A Performance Brokerage for Heterogeneous Clouds
John O’Loughlin and Lee Gillam

Department of Computing, University of Surrey

Guildford, GU2 7XH, United Kingdom

{john.oloughlin,l.gillam}@surrey.ac.uk

Abstract. The trading of virtual machines, storage and other Cloud Computing resources on commodity exchanges has generated considerable interest from both academia and the financial services market. With multiple sellers providing appropriately equivalent virtual machines they become fungible, offering the opportunity for users to swap instances from one seller with instances from another when required, easing concerns over vendor lock-in, availability and provider failure. However, heterogeneity in the hardware from which they are provisioned is likely inevitable, given heterogeneity already found on a number of Public Clouds, where it results in performance variation across instances of the same type, and consequently variation in Cloud costs at the same price. To address this problem we propose a Cloud Service Broker (CSB) that acquires and re-sells instances on the basis of their current performance. The service reduces performance risk for users, but comes at a cost. We determine the average markup the CSB must add to the base instance price to cover the costs of operating a pool capable of satisfying a given proportion of requests. We show how increases in heterogeneity on the underlying commodity exchange lead to lower costs for the CSB, and that the largest degree of heterogeneity we consider, on the basis of real-world findings, leads to the best outcome: an average markup of just 12% on the buy price from the exchange will satisfy 95% of requests. This creates opportunities for CSB profitability to be explored on the basis of selling performance-assured instances at prices that will account for this markup.
Keywords: Infrastructure Clouds, Performance Variation, Commodity, Brokers, Exchanges
1
Introduction
The trading of low level infrastructure compute resources such as networks, storage and virtual machines as commodities has been proposed by a number of authors [1][2][3][4][5] and has also generated interest from financial exchanges such as the Chicago Mercantile Exchange (CME), responsible for the largest derivatives exchange in the world. Dynamic pricing in commodity markets allows buyers to take advantage of prices when low, whilst sellers can increase prices in response to high demand. Treating resources as commodities aids liquidity, making it easier for market participants to buy or sell at prices they are comfortable with, and higher volumes traded encourages price stability as well as providing continuous price discovery.

To consider compute resources as commodities requires a degree of fungibility, and arguably it is the emergence of massive globally distributed Infrastructure Clouds, offering ubiquitous on-demand access to a seemingly infinite supply of standardised resources that is the driver for the transformation of compute resources into commodities. It should be no surprise, then, that proposals for organized marketplaces in the form of compute exchanges, similar to existing financial exchanges, are typically based on extensions of the current Cloud market. Existing Infrastructure Cloud providers are likely to supply the majority of resources traded on such exchanges and indeed, given their size, may well act as dedicated market makers ensuring liquidity can be maintained.

However, a variety of concerns have been raised regarding Cloud use including, but not limited to: data security, privacy and sovereignty; service availability and the potential for provider failure; vendor lock in; and performance. Fungibility goes some way to alleviating concerns over provider failure, availability and vendor lock in, as buyers can substitute resources from other sellers. The latter concern of performance is primarily one of variation in the performance of instances that are supposedly identical, and results in a number of issues for users, including:

1.
prices are the same irrespective of performance, but costs will vary with the amount of time required to undertake a task;

2.
as a consequence, when scaling an application the number of instances required to complete a certain amount of work in a given period of time may differ, and so the price for completing work is again variable.

Performance variation on Public Infrastructure Clouds has been widely reported [6][7][8] with heterogeneity and resource contention identified as the causes. Compute exchanges built on top of extant Infrastructure Clouds are then likely to suffer the same problem; that is, variation in performance of supposedly identical instances from multiple sellers. Differences in hardware between sellers for the same instance types will lead to variation due to heterogeneity. And even if the exchange mandates use of specific hardware for particular instance types, then we may still have variation due to resource contention.

To address price/performance variation and the lack of user specified performance metrics, we propose a CSB that operates a secondary market offering an on-demand workload specific performance-assurance service. In our proposed CSB, users would specify a required performance tranche, which defines a minimum performance level, measured with respect to a user specified workload. The CSB then re-prices instances according to the tranche level. In essence, we view this as providing a fine level of ‘commodity’ performance grading. Providing instances of a known performance reduces risk for users, allowing them to scale their usage in close accordance to needs. Further, allowing the user to specify a workload from an advertised set increases user confidence that measured performance correlates with expected performance of the workload they intend to run.

As a secondary performance market evolves we would expect a range of suppliers offering instances at specified performance levels, including other CSBs, providers, and indeed other Cloud users. In this case, the invisible hand of supply and demand will produce equilibrium prices for given performance ranges. However, an individual CSB must, over some period of time, cover their operational costs and so an estimate of this cost is a prerequisite to pricing.

The primary objective of this paper is to determine expected operational costs of our CSB, together with an estimate of the expected number of requests the CSB has to decline, under a variety of different market conditions. The rest of the paper is structured as follows: In section 2 we provide background information on performance problems in Infrastructure Clouds which we seek to address. In section 3 we discuss Cloud exchanges, CSBs, and we introduce our hypothetical exchange in section 4. In section 5 we present extensive empirical evidence demonstrating workload specific variation on a number of major Public Infrastructure Clouds and use these results to inform our model of how the CSB and exchange work. In section 6 we describe various ‘Deploy and Ditch’ strategies that users may employ for exploiting the results in section 5. In sections 7 and 8 we set up the simulation of the CSB operation and define Operational Costs and Declined Requests, which we estimate under various conditions in section 9. Based on these results, we discuss tranche pricing. Finally, in section 10 we present conclusions and future work.

2
Infrastructure Clouds: The Performance Problem
Large scale Infrastructure Clouds, such as Amazon’s Elastic Compute Cloud (EC2), offer virtual machines (instances) in various sizes and characteristics (instance types) for rent on-demand, and with no minimum or maximum rental period. Such flexibility allows users to acquire and release instances as required; the ability to do so is referred to as elasticity. In order to support elasticity providers deploy massive globally distributed infrastructures and make use of hypervisors to dynamically partition physical servers into instances for rent. As users acquire and release instances there is no guarantee that new instances will run on the same physical server as previous instances. It is possible then that instances of the same type may run on different hardware, as identified by CPU model. Despite this, a stated objective of EC2 is ‘…to provide a consistent amount of CPU capacity no matter what the actual underlying hardware’.

In practice however, consistent and predictable performance has proven difficult for Infrastructure Clouds to deliver, with Armbrust et al. [6] describing EC2 performance as unpredictable. As Clouds are (in the main) multi-tenant environments, instances owned by different users may run concurrently on the same physical host. Resources such as caches and memory bandwidth are ‘invisible’ to the CPU and so it is not possible for a hypervisor to allocate these resources to instances. Resource contention can impact instance performance, and the ability of an instance to affect the performance of other instances on the same host is known as the noisy neighbor problem [7]. A further level of resource invisibility exists in Intel CPUs that support hyper-threading whereby a single CPU core holds the state of 2 execution threads simultaneously. However, the execution of identical threads in the same core results in resource contention for the execution units, potentially causing performance degradation [8]. We note the use of hyper-threading on major providers such as EC2 and GCE is wide-spread [9][10].

In addition to resource contention, performance variation in instances of the same type can occur when they are running on different hardware, as identified by CPU model. An instance type is said to be heterogeneous if it can be provisioned from different hardware and minimally heterogeneous otherwise. On EC2, Phillips, Engen, and Papay [11] discovered variation in the performance of heterogeneous instances when attempting to predict application performance. Schad, et al. [12] demonstrate that performance in the EC2 Regions US-East-1 and EU-West-1 falls into two distinct bands due to two different CPU models backing their instances. Ou, et al. [13] and Farley, et al. [14] suggest that the heterogeneous nature of Clouds, and performance variation which results from it, can be exploited through the use of so-called Ditch and Deploy strategies. However, such strategies typically underestimate the risk and overestimate the gain, as we show in section 7.

Interestingly for our work, both Lenk [15] and Farley [14] report that in a heterogeneous environment different workloads perform better/worse across the different architectures as defined by CPU model - there is then no ‘best’ performing CPU model for all workloads, a result we confirm in section 6.

A notable feature of the extant results is the range of workloads for which performance variation has been demonstrated, with benchmarks used from the SPEC CPU benchmark suite [16], the TORCH computational dwarfs benchmark suite [17], and the Phoronix Test Suite [18]. This is a clear indication that performance variation is likely to affect a wide range of users running CPU bound workloads. In homogeneous environments variation across different instances (of the same type) is due to differing degrees of resource contention they experience, whilst in heterogeneous ones we also have variation due to different CPU models. We also note variation in the performance of the memory bandwidth benchmark STREAM, indicating a problem for memory bandwidth sensitive workloads. We show in Section 5.1 however that these differences can be attributed to differences in CPU model. In addition Osterman, et al. [19] and Yelick, et al. [20] report on the unsuitability of Clouds for tightly coupled scientific codes due to network latency performance. However, it does not appear that network latency is attributable solely to variations in hardware, making it difficult to for brokers to address.
The workload specific nature of performance variation suggests that a CSB wishing to broker performance must offer workload specific services. This is in contrast to current Cloud offerings which define instance types in terms of size and a provider specific compute metric. Reducing compute performance to one metric does not account for workload specific variation. This is not a Cloud specific problem, but rather a general performance measurement one, with issues being raised, for example, with the SPEC metric which is calculated as the geometric mean of a set of normalized execution times [21].

Extant work on CSBs typically fails to address performance adequately, as it relies on either machine characteristics as a performance metric, known to correlate poorly with workload execution times, or single benchmark measurements. Further, the fundamental problem of variation across instances of the same type remains largely unaddressed. In the next section we review related work on CSBs and current proposals for the trading of compute infrastructure resources on commodity exchanges.

3
Cloud Markets and the Role of a Broker
Infrastructure Cloud providers offer resources in a standardised form, albeit in a provider specific one, which encourages the idea of compute as a commodity. For example, all instances in the M1 family on EC2 are considered ‘equivalent’ despite the fact they may be provisioned from one of 6 different CPU models. It is but a small step then to imagine multiple sellers providing suitably compatible (fungible) instance types, which can then be traded on an exchange in a manner similar to commodities. In this section we discuss extant ideas for Cloud markets and the role of CSBs within them.
3.1
Cloud Markets

Buyya, Yeo and Venugopal [1] propose an organized marketplace in the form of a Cloud exchange for the trading of resources. However, their description includes SLA negotiation between various parties, making it closer to an over the counter (OTC) market with Request for Quotes then an exchange operating an open order book as found on the majority of extant financial exchanges. OTC markets allow for bespoke requirements but can suffer from illiquidity due to lack of market makers, whilst exchanges are used for the trading of standardised offerings.

There has been commercial interest in the trading of compute resources as commodities, most notably by large financial exchanges. The Deutsche Borse, responsible for the Frankfurt Stock Exchange, posed the question ‘What if … turned computing power and data storage into a commodity?’ However, whilst the initial view of the Deutsche Borse Cloud Exchange (DBCE) was one of standardised compute resources traded as commodities [22], when launched this had changed to providing a sourcing and comparison service, whereby providers published prices for the resources they offer and users could then compare the various offerings and purchase them through the exchange. The DBCE was more akin to a price comparison website than a financial exchange and after less than 9 months of trading the DBCE announced its closure and will ‘…evaluate the business model and approach’ [23].

The Chicago Mercantile Exchange (CME) explored derivative contracts (futures and options) based on compute resources [24], although to date no such contracts are traded on either the CME or elsewhere. Weinerman [2] notes that compute derivatives allow users to hedge against future price movements as they seek to manage workload execution costs. Future contracts are also beneficial to providers as it guarantees some level of future income, thus making investment decisions easier. There has also been interest in pricing of Cloud resources [25][26] based on existing financial market models.

The idea of compute resources as commodities is not new, with a suggestion that ‘…computation may someday be organized as a Public Utility…’ and ‘We will probably see the spread of “computer utilities”, which, like present electric and telephone utilities, will service individual homes and offices across the country’ as far back as 1961 [27] and 1969 [28] respectively. The development in the late 1990s of Grid Computing [29] was arguably a step towards this, and research into Grid Marketplaces, and the role of a Grid Broker within them, quickly followed [30][31]. However, whilst we can find examples of successful Grid Implementations in academia, such as the particle physics Grid, GridPP [32], currently there are no successful publically available Grids, let alone a Grid marketplace.

In the Cloud marketplace, as in any marketplace, brokers play an important role in bringing buyers and sellers together, which we now discuss.
3.2
Cloud Service Brokers
For Buyya, Yeo and Venugopal [1] the role of a CSB is one of ‘…buying capacity from the provider and sub-leasing these to the consumers’, and the CSB profits through ‘…the difference between the price paid by the consumers for gaining resource shares and that paid to the providers for leasing their resources’. In addition, CSBs can provide a range of services which add value to standard offerings.

NIST [33] defines a CSB as ‘…an entity that manages the use, performance and delivery of cloud services, and negotiates relationships between Cloud Providers and Cloud Consumers’. Services offered by CSB are categorised as either technical or business, with the latter more akin to the traditional role of a broker in the financial and other markets, whilst technical services are defined as:

Service Intermediation: A CSB enhances an existing service to add value to it.

Service Aggregation: A CSB integrates multiple Cloud services into one or more new services

Service Arbitrage: A CSB can dynamically replace components of an aggregated service and so take advantage of price dynamics in the market.

The original NIST definition was not without criticism [34], primarily due to its emphasis on technical services at the expense of business or relationship services, a problem rectified in the current definition.

A number of CSBs that provide technical services have been proposed, with comparison services in particular receiving much attention. Lenk, et al. [35], discuss how performance benchmarking allows users to compare providers based on estimated workload costs. Notably the users can choose from a range of benchmarks with which performance is measured, an acknowledgement of the workload specific requirements.

Similarly, Gottschlich, Hiemer and Hinz [36] propose a performance comparison service that operates by ‘…continuous monitoring and benchmarking of provider performance’. Based on this the CSB redirects the user to a provider, but does not acquire instances on behalf of users. Use is made of Unix Bench [37] to compare performance across providers, as do Li, et al. [38] and Zant and Gagnaire [39], a choice not without issue: due to its size, its working set can fit entirely into cache and so it does not stress the memory hierarchy. In practice such workloads are rare, and so Unix Bench is not representative of typical CPU bound workloads. Consequently, a performance measurement service based solely on it is not likely to accurately reflect performance/price for these workloads. Performance comparison services are useful in guiding choice of provider; however, they do not provide instances with a known performance level and so fail to address performance risk once a choice has been made.
Performance is, of course, not the only criterion of interest when comparing providers, with Amato, Martino and Venticinque [40] and Pawluk, et al. [41] proposing CSBs that consider, for example, availability and reliability. However, in both cases we find the notion of performance is significantly under-developed as it is specified in terms of CPU clock speed, which is known to be an unsuitable metric for compute performance.

The role of a broker in the computational marketplace precedes Clouds, with extant work on Grid Brokers. Djemame, et al. [42] suggests a broker that offers a provider reliability rating service. Providers whose stated probability of failure (PoF) differs significantly to their historical record are deemed unreliable. Note that a provider may have an unreliable service, but so long as the SLA PoF accurately reflects this unreliability they are deemed reliable. Further, we note that whilst this helps with identifying unreliable providers, the risk of SLA failure is still unmanaged for all providers as there is no risk pricing or insurance associated with the SLAs.
Notably for our work Rogers and Cliff (R&C) [43] demonstrate, under certain market conditions and assumptions, a profitable CSB. We consider this brokerage in more detail next.
3.3
Rogers and Cliff CSB

R&C [43] propose a CSB, based on WZH truth telling for reservation based systems [44] that purchases reserved instances from EC2 which it then sub-lets on a monthly basis. The objective of the CSB is sub-letting below the on-demand price but above the monthly reserved instance price. The CSB purchases instances by making forecasts of future demand and additional instances are only purchased if the CSB estimates it can sub-let a sufficient number of months. To aid demand forecasting, users submit a probability that they will require an instance in the following month, and are charged a non-refundable deposit to reserve an instance based on this. Should the user require the instance they will pay an additional amount, again based on the submitted probability.

R&C broker’s costs are those incurred in maintaining a pool of instance capacity, with revenue being derived from sub-letting. R&C demonstrate profitability, through use of Discrete Event Simulations, in a variety of market conditions derived from real market data. The R&C work, whilst not considering performance, is notable for us as it is the only example we can find where the profitability of a proposed service is investigated. Our proposed CSB will also incur costs by maintaining a pool of instances and derive revenue from sub-letting.

Clamp and Cartlidge [45] conduct a sensitivity analysis of R&C brokerage to changes in the provider price as well as market shocks is conducted, and they demonstrate weaknesses in the algorithm used for predicting future demand. Further, Cartlidge and Clamp [46] show that the introduction of the Amazon Reserved Instance Marketplace (ARIM) has effectively closed the opportunity identified by R&C.
In this paper we take a commodity view of computing and so our CSB operates in the context of hypothetical Cloud Exchange, through which virtual machine instances can be traded. Based on extant financial exchanges, and informed by current Cloud offerings, we develop model a model for our exchange, described in the next section.

4
Cloud Exchange Model
We propose a hypothetical Cloud Exchange (CeX) organized along the lines of extant financial exchanges. Exchanges operate on the basis of continuous orders - bids and asks - from participants, whereby a bid is a quantity and a price to buy at, and an ask is a quantity and a price to sell at. These orders are placed onto a central order book viewable by all market participants. The exchange clears orders by matching bids and asks. For a broadly considered CeX, this would mean that orders are not placed directly with providers and can be fulfilled by any provider selling appropriately equivalent resources on the CeX.

4.1
Instance Types Offered
The CeX follows current practice of specifying instance types in terms of some number of vCPUs, some amount of RAM and some storage and a compute metric. The CeX does not mandate particular hardware, making it possible for different sellers to offer instances of the same type without having to run identical (or near identical) physical servers in doing so. The only requirement, then, is for instances to conform to the same specification.

The CeX offers a range of instance types, and our proposed CSB will maintain per-instance type pools, with the operational costs of the pools being independent of each other. To simplify matters we investigate one pool consisting of an instance type referred to as T1. When making a request for instances we do not allow users to specify hardware for the following reasons: (1) the CeX considers instances which conform to the T1 specification as equivalent and trades them on that basis only (2) sellers may be unwilling to advertise low level hardware details (3) hypervisors such as KVM can obfuscate the CPU model so verifying that an instance is running on the requested CPU may be difficult (4) such a level of specificity is likely to reduce the number of sellers able to satisfy the order, and so reduce liquidity and the concomitant benefits and (5) this follows current Cloud practice.

4.2
Sellers
We set the number of sellers on the CeX to 12, the same number of sellers in trading experiments run in [47][48], where [47] led to a Nobel prize in Economics. Amongst the sellers on the CeX, and attentive to the heterogeneity we have found in the oldest instance type on AWS of M1, we will assume that 6 different CPU models may be found across the T1 type. We refer to these CPUs as CPU1, CPU2, CPU3, CPU4, CPU5 and CPU6. Some sellers may sell T1 instances on CPU1 only, for example, whilst another may sell instances on CPU2 and CPU4.

In our simulation we introduce a parameter called MAX_HET ϵ {1, 2, 3, 4, 5, 6}. For each run of a simulation we generate our sellers by randomly assigning each of them a degree of heterogeneity, k, from int[1,MAX_HET]. Next, a seller of degree k is assigned CPUs models by random.choice(k, {CPU1, CPU2, CPU3, CPU4, CPU5, CPU6}). As a simplification we assume that the CPU model of an instance is equally likely to run on any of the sellers CPU models. That is, if a seller sells instances on {CPU4, CPU6} then the CPU model of an instance from this seller is equally likely to be provisioned on CPU4 as it is CPU6.

We refer to a CeX which has MAX_HET = 1 as minimally heterogeneous, whilst if MAX_HET = 6 it is maximally heterogeneous.

4.3
Order Book and Order Execution
The CeX operates an order book onto which bids/asks are placed. A limit order specifies both a price and a quantity; for ask/bid the price is the lowest/highest acceptable transaction price. The book has 2 sides, a bid side and an ask side, with the ask in ascending price order and the bid side in descending. Orders with the same price are ordered by time, with existing orders taking precedence. The arrival of a new order triggers a re-ordering.

Suppose a new ask arrives, and after a re-ordering it is at the top of the order book. If the ask price is below the best bid price the orders are matched. If the bid quantity is sufficient to fulfill the ask, then the ask is removed and the bid is updated, with the bid quantity being reduced by the amount sold. However, if the bid quantity is less than the ask quantity the bid is removed and the ask is updated. The ask is then matched against the next best bid. This process continues until either the ask is fulfilled, and so removed, or there are no bids with which to be matched against due to price increases on the bid side. In the latter case the order has been partially fulfilled and an ask order will remain on the order book for some period of time before being removed.

When placing an order on the CeX, or indeed any financial exchange, there are no guarantees of (1) immediate execution or (2) orders being fulfilled. To alleviate problems exchanges support a variety of different order types. For example, a market order does not specify a price but a quantity only and is to be executed immediately at the current market price i.e. the best bid/ask prices. A Fill or Kill (FoK) must be executed ‘immediately’ i.e. the order can only live on the order book for a short period of time and must be fulfilled in full or not at all. Similarly, an Immediate or Cancel (IoC) must be executed immediately but partial fulfillment is acceptable. Orders that do not require immediate execution will be removed after a set period, with different exchanges setting this limit.

For simplicity, we make the following assumptions regarding orders placed on the CeX:

· All sellers place IoC orders
· The CSB only places market orders

Looking ahead, in Section 10 we simulate the operation of CSB by considering discrete time slices t1 < t2 < … tk which last for one minute. As the simulation proceeds we must have a way of generating the exchange order book, and we describe in the next section how this is achieved.
4.4
Pricing and Ask Generation
As the simulation proceeds the CSB will, at various times, submit bids onto the book. However, as the CSB submits a market order, which is executed immediately, we have no need to consider the current bid side of the book. Further, as all ask orders of type IoC, an order placed at time ti will have been removed from the order book by time ti+1. Therefore the ask side of the book is regenerated at each moment of time as sellers submit a new ask. An ask consists of a price and a quantity, and we now consider how this is generated.
In a market with dynamic pricing we would expect pricing to vary with supply and demand. The EC2 spot market provides an example of dynamic pricing, albeit with one supplier only. Notable observations [49] from this market are of small price variation around a long term constant mean, with infrequent, short lived but very large price spikes. Indeed, spot prices have been observed that are well in excess of the on-demand price. As a simplification, we assume ask prices submitted by sellers are drawn from U[0.8, 1.2], with sterling (£) the unit of currency, this is the per hour instance price for the duration of the instance. The quantity of instances required is drawn from U[0,100]. As an example, a seller may submit an ask of 50@1.01 meaning it is offering to sell 50 instances at a minimum sale price of £1.01 per instance hour.

We let I denote an instance, rented at time ti and terminated at tj, and we denote by
CI i→j the cost of the instance, calculated as follows: suppose the m instance hours have elapsed between ti and time tj with an ask price at ti is price(ti), then:
 CI i→j := m*price(ti)
It should be noted that a CSB bid may involve multiple counter parties, and so the price of different instance within the same bid may vary if they are matched against different sellers.
Fig 1. below provides a graphical representation of the CeX. Note that as the best bid is below the best ask none of the extant orders can match. Should an IoC bid of 200@1.09 arrive it will become the best bid, and will be matched with the best ask and 10 instances at 1.07 will be delivered. The next 3 asks, all @1.08 can deliver a total of 150 instances. No more instances can be delivered as the next ask price is 1.10, so above the bid. The trading will result in the top 4 asks being removed from the order book, as well as the bid as it was an IoC order. Note that if the bid was a FoK then it cannot be satisfied in full and so no trading would take place.
[image: image5.png]opcosTs

125

120

115

110

105

1.00

0.95

0.90

Google_Perf, Homogeneous CeX: Mean OPCOSTS v Mean DECLINED

0 10 20 30 40 50

Min Pool Size

0.200

0.175

0.150

0.125

CLINED

0.100 §

0.075

0.050

0.025

Fig 1. CeX marketplace with buyers and sellers
In certain regards a CeX resembles extant EC2 Regions, which are geographically isolated locations, each one comprised of multiple availability zones (AZs), with each AZ containing one or more data centre. As new AZs are added to a Region, and existing hardware refreshed, we find instance types becoming increasingly heterogeneous, the result of which is performance variation across instances of the same type – offering opportunities for CSBs. In the next section we report the results of performance measurement experiments on EC2, as well as Rackspace and GoGrid.

5
Identifying Performance Opportunities
We report the results of a number of performance related experiments on Public Clouds. Our primary focus is on EC2, as the largest Public Cloud, but also reports some results from GoGrid and Rackspace. For certain workloads, I/O performance is the limiting factor. However, EC2 has a multiplicity of storage options so to simplify concerns; we restrict treatment to compute performance and memory bandwidth.

It is generally accepted that the performance metrics that are most useful and most informative to a user are: execution time and throughput [50][51]. Execution time is defined as the wall clock time for an application to execute, and is often referred to as application latency, and with hourly pricing for Infrastructure Clouds is a helpful measure for relating to costs. Where an application can be thought of as doing some specified unit of work, for example a file compression, an image rendering or a video transcoding, we define throughput, or application bandwidth, as the work done per unit of time. This metric allows users to relate amount of work done per unit of time to cost.

Current best practices for measuring compute performance have led to a preference for so-called ‘real world’ benchmarks – CPU bound applications which are in common use, being run with realistic inputs. Such a preference is typified by the Standard Performance Evaluation Corporation (SPEC) benchmark suite, and we follow this approach to benchmarking and make use of a number of SPEC benchmarks. In particular we make use of the following benchmarks and report execution time for an input:

Bzip2 [52]: Bzip2 is a commonly found compression utility on Linux and Unix systems. As the SPEC input file is not freely available we use an Ubuntu 10.04 ISO image as an input file. The SPEC input file is a tar file consisting of multiple text and binary files.

Go [53]: The GNU Go program is a computer version of game Go. Given an input file, the program analyses the game position and determines the likely winner. For input we use a game freely available from www.u-go.net.

POV-Ray [54]: The Persistence of Vision Ray Tracer, POV-Ray, produces photo realistic images from scene description files. SPEC uses the benchmark.pov scene description file provided in the distribution as input, as do we.

NAMD [55]: NAMD is molecular dynamics code used for simulating large bio-molecular systems. For input we use files included in the NAMD distribution and these are same as used by SPEC.

In addition to SPEC workloads we use STREAM [56] for measuring memory bandwidth benchmark. STREAM offers 3 different vector computations to run. Following Intel [57] we use the triad computation, which a compound version of the other 2 computations, and consists of a scalar multiplication of a vector followed by vector additions. Stream reports results in MB/s.

Being financially constrained, we make use of the spot market which offers access to the same resources from which both reserved and on-demand instances are sold from at reduced prices. As discussed, such instances can be reclaimed by EC2 when needed, and indeed this did happen to some instances in experiments, before they finish and report back results – as such, sample numbers may not be neatly rounded. Finally, to ensure consistency in our benchmarking, we build a customised Amazon Machine Image (AMI) based on a 64 bit Ubuntu 12.04 (LTS) AMI from canonical, into which we install our workloads and custom execution scripts to start benchmarks and record and retrieve benchmarking data. Each benchmark is run 3 times and we record the average.

5.1
Variation by CPU and Workload
We benchmarked 550 instances of type m1.small, making use of all accessible AZs across the Regions US-East1, US-West-1 and EU-West-1. Of the 550 spot instances requested, 511 completed the benchmarks whilst the rest were reclaimed by EC2 before completion. We identified 6 different CPU models backing these instances: AMD 2281, and Intel Xeon models E5430, E5507, E5645, E5-2650, and E5-2651. In Table 1 below we report mean and standard deviation and in Fig 2. we present a selection of execution time histograms, broken out by CPU model.

Table 1: Mean and Standard Deviation (shown in italics) of execution times in Seconds, except STREAM which is in MB/s, for 5 benchmarks across 6 CPU types for M1 instance class supporting m1.small.
	
	E5-2651
	E5-2650
	E5645
	E5430
	E5507
	AMD

	Bzip2
	479
20
	468
14
	503
23
	447
14
	650
40
	685
18

	Go
	214
7
	206
3
	180
8
	199
3
	199
2
	190
1

	NAMD
	1944
42
	2007
29
	2043
96
	2160
21
	2187
18
	2416
7

	POV-Ray
	564
10
	556
6
	514
26
	580
3
	545
5
	476
2

	STREAM (MB/s)
	4752
572
	7568
382
	5128
1332
	3335
320
	4779
210
	1957
743

	[image: image1.png]Frequency

60

50

40

30

20

10

Histogram of bzip2 Resuilts By CPU Model

E5-2650 & E5-2651

E5507

AMD 2218

400

450 500 550 600 650 700

Execution Time(s)

750

	[image: image2.png]Frequency

60

50

40

30

20

10

Histogram of GNUGO Results By CPU Model

E5-2650
E5645
E5430 & E550°
AMD E5-2651
E5645
] -
r T T T T 1
160 180 200 220

Execution Time(s)

240

	[image: image3.png]Frequency

40

30

20

10

Histogram of NAMD Results By CPU Model

E5-2650

AMD 2218

T T 1
2000 2200 2400

Execution Time(s)

	[image: image4.png]Frequency

35

30

25

20

15

10

Histogram of STREAM Triad Results By CPU Model

AMD 2218

E5-2650

E5430 E5507

E5645

r
1000

T
2000

T T T T T
3000 4000 5000 6000 7000

MB/s

8000

Fig 2. Histogram of Execution times for bzip2, GNU GO, NAMD and STREAM benchmarks broken out by CPU model.
Our initial observation is of large performance ranges and different CPU performance orderings for different workloads. All these instances are priced the same and yet such large differences in the amount of work they can perform means that the cost of completing the same amount of work in them is also subject to large differences. If we consider, for example, the bzip2 results as a whole we find a best execution time of 418s and a worst of 745s, with a mean of 512s and a standard deviation of 84s. However, care must be taken with the interpretation of mean and standard deviation. The distribution is multi-modal, arising from a mixture of the per CPU distributions. As such, the mean is not necessarily representative of likely performance.
Performance is also positively skewed, indicating a longer tail on the right hand side. Indeed, for bzip2, we find a median of 474s, so the best 50% of instances are in the range [418s, 474s] with the remaining 50% in the range [474s,745s]. We also note the large standard deviation for E5645 instances. This was due to a small number of instances of this type, in the same AZ, with significantly better performance than the majority of this type, as can be clearly observed in the histograms. In subsequent experiments (not reported here), we have not observed this again and suspect this to be an outlier, with one possible explanation being a hypervisor scheduling configuration error. In addition to positive skew, all benchmarks have excess positive kurtosis, indicating a propensity for poor performance. The right hand tail is both long and heavy, a situation we describe as performance risk.

We find that different CPUs are better/worse for different workloads, for example, E5430 is best for bzip2 whilst E5-2650 is best for STREAM. Finally, we note that the very newest hardware platform in this set, the E5-2651, is outperformed by all platforms for GNUGO and the AMD 2218, a circa 2007 CPU model, outperforms all models, here apart from an isolated number of E5645 for the POV-Ray benchmark. It is often assumed that as Infrastructure Clouds introduce new hardware platforms, that they will outperform older generations, and such performance improvements will accrue to users without any increases in price. This is clearly not always the case.

It is natural to ask if the variation, both inter and intra CPU is a function of instance type. We run the same benchmarks on 80 m2.xlarge instances, which have 2 vCPUs and 17GB per RAM. We detect 2 different CPU models for this instance type: Intel Xeon E5-2665 and Intel X5550. Mean bzip2 performance is 167s and 185s respectively, however for Go we find mean performance of 77s and 68s. For NAMD we find negligible difference, whilst E5-2665 has a ~20% increase in memory bandwidth. We find, then, performance differences between CPU models, and again we cannot say that one CPU model is best for all workloads.

5.2
Variation by Location
As the physical composition of EC2 evolves over time, for example as new Regions and AZs are added, and existing hardware is refreshed, we may expect workload performance to vary across different Regions – and we find this is indeed the case. In table 2 below we break out performance differences between US-East-1 and EU-West-1 below, reporting mean and standard deviation.

Table 2. Mean and Standard Deviation (shown in italics) of execution times in Seconds, except STREAM which is in MB/s, for 5 benchmarks across 3 EC2 Regions for M1 instance class supporting m1.small.
	Region
	bzip
	NAMD
	Go
	POV-Ray
	STREAM

	US-East-1
	485
58
	2080
80
	201
7
	558
17
	5570
1950

	EU-West-1
	508
82
	2086
138
	197
13
	545
35
	5063
1850

	US-West-1
	556
96
	2111
89
	200
9
	550
18
	5060
1367

From these results we observe little difference in mean performance across Regions for NAMD, Go and POV-Ray. However, US-East-1 is preferable for both bzip and STREAM as it offers better mean performance. We can explain this difference by observing proportions of the different CPU models found in each Region:

Table 3: Percentage of CPU models backing m1.small instances across 3 Regions
	Region
	E5-2651
	E5-2650
	E5645
	E5430
	E5507
	AMD

	US-East-1
	4%
	36%
	11%
	24%
	25%
	0%

	EU-West-1
	9%
	19%
	22%
	27%
	15%
	8%

	US-West-1
	14%
	29%
	23%
	27%
	14%
	7%

Depending upon the physical composition of the AZ, the user can determine which one is most likely to provide instances of a required performance level.

5.3
Further Results: GoGrid and Rackspace
On the GoGrid we discovered 2 different CPU models: Intel Xeon X5650 and Intel Xeon E5520. Using the bzip2 benchmark as described above we find a range of performance of 179s to 261s, with a mean of 193 and 216 on X5650 and the E5520 respectively, giving an increase of 12% in mean execution times of instances running on E5520 as compared to X5650. On Rackspace Cloud we discovered 2 different CPU models: AMD 4332 HE and Intel Xeon E5-2670; mean performance with respect to the bzip benchmark was 208s and 190s respectively, giving an increase of 10% in mean execution times on instances running on AMD 4332 HE as compared to the Intel E5-2670.

5.4
Temporal Variation
The results presented above demonstrate variation across instances of the same type. We refer to this as inter variation. However, we would of course expect the performance of any particular instance to vary over time; we refer to this as intra variation. In a heterogeneous environment we would expect intra variation to be less than inter variation as performance is determined by CPU model. Further, we have not observed any instance migration that resulted in a change of CPU model, and we believe migrating instances is not common practice on Public Clouds.

We measured the performance, using bzip2, of 50 minimally heterogeneous instances of type m3.medium 4 times each hour for a 48 hour period. The largest observed intra variation was less than the inter variation with the average intra variation being significantly less. Small intra variation means that differences in performance between instances persisted over the period in most cases. Further, when computing the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test statistic for each instance, we reject the null hypothesis of the existence of a unit root for 43 instances at the 5% significance level. We recall that the existence of unit root implies the time series is non-stationary, and so has either time varying mean or variance. Informally, we can say that the performance of most instances is mainly consistent (constant mean and variance) over the 40 hours.

Notably, we observe large jumps in performance, both up and down, in a number of cases, perhaps indicating a change in resource availability of the hosts they are running on. For example, in one instance the execution time was consistently in the range 280s to 290s, however, this jumped to 320s for 2 consecutive observations, and for the next observation jumped to over 360s, before subsequently returning to a stable performance again in the range 280s – 290s.
6
Instance Seeking and Naked Short Selling
In a heterogeneous environment users do not know, a priori, the CPU model of an instance, and variation results in variable and unpredictable costs. Users can, however, attempt to exploit heterogeneity though strategies known variously as ‘Deploy and Ditch’ (D&D), ‘instance seeking’ and ‘placement gaming’ [13], in which they attempt to find better instances – with respect to CPU model and perhaps also with respect to known or expected performance of these CPU models.

Consider a heterogeneous Cloud that offers instances which may run on one of two different servers, differentiated by CPU model, which we denote by CPU1 and CPU2, and that CPU2 is better performing model. Suppose that there is a probability p of obtaining an instance on CPU1 and q = 1 – p of an instance on CPU2, estimates of which can be made from past history. Further, suppose that a user seeks one instance running on CPU2. Then they can attempt to do so as follows:

Algorithm 1: Ditch and Deploy

obtained ← 0

seeking_cost ← 0

while obtained < 1:

instance = cloud.request_instance()

seeking_cost ← seeking_cost + 1
if instance.cpu_model == CPU2

obtained ← obtained + 1

else:

cloud.terminate_instance(instance)
We can estimate seeking cost under the following assumptions: (1) the CPU model an instance obtains is independent from the model of any previous instance; (2) there is an unlimited supply of instances; and (3) the probability of obtaining a particular CPU model remains constant for the period of time required to satisfy the entire request. In this case, we have a negative binomial trial and seeking_cost is the number of trials required to obtain n > 0 instances on the required CPU model, and so E[seeking_cost] = n/q and Var[seeking_cost] = n*(1 – q)/q^2.
For example, if q = 0.5, to obtain n = 20 instances we have an expected seeking cost of 40 instance hours, with a standard deviation of 6.32. We have then an overhead, or a premium of 20 instance hours paid for the performance. Instance seeking costs are paid up front, but amortized over the instance’s lifetime, so if we run these instances for 4 hours then the per hour instance cost is 25% above the provider price. Clearly, the longer the instance is run for, the lower the effective per hour costs. Whether or not the extra costs of instance seeking represent good value for the user depends upon the utility gained through improved performance. Here, instances on CPU2 will execute the workload faster than on CPU1, and reduction in execution time potentially lowers execution costs, and so the seeking cost is offset by performance benefit.

Farley, et al. [14] consider approaches more suitable for service oriented workloads are investigated: if n instances are required for T hours, then in the first hour start n + k where k > 0. At the end of the first hour ditch the worst k instances and keep the remaining n in service for the next (T – 1) hours. Note that in this approach the user makes one request, and so must estimate a value of k in order to obtain n of a particular performance level.

The cost in this case is fixed at k, and is amortized over the T hours, with an objective that price/performance is improved upon compared to mean price/performance. The value of k is treated as a parameter to the simulation, and they fix n = 20 and then explore various values of k. A notable feature of this work is that performance is considered to be normally distributed per CPU model, and further, performance in any given hour is independent from previous hours. As we have seen, however, performance is typically positively skewed with excess kurtosis. That is, we have long and heavy tails and so assumptions of normality are likely to overestimate the gain and underestimate the risk.

D&D provides an opportunity for a CSB: that of seeking instances on behalf of a user. Here, the CSB agrees a price with the user for delivering a set of instances at an agreed performance level with respect to some workload. The user has replaced a variable cost for a fixed one, and for risk averse users (commonly considered to be the majority of people) this may be preferable even when the expected value of the variable cost is greater than the fixed one. In essence the CSB is implementing a naked short selling strategy whereby instances are sold before the the CSB has obtained them.

Naked short selling exposes the CSB to supply side risk as estimates of seeking costs are based on past history, and may not reflect what is currently available. Supply side variation does of course exist, and based on our assumptions in this section, when making a request for r > 0 instances, if we let X denote the number of these instances on CPU2, then X ~ B(r, q) and we would expect to find r*q of them with a variance of r*q*(1 – q). However, from empirical results we find more variation than assumptions presented here imply, and consequently more variation in expected costs.

One possible explanation for the variation found empirically is instance scheduling. Suppose that a provider schedules each request onto hosts with the same CPU, so a request for 20 instances will produce either 20 instances on CPU1 or 20 on CPU2. We can estimate seeking costs using a Monte Carlo (MC) simulation with 1,000,000 runs: we find a mean of 40.0, a standard deviation of 28.2 and an estimate of the MC error of 0.0282. We find, then, the same expected cost but a significant increase in variation.

A CSB operating within the CeX will experience a similar situation. Each time the CSB seeks, by placing a new order at the CeX, the bid is matched against the best ask on the order book. Different bids will be, potentially, matched against different sellers, each of whom operate different infrastructure. Consider a CeX which is heterogeneous of degree 1 - so each seller is minimally heterogeneous i.e. they only operate hosts with one CPU model, but different sellers may have different CPU models. Suppose that the best ask on the CeX order book is from a seller with instances on CPU1 and for a quantity of 500 instances. Further, suppose the CSB naked short sells a performance level that can only be delivered by CPU2 and CPU3. Repeated bids on the CeX will be matched with the best ask, and so deliver instances on CPU1. This continues until either all 500 instances are sold or until a new best ask is placed – but in the latter case there is of course no guarantee that the order will be from a seller using CPU2 or CPU3!

Naked short selling runs a significant risk of failed trades, as the CSB may be unable to fulfill requests, with concomitant problems such as user compensation. Less risky for the CSB is selling performance for instances it already owns, that is, a CSB that takes a long position. We propose and investigate such a CSB in sections 7 and 8.

7
An On-Demand Performance-based Cloud Service Brokerage
Varying degrees of performance risk pose problems for users but provide opportunities for a CSB to supply instances with a known current performance level, and to price them in accordance with that level of performance. That is, if instance A is performing better than instance B it will attract a higher price. As the CSB does not own infrastructure from which instances are provisioned it cannot guarantee future performance. There is still risk on both sides: a user procuring instances from the CSB risks paying for an instance whose performance subsequently drops below the level being paid for, whilst the CSB risks selling a low performing instance at a low price whose performance subsequently improves. In the former case, the user can, of course, simply return the instance to the CSB so limiting performance variation exposure. However in the latter case the CSB will have to accept the agreed price until the user terminates the lease.

However, as the discussion in Section 5.4 makes clear, intra-performance variation is relatively small compared to inter-variation, particularly so for heterogeneous instance types and so knowledge of current performance allows users to estimate future performance with a higher degree of confidence as compared to obtaining instances directly from the provider. Further, the price is set in accordance with the performance level and so reduces performance/price risk for users. We believe such a service to be of use to large numbers of Cloud users who workloads suffer from performance variation, and one can envisage, for example, demand for instances delivering a ‘top’ level of performance or simply for ensuring the long and heavy tail is avoided.

As performance variation is workload specific our CSB offers a choice of 31 different workloads which performance can be measured against; we choose this as it is the same as the number of SPEC workloads. In practice we would expect a CSB to offer a publically advertised set such as this, as well as per-user private workloads, allowing users to register their own benchmarks. For each workload, the CSB publishes a histogram of past performance to registered users. These would look similar to those presented in section 5.

The CSB divides each workload into non-overlapping ranges which we refer to as a tranche. The number of tranches is set at 12, labeled A, B and so on to L, with tranche A as the best performing instances, and L the worst. We define these tranches precisely later, as well as justifying our choice of 12, when we consider a workload trace released by Google [58]. Users make requests to the CSB by specifying: (number_of_instances, workload, tranche), for example (10, 3, B) specifies an order for 10 instances whose performance measured with respect to workload 3 is in tranche B.

The CSB processes orders on a Fill or Kill (FOK) basis, meaning orders must be executed immediately and partial fulfillment is not accepted. For the CSB, this implies orders must be fulfilled by instances already owned as it cannot guarantee either the time taken to find the required performance or indeed that the performance is available at the time of the request. The CSB maintains a pool of instances, rented from the CeX, from which orders are satisfied. Instances are assigned to a user for their exclusive use. When users terminate their leases they become available again for the CSB to satisfy new requests.

We investigate our CSB through simulation, and use a methodology based on those found in [45][48] which simulates a market of buyers and sellers that operates a continuous double auction and divides time into discrete sequential time slices during which one participant submits either a bid or an ask. We consider our CSB to operate in discrete time slices of one minute duration:

t1 < t2 < … tk
In each time slice the following events occur:

· User_Order_Event: Depending on demand, one user may be chosen at random from the population of users to submit an order. When chosen a user randomly selects one of its orders.

· Instance_Purchasing_Event: The CSB determines if additional instances need to be ordered, and if so an order is placed at the CeX.

· Instance_Removal_Event: The CSB determines if any instances in the pool need to be removed.

· Order_Book_Event: Orders unfilled after one hour are removed from the order book. Further, whenever an order is either fulfilled or removed the seller submits a new order.

Note that these activities do not depend on each other and so could occur in parallel. Instances ordered at time ti will be available in the pool at a future time of ti+k , where k is a random integer drawn from [1,5]. This provides a stochastic time for acquiring instances from the CeX, with a best time of 1 minute and worst of 5, reflecting time for an order to be fulfilled plus a range of boot times of a virtual machine.

The CSB incurs various costs when running the pool including: staff, premises and other general business costs, as well as the costs incurred in renting instances from the CeX. However, to simplify concerns we only consider the costs incurred in renting instance. We let Inst denote the set of all instances rented from the CeX, and suppose that I ϵ Inst was rented from the CeX at time ti and terminated at time tj. We denote by CI i→j as the cost of the instance which we defined in Section 4.4. The total cost the CSB incurs over the period is

COST := ∑ all I ϵ Inst CI i→j (£)
Next, we let BI i→j denote the number of instance hours that the instance was sublet to users during time period ti to tj. Then, the total number of billable hours is:
BILLING_HOURS := ∑ all I ϵ Inst BI i→j
Finally, we define the per hour operational cost, OpCost as
 OpCOST := COST/BILLING_HOURS (£)
OpCOST is the flat price per hour that the CSB must charge for each instance in order to cover costs. In addition to OpCOST, the other quantity of interest is DECLINED, defined as the fraction of requests the CSB is unable to satisfy due to lack of availability within the pool and can be considered a service availability rating. Increasing the number of instances available in the pool at the time of a request should decrease DECLINED but with likely increase in operational costs. The trade off for the CSB is ensuring sufficient liquidity in the pool so as to satisfy some number of requests whilst minimizing operational cost. Below we present Fig 3. detailing how the CSB works:

[image: image6.png]opcosTs

Google_Perf, Maximally Heteregeneous CeX: Mean OpCOSTS v Mean DECLINED

/

120

115

110

105

1.00

0.95

0.90

10

20 30
Min Pool Size

40

50

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

DECLINED

Fig 3: CSB Secondary Performance Based Marketplace where users submit orders to the CSB which attempts to satisfy from its instance pool.
8
User Population, Demand Patterns and Workload Modeling
In this section we describe in detail all the elements required for our simulation. In particular, we construct a population of users from a Google workload trace, a choice we justify shortly. Following R&C we use data obtained from the Office of National Statistics [59] to simulate demand variation, whilst workload modeling is based on the empirical data presented on section 5. Finally, we explain how the CSB determines when to scale the pool up and down, and
8.1
User Population
We make use of a cluster workload trace released by Google in 2012 to construct a population of users who submit orders to the CSB of the form (number_of_instances, workload, tranche). We choose this trace because it provides a large set of workloads executed on Google’s internal systems which are believed to be similar in nature to its Public Cloud. Crucially, for our purposes, the each executed workload in the trace has a priority associated with it as well as a job execution time, which we use as a proxy for a requested performance level and instance rental periods respectively. However, Google’s internal systems provides a degree of flexibility in terms of scale and duration which means that not all jobs are suitable for our use, and we discuss now both the trace and filtering we apply.
The trace covers a 29 day period and consists of ~650,000 jobs submitted by 925 distinct customers to a production cluster of ~10,000 hosts. Each customer has an associated set of jobs and for each job we can determine (1) number of tasks (2) job priority and (3) job execution time. We use this data as a proxy for demand for our CSB service.

For each Google job we generate an order as follows. The number of tasks is a proxy for number of instances required, a choice justified by the fact that each task runs in its own Linux Container [60]. We randomly assign to each order a workload from one of the 31 constructed. To ensure latency sensitive services can obtain resources when needed, Google users can specify a priority as an integer in the range 0 – 11, with a priority of 0 as lowest, giving 12 possible priority levels. The resources allocated to lower priority tasks may be throttled in order to satisfy the needs of higher priority ones. We consider priority levels as a proxy for required performance, and the higher the priority level the higher the required performance. We map priority levels to tranches by mapping priority 11 to tranche A, 10 to B, 9 to C and so on to tranche L. We translate tranche requests into workload execution times by defining a tranche in terms of a quantile, as follows:

Table 4: Tranche Definitions
	Tranche
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L

	Quantile
	20%
	25%
	30%
	40%
	50%
	60%
	70%
	75%
	80%
	90%
	95%
	100%

A tranche A instance request requires an instance whose performance is in the top 20% of advertised workload execution times, whilst a tranche B request is for top 25% and this continues down to L which will accept any level of performance.

Job execution time is used as a proxy for instance rental times. That is, if a job has an execution time of 50 minutes then instance in the corresponding order have a rental period of 50 minutes. Whenever users terminate a lease the instances become available again to the CSB for satisfying additional requests. Note that the rental period is not known to the CSB in advance and so does not know when instances currently rented will be made available again.

When constructing our user population in this manner, we find some requests are unsuitable for use as the rental periods are too short. Indeed, we have rental periods from 5 seconds to 29 days. We filter all jobs with rental periods fewer than 40 minutes and longer than 3 days, a job duration range which Google Research [61] describes as being primarily ‘batch jobs’, corresponding with our view of users sub-letting instances from the CSB to execute a specific workload. Additionally, some requests are for unusually large numbers which we would not typically expect to see on the Cloud, for example we find one request for 50,000 instances. We filter out requests for more than 20 instances. This leaves us with 8% of the original jobs submitted by 660 distinct users.

We refer to the above tranche-to-priority mapping as Google_Perf. In addition, we also consider the following schemes for generating required tranches, and keep all other job data the same. We assign 50% of requests randomly to tranches A or B; whilst all other requests are mapped to tranche C. We refer to this as HighCPU_Perf.

8.2
Demand Variation
We would expect variation in demand for instances over time, with some periods of high demand and some low. To simulate this at each point in time, one user is chosen to trade i.e. submit an order, which they do with a probability p. In periods of high demand p will be close to 1, and when demand drops p will fall. Following R&C, p is determined from normalised sales data for various market segments obtained from the UK National Statistics Office [59] as a proxy for demand for Cloud services. In particular, we use the Non-Seasonally Adjusted Index of Sales at Current Prices for the following 3 sectors: (1) Non-Store Retailing: All Businesses, (2) Non-Store Retailing: Large Businesses (3) Non-Store Retailing: Small Businesses. The data starts from January 1998 and, following R&C we use 270 monthly data points for each sector. In Fig 4. below we present the normalised demand patterns for Non-Store Retailing: Small Businesses.

[image: image7.png]rrequency

Example Workload Histogram

100000

80000

60000

40000

20000

300 350 400
Execution Times (s)

450

500

Fig 4. Normalised demand curves for Non-Store Retailing: Small Businesses.
Our time slices are 1 minute intervals, and so over a 29 day period, the length of the Google workload trace, we have 41760 time slices. We generate a 29 day demand pattern as follows: randomly choose one of the R&C demand patterns to obtain the first 270 demand points. Next, randomly choose a demand pattern to obtain the subsequent 270 demand points, and repeat until we have sufficient large demand pattern covering 29 days.

8.3
Pool Scaling
At time ti the CSB determines whether or not to obtain additional instances from the CeX. The CSB makes this decision based on current availability and specified minimum pool size availability. The latter is a parameter of the simulation, and serves as a minimum size the CSB attempts to maintain in order to ensure that the CSB can satisfy as many requests as possible, but with a trade-off against pool overhead costs. We use a simple rule that whenever the current availability is below the specified minimum the CSB orders the difference. Further, any instances that have not been rented for 50 minutes are terminated. This ensures that, should demand drop off, the pool will automatically scale down.

8.4
Workload Modeling
From results presented in section 6, we know that performance it positively skewed with excess kurtosis and so we use the lognormal distribution to model execution times as it has the required properties, and we note it is commonly used for modeling execution times [62][51]. We recall that a lognormal distribution is generated by the exponentiation of a normal distribution, or equivalently one whose natural log is normal.
Lognormal distributions have 2 parameters, μ and σ2 which are the mean and variance of the underlying normal distribution, and are denoted by lnN(μ, σ2). As described in section 5.1, instance of type T1 may run on one of 6 possible CPUs: CPU1, CPU2 CPU3, CPU4, CPU5 and CPU6. We let Wij denote the distribution of workload Wi on CPUj , where i ≤ 31, j ≤ 6 respectively. We have then
Wij ~ lnΝ(μij,σ2ij)
where μij, σ2ij are the mean and variance of the underlying normal distribution respectively. The parameter μij is the scale parameter for the lognormal, and so determines the degree of ‘spread’ of a distribution, whilst σ2ij is the shape parameter. Keeping σ2ij fixed, but increasing, μij the distribution becomes more positively skewed as well as increasing the tail weight (higher kurtosis). Conversely, keeping μij fixed but increasing σ2ij increases the ‘peakedness’ of the distribution, with values of σ2ij >= 1 being highly peaked.
We limit σ2ij to the range 0 < σ2ij <= 1, thus allowing our distribution to range from ‘flat’ to ‘highly peaked’. Similarly, we limit the scale parameter to 0 <= μij <= 3. We place a maximum value of 3 for μij as values above this generate larger per-CPU spread than we have observed. We generate a per-CPU per-workload distribution, Wij, by drawing the scale parameter from U[0,3] and the shape parameter from U[0,1]. As we have 6 CPUs, this gives us 6 lognormal distributions: Wi1, Wi1, Wi3, Wi4 ,Wi5 and Wi6.
Each of these distributions has a minimum value of 0. In order to more accurately reflect our empirical results we need to set a minimum value for each CPU, a best workload execution time, and then offset the per CPU distribution by the (per CPU) offset. Complicating the matter somewhat is our observation that different workloads have different CPU orderings in terms of performance. For example, of m1.small bzip2 has an ordering of [E5430, E5-2650, E5-2651, E5645, E5507, AMD] and indeed we find a different ordering per workload. As Lenk, et al. [15] and Farley, et al. [14] have also observed this, we do not consider this to be unusual, rather it is a clear indication that different hardware will be better/worse for different workloads.

To simulate workload-specificity, we generate a random CPU ordering of [CPU1, CPU2, CPU3, CPU4, CPU5, CPU6], and the parameters of the (per CPU) lognormal distribution are determined based on this ordering. For example, suppose for workload Wi we have an ordering of [CPU3, CPU1, CPU2, CPU4, CPU5, CPU6], from best to worst: CPU3 is the best performing CPU for the workload whilst CPU6 is the worst.

We randomly generate a minimum value (best execution time) for the workload from U[200,400] and then offset each per CPU value above by this amount. In order to generate the workload distribution Wi as a whole, i.e. its observed past history on the CeX, we repeatedly place an order for one instance. In accordance
[image: image8.png]Normalised Demand for Non-Store Retailing: Small Businesses
10

0.8

| JP

0.4

\ I
|

100

Demand
j:g
=

=

150 200 250
Months

Fig 5: Example of a randomly generated workload distribution on CeX.
with how the CeX clears an order, the instance will run on one of the possible CPUs, and we then sample from the per CPU distribution. In Fig 5. above, we have an example of a randomly generated workload, as per the procedure described.
The tranche points for the example workload from A to L are: [227, 234, 244, 324, 361, 364, 389, 392, 395, 400, 404]. A user requesting an instance in tranche B for the workload requires a minimum execution time of 234s, and note that this may be satisfied by tranche A and B instances.

9
Simulations: Estimating E[OpCost] and E[DECLINED]
The simulation parameters are (MAX_HET, PERF_DEMAND, MIN_POOL) where MAX_HET element of {1,..,6}, PERF_DEMAND = Google_Perf|HighCPU_Perf, and MIN_POOL >= 1. One run of our simulation proceeds as follows:
Algorithm 2: One Run of CSB Simulation
BEGIN(MAX_HET, PERF_DEMAND,MIN_POOL)
DECLINED ← 0
COST ← 0
BILLING_HOURS ← 0
broker.generate_workloads(31,cpu_distribution)

for i in (0, 41760):

order_book.update(i)

costs ← broker.get_costs(i)

billing
← broker.get_billing(i)

COST ← COST + costs

BILLING_HOURS ← BILLING_HOURS + billing

p ← 100*demand_pattern[i]

m ← np.random.int(0,100)

if p < m:

k ← np.random(0,NUM_USERS)

request ← users[k].get_request()

accept ← broker.submit(request)

if accept == TRUE:

broker.process(request)

else:

DECLINED ← DECLINED + 1

current_pool ← pool.get_size()

if current_pool < MIN_POOL_SIZE:

q ← MIN_POOL_SIZE – current_pool

broker.acquire(q)
OpCOST ← COST/BILLING_HOURS
Print (OpCOST, DECLINED)

Each run produces a value of OpCOST and DECLINED. By a trial we understand one particular set of parameter values, and we limit MAX_HET to 1 or 6 and so the CeX is either Minimally Heterogeneous or Maximally Heterogeneous. We allow MIN_POOL size to vary from 1 to 50. In total we have 200 different trials. For each trial we perform 100 runs and we let mean(OpCOST) and sdev(OpCOST) denote the sample mean and standard deviation. By the Central Limit Theorem we calculate a 95% CI for E[OpCOST] as mean(OpCOST) +/- 1.96*sdev(OpCOST)/10. We can make similar estimates for E[DECLINED].
9.1
Google_Perf in Minimally Heterogeneous CeX
In Fig 6, we plot mean OpCOSTS versus mean DECLINED for pool sizes of 1 to 50. We do not include error bars as we find negligible standard deviations. We recall that on the CeX sellers submit asks in the ranges U[0.8,1.2], whilst the CSB submits a market bid and so accepts the best ask on the order book. We refer to the mean price that the CSB obtains as the base price and for all simulation we find a base price of £0.84. We observe that OpCOST scales linearly with minimum pool size i.e. minimum availability. For a min pool size of 1, we find an OpCOST of 0.89, which is a 6% markup on the base price. However, at this size the CSB declines 20% of all requests. At a size of 50 this drops to just under 2.5% of requests but at a mean OpCOST of 1.25, a markup of 49%.
Unlike the linear relationship between OpCOST and pool size however, DECLINED drops off quickly followed by a slower rate of decrease, with characteristics of an inversely proportional relationship. We can consider DECLINED as a QoS indicator and it may be useful for a CSB to advertise a particular value for the service. As an example, an advertised value of 5% can be achieved with a min pool size of 15, at an OpCOST of 0.98, a 17% on the base price. It should be noted that as the CSB is offering a differentiated performance service, each tranche will of course be priced differently, with lower tranches being below 0.98 and higher tranches above. We discuss pricing in more detail in section 11.
[image: image9.png]CeX Primary Marketplace
Buyer/Sellers Submitting Bids/Asks for T1 Instances

Infrastructure Seller Central Limit Order Book Bid
Bids Asks D a—

Buyer
25@1.05 10@1.07

31@1.03 25@1.08
[

Ask !g
Infrastructure Seller

«—e @

Bid
Institutional Buyer

Cloud Service Broker

 Fig 6. Mean OpCOSTS V DECLINED for Google_Perf Minimally Heterogeneous CeX
In the next section we consider how a maximally heterogeneous CeX affects the CSB.
9.2 Google_Perf in Maximally Heterogeneous CeX
In Fig 7. we plot mean OpCOSTS v mean DECLINED for pool sizes of 1 to 50, again omitting error bars as we find negligible standard deviations. We find qualitatively similar relationships between OpCOSTS, DECLINED and min pool size as in the case of minimally heterogeneous CeX. However, there are quantitative differences, for example an advertised DECLINED of 5% can be achieved at a min pool size of 8 at an OpCOST of 0.94. This is an increase of 12% relative to base price compared to 17% in a minimally heterogeneous CeX. This demonstrates that a heterogeneous environment in which different workloads run better/worse on different CPUs is advantageous to a CSB.
[image: image10.png]CSB Secondary Marketplace
. CsBlnstance Pool

Sub-let 3 Instances

Deliver Instances

E CeX
*

\\ Allocate Instances to

\\ User Bid for Instances

«
//
& Request = (3 Instances, workload 2, tranche A)

 Fig 7. Mean OpCOSTS V DECLINED for Google_Perf Maximally Heterogeneuos CeX
We next consider HighCPU_Perf demand profiles.

9.3 HighCPU_Perf in Minimally and Maximally Heterogeneous CeX
We again find qualitatively similar relationships between OpCOSTS, DECLINED and min pool size for HighCPU_Perf as we do for Google-Perf, and so due to space constraints we omit graphs. When offering a HighCPU_Perf service, a maximally heterogeneous CeX provides a significant advantage over a minimally heterogeneous CeX for the CSB. At a pool size of 50 we find a DECLINED of just over 9% at an OpCOST of 1.34 – a 60% increase on base price. However, in a maximally heterogeneous CeX a 9% DECLINED can be achieved at a markup of 21%.
9.4
Discussion
The CSB can reduce performance risk for users, by providing access to instances with a known current performance level and relating instance price to that performance level. However, the service comes at a cost as a pool of instances needs to be maintained. At a minimum, the CSB must recoup operational costs, in addition to any other costs it may incur, such as transaction fees payable to the CeX. Fundamental questions for the CSB include how to price the service and identifying opportunities to reduce OpCOST.
The combination of a maximally heterogeneous CeX, with the CSB offering tranches spanning the whole performance range (Google_Perf), produced the lowest overhead. In this case, the CSB incured a 12% overhead (% increase in OpCOST relative to base price) whilst satisfying 95% of requests. Pricing will vary around the 12% markup: tranche A performance should cost more than tranche B, which will cost more than tranche C and so on for all available tranches. However, workload variations complicate the matter somewhat: for a workload with a large degree of variation we may expect a wider range of tranche pricing as compared to a workload with a smaller degree of variation.
As well as covering costs, the CSB must add an additional markup in order to make a profit, however, pricing must be set so that it attracts sufficient demand from users. The price an individual user is prepared to pay for a given tranche will depend on the utility that they can derive from the performance level purchased. As utility will vary across users, the value of the same amount of performance also varies, and as a result different users would be prepared to pay different amounts for the same performance. Different price levels will bring forth different quantities of demand. It may be useful then for a CSB to adopt a bid/ask approach. Users can bid for performance levels in accordance with the utility they place on it, whilst the CSB will ask for prices at different performance levels with the objective of covering operational costs for pool as a whole as well as making a profit.
Identifying conditions that lead to a decrease in overhead are important. The benefit of increased heterogeneity to the CSB is notable, as arguably, commodity exchanges with multiple sellers offering appropriately equivalent instances, are likely to be more heterogeneous than current Cloud providers. With increased heterogeneity we have a greater degree of CPU variation amongst instances in the pool, and this is beneficial, but requires a multiplicity of workload types to realise the reduced overheads. In our simulations, there are no best/worst CPUs for all workloads: an instance may have ‘low’ performance for some workloads but ‘high’ for others, mirroring empirical results. Larger CPU variation in the pool results in fewer constraints on the CSB in terms of allocating users to instances. As a consequence, it is possible to satisfy the same proportion of requests at a lower overhead than in a pool with less CPU variation.
Further, it is beneficial to sell performance over the whole range (Google_Perf) as opposed to restricting performance range as it leads to lower overheads. For example, the HighCPU_Perf range is restricted to ‘top end’ performance, and on a maximally heterogeneous CeX, we have an overhead of 21% but can only satisfy 91% of requests. Using Google_Perf allows the CSB to accommodate users with either lower performance needs, or those who are cost constrained.
10
Summary, Conclusions and Future Work
Performance variation across instances of the same type has been reported by numerous authors [6][7][11-15] and is problematic for users as it leads to cost variation for Cloud use. The primary cause is heterogeneity - instances of the same type running on different hardware, as identified by CPU model. In section 5.1 we demonstrated the extent of this for one of the Infrastructure Cloud providers, as well as the resulting differences in performance. We note that (1) the degree of variation across instances is workload specific, and (2) different CPU models are better/worse for different workloads – confirming earlier observations by Lenk and Farley.

CSBs, who can offer value added services on top of standard Cloud offerings, are ideally placed to address performance. However, extant work has failed to sufficiently address the problem. The ‘business’ type CSB considered in [1] acts as an intermediary in negotiating SLAs, but in doing so simply moves the problem to providers, requiring a fundamental change in how they operate. Proposals for technically-oriented CSBs offering performance based services have been put forward [35][36][40][41], however these are limited to making recommendations and do not provide instances at a required performance level. Further, of these, only [35] considered the need for a range of workload specific performance measurements, whilst [36][40][41] used a singular metric, and so have limited the intended audience.

In this paper, our strategy for addressing the performance problem is to re-price instances according to their deliverable performance, and we by propose a CSB that offers instances at a known current performance level. The CSB takes a long position and rents instances through a commodity Cloud exchange, CeX, which operates an order book onto which buyers/sellers post bids/asks, reflecting the view of compute as a commodity [1-5]. Although the CSB cannot provide a guarantee of future performance, intra-variation (performance variation of an instance over time) is typically significantly less than inter-variation (variation across a set of instances of the same type), and so a current performance level reduces performance risk for users, as was discussed in 5.4. However, the service comes at a cost as a pool of instances needs to be maintained.
We demonstrate, in section 9.2, that on a maximally heterogeneous CeX the CSB incurs an overhead (% increase of OpCOST relative to base price) of 12% when selling performance tranches that span the whole range (Google_Perf). Further, it can satisfy 95% of requests received. Pricing will vary around 12% depending upon the tranche requested, with high value tranches being priced higher than lower value ones. Whether or not this pricing represents good value to users will depend upon the utility they attach to the performance level.

An important consideration for future work is how prices are discovered for each tranche per workload. In this regard, it is possible to envisage a secondary performance market with multiple CSBs selling performance, whereby asks and bids are submitted for workloads at a particular level. Multiple buyers and sellers bring both bid and ask side pressure. Such markets are known to efficiently find equilibrium prices. In addition, in this paper we have adopted a simple strategy of assigning the first suitable instance found to the request. This is likely not optimal as we may, for example, assign an instance that is capable of tranche A work to a much lower requests. Optimising the pool to lower overhead is another area of future work as all CSBs will wish to do this.
A notable feature of our results is that heterogeneity is beneficial to the CSB. In future cloud exchanges, of the type considered in section 4, heterogeneity is likely inevitable, given heterogeneity already found on a number of Public Clouds. Indeed, as discussed in section 4.1, attempts to specify hardware which sellers must use is likely to reduce liquidity, and it may also be difficult in practice to prove compliance. For users for whom price and performance is not a main consideration, such exchanges will provide the benefits of a commodity market, and we can view them as providing a ‘basic’ unrated instance. For users with performance needs, heterogeneity allows for a secondary performance market to develop. As we have shown, increased degrees of heterogeneity is beneficial to the CSB, and hence to its users as it reduces operational costs, but it also leads to an increase in liquidity for the underlying exchange, as a greater number of sellers can offer instances.

Further important future work will need to address security. The CSB operates by selling the same instance to multiple users, so needs to ensure that past users cannot access the instance once they have returned it to the CSB. As users have root access they can modify an instance to retain access to it after it has been returned to the CSB. Container technologies, which virtualise the Operating System, and have gained significant attention recently, may offer a solution, as the CSB can create and destroy these environments with the instance on-demand. However, there exists the possibility that a malicious user may escape the container; this is of course the same risk that Infrastructure Cloud providers run – hypervisor breakouts. This is an active, important and on-going area of Cloud security research and one which is likely to see much progress given the obvious need.

Containers also offer an intriguing possibility of workload migration for performance reasons. This would allow a user to request a migration from, for example, tranche D to A, and back again as performance requirements dictate. The ability to migrate workloads leads to the following question: what impact will this have on existing workloads being run in the pool? That is, if two instances in the pool are co-locating on the same host, what impact will running a workload on one have on the other? This depends upon a number of factors, such the nature of the workloads themselves, current performance, and performance correlation. A requirement for addressing this issue is an ability to detect when instances owned by the same user are co-locating, and we outline [63] just such a technique applicable to Clouds running on Xen based hypervisors.

References
[1] R. Buyya, et al, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Generation Computer Systems, Vol 25 Issue 6, pp. 519-616, 2009.
[2] J. Weinmann, Cloud Pricing and Markets, IEEE Cloud Computing, Cloud Economics Column, January/February 2015.
[3] G. Stuer, K. Vanmechelena, J. Broeckhovea, A commodity market algorithm for pricing substitutable grid resources, Future Generation Computer Systems, Vol 23 Issue 5, pp. 688–701, 2007.
[4] S. Garg, C. Vecchiola, R. Buyya, Mandi, a market exchange for trading utility and cloud computing services, Journal of Supercomputing (JOC), 64(3): 1153-1174
[5] J. Cartlidge, Trading experiments using financial agents in a simulated cloud computing commodity market, in Proc. 6th Int. Conf. Agents and Artif. Intelligence, Vol. 2 - Agents (ICAART-2014). B. Duval, J. van den Herik, S. Loiseau & J. Filipe, Eds. Angers, France: SciTePress, Mar. 2014, pp. 311-317.
[6] M. Armbrust, et al, Above the clouds: a Berkeley view of cloud computing, Technical Report EECS-2008-28, EECS Department, University of California, Berkeley, (2009)
[7] X. Zhang, et al, CPI^2: CPU Performance isolation for shared compute cluster, in Proc. of the 8th ACM European Conference on Computer Systems, pp 379-391, 2013.
[8] https://www.nas.nasa.gov/assets/pdf/papers/saini_s_impact_hyper_threading_2011.pdf (20/7/2016)
[9] EC2 Machine Definitions: https://aws.amazon.com/ec2/instance-types/ (20/7/2016)
[10] GCE Machine Definitions : https://cloud.google.com/compute/docs/machine-types (20/7/2016)
[11] S. Phillips, V. Engen, V, J. Papay, Snow white clouds and the seven dwarfs, in Proc. of the IEEE International Conference and Workshops on Cloud Computing Technology and Science, (Nov. 2011) pp738-745
[12] J. Schad, J. Dittrich, and J.-A, Quiane-Ruiz, Runtime measurements in ´the cloud: Observing, analyzing, and reducing variance, Proc. VLDB Endow., (Sep 2010) vol. 3, no. 1-2, pp. 460–471
[13] Z. Ou, et al, Exploiting Hardware Heterogeneity within the same instance type of Amazon EC2, presented at 4th USENIX Workshop on Hot Topics in Cloud Computing, Boston, MA. (Jun. 2012)
[14] B. Farley, et al, More for your money: exploiting performance heterogeneity in Public Clouds, in Proc. of the Third ACM Symposium on Cloud Computing, article no. 20, 2012.
[15] A Lenk, et al, What are you paying for? Performance benchmarking for infrastructure-as-a-service offerings, Cloud Computing (CLOUD), 2011 IEEE International Conference on, 484-491
[16] Standard Performance Evaluation Corporation (SPEC): http://www.spec.org (20/7/2016)
[17] Performance and Algorithms Research: https://crd.lbl.gov/departments/computer-science/PAR/research/previous-projects/torch-testbed/ (3/1/2017)
[18] Open Source Automate Benchmarking: http://www.phoronix-test-suite.com/ (3/1/2017)
[19] S. Osterman, et al, A performance analysis of EC2 cloud computing services for scientific computing, Cloud Computing, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol 34, (2010), pp 115-131
[20] K. Yelick, et al, The Magellan Report on Cloud Computing for Science, http://www/alcf.anl.gov/magellan (2011)
[21] J. E. Smith, Characterizing computer performance with a single number. Communications of the ACM, 10 Oct. 1988, pp. 1202–1206
[22]DBCE:http://www.mds.deutscheboerse.com/blob/8838/2ef1db653f425395675fb4315b249f1d/deutsche-bo-rse-cloud-exchange-the-marketplace-for-cloud-resources-data.pdf (3/1/2017)
[23] DBCE: http://cloud.exchange (20/5/2016)
[24] CME: http://www.businesscloudnews.com/2013/10/01/cme-group-6fusion-to-explore-trading-iaas-resources-as-commodities/ (20/7/2016)
[25] B. Li, Risk Informed Service Level Agreement for Cloud Brokerage, PhD Thesis, 2013.
[26] D. Wang, et al, Pricing reserved and On-Demand Schemes of cloud computing based on option pricing model, Network Operations and Management Symposium (APNOMS), pp.1-3, 2013 15th Asia-Pacific
[27] John McCarthy, speaking at the MIT Centennial in 1961, “Architects of the Information Society, Thirty-Five Years of the Laboratory for Computer Science at MIT,” Edited by Hal Abelson
[28] L. Kleinrock, A vision for the Internet, ST Journal of Research 2 (1) (2005) 4–5
[29] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a Future Computing Infrastructure, Morgan Kaufmann, San Francisco, USA, 1999.
[30] J. Altmann , et al, A Market Place for Computing Resources, Proceedings of the 5th international workshop on Grid Economics and Business Models, August 26-26, 2008, Las Palmas de Gran Canaria, Spain
[31] J. Cunha, O. Rana, Grid computing: Software environments and tools, chapter 9, Programming, Composing, Deploying for the Grid. Springer Verlag, 2006.
[32] GridPP: https://www.gridpp.ac.uk/ (20/7/2016)
[33] NIST Cloud Definitions: http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf (20/7/2016)
[34] http://cloudtweaks.com/2013/10/business-versus-technical-cloud-brokers-and-why-it-matters/ (20/7/2016)
[35] A Lenk, et al, What are you paying for? Performance benchmarking for infrastructure-as-a-service offerings, Cloud Computing (CLOUD), 2011 IEEE International Conference on, 484-491
[36] J. Gottschlich, J. Hiemer, O. Hinz, A CLOUD COMPUTING BROKER MODEL FOR IAAS RESOURCES, Proceedings of the European Conference on Information Systems (ECIS) 2014, Tel Aviv, Israel, June 9-11, 2014,
[37] Unixbench: https://code.google.com/p/byte-unixbench/ (20/7/2016)
[38] Z. Li, L. O’Brien, R. Rangan, M. Zhang, Early Observations on Performance of Google Compute Engine for Scientific Computing, Proceedings of the 2013 IEEE International Conference on Cloud Computing Technology and Science
[39] B. El. Zant, M Gagnaire, Performance and price analysis for cloud service providers, pp. 816–822, Science and Information Conference (SAI), 2015
[40] A Amato, B Di Martino, S Venticinque, Cloud Brokering as a Service”, P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013[41] P. Pawluk, B Simmons, M Smit, M Litoiu, S Mankovski, Introducing STRATOS: A Cloud Broker Service, IEEE CLOUD 12, 891-898
[41] P. Pawluk, B Simmons, M Smit, M Litoiu, S Mankovski, Introducing STRATOS: A Cloud Broker Service, IEEE CLOUD 12, 891-899
[42] K. Djemame, D. Armstrong, J. Gourlay, J Padgett, Brokering of Risk-Aware Service Level Agreements in Grids. Concurrency and Computation: Practice and Experience
[43] O. Rogers, D. Cliff, A financial brokerage model for cloud computing, Journal of Cloud Computing: Advances, Systems and Applications, vol. 1, no. 2, Apr. 2012
[44] F. Wu, L. Zhang, B. A. Huberman, Truth-telling reservations, Algorithmica, vol. 52, no. 1, 2008, pp. 65–79.
[45] P. Clamp, J. Cartlidge, Pricing the cloud: An adaptive brokerage for cloud computing, in Proc. 5th Int. Conf. Advances in System Simulation (SIMUL-2013). M. Bauer & P. Lorenz, Eds. Venice, Italy: IARIA XPS Press, Oct 2013, pp. 113-121
[46] J. Cartlidge, P. Clamp, Correcting a financial brokerage model for cloud computing: closing the window of opportunity for commercialisation, Journal of Cloud Computing: Advances, Systems and Applications, vol. 3, no. 2, Apr 2014.
[47] V. Smith, Experimental study of competitive market behavior, Journal of Political Economy, 70:111–137. 1962
[48] D. Cliff, ZIP60: further explorations in the evolutionary design of trader agents and online auction-market mechanisms, EEE Transactions on Evolutionary Computation - Special issue on computational finance and economics, Vol 13, Issue 1, pp. 3-18. 2009
[49] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, D. Tsafrir, Deconstructing Amazon EC2 Spot Instance Pricing, ACM Transactions on Economics and Computation, 2013
[50] D. Lilja, Measuring Computer Performance, New York, Cambridge University Press, (2008)
[51] J. Hennessy, D. Patterson, Computer Architecture a Quantitative Approach, 5th Ed. Waltham, Elsevier, (2012)
[52] Bzip2: http://www.bzip.org (20/7/2016)
[53] GNU Go: http://www.gnugo.org (20/7/2016)
[54] Persistence of Vision: http://www.povray.org (20/7/2016)
[55] NAMD Scalable Molecular Dynamics: http://www.ks.uiuc.edu/Research/namd/ (20/7/2016)
[56]STREAM, Sustainable Memory Bandwidth in High Performance Computers: http://www.cs.virginia.edu/stream/ (20/7/2016)
[57] https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad (20/7/2016)
[58] Google Trace: https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md (20/7/2016)
[59] ONS: https://www.ons.gov.uk/ (20/7/2016)
[60] Linux Containers: https://linuxcontainers.org/ (20/7/2016)
[61] A. Verma et al, Large Scale Cluster Management at Google https://pdos.csail.mit.edu/6.824/papers/borg.pdf (20/7/2016)
[62] L. Eeckhout, Computer Architecture Performance Evaluation Methods, Morgan and Claypool, 2010
[63] J. O'Loughlin, L. Gillam, Sibling Virtual Machine Co-location Confirmation and Avoidance Tactics for Public Infrastructure Clouds, Journal of Supercomputing Volume 72, Issue 3, pp 961-984
