

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/145974

Candel-Margaix, F.; Petit Martí, SV.; Sahuquillo Borrás, J.; Duato Marín, JF. (05-2).
Accurately modeling the on-chip and off-chip GPU memory subsystem. Future Generation
Computer Systems. 82:510-519. https://doi.org/10.1016/j.future.2017.02.012

https://doi.org/10.1016/j.future.2017.02.012

Elsevier

Accurately Modeling the On-chip and Off-chip GPU

Memory Subsystem

Francisco Candel, Salvador Petit, Julio Sahuquillo, and José Duato

Department of Computer Engineering
Universitat Politècnica de València

46012 Valencia, Spain
Email: fracanma@inf.upv.es

Abstract

Research on GPU architecture is becoming pervasive in both the academia
and the industry because these architectures offer much more performance
per watt than typical CPU architectures. This is the main reason why mas-
sive deployment of GPU multiprocessors is considered one of the most feasible
solutions to attain exascale computing capabilities.

The memory hierarchy of the GPU is a critical research topic, since its de-
sign goals widely differ from those of conventional CPU memory hierarchies.
Researchers typically use detailed microarchitectural simulators to explore
novel designs to better support GPGPU computing as well as to improve the
performance of GPU and CPU-GPU systems. In this context, the memory
hierarchy is a critical and continuously evolving subsystem.

Unfortunately, the fast evolution of current memory subsystems deterio-
rates the accuracy of existing state-of-the-art simulators. This paper focuses
on accurately modeling the entire (both on-chip and off-chip) GPU memory
subsystem. For this purpose, we identify four main memory related compo-
nents that impact on the overall performance accuracy. Three of them belong
to the on-chip memory hierarchy: i) memory request coalescing mechanisms,
ii) miss status holding registers, and iii) cache coherence protocol; while the
fourth component refers to the memory controller and GDDR memory work-
ing activity.

To evaluate and quantify our claims, we accurately modeled the afore-
mentioned memory components in an extended version of the state-of-the-art
Multi2Sim heterogeneous CPU-GPU processor simulator. Experimental re-
sults show important deviations, which can vary the final system performance

Preprint submitted to Future Generation Computer Systems October 30, 2017

provided by the simulation framework up to a factor of three. The proposed
GPU model has been compared and validated against the original framework
and the results from a real AMD Southern-Islands 7870HD GPU.

Keywords: applied modeling and simulation, on-chip memory subsystem,
main memory controller, GDDR, cache coherence protocol

1. Introduction

In the recent years there has been an steady increase in the use of GPUs
(Graphics Processing Units) for general purpose computing. The main reason
is that general purpose computing in GPUs or simply GPGPU computing is
much more energy-efficient [1] than conventional computing. In other words,
for a given power budget, GPGPUs provide higher performance than their
CPUs counterparts, especially when running massively parallel workloads.
Because of this fact, most of the top 10 supercomputers in the top 500 list [2]
rely on GPUs. For instance, the Titan supercomputer, ranged in second
place of the list in November 2014, was built with Nvidia K20x devices.
However, GPU programmability [3] is still harder than that of conventional
computing. To deal with this shortcoming, computer architects are trying
to adapt different components and mechanisms (e.g. caches and prefetching)
that have successfully worked on CPUs to ease programmability.

The GPU architecture has been traditionally optimized to run graphic
applications workloads, composed of thousands of logical threads, and that
exhibit a massive parallelism. For this purpose, the GPU cores present a
high computational power which come from including hundreds of process-
ing elements, all of them working together. In order to feed such a high
number of computational elements, the GPU core must be coupled with an
efficient memory subsystem. Due to this reason, GPU memory subsystems
are designed to tolerate a high number of concurrent accesses.

The importance of easing the programmability of GPUs for GPGPU com-
puting as well as the irruption in the market of heterogeneous computing pro-
cessors [4] that combine CPUs and GPUs on the same die, open a new design
space for memory hierarchy designs, which is a hot topic in computer archi-
tecture research. To implement and evaluate their approaches, academic and
industry researchers need from complex and detailed simulation frameworks.
These software packages are abstractions that model the functionality of real
hardware and focus on those hardware components that have a significant

2

impact on the final system performance. However, because of the fast speed
at which current systems evolve, state-of-the-art simulators often miss mod-
eling important components and, consequently, simulation results are not as
accurate as they should.

This paper focuses on the memory subsystem, both on-chip and off-chip,
of contemporary GPUs. We find that four main important components,
which present a significant contribution to the system performance, are not
precisely modeled in state-of-the-art GPU simulators with respect to a real
device. In particular, three of them correspond to the on-chip memory hi-
erarchy: i) memory request coalescing mechanisms, ii) miss status holding
registers, and iii) the cache coherence protocol; while the fourth component
refers to the memory controller and the off-chip GDDR memory.

To quantify the impact on performance of these components, we enhance
the modeling of the GPU memory subsystem in a state-of-the-art GPU simu-
lator, we quantify the impact of each component on the system performance,
and we validate all the components working together by comparing the results
of the proposal to the execution time on a AMD Southern-Islands 7870HD
GPU. For this purpose, we used the Multi2Sim simulation framework [5],
widely used in both the academia and the industry. Experimental results
show that each of the studied components, if not accurately modeled, can
result in important (e.g. in a factor of 2× or 3×) performance deviations in
the simulated results.

The remainder of this work is organized as follows. Section 2 presents a
relevant subset of current GPU simulators. Section 3 describes the Southern
Islands architecture and its programming model. In Section 4, the proposed
Multi2Sim extensions are described in detail. Section 5 presents the exper-
imental results. Section 6 provides the accuracy improvements achieved by
the proposed extensions. Finally, in Section 7 some concluding remarks are
drawn.

2. Related work

GPU research simulators are relatively young and still maturating. In
fact, the number of available GPU simulation frameworks is nowadays much
lower than that of CPU simulators. The main reasons of this lack of tools
is that GPU manufacturers provide little information about the architec-
ture of their processors as well as the fact that the architecture of modern

3

GPUs has been and is quickly evolving, hampering the development of de-
tailed architectural simulators which require an established and well-known
model. In spite of this fact, due to the growing use of GPUs, some GPU
simulation frameworks have become recently available. Below, we describe a
representative set of them.

GPGPU-Sim [6, 7] is currently one of the most referenced GPU simula-
tors. It is a detailed cycle by cycle simulator that supports CUDA version
3.1. It models a GPU microarchitecture similar to the Nvidia GeForce 8x,
9x, and Fermi series. GPGPU-Sim also simulates the interconnection net-
work between GPU cores and memory modules. Recently, the Gem5 [8]
computer system simulator platform was combined with GPGPU-Sim to
model a heterogenous CPU-GPU system. Moreover, GPGPU-Sim version
3.2.0 integrates GPUWattch [9], an energy model based on McPAT [10]; a
power, area, and timing modeling framework. However, due to its depen-
dence on Nvidia drivers, which only support OpenCL 1.1, GPGPU-Sim does
not provide support for the execution of GPGPU benchmark suites like that
provided by AMD [11] with modern OpenCL code.

Barra [12] is a parallel GPU functional simulator. It is based in the
UNISIM framework [13] and it implements both a CUDA driver emulator
and an Nvidia Tesla GPU simulator. In this way, Barra can execute directly
unmodified CUDA programs and generate statistics at the instruction level.
The major shortcoming of this simulator is that it does not model the GPU
microarchitecture, thus it cannot be used to evaluate possible enhancements
in the memory subsystem. In addition, this framework only supports a rather
old CUDA version 2.2.

Multi2Sim [14, 5] is an accurate cycle by cycle execution driven simula-
tion framework for CPU-GPU heterogeneous computing. Release and devel-
opment versions of Multi2Sim are available. It provides a fully configurable
memory subsystem with several cache levels and interconnection networks.
Multi2Sim implements several GPU architectures from both AMD (Ever-
green, Southern Islands) and Nvidia (Fermi) as well as CPU architectures
like x86, MIPS-32 and ARM. The Multi2Sim developer team is currently
modeling the HSA heterogeneous architecture [15], where both CPU and
GPU share the same memory subsystem. Finally, Multi2Sim includes its
own implementation of OpenCL and CUDA libraries. In this way, it can
provide dynamic information about CPU-GPU interaction by instrumenting
OpenCL and CUDA calls.

In summary, we chose Multi2Sim because i) it simulates a heterogeneous

4

Figure 1: OpenCL mapping between execution and platform models.

CPU-GPU cycle by cycle, ii) it implements the recent AMD GPU core archi-
tectures called GCN [16], iii) it includes its own OpenCL and CUDA libraries,
and iv) support for the HSA architecture is being developed.

3. Southern Islands GPU Programming Model and Architecture

This section provides some background on how contemporary GPUs work.
To this end, we focus on the state-of-the-art Southern Islands GPU from
AMD introduced in 2012 which, to the best of our knowledge, is the most
recent GPU architecture implemented on a detailed simulator framework. To
understand this system, two main axis must be considered: i) its program-
ming model, and ii) its architecture, which consists of multiple cores sharing
the same memory hierarchy. Below, both axis are discussed.

3.1. The OpenCL Programming Model

Two main programming frameworks, CUDA [17] from Nvidia and OpenCL
[18] from the Khronos group, are currently being used for developing pro-
grams targeting GPGPUs and other kinds of computing devices. OpenCL
is, “de facto”, an industry standard programming model [19]. There are
OpenCL implementations that work on devices from different brands such as
Intel, AMD, ARM, or even Nvidia, while CUDA is only supported in GPUs
manufactured by Nvidia.

The OpenCL specification [20] defines a platform model and an execution
model. The platform model is an abstraction of the real machine in which the

5

Figure 2: GCN compute unit.

program will be executed. This model considers one or more compute devices
(e.g. one GPU) consisting of several compute units (CU), each one composed
of multiple processing elements (PE). On the other hand, the execution model
maps the GPU application to the platform model. For this purpose, the
execution model defines a hierarchy in which threads are grouped in sets of
increasing granularity. An individual thread is called a work-item, and they
are arranged into work-groups limited to 256 work-items. Typically, a GPU
program, referred to as a kernel, is composed of thousands of work-groups.
Figure 1 depicts a block diagram of both models and their mapping.

3.2. Graphics Core Next Microarchitecture

The Southern Islands GPU can include up to 32 CUs implementing the
AMD’s Graphics Core Next (GCN) microarchitecture as depicted in Figure
2. Each CU consists of 4 single-instruction multiple-data (SIMD) 16-lane
vector ALUs. Thus, considering the 4 SIMD ALUs, the GCN compute unit
is capable of executing 64 work-items at the same time.

In the GCN microarchitecture, a work-group that is mapped to a CU
is assigned to a given SIMD ALU. To execute in this ALU, the workgroup
is divided in wavefronts consisting of 64 work-items. In turn, these wave-
fronts are subdivided in 4 sets composed of 16 work-items (also known as
subwavefronts). These subwavefronts are executed sequentially in the SIMD
unit.

3.3. Memory Subsystem

In Southern Islands GPUs, a load instruction in a wavefront can generate
up to 64 memory requests. All the requests generated by a given instruction

6

Figure 3: Southern Islands memory hierarchy.

that access the same cache block are coalesced into a single memory access
at the CU before being issued to the memory subsystem. In this way, the
number of memory accesses is highly reduced.

The memory subsystem, as in a conventional processor, is organized in a
hierarchical way. After the issue stage of the memory instruction the associ-
ated memory accesses reach the 16KB L1 data cache (see Figure 3), which
represents the first level of the hierarchy. Those load accesses that miss in
the L1 cache, access the multi-banked L2 cache through an all-to-all crossbar
switch. Each L2 bank is connected to two memory controllers that govern
the off-chip GDDR memory. To avoid channel conflicts and provide more
bandwidth, L2 banks at interleaved at the granularity of 256 bytes (8-bit
addresses).

Finally, in addition to the memory hierarchy discussed above, each CU in-
cludes a 64KB Local Data Share (LDS) memory that it is explicitly managed
by the application.

7

System Component Multi2Sim Model Restriction Proposed Extension

Miss Status Holding Registers Only in L1 caches of CPU cores
Supported in any cache level and
for both CPU and GPU cores

Memory Controller and GDDR
Only supports address interleaving Complete memory controller

among memory modules and GDDR model

Memory Request Coalesing Only merge support
Support for any merging

and coalescing combination

Cache Coherence Protocol Only NMOESI NMOESI and SI

Table 1: Summary of the proposed Multi2Sim extensions.

4. Modeled Memory Subsystem Components

The Multi2Sim simulator was originally developed for CPU research, and
then extended to support GPUs. This simulator models the GCN architec-
ture discussed above in detail, however, it lacks the modeling of the Southern
Islands memory subsystem, which as shown in this work can hugely impact
on performance.

Multi2Sim GPU memory subsystem shares the same source code as its
CPU counterpart. This way, which eases the modeling of heterogeneous
CPU-GPU processors and allows a more generic implementation, is probably
the main reason why some aspects of the memory hierarchy targeted to GPUs
are not accurately modeled.

In order to improve the accuracy of the Multi2Sim GPU model, we have
implemented four main extensions to the memory subsystem: i) Miss Status
Holding Registers (MSHR) file, ii) memory controller and off-chip GDDR
memory, iii) memory request coalescing mechanisms, and iv) a realistic GPU
cache coherence protocol. Table 1 summarizes the proposed extensions that
overcome the restrictions imposed by the current Multi2Sim implementation.
Note that all the modifications are orthogonal to the GPU core architecture.

As we show in Section 5, the lack of modeling of any of these components
incurs on a significant (positive or negative) deviation on the obtained per-
formance. Below, we present and discuss each of the modeled and evaluated
components.

4.1. MSHR File

GPUs generate a huge quantity of memory accesses, but only a limited
number of pending cache requests can be supported simultaneously. For this
purpose, current non-blocking caches implement MSHR files. Upon a cache

8

miss, the MSHR file is looked up to check if the target block is already being
fetched. On such a case, the missing memory access is queued into the MSHR
entry associated to the target block.

A single MSHR entry is in charge of tracking all the memory accesses
associated to a given cache block (i.e., all the requests whose data address
falls within the same block). Therefore, the maximum number of outstanding
memory accesses is limited to the number of MSHR entries. Consequently, if
all MSHR entries are busy and the missing cache block is not being fetched,
the memory access is stalled until an MSHR entry is released.

Multi2Sim MSHR Model. Multi2Sim only models the MSHR files
associated to first-level caches of the CPU cores. However, they are not
modeled in the GPU cores. Consequently, in the Multi2Sim GPU model, the
number of outstanding misses handled by any cache is virtually unbounded,
which is impractical in real devices. This implementation can present impor-
tant performance deviations, since the GPU throughput highly depends on
cache resources such as MSHRs [21].

Some recent works [22] consider the impact of modeling the MSHR file
at the L1 caches. However, to the best of our knowledge, there is no any
existing proposal modeling the MSHR associated to the L2 cache which, as
experimental results will show, can introduce significant deviations in the
execution time.

Modeled MSHR Extension. In this work we claim that, in order
to obtain accurate results, an MSHR file must be associated to each cache
structure in the memory subsystem. Our implementation allows the MSHR
files of distinct cache structures to present a different number of entries,
closely mimicking the hardware implementation of commercial machines.

Our implementation works as follows. When a cache access misses in the
L1 cache, the associated MSHR file is searched. If there is a hit in any MSHR
entry, the access is queued in the corresponding MSHR entry. Otherwise, a
free MSHR entry (if any) is allocated. After that, the request proceeds by
searching the block in the L2 cache. On an L2 cache miss, the described
MSHR mechanism is similarly applied and the missing block is requested
to the main memory. Finally, when the block is transferred to the caches
(L1 and L2), the associated MSHR entry in each cache is released and the
memory requests waiting for the block are notified that the data block has
been fetched.

In case there is not any free L1 MSHR entry available, the access waits

9

for a free entry in the MSHR waiting queue, from where they are accessed in
FIFO order as soon as an L1 MSHR file entry is freed. The L2 MSHR file is
handled differently to prevent deadlocks; if a request asks for an L2 MSHR
entry and no entry is available, a NACK signal is returned to L1, and the
operation is retried later. For this purpose, we implement an especial retry
queue.

4.2. Memory Controller and Off-chip GDDR Memory

As conventional DDR SDRAM memories, Graphics DDR (GDDR) mem-
ory contain multiple independent DRAM banks. A bank is implemented
as a matrix of DRAM cells. When a bank is accessed the whole row, also
known as memory page, is accessed. The accessed memory page is stored in
the DRAM sense amplifiers associated to the bank, also referred to as row
buffer.

The memory controller uses three commands that are issued sequentially
to a bank in order to access the target data [23]. First, the precharge com-
mand writes the contents actually stored in the row buffer to the bank and
precharge the row bitlines for accessing the target row. Second, the acti-
vate command accesses the row that contains the requested data and stores
it into the row buffer. Finally, the read/write command reads or write the
requested data in the row buffer. After issuing the last command, the mem-
ory controller can either keep the accessed memory page in the row buffer
(open page policy) or close the row buffer by issuing a precharge command
(closed page policy). Depending on the implemented page policy, the latency
of the next access varies. For example, with an open page policy, if the re-
quested block is already present in the row buffer (i.e., a row buffer hit), only
a read/write command needs to be issued by the memory controller, thus
the latency can be significantly reduced. However, a row buffer miss would
require to serialize the issuing of the three mentioned commands, roughly
trebling the latency of a row buffer hit.

In a bank access, the memory data bus is used to read from or write to
the memory device. In conventional DDR memories the memory bus width
is 64 bits, while in GDDR memories this width is typically 32 bits. Since the
typical cache block size is 64 bytes, transferring a cache block through the
data bus takes several bus clock cycles. To reduce this transfer time, it is
possible to increase the width of the memory bus. Since GDDR devices are
standardized to a 32-bit bus to work with wider data buses multiple devices

10

are required to operate in lockstep. For example, the Intel i875P memory
controller connects through a 128-bit memory data bus to matching pairs of
64-bit wide DIMMs (Dual In-Line Memory Modules). This paired DIMM
configuration is often referred to as dual channel configuration [24].

Multi2Sim Memory Model. Modern GPU systems integrate multiple
memory controllers. To increase memory parallelism as well as effective mem-
ory bandwidth, block addresses are interleaved among the deployed memory
controllers. Multi2Sim supports the modeling of this configuration since it
allows main memory to be organized as an array of interleaved memory mod-
ules. However, it does not model other important aspects affecting memory
latency and bandwidth such as banks and channels; thus bank contention
and channel contention are not considered. In addition it does not support
neither open nor closed page policies.

Integration of Multi2Sim and DRAMSim2. To provide a more
realistic simulation of the memory controller and off-chip memory, and to
check the impact of such an implementation on the obtained performance,
we have combined Multi2Sim with the DRAMSim2 simulator [25]. DRAM-
Sim2 is a recent cycle accurate memory system simulator that models DDR
memory systems (memory devices, memory controllers, and memory buses)
and supports configurations with multiple controllers and channels as well as
typical memory controller policies. Moreover, DRAMSim2 provides accurate
performance results that have been validated against real memory systems.

4.3. Memory Request Coalescing Mechanisms

Each memory instruction in the GCN architecture, as well as in most
modern GPUs, is able to work with up to 64 data items thus it can generate
up to 64 memory requests. Taking into account that hundred of memory
instructions can be in flight on the entire GPU, we can observe that such a
high number of memory requests would bottleneck the memory subsystem.

To deal with this shortcoming, current GPUs implement different schemes
that reduce the number of effective cache accesses. Additional queues and
memory instruction structures are required with this aim. The GCN microar-
chitecture implements the vector memory instruction buffer (VMB) in the
CU. This buffer keeps track of the memory instructions issued to the cache
until all their associated memory requests finish. For experimental purposes
(in absence of publicly available information) we assume each core has a 32-

11

entry VMB. That is, there can be up to 2048 (32×64) memory requests in
flight per CU at a given point in time.

Using the VMB and other structures, as described below, GPU architec-
tures implement mechanisms that group memory requests of the same type
(load or store) targeting the same cache line in a single memory access, so
reducing the effective number of memory accesses. This way greatly reduces
the pressure on the memory hierarchy.

Coalescing and Merging. Two main approaches, namely coalescing
and merging, can be found in modern GPUs to reduce the number of memory
accesses. The coalescing approach combines all the requests of the same
instruction into a single cache access in the VMU just before issuing the
instruction to the memory subsystem. For instance, the AMD Evergreen
[26, 27] implements coalescing of loads and stores.

In contrast, the merging approach is implemented in the memory sub-
system, decoupled from the VMU. The key difference is that due to GCN
microarchitecture constraints, requests from the same memory instruction
reach the cache at four different points of time. More precisely, a memory
instruction is executed in four phases (or subwavefronts) since a vector oper-
ator implements 16 lanes and the wavefront works with 64 data items. Thus
a single memory instruction can potentially generate up to four accesses to
the cache, even if all of them target the same cache line. A variant of this
approach is implemented in Multi2Sim as described below.

Multi2Sim Merging Model. Multi2Sim models a common generic
merging mechanism that applies in the L1 cache of its CPU and GPU imple-
mentations. This model can merge multiple memory requests regardless of
whether they have been generated by the same memory instruction or not.
In addition, some restrictions are applied to deal with memory coherence and
memory consistency issues.

Coalescing is not implemented in Multi2Sim, however, for the GPU archi-
tectures. As shown in Section 5, performing coalescing instead of merging,
can lead to significant deviations in the final results.

Modeled Coalescing & Merging Extension. We have implemented
a flexible coalescing & merging approach that allows to evaluate each ap-
proach either separately or in a combined way.

12

4.4. GPU Cache Coherence Protocol

Cache coherence protocols were originally designed to support data co-
herence among caches in CPU multiprocessors. These protocols tolerate a
moderate traffic of coherence requests, however, they are rather complex and
would strangle the performance if they were directly applied to GPUs, mainly
due to GPUs must be designed to support a massive amount of memory re-
quests generated by typical GPU applications. In short, neither GPUs nor
heterogeneous CPU-GPU systems work properly with typical CPU proto-
cols. To deal with this fact, alternative protocols have been devised both by
the academia and the industry.

NMOESI Coherence Protocol. To support GPU cache coherence,
Multi2Sim implements NMOESI, that extends the well-known MOESI pro-
tocol [28] implemented in a wide range of CPU multicores. NMOESI extends
this protocol to support memory coherence in both CPU and GPU applica-
tions, and it is especially suited for heterogeneous CPU-GPU systems with
a cache hierarchy shared among CUs and CPU cores.

Under MOESI, a given cache block can be in one of five main states
(M,O,E,S and I). NMOESI extends this protocol by adding a new non-
coherent state (N) to be used in GPUs. This state avoids non-coherent write
requests, which are common in GPU applications, generate coherence traffic.
When a cache write request is issued, the requested block is brought to the
L1 cache and its state is set to N, however, unlike typical write-invalidate
protocols, no copy of the block is invalidated in the other L1 caches. In
other words, this protocol allows non-coherent copies of a block to co-exist
in multiple L1 caches. In case a block in state N is replaced in a L1 cache,
only the data items of the block that have been locally modified are updated
in the L2.

SI Protocol Extension. We have modeled the protocol deployed in the
Southern Islands (SI) GPU family, hereafter SI protocol, which supports a
relaxed memory consistency model based on Release Consistency [29]. This
consistency model allows the compiler to specify when data modifications
performed by a given CU must be visible to other CUs, which enables the
implementation of simpler coherence protocols. To support the consistency
model, the opcode of a SI memory instruction includes 2 bits called GLC
(Global Coherent) and SLC (System Level Coherent), which indicate the
coherency scope.

When the SLC bit is enabled in a given instruction, the memory requests

13

that this instruction generates bypass the caches and directly access to main
memory. On the other hand, the GLC bit behavior depends on the memory
instruction type (load or store). If the GLC bit of a load instruction is set,
the L1 cache is bypassed and the blocks are searched in the L2 cache. In
contrast, store instructions write their data in the L1 cache regardless of the
GLC bit. After the write, if the GLC bit is set, the affected lines are evicted
and written back to L2 considering a dirty byte mask that specifies which
bytes in the line have been modified [16]. A similar behavior is followed when
a block is partially written regardless of the GLC bit. Note that evictions
do not add latency to the offending write since they are not on the critical
path. However, they increase the L1 cache miss ratio and thus the L2 cache
contention, which can affect the performance of subsequent memory accesses.

All writes performed to L1 also modify the L2 copy of the block (i.e., L1
follows a write-through policy). In this way, the same block can be modified
in L2 at the same time by several CUs, provided that each of them write
to different bytes of the block. In contrast, the L2 cache follows a write-
back policy; that is, the main memory is updated when a modified block is
replaced from the L2 cache.

We find no information in the checked AMD documentation [30, 16, 31]
about if the commercial device forces the inclusion principle among the L2
and the L1 caches, so we modeled the L2 cache as a non-inclusive cache
because it generates less traffic in the memory subsystem than an inclusive
cache.

5. Experimental Results

This section analyzes the impact of the discussed memory components on
the system performance. For this purpose, we extended the Multi2Sim simu-
lation framework version 4.2 by modeling (i) the discussed Southern Islands
memory architecture, and (ii) the four components to be studied on this ar-
chitecture. Experiments were launched with and without considering these
extensions. Note that Multi2Sim is an application-only simulator that only
considers the execution of the studied benchmark or user-level application,
removing OS and device drivers from the software stack. An important fea-
ture of application-only simulators is that they produce deterministic results,
thus the results presented in this work do not include confidence intervals.

Table 2 summarizes the main machine parameters. The OpenCL SDK
2.5 benchmarks adapted for Multi2Sim [32] has been used in the evaluation

14

GCN Configuration

Frequency 1GHz

Compute Units 10

Work-groups per CU 10

Wavefronts per Work-group 4

Work-items per Wavefront 64

LDS Unit 64 KB, 1 cycle, 32 ports

SIMD Unit 4 per CU, 16 lines, 4 cycles per instruction

Scalar Unit 1 per CU, 1 cycle per instruction

Vector Memory Unit 1 per CU, 32-entry VMB

Memory Hierarchy

All Caches LRU, 64B line, 2 ports, directory latency 1 cycles

L1 Scalar Cache 3 caches (shared by 4, 3, and 3 CUs)
16KB, 4 way, 1 cycle

L1 Texture Cache 1 per CU
1 per CU, 16KB, 4 way, 1 cycles

L2 Cache 2 modules
each module is 128KB, 16 way, 10 cycles

Main Memory 2 memory controllers per L2 module, 90 cycles

DRAMSIM CL=18, AL=17, BL=16, tRAS=42 ,tRCD=18,
configuration timings tRRD=9, tRC=60, tRP=18, tCCD=3, tRTP=3,
in cycles (tCK=0.667) tWTR=8, tWR=4, tRTRS=1, tRFC=278,

tFAW=35, tCKE=6, tXP=7, tCMD=1

Table 2: Cache-hierarchy and GPU configuration.

study. These benchmarks are a subset of the APP-SDK (Application Parallel
Programming - Software Development Kit) by AMD. Each benchmark is
composed of a x86 host program, which is compiled with Multi2Sim OpenCL
library, and a pre-compiled version of the respective OpenCL Device Kernel.
Three versions are available: x86, Evergreen and Southern Islands.

Performance has been quantified in terms of Operations Per Cycle (OPC)
for comparison purposes. This metric accounts the number of scalar opera-
tions each GPU instruction performs, averaged per cycle, during the work-
load execution. For instance, if 1 vector instruction accounts for 64 individual
scalar operations, this metric accounts for 64 instead of 1. Notice that OPC is
equivalent to the IPC metric used when evaluating CPU performance. Thus
an X% improvement in the OPC speeds up the GPU execution in the same

15

Figure 4: Impact of L1 and L2 MSHR file sizes on performance.

factor.
Below the four aforementioned memory subsystem components are eval-

uated in isolation, that is, each one without considering the effects of the
remaining ones.

5.1. MSHR File

This section studies the impact of the MSHR file size on the final perfor-
mance. Experiments were launched varying the size of both L1 and L2 MSHR
files. There is not public information about the MSHRs size implemented
in commercial GPUs, but recent studies [21][33] have empirically determined
that this size is as large as 32 or 64 entries in the L1 of some recent GPUs.
Many values have been explored but only a subset of them is presented for
illustrative purposes. Regarding the L1 cache, we plot the results for 16-,
32-, and 64-entry MSHR files, and for each of them six MSHR sizes (16, 32,
64, 96, 128, and 256 entries) are presented for the L2 cache. This means
that 18 different MSHR configurations are studied. The performance of each
MSHR configuration is compared to the baseline machine without MSHR
files. Notice that not modeling any MSHR file means that the system can
support an unbounded number of outstanding cache misses.

Figure 4 depicts the relative performance (i.e. OPC) of each MSHR
configuration with respect to the baseline. As observed, the MSHR size

16

has a high influence on the results of most of the benchmarks. The largest
performance variation is due to the L2 MSHR file size. For example, in
most applications, the smallest tested L2 MSHR file (16 entries) can reduce
the performance below 30% of the baseline performance. Notice that relative
OPC is the inverse of the relative execution time (speedup or slowdown). For
instance, a relative OPC of 20% over the baseline means that the execution
time will take 5× longer than the baseline (e.g., MersenneTwister with a 16-
entry L2 MSHR file). As expected, increasing the L2 MSHR file size always
increase the performance but the improvements are minor for sizes larger
than 96 entries in most benchmarks.

The L1 MSHR file size has a significant impact on the OPC when using L2
files larger than 64 entries in some benchmarks (FastWalsh, Floydwarshall,
Reduction, and ScanLargeArrays). Contrary to L2, increasing the number
of L1 entries beyond a given value can negatively impact the performance.
This situation happens in DWT and FastWalsh. We have detected that
this behavior is caused by contention in the L2 coherence directory. When
a memory request cannot access the target block directory in the L2, the
request is nacked and retried later, so increasing its latency. A relatively
large L1 MSHR file size (e.g. 64 entries) causes a huge amount of requests to
contend for L2, increasing the latency beyond values that cannot be hidden
by the GPU massive parallelism. This also causes that, in some benchmarks
(e.g., DWT), the performance when limiting the MSHR file can be higher
than that of the baseline.

5.2. Memory Controller and Off-chip GDDR Memory

Implementation of current DRAM memory devices and memory con-
trollers introduces a new contention level which causes a high variability
in both memory access latencies and effective bandwidth. This means that
the modeling of these components plays a key role in order to obtain repre-
sentative performance.

This section explores how these components affect the performance vary-
ing the number (1, 2 and 4) of memory controllers connected to each L2
and the number of physical channels attached to each memory controller.
Figure 5 plots the normalized performance over the baseline which does not
model any of them. Each configuration is labeled as xMC-yPC, where x is
the number of memory controllers and y is the number of physical channels.
When only a single MC is available, it is shared by both L2 modules present
in the system, while if there are more than one MC, each L2 is connected to

17

Figure 5: Impact of the number of memory controllers, physical channels,
and page policy on performance.

half of them. For instance, in the configurations with 4 MCs, two of the MC
are connected to the first L2 module and the remaining ones to the other L2
module.

As observed, modeling the memory controllers and the GDDR devices
hugely impacts on the final performance. Only one of the applications (Sim-
pleconvolution) is not significantly affected. Comparing the open page policy
versus the closed page policy, it can be appreciated that similarly as happens
in CPU workloads [34], leaving the page open after a memory access typi-
cally offers better performance, especially when the application exhibits good
spatial locality, which is the case of typical GPU applications. Regarding the
number of memory controllers and physical channels, the figure shows that
the performance of the 1MC-2PC configuration matches that of 2MC-1PC
while the performance of 2MC-2PC equals that of 4MC-1PC. In principle,
increasing memory bandwidth by adding additional memory controllers in-
stead of physical channels provides more access flexibility because memory
controllers are logically independent while physical channels connected to the
same memory controller work in lockstep, however, it involves more hardware
complexity and does not translate to performance benefits in GPU applica-
tions. Therefore, results demonstrate that this complexity is not needed
when dealing with GPU workloads.

In general, adding more memory controllers or physical channels increase

18

Figure 6: Percentage of combined memory requests by coalescing with respect
to merging.

Figure 7: Speedup of coalescing with respect to merging.

the performance but this increase is reduced as the memory bandwidth ceases
to be a performance bottleneck. We found that implementing four or more
memory channels does not provide significant performance benefits for most
applications.

5.3. Memory Request Coalescing Mechanisms

This section compares the impact of coalescing versus merging on the
obtained performance. Figure 6 and Figure 7 show the relative number of
combined memory requests and the relative OPC, respectively, of the coalesc-
ing approach over merging. It can be observed that the number of combined
requests is quite similar in 9 out of 12 benchmarks; however, important dif-
ferences appear between both approaches in some benchmarks that rise up
to about 15% in RecursiveGaussian and 75% in MatrixTranspose. Moreover,

19

Figure 8: Impact of the coherence protocol: SI over NMOESI.

these values turn into important differences in performance (OPC), which
grows by 3.4× and 1.6×, respectively. This happens because the merging
approach sometimes is not able to combine all the memory requests pro-
duced by a sequence of subwavefronts that target the same block. This often
happens when the memory requests from a subwavefront leave the cache
write queue (i.e., access to the cache) before subsequent memory requests
enter the queue. This situation cannot occur if a coalesce mechanism is used
because the requests are combined before reaching the write queue.

5.4. Cache Coherence Protocol

In Section 4.4 we discussed two coherence protocols applied to GPUs,
NMOESI –with five main states– from the academia that extends the well-
known MOESI protocol and SI –with only two main states–, which is much
simpler and has been deployed in recent commercial devices.

In this section we compare the performance of both protocols across the
studied workloads. Figure 8 shows the results. As observed, the SI protocol,
in spite of its simplicity, improves the performance over NMOESI by 50%
in half of the applications; moreover, in two of them almost doubles the
performance of NMOESI. Nevertheless, NMOESI achieves significant benefits
in two of the applications.

We looked into the rationale behind these results. We found two main
critical aspects related to the details of each protocol implementation that
make difficult to find a single cause that explains the performance differences
between both protocols.

The first aspect refers to the cache write miss policy. While the SI proto-
col implements a no-write allocate L1 policy (i.e. the block is not fetched to

20

the L1 cache on a write miss), the Multi2Sim implementation of the NMOESI
protocol follows a write allocate policy. Consequently, the SI protocol incurs
in a higher number of L1 misses, which does not necessarily yield the sys-
tem to performance losses since there is a tradeoff among cache space, data
locality (e.g. blocks fetched and not reused), and miss penalty.

The second significant aspect is that the L2 cache directory works differ-
ently in both protocols. In the NMOESI protocol, when a block is locally
written for the first time or replaced in the L1 cache, the L2 directory must
be locked to update the coherence information (e.g. the sharer vector). In
the SI protocol, this action is not required. Consequently, a cache write
miss in the SI protocol usually take less time than in the NMOESI protocol.
Moreover, because of the SI protocol does not have to update the directory, a
cache write miss can take less time than a write hit in the NMOESI protocol.

To sum up, the internal hardware structures work differently in both
protocols which makes misses and hits to take different time depending on
the underlying protocol.

6. Putting it All Together and Validation

Once the impact of each memory component on performance has been
studied in isolation, this section pursues a twofold objective: i) to analyze the
combined effect when the components act all together simultaneously, and ii)
to check how the proposed mechanisms improve the error deviation that the
original simulation framework introduces with respect to real hardware. For
this purpose, the simulator configuration file was tuned to model the AMD
Southern-Islands 7870HD GPU, which is the GPU that we have available.
Then, the results of the all together model were compared against both the
original Multi2Sim simulator and the real AMD GPU.

Regarding the all together configuration, we must select for each memory
component the configuration that best fits the real hardware. In this re-
gard, the all together system has been configured as follows. Coalescing and
SI protocol have been chosen instead of merging and NMOESI since they
mimic the real GPU hardware. The memory controller, based on official
AMD information [30], has been configured to four double-channel memory
controllers, one per L2 cache. Finally, the MSHR files for the L1 cache and
for the L2 cache have been set to 32 and 96 entries, respectively, since they
are realistic values as inferred in [21] and [33].

21

Notice that the results of the all together configuration cannot be com-
pared against those of individual memory components, because the effects of
the all together system do not match the sum of the effects of the individual
components. In fact, we realized that many times the effect of a given compo-
nent compensates that of another component (e.g. a positive effect versus a
negative one) or overlap among them. Therefore, the aforementioned objec-
tives are realized in the same experiment, which shows that our modeled all
together machine behaves closer to the results obtained in the real hardware
than the results provided by the original simulation framework.

For validation purposes we proceeded as follows. We measured the execu-
tion time that each benchmark lasts in the AMD Southern-Islands 7870HD
GPU, in the original Multi2Sim simulation framework, and in our all together
model. Then, we analyzed the deviation of the execution time gathered in
Multi2Sim from the measured in the real GPU. Finally, we quantified how
all together improves this deviation, bringing the simulated execution times
closer to the real hardware. Figure 9 shows the results (in percentage). As
observed, with the exception of Reduction and SimpreConvolution, the all
together model improves (i.e. reduces) the Multi2Sim deviation in the range
between 12% and 96%.

We analyzed the contribution of each component to the all together accu-
racy and found that the SI protocol is the component that most contributes,
on average, to the overall accuracy. It shows the major contribution to the
accuracy in most of the benchmarks with respect to the original Multi2Sim
simulation framework. Examples of benchmarks showing this behavior are
MersenneTwister and QuasiRandomSequence, where the contribution of this
component represents nearly the total amount of the accuracy achieved by
the all together configuration.

7. Conclusions

In this work we have shown that accurately modeling the memory subsys-
tem in a current state-of-the-art simulator should be done in order to obtain
representative results.

We have identified four main components of the on-chip and off-chip mem-
ory hierarchy presenting a significant impact on the performance of current
GPUs. The identified components are: i) the MSHR file, ii) the memory
controller and GDDR DRAM modules, iii) coalescing mechanisms, and iv)
the coherence protocol,

22

Figure 9: Reduction of execution time deviation between original and allto-
gether Multi2Sim.

To evaluate the impact of each of them we have extended the state-of-the-
art Multi2Sim simulation framework. Below we draw the main conclusions
for each studied component. First, modeling the MSHR file can introduce
important performance drops over an unbounded MSHR file. For instance,
a small file can reduce the performance in a factor of 5×. Second, the num-
ber of memory controllers and physical channels can reduce the performance
over a fixed memory latency; in addition, the results widely vary depending
on the assumed memory controller. For instance, modeling a single memory
controller can strangle the performance. Third, coalescing can bring impor-
tant performance differences over merging in some applications, since the
number of L1 accesses can widely vary. Fourth, we have compared two state-
of-the-art GPU protocols and we have found that the simple SI protocol,
almost doubles the performance in some applications over the much complex
NMOESI protocol.

Finally, we have compared the accuracy of the proposed extensions and
the original Multi2Sim with respect to the AMD Southern-Islands 7870HD
GPU. Experimental results show that our implementation achieves a signif-
icant accuracy enhancement over the original simulator.

Acknowledgments

This work was supported by the Spanish Ministerio de Economı́a y Com-
petitividad (MINECO), by FEDER funds under Grant TIN2012-38341-C04-
01, and by the Intel Early Career Faculty Honor Program Award.

23

Authors would like to thank Rafael Ubal, Dana Schaa, and Amir Kavyan
Ziabari for this help during the development of this work.

References

[1] S. Huang, S. Xiao, W. Feng, On the energy efficiency of graphics process-
ing units for scientific computing, in: Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, 2009, pp. 1–8.
doi:10.1109/IPDPS.2009.5160980.

[2] Top500 Supercomputer Sites, http://top500.org.

[3] Q. Huang, Z. Huang, P. Werstein, M. Purvis, Gpu as a general purpose
computing resource, in: 2008 Ninth International Conference on Parallel
and Distributed Computing, Applications and Technologies, 2008, pp.
151–158. doi:10.1109/PDCAT.2008.38.

[4] A. Branover, D. Foley, M. Steinman, Amd fusion apu: Llano, IEEE
Micro 32 (2) (2012) 28–37. doi:10.1109/MM.2012.2.
URL http://dx.doi.org/10.1109/MM.2012.2

[5] R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli, Multi2sim: A simulation
framework for cpu-gpu computing, in: Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’12, ACM, New York, NY, USA, 2012, pp. 335–344.
doi:10.1145/2370816.2370865.
URL http://doi.acm.org/10.1145/2370816.2370865

[6] W. Fung, I. Sham, G. Yuan, T. Aamodt, Dynamic warp formation and
scheduling for efficient gpu control flow, in: Microarchitecture, 2007.
MICRO 2007. 40th Annual IEEE/ACM International Symposium on,
2007, pp. 407–420. doi:10.1109/MICRO.2007.30.

[7] A. Bakhoda, G. Yuan, W. Fung, H. Wong, T. Aamodt, Analyzing cuda
workloads using a detailed gpu simulator, in: Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE International Sympo-
sium on, 2009, pp. 163–174. doi:10.1109/ISPASS.2009.4919648.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,

24

K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, D. A. Wood, The
gem5 simulator, SIGARCH Comput. Archit. News 39 (2) (2011) 1–7.
doi:10.1145/2024716.2024718.
URL http://doi.acm.org/10.1145/2024716.2024718

[9] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, V. J. Reddi, Gpuwattch: Enabling energy optimizations
in gpgpus, SIGARCH Comput. Archit. News 41 (3) (2013) 487–498.
doi:10.1145/2508148.2485964.
URL http://doi.acm.org/10.1145/2508148.2485964

[10] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, N. Jouppi, Mcpat:
An integrated power, area, and timing modeling framework for multicore
and manycore architectures, in: Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, 2009, pp. 469–
480.

[11] AMD Accelerated Parallel Processing (APP) Software Development Kit
(SDK) .
URL http://developer.amd.com/sdks/amdappsdk/

[12] S. Collange, M. Daumas, D. Defour, D. Parello, Barra: A
parallel functional simulator for gpgpu, in: Modeling, Analysis
Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2010 IEEE International Symposium on, 2010, pp. 351–360.
doi:10.1109/MASCOTS.2010.43.

[13] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard,
D. Penry, O. Temam, N. Vachharajani, Unisim: An open simulation
environment and library for complex architecture design and collabo-
rative development, Computer Architecture Letters 6 (2) (2007) 45–48.
doi:10.1109/L-CA.2007.12.

[14] R. Ubal, J. Sahuquillo, S. Petit, P. Lopez, Multi2Sim: A Sim-
ulation Framework to Evaluate Multicore-Multithreaded Processors,
in: Computer Architecture and High Performance Computing, 2007.
SBAC-PAD 2007. 19th International Symposium on, 2007, pp. 62 –68.
doi:10.1109/SBAC-PAD.2007.17.
URL http://dx.doi.org/10.1109/SBAC-PAD.2007.17

25

[15] Heterogeneous System Architecture foundation .
URL http://www.hsafoundation.com/standards/

[16] A. R. G. Technology, AMD Graphics Cores Next (GCN) Architecture
White Paper (Jun. 2012).

[17] C. Nvidia, Nvidias next generation cuda compute architecture: Fermi,
Comput. Syst 26 (2009) 63–72.

[18] Khronos Group, OpenCL-The open standard for parallel programming
of heterogeneous systems.
URL http://www.khronos.org/opencl

[19] J. E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming stan-
dard for heterogeneous computing systems, Computing in science & en-
gineering 12 (1-3) (2010) 66–73.

[20] Khronos Group, The OpenCL Specification (Nov. 2015).
URL https://www.khronos.org/registry/cl/specs/opencl-2.1.

pdf

[21] W. Jia, K. A. Shaw, M. Martonosi, MRPB: memory request pri-
oritization for massively parallel processors, in: 20th IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA
2014, Orlando, FL, USA, February 15-19, 2014, 2014, pp. 272–283.
doi:10.1109/HPCA.2014.6835938.
URL http://dx.doi.org/10.1109/HPCA.2014.6835938

[22] F. Candel, S. Petit, J. Sahuquillo, J. Duato, Accurately modeling
the gpu memory subsystem, in: High Performance Computing Simu-
lation (HPCS), 2015 International Conference on, 2015, pp. 179–186.
doi:10.1109/HPCSim.2015.7237038.

[23] C. J. Lee, O. Mutlu, V. Narasiman, Y. N. Patt, Prefetch-aware
dram controllers, in: Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 41, IEEE
Computer Society, Washington, DC, USA, 2008, pp. 200–209.
doi:10.1109/MICRO.2008.4771791.
URL http://dx.doi.org/10.1109/MICRO.2008.4771791

26

[24] B. Jacob, S. Ng, D. Wang, Memory Systems: Cache, DRAM, Disk,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[25] P. Rosenfeld, E. Cooper-Balis, B. Jacob, Dramsim2: A cycle accurate
memory system simulator, IEEE Comput. Archit. Lett. 10 (1) (2011)
16–19. doi:10.1109/L-CA.2011.4.
URL http://dx.doi.org/10.1109/L-CA.2011.4

[26] Evergreen Family Instruction Set Architecture .
URL http://developer.amd.com/wordpress/media/2012/10/AMD_

Evergreen-Family_Instruction_Set_Architecture.pdf

[27] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, D. Ginsburg, OpenCL
Programming Guide, 2nd Edition, Addison-Wesley Professional, 2013.

[28] P. Sweazey, A. J. Smith, A class of compatible cache consistency proto-
cols and their support by the ieee futurebus, in: Proceedings of the 13th
Annual International Symposium on Computer Architecture, ISCA ’86,
IEEE Computer Society Press, Los Alamitos, CA, USA, 1986, pp. 414–
423.
URL http://dl.acm.org/citation.cfm?id=17407.17404

[29] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
J. Hennessy, Memory consistency and event ordering in scalable shared-
memory multiprocessors, SIGARCH Comput. Archit. News 18 (2SI)
(1990) 15–26. doi:10.1145/325096.325102.
URL http://doi.acm.org/10.1145/325096.325102

[30] AMD, AMD Accelerated Parallel Processing OpenCL Programming
Guide, http://developer.amd.com/wordpress/media/2013/07/

AMD_Accelerated_Parallel_Processing_OpenCL_Programming_

Guide-rev-2.7.pdf (Dec. 2013).

[31] Southern Islands Series Instruction Set Architecture .
URL http://developer.amd.com/wordpress/media/2012/12/AMD_

Southern_Islands_Instruction_Set_Architecture.pdf

[32] AMD Accelerated Parallel Processing (APP) Software Development Kit
(SDK) .
URL http://developer.amd.com/sdks/amdappsdk/

27

[33] C. Nugteren, G.-J. van den Braak, H. Corporaal, H. Bal, A detailed gpu
cache model based on reuse distance theory, in: High Performance Com-
puter Architecture (HPCA), 2014 IEEE 20th International Symposium
on, 2014, pp. 37–48. doi:10.1109/HPCA.2014.6835955.

[34] P. Navarro, V. Selfa, J. Sahuquillo, M. E. Gómez, C. G. Requena, Row
tables: Design choices to exploit bank locality in multiprogram work-
loads, in: 23rd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP 2015, Turku, Finland,
March 4-6, 2015, 2015, pp. 22–26.

28

