of acres of forest

area is destroyed that includes not only loss of several animal and plant species

but also human lives and properties. For example, during the Black Satur-5

day 2009 fire, one of the most significant disasters in Australian history, 173

people lost their lives and 2298 homes were destroyed along with several other

environmental losses. Therefore, forest fires are considered to have serious en-

vironmental and socioeconomic effects that are aggravated due to increase in

climatic temperatures.10

In response to this, several fire prediction and behaviour models have been

developed during the last four decades to reduce the after-effects of bushfires.

Several desktop based fire simulation tools are available that incorporate such

models. Some well known tools are SiroFire simulator [3], BehavePlus [4], FAR-

SITE [5], Spark [6] and HFire [7].15

In general, the estimation of fire risk and fire spread are dependent on several

geospatial input data sources, some of which are dynamic and change with

time. For example, weather data changes with time and space. Furthermore,

each user may want to do computation for a different geographic extent and

at different spatial resolutions which defines the amount of input data, storage20

and computational resources required. Due to the complexity of computation

involving data of different formats, sizes and from different sources, the data

processing is not a trivial task and may involve expensive investment in terms

of computational hardware, software and deep computing skills. Furthermore,

although most of these simulators help us to understand in an efficient way25

and in an accurate form, it is still quite manual and time consuming from the

perspective of a user who has little knowledge about underlying infrastructure.

Some of these drawbacks were addressed in fire management systems such as

Virtual Fire[8] which allows an easy to use web interface to access and visualise

different data sets including on-demand fire behaviour simulations. Most of30
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these fire prediction tools and technologies are designed to either work on single

desktop machines, clusters or limited high performance computing. Thus, these

systems suffer from low scalability and availability [9].

Recently, several researchers have begun to see Cloud computing technology

as a cost-effective and highly scalable solution to Big Data problems in different35

domains such as geospatial sciences and threat management [10]. Cloud com-

puting provides elastic and on-demand access to an almost infinite amount of

storage, network and computational resources [11]. Due to the pay-as-you-go

model of Cloud computing resources, users do not have to maintain expensive

computing facilities or face up-front cost. Thus, Cloud computing infrastructure40

allows elastic storage and computational capabilities for managing a fluctuating

number of user requests. Some researchers have already showed the benefits of

Cloud computing which provides dynamic and scalable computing and storage

infrastructure [12] [13].

Despite so many benefits offered by Cloud computing, the solutions avail-45

able for tackling real geo-spatial science problems are limited. Some studies

used Cloud computing for storing and managing a large amount of geo-spatial

data but using their infrastructure with a strong manual component [14]. Oth-

ers only used Cloud computing to increase computing capacity [15] [16]. Most

of this work does not offer an effective solution as it neglects either user require-50

ments (e.g. deadline) or still has a large manual component. During emergency

situations such as bushfires, even a small delay can result in the loss of many

lives.

Over the last several decades, there have been several deadline based schedul-

ing algorithms for scheduling applications in a Cloud computing environment [17,55

18]. As they are developed for specific application domains, they cannot be ap-

plied directly to scheduling of bushfire prediction application.

To overcome the limitations of previous bushfire prediction systems, we pro-

pose a Cloud based fire prediction service framework that not only allows access

for multiple users simultaneously but also considers the requirements of each in-60

dividual user. The proposed service also minimises the cost by keeping Cloud
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resource usage to a minimum. The proposed framework also allows users to use

different bushfire models according to their area of interest. We also evaluated

the proposed framework using a bushfire case study from Tasmania, Australia.

In summary, the main contributions of this work are:65

• A novel architectural framework which can allow deployment of fire models

considering users’ requirements in terms of area and time. The framework

allows integration of new fire models.

• A novel deadline based scheduling algorithm for efficient bushfire predic-

tion.70

• A case study using the Tasmania Bushfire Model for evaluating the Cloud

based framework.

In the next section, we discuss requirements for a fire prediction service.

Then in the subsequent sections, we describe the design and implementation of

the proposed framework with evaluation and results. Then we discuss related75

work on fire prediction services and their comparison with the architecture of

the proposed framework. Finally, we present conclusions and future directions.

2. Scenario and Requirements

Our aim is to design a framework that allows deployment of fire-prediction

models with acquisition of data from different web-services in order to satisfy80

users’ quality of service in terms of a deadline at minimal possible cost (i.e.

number of machines used). In the current scenario, most of the acquisition and

processing of data for fire prediction is done manually. Such computations are

also done either on a user’s own desktop computer or on a local cluster which

is limited in size and shared with many other users that further slow down the85

process. Sometimes, one has to deploy different models for different regions of

interest. Such challenges slow down not only many critical research studies but

also, in real life, can result in loss of public resources and even lives. Therefore
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we aim to facilitate such studies and on-demand fire prediction using scalable

Cloud computing resources.90

Based on the user’s needs in terms of fire-predictions, the following further

requirements of a Cloud computing software service are identified:

• Scalability: As the service may be accessed by several users across the

globe, it needs to scale accordingly to keep response time of accessing

the service to a minimum. The response time threshold for accessing the95

service should be limited by the maximum response time experienced by

users themselves.

• Cost and time effective: The main aim of the service is to decrease the

overall time for users who have to download large files from the different

repositories and pre-process before extracting their real benefit. Given100

that most environmental data products are free, the services should be

offered in a cost effective manner so that users see value in using such

services.

• Context aware and on-demand service: Depending on a user’s context,

different processing will be selected by the system. For example, if a user105

needs the processed data for a certain region in a certain amount of time,

then processing applications, input images (resolutions) and paralleliza-

tion is used accordingly to decrease the computation time. Different fire

prediction models need to be utilised [19].

• Support of massive data storage and processing: Given that environmental110

processes need large amounts of data to be downloaded, an appropriate

scalable storage service needs to be selected so that the time taken for data

transfer, and read and write operation can be minimised. Based on user

requirements and data, the required amount of computational resources

should be acquired on-demand.115

• Security: To avoid spamming or denial of service attacks, there should be

an appropriate security mechanism for accessing different services of the
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Figure 1: Cloud based Fire Prediction Scenario

system. All services must be accessed only by registered users.

3. Proposed System Framework

3.1. Usage Scenario120

The system aims to provide Cloud based Fire Prediction (CFP) services

required by the end user after acquiring data sets from different web services such

as NASA. A typical scenario of the proposed CFP service is given in Figure 1

with high level steps for one cycle of service provided by the proposed system

to a user. The proposed service is designed to work in a master-slave manner125

where FirePredict Broker acts as a master node while Local FireWorker service

nodes act as slave/worker nodes.

A user will send a request to FirePredict Broker which analyses all the meta-

data provided by the user with his/her time constraints. Users provide details

such as area of interest and processing required. Users might give a deadline130

by which they would like to get processing completed and results. The FirePre-

dict broker service will interact with the data service to get the pre-processed

data needed to fulfil the user interest. In general the pre-processed data is

6



much smaller than the original ones which contain much more information than

required for processing. Thus, data preparation is essential before it can be135

processed. Other than data preparation, this component of the system keeps

track of which data have been downloaded from different data repositories and

by which Cloud service site. Data services pass the urls (data location) to the

FirePredict Broker. Local FireWorker Service Nodes are hosted geographically

at different Cloud computing sites. This component is responsible for inter-140

acting with different environmental data services to acquire data based on the

user requirements. This component also deploys the required fire prediction

application in the Cloud environment and sends the results location back to

the FirePredict broker which passes this information to the user with the cost

incurred in the request processing.145

3.2. Architecture and Design

The full component details of the CFP service are given in Figure 2. The

CFP service has mainly two types of service. i.e. the user services and the core

services. The user services includes the user interface, authorisation/authentication

service and accounting service. The core services consist of FirePredict Broker,150

Request Analyser service, Data Service, Local FireWorker services, request al-

location and management service. Each of the services can run on different

machines independently. FirePredict Broker service is the key component of

the system that derives all other components of the system. Its main function-

ality is to interact with users and understand their requirements and pass the155

request over to other components after deciding the most appropriate Cloud

site to download and process the data based on users’ time constraints.

3.2.1. User services

The user services hide all the internal components of the CFP service and

implement all the services that are needed by users to interact with the sys-160

tem. To use the system services, the user has to first login with username and

password which are checked by authentication and authorisation services. By
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Figure 2: Cloud Fire Prediction Service Architecture

interacting with this service, the user interface has responsibility for checking

whether a user is authenticated or not. The user’s historical usage of the CFP

services and processing cost incurred to each user is maintained by the Account-165

ing Service. Using the Accounting Service, the user can also know the status of

each request. The Accounting Service also does the cost analysis where cost is

computed based on the amount of Cloud resources that are needed to be leased

for downloading, storing and processing data. In each request, the user passes

the details such as the area of interest and deadline through the User Interface170

to the Accounting Service which is passed to the FirePredict service for further

processing. At the end of the processing, the url for downloading the processed

data will be sent to the user with a bill for incurred cost.

3.2.2. Core Services

FirePredict Broker Service has responsibility similar to that of a typical175

Cloud broker, i.e. to interact with users, understand their requirements and

schedule processing based on users’ time constraints [20]. The FirePredict Bro-

ker service is hosted as a software service on Cloud infrastructure. All the
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Figure 3: Request Allocation Process

requirements and constraints are checked by the broker using the Request Anal-

yser service. This service first checks what data is needed for the processing180

required by the user. This service then checks whether the data or part of the

data has already been downloaded by interacting with Data Service. If data has

already been downloaded, this layer will check at which Local FireWorker ser-

vice data exits and then forward these details to the FirePredict Broker which

passes them to the Request Allocation and Management service for further pro-185

cessing. Figure 3 further illustrates the interaction between different entities

(aka. services).

The Request Allocation and Management service controls the distribution

of requests across multiple Local FireWorker Cloud service sites. This service

can be integrated with different allocation policies which takes into account the190

time taken to download the data for processing and cost incurred in storage

and processing. By default, the request will be sent to the service site which

has minimum data download time. The Request Allocation and Management

service also monitors the progress of each request and passes this information

to the Accounting Service.195

The Data Service is a directory service which maintains the meta-data of

actual geospatial data including the url from where data can be downloaded.

If the data is already downloaded and stored in a Cloud processing site, it will

9



also maintain this information. In case data is not downloaded, this service

interacts with different data repositories to prepare the data for download and200

forwards the final url to the request analyser. This service helps the system to

avoid multiple processing of data by different users. This will indirectly reduce

the load on data services by acting as another layer of caching. As it will also

track where pre processed data is located, it will help in avoiding the cost of

processing the same data again and also enable fast service to be offered to the205

end user by the system.

Local FireWorker Cloud Services are software services hosted on different

Cloud Infrastructure (aka IaaS) which are geographically distributed. They

will receive the information from the Request Allocation service about user re-

quirements. FireWorker services check how much Cloud resource is available210

and how much to lease to fulfil the end user request. These services will use

advanced scheduling mechanisms to minimise the infrastructure cost and com-

putation time. They will regularly monitor the resource usage and application

processing to minimise any case of failure which can cause unnecessary delays.

They can decide which resource should be leased depending on its load. For ex-215

ample, if there are many processing requests with limited time availability, then

these services can decide to lease larger Cloud virtual machines with much more

memory. Local FireWorker Cloud Service consists of the following components:

• FireModel Catalogue is a directory that maintains meta-data of different

fire prediction models and virtual machine images. The meta-data helps220

in deciding which fire prediction model should be used for a particular

geographical location in which the user is interested. The meta-data also

consists of the execution profile of different fire-prediction models which

help in predicting their processing requirements.

• The Data Acquisition component helps in downloading the data required225

for processing the user request and storing at the local Cloud site.

• Request Scheduler decides when and where each request will be executed.

It makes the decision based on the processing requirements of a fire-
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prediction model, the user’s time constraints and available virtual ma-

chines. It also decides how many virtual machines should be utilised for230

processing a user’s request.

• VM Manager is responsible for initiating and stopping the virtual ma-

chines.

• Job Manager is responsible for the deployment and the execution of a fire

prediction model on a virtual machine.235

Figure 4 illustrates how requests are processed by each Local FireWorker.

Based on the request, a FireWorker downloads the required data for processing

using DataAcquisition if it is not already stored within the local Cloud storage.

After data download is done, the FireWorker will forward the user’s request with

location of downloaded data to the RequestScheduler component which decides240

when and on which Virtual Machines (VMs) the request will be processed. To

make this decision, RequestScheduler requires the resource requirements and

performance profile of the fire model which needs to be run to fulfil a user’s

request. This information is sent by FireModelCatalogue. Based on the schedul-

ing decision, RequestScheduler initiates the required VMs which will execute245

Fire Models in the form of parallel jobs. The parallel jobs are managed by Job-

Manager which monitors’ the execution of the jobs and redeploy if a VM fails.

4. Case Study: Tasmanian Bushfire Prediction Model

To show applicability of the proposed Cloud based software service archi-250

tecture for the Fire Prediction service, this section presents a short case study

where a bushfire prediction Cloud service is built to serve multiple users. To

evaluate the performance of the CFP service and provide a proof of concept of

its architecture, we implemented a prototype with Nectar Cloud as the Local

FireWorker cloud site.255
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Figure 4: Request Scheduling and Processing

In this case study, users submit their requests for fire prediction in a certain

area of Tasmania with their time constraints in terms of a deadline to the

FirePredict Broker through a user interface. More details are given in the

following sections.

4.1. Prototype Implementation260

CFP has been implemented in Java in order to be portable over different

platforms such as Windows and Unix operating systems. As our aim in this

case study is to give a proof of concept, we just consider limited functionality

of FirePredict Broker’s services and one Cloud processing site. It consist of

three layers: user interface (user service), FirePredict Broker and one Local265

FireWorker service. The Local FireWorker service is responsible for managing

and scheduling fire prediction requests (job) to different virtual machines where

a slave daemon is running to handle actual execution of the job. The slave nodes

process the requests on a first-come-first serve basis. The slave nodes do not

interact with each other but only with the FireWorker service. The communica-270

tion between virtual machines and the FireWorker service is implemented using

Java sockets. The connections are kept active only when both FireWorker ser-

vice and a slave are active; this feature keeps the FireWorker and slaves loosely

coupled and independent. The FireWorker regularly checks the status of slaves.

The user interface is built using Java Swing library. The details of the Fire275
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Prediction Model (application) and scheduling algorithm utilised by the system

are discussed in the following sections.

4.2. Bushfire Prediction Model

We develop a simple fire model for the Tasmania region based on a binary

logistic regression as a proof of concept. This model assesses the probability280

of fire occurrence using the non-linear relationships among fire danger indices

considered in this study. The topographic characteristics for a period of one

year (July, 2014 - July 2015) are used in developing the model. In this model,

the Forest Fire Danger Index (FFDI) and Fire Weather Index (FWI) are con-

sidered, which incorporate climatic conditions data e.g. weather, temperature,285

relative humidity, wind speed and precipitation. Topographic characteristics of

the study area, e.g. elevation, slope, and aspect, are considered as explanatory

variables in developing the model. These data are extracted from the ASTER

Global Digital Elevation Model (ASTER GDEM) with 30m spatial resolution.

Climatic conditions data are obtained from the Bureau of Meteorology, Aus-290

tralia’s national weather, climate and water agency.

The logistic regression model is expressed as:

P = E(Y ) =
exp(B0+B1X1+B2X2+.....+BiXi)

1 + exp(B0+B1X1+B2X2+...+BiXi)
(1)

Where, P = Probability of the event, B0 = Intercept, B1...Bi = Regression

coefficients

295

Correlations among the variables were observed before developing the model.

Considering occurrence of fire as P = 1 and non-occurrence as P = 0, the

probability of fire occurrences is given by:

P =
1

1 + e−21.610+0.198∗FFDI−0.028∗FWI−0.001∗Ap+0.604∗Sl+19.903∗Elv−0.108∗Lc

(2)

In the equation, P is the probability that a point corresponds to a fire ig-

nition, Ap, Sl, Elv, Lc represent Aspect, Slope, Elevation and Land cover, re-300

spectively. FFDI is the forest fire danger index and FWI is the fire weather
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index. The obtained logistic regression model showed that the most influen-

tial variable explaining the spatial patterns of fire was Elevation (α = 19.903)

Slope (β = 0.604), followed by FFDI (γ = 0.198), Land cover, and FWI. The

details on FFDI and FWI are available in works by Noble et al.[21] and Beccari305

et a.l[22]. Upon request source codes for the developed model can be made

available from the authors.

4.3. Scheduling Algorithm

As discussed in the previous section, the main function of the FireWorker

Service is to map requests to slave nodes based on their capacity and user310

requirements. Within the scheduling module of FireWorker Service the following

functionalities are achieved:

• The splitting of the user’s request into several partitions or jobs, which is

determined by the capacity and the size of input data.

• Machines are added only if the number of machines is not enough, which315

means machines should be added one by one based on the requests’ re-

quirements to avoid wastage of resources.

• If the capacity available on the currently used machines is enough to com-

plete a request within its deadline, then the request is queued for process-

ing in the currently available slave nodes.320

The pseudo code of the scheduling algorithm is given below:

4.4. Partitioning Algorithm for Bushfire prediction Model

The fire prediction model considered for this case study computes the prob-

ability of fire at a given point and the probability of fire occurrence at a given

point is independent of another point in a region of interest. In other words, to325

compute fire probabilities for a given area of interest, each point in the area can

be considered separately. Therefore, for partitioning the request, the area of

interest will be divided into different subarea where each subarea’s fire predic-

tion model will be computed. As shown in Figure 5, in order to finish parallel
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Algorithm 1: Bushfire-Prediction Request Scheduling Algorithm

Data: Input: User Request list = RList;// details of the area of

interest in terms of latitude and longitude, and deadline

Result: AllocationList;// allocation of jobs associated to each

request to VMs

RList=Collect user requests in current time;

// Sort the requests by deadline

SortedReqList=Sort(RList);

for ri ∈ SortedReqList do

// find out the area for which data needs to be processed

CalculateAreaReq(ri);

Based on the area, calculate number of jobs (or partitions) i.e.

NumJobs(ri);

RemainTime=Deadline(ri)-CurrentTime;// find the time

remaining for returning results to user

// check whether time available is sufficient to process

the job

if

RemainT ime > 0 & RemainT ime > MinExecutionT ime(Job(ri))

then

for j ∈ (1, NumJob(ri)) do
VM withSpace=Find an existing virtual machine that can

process the job before deadline;

if VM withSpace exists then

submit the job VM withSpace;

else

Initiate a new machine and submit the job to this machine;

end

end

Add the resulting allocation to AllocationList;

end

end
15



Figure 5: Cloud based Fire Prediction

computing, the request (for an area of interest) should be divided into several330

jobs (for each subarea) that do not need to communicate any data for processing

and thus can run independently on different processors.

Jobs in the figure indicate how many sub-tasks should be created to finish

the fire probabilities for a given area. For example, the size of this area above

is L*L. Let a user want to get this computation done within T time. If a Local335

FireWorker service has to finish the whole area calculation in T time (the user’s

deadline), we need to compute how many machines are needed for this area and

how many jobs can be executed by each machine in this T time. This number

of jobs depends on the capacity of the machines. Firstly, the capacity of each

computer is assumed to be known, and we mark it as M[i]. The whole area of340

this map is L*L (the total number of jobs). Therefore, based on the terminology,

the pseudo code for partitioning each request is described in Algorithm 2.

4.5. Nectar Cloud Infrastructure

Nectar Cloud1 is a community research Cloud environment which provides

flexible scalable computing power to all Australian researchers. The infras-345

tructure is implemented and managed using the OpenStack cloud computing

framework. To create virtual machines and run the experiments, we utilised

1https://nectar.org.au/research-cloud/
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Algorithm 2: NumJobs(Request Ri)

Data: Input: User Request = Ri;// details of the area of

interest in terms of latitude and longitude, and deadline

Result: JobList;// list of jobs associated to each request

X =Remaining area for which processing has to be done;

M[i] = Capacity of each computer;

T = Deadline for the user;

Y= area for which fire probability will be computed on a worker node;

while X > 0 do

Y=M[i]*T;

X=L*L - Y;

create a job to process Y amount of area and add to job list;

end

application EC2 APIs. The details of virtual machines initiated are given in

subsequent individual experimental sections.

4.6. Profiling Fire Model350

To meet the user’s time constraints in regard to the processing of the request,

the FireWorker’s scheduler should know the execution time of the fire model for

the given data. Thus, we need to profile the execution time of the fire model on

multiple parallel (distributed) machines. For the experiments, the daily weather

data was collected from July 2014 to July 2015 for Hobart weather observation355

stations. Local noon measurements of temperature (C), relative humidity (%),

wind speed (km/h) and daily total precipitation (mm) were used to calculate

the component codes and the Fire Weather Index (FWI) for each station. The

Drought factor index was collected as well to calculate the Forest Fire Danger

Index (FFDI) for each station. A digital elevation model (DEM) was used to360

get the topographic information such as height. We chose the area located near

Hobart (Tasmania) for computing different requests and amount of data to be

17



Figure 6: Processing Time of Fire Model

processed. For example, 8 MB means the data source about Hobart within a

range of 30KM; 20MB means the data source about Hobart within a range of

50KM; 40MB means the data source about Hobart within a range of 65KM;365

60MB means the data source about Hobart within a range of 75KM; 80MB

means the data source about Hobart within a range of 82KM. Figure 6 shows

the execution time taken for processing requests with the size of interested area

and number of machines utilised. The experiments are repeated 10 times and

average values are presented for each scenario. The experiments were conducted370

on a small size virtual machine having 1 VCPU, 4 GB Ram, and 30 GB disk

size. The deadlines are generated between 0 and 10 seconds using uniform

distribution.

5. Evaluation

In this section, we will focus on the evaluation of our Cloud service. As the375

main objective of the algorithm is to meet users’ deadlines and minimise number

of machines to process their requests, these are the main metrics that are used

for evaluation: (a) Average Waiting Time and (b) Number of Machines utilised

18



indicating the usage cost. The scheduling algorithm utilised by our CFP service

is compared with two other usage strategies that are currently used:380

• Single Machine: single machine is utilised by the user. It processes the

requests based on a First Come First Serve (FCFS) basis and does not

consider the deadline.

• Parallel Model: In this case, parallel computing machines are utilised by

the user to process the area of interest and requests are served on a FCFS385

basis. For each request, the minimum number of machines required is

computed so that the request can be processed just before the deadline

specified by the user.

In the experiments, for the second criteria, i.e. the number of machines

used, the proposed algorithm is only compared with the second strategy i.e.390

parallel computing machines are utilised by the user. To ensure accuracy, the

experiments are repeated 10 times and the average time is presented. The

capacity of each slave machine is assumed to be the same as used for profiling

the execution times presented in the previous section and the results do not

present data download times.395

5.1. Experimental Results

Figure 7 shows the comparison results of different scheduling strategies

against the one proposed. Figure 7a compares the average waiting time of dif-

ferent techniques utilised to process the bushfire prediction model. In Figure 7a,

we can clearly see that the average waiting time spent on Cloud based service is400

the smallest, which is about 50% lower than when the user only utilises parallel

computing. It is obvious single machine or desktops have very limited process-

ing capacities in comparison to clusters of parallel machines. For this reason

in the parallel machines case, the average time is around 4, much better than

that on a single machine. However, the reason behind the higher waiting time405

in the parallel machine case over the Cloud service is much deeper. It is due

to the limitation of parallel machines in terms of expandability. Most parallel
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(a) Average Waiting Time

(b) Number of Machines Utilised

Figure 7: Comparison of Proposed Cloud Service with other Strategies
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machines or clusters in different organisations have limited storage and proces-

sors which need to be shared between several users. Moreover, the workload of

each user is processed on a First Come First Serve (FCFS) basis irrespective of410

the urgency of their work. Due to this, waiting time is much longer in privately

owned clusters than in Cloud based systems. From Figure 7a, it can also be

observed that the average waiting time is nearly the same in most of the cases.

In summary, we can conclude that running requests on a Cloud based service

has the best performance, shortening the waiting time for users in comparison415

with single machine and parallel machines.

Figure 7b compares the number of machines utilised in each scenario. This

factor is important to understand the cost effectiveness of the Cloud service

based scheduling strategy. For the comparison of number of machines used, we

only need to compare the number of machines used on two strategies not with420

a strategy when a single machine is utilised for each user request. The reason

for this is that the result for a single machine strategy will obviously be very

low and remain the same.

From Figure 7b, we can observe that the number of machines used for the

requests of 25 and 75 are nearly equal to the Cloud service; however in cases 50,425

100, and 125 requests the Cloud service performs better than the parallel model.

The reason for this is the sharing model of the Cloud service based strategy.

Users’ requests can be scheduled on the machines where other jobs are running.

Thus, resource utilisation is much more compact than parallel machines which

in general run the jobs in a more exclusive manner.430

From the figure, we can also conclude that if the number of requests from

users is increasingly large, the number of machines used on the Cloud service

would be lower than the parallel model, which means the Cloud service schedul-

ing would help the server in saving more computing resources when handling

the same number of requests.435
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6. Related Work

As discussed earlier, with the emergence of Cloud computing, several re-

searchers are working to solve several geospatial science problems using Cloud

environments. In this section, we point out some the most relevant work in this

context and compare it with our proposed framework.440

Before Cloud computing, many researchers worked on utilising parallel com-

puting technologies to handle computational requirements of visualisation and

analysis of large spatial datasets [23][24][25][26]. Thus, many research projects

focused on developing CyberGIS frameworks which integrates GIS with paral-

lel and distributing computing architectures to solve computationally intensive445

problems. For example, Wang et al. [27] evaluated the performance of GI-

Solve in a distributed environment. Huang et al. [28] proposed the CyberGIS

framework that can support multiple data sources. In their work, the Hadoop

platform is used to scale the processing of social media data for emergency

situations. Yin et al. [29] proposed a model knowledge database to enable450

utilisation of parallel computing resources for computing GIS models. Chen

et al. [30] proposed the efficient evacuation simulator using parallel computing

principles. Liu et al. [31] proposed GPU based parallel algorithms to improve

the efficiency of image processing. [9] proposed a Software as a Service (SaaS)

to utilise Cloud computing for a wildfire risk and a wildfire spread simulation455

service. Bhat et al. [32] proposed a multi-tiered architecture for GIS cloud

systems. Srinivas et al. [14] proposed a distributed architecture for building

spatial information geoportals based on Cloud computing. In Cui et al. [33],

the authors describe a cloud computing model for image processing of remote

sensing data. Zhong et al. [34] proposed a geospatial data storage and processing460

framework for a large-scale WebGIS based Hadoop platform. Miao et al. [35]

proposed a Web 2.0-based Science Gateway for Massive Remote Sensing Image

Processing using Cluster computing nodes. Huang et al. [36] deployed GEOSS

Clearinghouse which is a Metadata Catalog System on an Amazon EC2 Cloud

virtual machine. Schnase et al. [37] developed a climate-analytics-as-a-service465
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system (MERRA/AS) using a MapReduce platform. Shao et al. [38] developed

a geo-processing service based on Amazon EC2 Cloud.

Morshed et al. [39] recommended environmental knowledge as a linked open

data cloud using semantic machine learning. Dutta et al. [40] investigated deep

cognitive imaging systems in estimating fire incidence at a continental scale for470

Australia.

Most of these works do not utilise the autoscaling feature of Clouds. Riteau

et al. [15] proposed a Cloud based architecture for CyberGIS analytics with

autoscaling features. Wang et al. [41] proposed pipsCloud system to manage

data and processing of remote sensing data. Their solutions do not consider475

the user requirements in terms of deadline and also they do not focus on min-

imising the number of machines. Yue et al. [16] compared the geospatial data

processing in the Microsoft Azure and Google cloud computing environments.

They recommend a hybrid Cloud model to get benefits from different Cloud

environments.480

There has been several work in the area of scheduling and resource alloca-

tion [18]. Some of these algorithms also considers quality of service requirements

such as time and cost. However, these work either consider very general applica-

tion model or a specific application. Scheduling algorithms designed for specific

applications are not directly applicable to the context of bushfire as each appli-485

cation differ significantly from others. Other scheduling approaches that have

been designed for general application models cannot achieve limited amount

of performance as they consider application as blackbox without detailing how

application should be divided into different tasks.

In summary, our contribution is unique and novel because our proposed490

framework provides a Cloud based fire prediction service, it takes into consid-

eration users’ time requirements and also utilises the Cloud computing environ-

ment in such a way that minimal amount of resources are utilised in addition

to leverage the elasticity of the Cloud resources. Our proposed framework also

utilises multiple Cloud datacenters to minimise the data download time and495

also reuses previous processing that further minimises the processing require-
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ments. It allows integration of different fire prediction models which are selected

automatically based on users’ requirements.

7. Conclusion and Future Works

The Cloud computing paradigm has changed the way we utilise comput-500

ing power for solving data and computationally intensive problems. Thus, due

to computational and fluctuating user requirements, geospatial scientists have

started to explore scalable frameworks that utilise Cloud computing environ-

ments. In this context, fire prediction and behaviour modelling is one of the

important areas of research which is gaining a lot of attention due to huge losses505

of lives and properties that occur during seasonal bushfires. We identified the

various technical and user requirements and challenges in designing such a sys-

tem. We proposed a novel framework for a Cloud based Fire Prediction service

that not only leverages the elastic feature of Cloud infrastructure to handle dy-

namic user requirements in terms of processing needs and time constraints but510

also minimises resource usage which helps in reducing cost. We also proposed

a scheduling algorithm for mapping user requests for fire prediction of a certain

region within a certain deadline to Cloud computing resources. The experi-

mental study using the Tasmanian region fire model showed the efficacy of the

proposed framework in addition to superiority over previous usage models. The515

current prototype is applied in the study area of the Tasmania, Australia but

its flexibility enables integration of several fire prediction models for different

regions.

In future, we plan to do the experiments with a larger setup in terms of

number of machines, different fire prediction models and different Cloud envi-520

ronments.
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