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• A novel framework that supports link-prediction algorithms is proposed.

• The programming style is similar to the fork-join style and thus, easy to use.

• Experiments showed that the framework is fast, compared to other two frameworks.

• However, network usage is slightly higher than other frameworks.

1

*Highlights (for review)



DPM: A novel distributed large-scale social graph processing framework
for link prediction algorithms

Alejandro Corbellinia,∗, Daniela Godoya, Cristian Mateosa, Silvia Schiaffinoa, Alejandro Zuninoa

aISISTAN-CONICET, UNICEN, Paraje Arroyo Seco - Campus Universitario, CP7000, Tandil, Buenos Aires, Argentina

Abstract

Large-scale graphs have become ubiquitous in social media. Computer-based recommendations in these
huge graphs pose challenges in terms of algorithm design and resource usage efficiency when process-
ing recommendations in distributed computing environments. Moreover, recommendation algorithms for
graphs, particularly link prediction algorithms, have different requirements depending of the way the un-
derlying graph is traversed. Path-based algorithms usually perform traversals in different directions to build
a large ranking of vertices to recommend, whereas random walk-based algorithms build an initial subgraph
and perform several iterations on those vertices to compute the final ranking. In this work, we propose a
distributed graph processing framework called Distributed Partitioned Merge (DPM), which supports both
types of algorithms and we compare its performance and resource usage w.r.t. two relevant frameworks,
namely Fork-Join and Pregel. In our experiments, we show that in most tests DPM outperforms both
Pregel and Fork-Join in terms of recommendation time, with a minor penalization in network usage in
some scenarios.

Keywords: Distributed Graph Processing, Recommendation Algorithms, Online Social Networks

1. Introduction

The suggestion of friends, contacts or followees in social networks is one of the most prominent prob-
lems in today’s Online Social Networks (OSNs). This type of recommendation serves multiple purposes,
which include reducing users effort in the creation of their own personal networks, improving the quality of
user engagement with social sites, favoring information spreading and contributing to the network expan-
sion. In fact, the “Who to Follow” followee recommender service of Twitter is responsible for more than
one-eighth of all new connections and it has been one of the major drivers of the company revenue [1].

The problem of suggesting users in an OSN is usually casted to a link prediction problem [2], which
tries to infer a non-existent or missing relationship between two persons that is likely to occur in the future.
Methods for link prediction use topology-based similarity metrics that can be categorized into path-based,
neighbor-based (neighbor-based can be seen as a special case of path-based algorithms of length two) and
random walk-based. Several social network recommendation algorithms based on these notions can be
found in the literature [1, 3, 4].

Computing link prediction algorithms on real-world, large-scale social networks poses challenges re-
garding algorithm scalability considering the inherent huge resource needs (i.e. memory, CPU cores) and
performance requirements (e.g. providing fast, real-time recommendations). Most link prediction algo-
rithms, both commercial ones and those developed in the academia, have been implemented as single-
machine, single-threaded applications [1, 5]. In consequence, these implementations struggle with scala-
bility issues as the underlying social graph grows, which is commonplace in OSNs populated by a myriad
of users.
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The natural choice to process large amounts of social data are distributed graph frameworks. In par-
ticular, the implementation of link prediction algorithms can be adjusted to different classic distributed
processing models, such as MapReduce [6], BSP [7] or, specifically for graphs, Pregel [8]. Such process-
ing models prescribe certain primitives that govern how sub-computations are created and coordinated.
However, in terms of graph operations, path-based algorithms have completely different requirements than
random walk (RW)-based algorithms. The first ones perform graph traversal operations for a small amount
of steps, while the second ones run a successive number of iterations over subgraphs. Hence, counting with
the adequate processing framework directly impacts on the performance of the recommendation algorithm.

For graph processing, a generic model such as Fork-Join (FJ) [9] provides a classic divide-and-conquer
programming style, in which vertex processing is managed by a parent job that creates and distributes
independent tasks and merges their computed results. On the other hand, models like Pregel provide a
vertex-centric programming style and distribute the tasks of merging results among all computing nodes.
These frameworks have the disadvantage of being oriented to certain types of algorithms. FJ is usually
a good choice for algorithms that execute over a small amount of steps, whereas in the case of iterative
algorithms, FJ suffers from the bottleneck produced by the centralized join of results. Pregel, instead,
performs well with iterative algorithms but it is not a good fit for algorithms that traverse paths for a small
amount of steps. Moreover, algorithm code using the vertex-centric model is usually harder to develop and
comprehend due to the message-based communication of results [10].

In this paper, a novel graph processing model called Distributed Partitioned Merge (DPM) is proposed.
DPM is a hybrid model since it combines the simplicity of the FJ programming style and the perfor-
mance and scalability provided by the Pregel framework. In this regard, the main objective of DPM is to
quickly compute path-based and RW-based link prediction algorithms, while still providing an easy-to-use
programming style as well as a seamlessly integration with a platform specifically designed for providing
support (e.g. helping the developer to create new algorithms by combining built-in well-known algorithms)
for the development of recommender systems in OSNs [11].

In addition, a thorough comparison of FJ, Pregel and DPM for supporting the distributed computation of
various link prediction algorithms from the literature was carried out considering the requirements of each
type of algorithm (path-based vs. RW-based) in terms of recommendation time and resource consumption.
These experiments were performed on a large, real-world, snapshot of the Twitter social network [12]
containing 40 million users and 1.4 billion relationships.

The rest of this article is organized as follows. Section 2 discusses related work regarding distributed
large-scale graph processing for recommender systems. Section 3 describes FJ, Pregel, and the proposed
model. Section 4 reports the experimental setting and results obtained. Finally, conclusions are stated in
Section 5.

2. Related Work

There are several studies that consider ad-hoc solutions as well as framework-based solutions for dis-
tributed graph processing. Lumsdaine et al. [13] analyzed the challenges in general-purpose distributed
graph processing and considered two ad-hoc implementations over different distributed memory architec-
tures. Sui et al. [14] built an ad-hoc implementation of low-rank approximation of graphs and applied it
to link prediction. Unfortunately, without proper background, ad-hoc implementations are usually hard to
reuse and maintain.

There are several general-purpose frameworks that have been used to process large-scale graphs in link
prediction. Frameworks such as MapReduce [6], Fork-Join [15] or RDD (Spark) [16] have been applied to
various graph-related processing problems [17–19]. Other frameworks, like Pregel [8] or GraphLab [20]
are specifically designed for graph-based algorithms [21, 22]. DPM differs from other frameworks in its
ability to support both types of link prediction algorithms.

The comparison of such processing frameworks is difficult due to their design differences. For example,
the original MapReduce and Pregel specifications based their failure recovery mechanisms on checkpoint-
ing to persistent storage. Thereby, in these frameworks the penalty of using I/O is very high in comparison
to RDD-based solutions such as GraphX. Nevertheless, there are some studies that compare processing
frameworks, disregarding this unfairness. Kajdanowicz et al. [23] performed a thorough comparison of the
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BSP and MapReduce frameworks both in terms of performance and design drivers. Similarly, Han and
Daudjee [24] restricted the performance comparison to Pregel-like framework implementations. The work
presented by McCune et al. [25] focused on vertex-centric frameworks (a.k.a. “think like a vertex” frame-
works) and makes a distinction from the classic BSP-based frameworks and graph databases. In contrast,
the experiments carried out in this work try to establish a common ground of comparison by executing
the three selected frameworks (FJ, Pregel and DPM) over the same distributed computing platform [11],
sharing the same network communication and graph storage support. The fairness in the comparison is of
major importance for determining the right framework for each algorithm.

3. Distributed Partitioned Merge

Developing distributed link prediction algorithms is a difficult task. Thus, the development of these
algorithms is often based on distributed processing platforms that provide abstractions that isolate the user
from the actual underlying distributed support (both software and hardware). In fact, most distributed
platforms expose a programming model or framework that simplifies algorithm development while, at the
same time, enforces the correct use of the platform. Even so, the choice of which framework is better for a
given algorithm depends on the performance requirements and the ease of use of the programming model.
One of the drivers involved in this decision is the type of link prediction algorithm being developed.

For example, path-based link prediction algorithms fit naturally under the divide-and-conquer strategy
and, thus, a Fork-Join [15] framework (also known as Split and Merge or Split and Reduce in some frame-
works1) may be a good fit. The main entity in a distributed FJ algorithm is the FJ job, which represents
the computation as a whole. In the fork stage, the FJ job is responsible of creating (or forking) parallel
tasks to be executed in remote nodes. Once a child task finishes its execution, it sends its results back to
the parent job. In this so-called join stage, the parent job performs awaits for all the child tasks to finish
and then merges their results. The main disadvantage of this framework is that merging sub-results in a
single node produces a bottleneck that may negatively impact on algorithms with multiple steps, such as
RW-based link prediction algorithms.

RW-based algorithms, on the other hand, may benefit from frameworks that support iterative algo-
rithms. Most of these frameworks are based on the “think like a vertex” or vertex-centric programming
models. Pregel [8], one of the most relevant vertex-centric frameworks, provides a message-oriented model
that defines a vertex function interface that the user may realize to process his/her graph algorithm. The
vertex function is applied to each vertex separately. From this perspective, a vertex computes its associated
results and communicates them by sending messages to other vertices. Although by following this model
some algorithms are simple to implement, developing under this type of model is generally harder to un-
derstand than a simple fork and join model, because vertex-centric algorithms are modeled as a distribution
or flood of messages between vertices [10].

Pregel also prescribes a framework for distributed graph processing. At its core, Pregel uses a logical
synchronization barrier that establishes the iteration boundaries and avoids inconsistent access to results,
a technique based on the well-known BSP (Bulk-Synchronous Parallel) [7] framework. A Coordinator
component is responsible for managing the whole computation, notifying workers when the next iteration
must start. On startup, each worker is assigned a graph partition and activates (i.e. it is scheduled for
execution). This activation mechanism allows computing each vertex for a number of iterations until the
vertex function calls the voteToHalt function, which deactivates a vertex. A vertex may be reactivated if it
receives a new message. Finally, after the computation is completed, workers send the sub-results to their
peers.

The Distributed Partitioned Merge (DPM) framework proposed in this paper aims at reducing the per-
formance bottleneck observed in the Fork-Join framework while still keeping a divide and conquer ap-
proach. The MapReduce [6] approach to avoid the merge bottleneck is to split –or “shuffle”– the output
of each map operation in R partitions so that workers may reduce sub-results themselves without losing

1For example, GridGain’s TaskSplit, http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/
GridComputeTaskSplitAdapter.html
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Figure 1: Distributed Partitioned Merge model: Overview

locality. Similarly, in Pregel, the output of each worker is divided according to the assignment of graph
partitions in order to exploit the locality of the results on each iteration.

Figure 1 shows an example of a DPM computation step. In this simple setup, three workers (labeled
Worker1, Worker2 and Worker3) process a user-defined algorithm over a graph G that consists of 30 ver-
tices. The first stage of DPM is the Partitioning Stage (shown in (1) in the Figure), in which the DPM Job
(the master component that controls the execution) splits the input vertex list V = {v | vεG} into a set of
partitions (from P1 to P3) that are assigned to each Worker, along with a copy of the user-defined UserTask
(i.e. the user-defined link-prediction algorithm). It is worth noting that in our experiments, the partition-
ing strategy assigns vertices to where their data is stored, in order to keep data locality. In this example,
Worker1 stores vertices from V1 to V10, Worker2 from V11 to V20, and so on. Optionally, a Result Combiner
component may be passed to DPM to merge different subresults belonging to a single vertex, reducing
memory and network usage.

Once the Partitioning Stage is completed, each worker may execute the UserTask on its assigned par-
tition, beginning the Distributed Merge Stage. Figure 1 shows the workflow for Worker1. Initially, those
(vertex,subresult) pairs emitted from the UserTask are combined into a map of vertices and results (2). In
this example, Worker1 generates results for all vertices, from 1 to 30, but depending on the algorithm, input
vertices may not necessarily be part of the output (e.g. the UserTask may generate results for some vertices,
or even no results at all). Once the execution is completed, the current sub-results are partitioned (3) and
sent to their corresponding Workers (4). Naturally, those sub-results belonging to the current Worker are
stored locally. In parallel, the list of vertices that were part of the output, are sent to the DPM Job (5) so
that they can be processed in the next step. On any given moment, other workers may finish their execution
and send their sub-results to other workers. In this example, Worker1 receives results from Worker2 and
Worker3, and combines them with its local sub-results (6).

In opposition to Pregel, the management of the active vertices is centralized, which produces a bottle-
neck as the DPM job needs to join the sets of active vertices into one final list, which will be used to start
the next iteration. As a result, each worker stores the results of the computation and the worker responsible
for the whole DPM Job keeps the list of active vertices.

Centralizing computation is often harmful in distributed systems, however, merging a set of vertex iden-
tifiers is much cheaper than merging a table of results (e.g. a vertex and its associated results). Additionally,
this decision reduces the complexity of the worker implementation. In Pregel, workers not only manage
active vertices but also handle individual messages sent to each vertex, resulting in a performance and code
maintenance hotspot. On the other hand, the amount of vertices in real-world graphs is often exponentially
smaller than the amount of edges [12]. Due to the fact that most graph algorithms are edge-based, the
penalization from managing active vertices in a single location is often negligible in comparison to edge
processing.

4. Experimental Evaluation

This Section presents the experimental setup and the obtained results, being the latter organized into
path-based algorithms and random walk-based algorithms.
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Algorithm Equation

TFR sAR
xy = ((AA′)•T )A)•T where T = (1−A− I)

LocalPath sLP
xy = A2 +αA3

Katz sKatz
xy = ∑∞

l=1 β l ·
∣∣pathl

xy

∣∣ = βA+β 2A2 +β 3A3 + . . .

Table 1: Path-based algorithms considered in the experiments.

4.1. Setting

The algorithms considered in this work were developed in Graphly [26]2, a distributed multi-model
platform written in Java, which already included the Fork-Join and Pregel programming models. Besides,
Graphly abstracts many operations commonly used in recommendation algorithms and provides a simple
distributed Graph storage that is used by the different models. In the context of the current work, DPM was
developed as a third model, leveraging some of the networking and storage tools already implemented in
Graphly. Consequently, the comparison between programming models is performed over the same support,
providing a fair comparison scenario.

Three path-based link prediction algorithms, listed in Table 1, were selected as representatives of this
type of algorithms for our experiments. The first algorithm by Armentano et al. [3] called TFR is a simple
path-based algorithm to find similar users in Twitter by using the follower/followee graph structure in the
social network of the target user. The algorithm rests on the hypothesis that users who share the same
followees are similar and, thus, followees from one user can be recommended to another user. The second
algorithm considered is the LocalPath (LP) index [27]. LP uses information of local paths with length 2
and length 3 in order to exploit additional information of the neighbors within length 3 distances to current
vertex. The third algorithm compared is Katz, which is based on the ensemble of all paths between two
vertices [28]. The paths are exponentially damped by their lengths to give the shorter paths higher scores.
The value of β must be lower than the inverse of the largest eigenvalue of A, so that factor β lAl with l→∞
is 0, and thus the Katz index converges.

Two well-known random walk-based link prediction algorithms were selected: HITS and SALSA.
HITS stands for Hypertext Induced Topic Search [29]. HITS is rooted on a mutual reinforcing relationship
between the notions of hubs and authorities. Authorities estimate the node value based on the incoming
links, while hubs estimate the node value based on outgoing links. SALSA (Stochastic Approach for Link-
Structure Analysis) [30] combines the random walk idea of PageRank [31] with the hub and authority
notions of HITS. However, SALSA removes the dependency between hub and authority score computation
by adding a two-step random walk. For example, the authority of a given vertex v depends on the sum of
authorities of vertices that have outgoing edges to those vertices that are pointed by v.

Regarding the computing cluster characteristics, an heterogeneous cluster of 8 nodes was used for
running experiments, each having its own hardware characteristics. Three of these nodes had 16GB of
RAM whereas the remaining nodes had 8GB of RAM. The software configuration of these nodes consisted
of Ubuntu 14.04 and OpenJDK 7. Graphly was installed on each node and configured to run the necessary
Pregel, Fork-Join and DPM components. Most parameters, such as number of thread and heap size, are
automatically configured depending on the node characteristics. One of the manually-set parameters was
the Coordinator Node parameter associated to Pregel, which was always set to the same node in order to
avoid a random selection of the coordinator, which may alter the experimental results.

Experiments were carried out using a Twitter dataset3 containing the complete follower-following net-
work as of July 2009, provided by [12]. The dataset contains approximately 1,400 million relationships
between more than 41 million users. Since Twitter data are no longer available to researchers, it remains
as the largest snapshot of Twitter accessible [32]. The dataset was stored on the cluster nodes using a
modulo-based partitioning scheme in order to fairly distribute vertices across the cluster.

Three test groups of users were selected out of the complete dataset with the goal of illustrating the
performance of the different frameworks. The first set consists on the top-10 users ordered by amount

2Graphly’s Source Code, https://github.com/acorbellini/jLiME/tree/master/graphly
3Twitter 2010 dataset, http://an.kaist.ac.kr/traces/WWW2010.html
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TFR Katz LocalPath
SALSA

HITS
Hub Authority

Followers 14~37 20~40 7~35 0.5~1.57 0.5~1.56 0.7~1.6

Followees 35~39 ~40 28~35 0.25~1.55 0.2~1.52 0.2~1.58

Middle ~38 ~40 32~37 1.75~2.90 1.74~2.9 1.78~2.95

Table 2: Subgraph size explored by each algorithm for each user group (in millions of vertices).

Figure 2: Average memory, network and recommendation time for path-based algorithms and the Followees set of users.

of followers, called the "Followers Set". The followers set, numbered from Fol1 to Fol10, is the most
unbalanced group of users. For example, Fol1 has 1.7M followers and only 563 followees.. Only three
users in this set have more than 200 followees (500, 400k and 770k followees respectively). Likewise, the
"Followees Set" contains the top-10 users ordered by number of followees, numbered from Fee1 to Fee10.
The followees set is more balanced than the followers set, having 1M followers and followees lists ranging
from 100k to 500k. Finally, the third set called “Middle Set”, numbered from Mid1 to Mid10, consists of
users with a ratio of followee/follower between 0.4 and 0.6, ordered by number of followers. In this last
group, the lists of followees/followers have an average length 100k.

The rationale behind the selection of these groups is that the initial number of incoming or outgoing
links may affect resource usage. Indeed, the size of the graphs explored by each algorithm varies for each
group of users as shown in Table 2. For example, for path-based algorithms (TFR, Katz and LocalPath), the
graph explored by users in the Followers group is usually half the size of the subgraphs explored by other
group of users. The reason of this disparity is that most path-based algorithms process outgoing links, i.e.
followees, and users in the Followers group have a small number of followees.

4.2. Results

The experiments were carried out as follows. A recommendation of 10 followees was computed for
each combination of user, algorithm and framework. This procedure was repeated 10 times for each user to
obtain the average recommendation time, network and memory consumption, along with their correspond-
ing standard deviations. The results are presented below, grouped by the type of algorithm and user set
selected.

4.2.1. Path-based Algorithms
Figure 2 shows the results in terms of network usage, memory consumption and recommendation time,

for the Followees Set and for the TFR, LocalPath and Katz algorithms. The values are expressed as a ratio
of the obtained result in comparison to FJ, which was used as a baseline. For example, the recommendations
issued to user Fee1 using the TFR algorithm presented +20% of memory usage for Pregel and +10% for
DPM in comparison to FJ (top-left chart, first group of bars). Thus, in these charts, values below 0 are
better than the FJ baseline values.
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Figure 3: Average recommendation time for path-based algorithms and the Followers and Middle groups.

Surprisingly, FJ was the best performing framework in terms of network and memory usage in most
path-based experiments. In the case of the TFR algorithm, in most cases DPM used less memory than
Pregel (except for user Fee4), but had a clear tendency to use more network bandwidth. In LocalPath,
memory usage between DPM and Pregel was mixed and in Katz, it was approximately the same. Except
for LocalPath, in which DPM had the same amount of network usage than Pregel, DPM transferred more
data than Pregel, mainly due to the overhead introduced by the active vertex lists.

In terms of recommendation time, the results are mixed for "short" path-based algorithm like TFR or
LocalPath, which compute paths up to length 3 or less. In this cases, Pregel performed worst than FJ
and DPM showed improvements of +10% to +20% in comparison to FJ. In a "long" path-based algorithm
like Katz, which in our experiments executed up to length 4 without filtering any vertex, the results clearly
favor Pregel and DPM. These results can be explained by the number of vertices processed by Katz –Table 2
shows that it usually computes the whole graph– and the iterative support given by DPM and Pregel. FJ
struggles with large sub-result merging and, due to its lack of support for iterative algorithms, it must
re-partition results for each iteration.

To illustrate the differences between DPM and FJ, consider the graph used in the example of Figure 1.
In this example, a graph of 30 vertices is processed by 3 workers. The received vertices to be processed
in the current step are kept in the Coordinator node, e.g. Worker1. Additionally, DPM keeps the results
distributed among the 3 workers by using a partitioning scheme (in our experiments, it is aligned with
the way vertex data, such as followees and followers, is stored). This ultimately means that, if Worker1

generates the result v1→ 10, Worker2 generates v1→ 20 and Worker3 generates v1→ 5, these three results
for v1 are merged in Worker1, i.e. the worker assigned to store and process v1. If the algorithm sums these
results, then this merge would result in v1→ 35. The Coordinator, i.e. Worker1, would receive v1 and the
other vertices reached by the current algorithm step, but only the vertex identifiers. FJ, on the other hand,
keeps the current results in a single worker, for example Worker1, and splits them among the 3 available
workers in order to compute them. In this case, not only the results for v1 are merged in Worker1, but
also the results of the other vertices. Thus, all workers send their sub-results to Worker1 on each step,
overloading Worker1 and underusing the other workers capabilities. Conversely, DPM only centralizes the
vertex identifiers and appends them to a list of vertices that must be processed in the next computation step.

In the experiments performed on the Middle and Followers sets, a similar behavior was observed in
terms of network and memory consumption and, thus, the results were omitted. However, the Followers set
showed different results, in particular for the Katz algorithm, as the size of the graphs explored was much
smaller and, thereby, the penalization for FJ was lower. This behavior can be seen in the recommendation
time measured for the Followers and Middle users, shown in Figure 3.

4.2.2. RW-based Algorithms
The results obtained from running SALSA and HITS algorithms for 10 iterations were notably different

from those obtained from path-based algorithms. The smaller sub-graphs explored and the iterative nature
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Figure 4: Average memory, network and recommendation time for path-based algorithms and the Followees set of users.

Figure 5: Average recommendation time for RW-based algorithms for users in the Middle and Followers set.

of the algorithms posed different requirements over the processing frameworks. The experimental results
for the Followees set are shown in Figure 4. In terms of memory usage, apart from some specific cases, the
differences between the three frameworks are not high, although DPM network usage was always lower.
However, regarding memory usage, Fork-Join suffers from its lack of support for iterative algorithms and
quickly surpass the network usage of DPM and Pregel. In this category, DPM was the most network
intensive, approximately +15% consumption than Pregel.

DPM and Pregel offered the best recommendation times, presenting times +30% to +40% faster than
FJ. Moreover, DPM computed RW-based algorithms, in average, almost +15% to +20% faster than Pregel.
This pattern is confirmed in the results obtained from the Middle and Followers set, as shown in Figure 5.
Similarly to the previous Section, the results of memory and network usage for the Middle and Followers
sets were omitted due to its similarity to the results presented for the Followees group.

5. Conclusions

In this paper we presented DPM, a novel framework that resulted from analyzing the requirements of
different link prediction algorithms. One of DPM’s major advantages is that it offers a simple fork-join
model while performing well for iterative algorithms. The vertex centric programming model provided
by Pregel, is often harder to comprehend because the developer must think in terms of vertex to vertex
messaging and how messages “flood” the graph. The Fork-Join framework offers a simpler programming
model, but the join bottleneck severely reduces its scalability. DPM tries to reduce this costly bottleneck
by distributing the merging of sub-results and centralizing only the list of currently active vertices.

As shown in the experiments, the merge of active vertices in DPM has almost no impact on the overall
time for recommendation while it generates a moderate increase in network consumption. In terms of
memory usage, both Pregel and DPM had a higher memory consumption than FJ, specially for the path-
based experiments.

For path-based algorithms, DPM ranked as the fastest model. It is worth noticing that the differential in
recommendation time achieved by DPM for a single user can significantly reduce the total time required for
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computing recommendation for a batch of users. Nonetheless, on limited network and memory scenarios,
or in situations where network transferences are billed (as in paid Cloud environments), the Fork-Join
alternative may be a better choice than Pregel or DPM.

Regarding RW-based algorithms, FJ required almost twice the time to provide recommendations and
produced almost twice the amount of network traffic than the other frameworks, enforcing the hypothesis
that choosing the correct framework for a given type of algorithm is important to provide fast and resource-
efficient recommendations.

Future work regarding DPM includes testing its performance using graph-wide iterative algorithms like
PageRank and SimRank. Moreover, the comparison against other frameworks like GraphX or GraphLab is
also in progress.
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