
Searchain: Blockchain-based Private Keyword Search
in Decentralized Storage

Peng Jianga,∗, Fuchun Guob,∗, Kaitai Liangc, Jianchang Laib, Qiaoyan Wena

aState Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China.

bInstitute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of
Wollongong, Australia.

cDepartment of Computer Science, University of Surrey, UK

Abstract

Blockchain-based distributed storage enables users to share data without the help of
a centralized service provider. Decentralization eliminates traditional data loss brought
by compromising the provider, but incurs the possible privacy leakage in a way that
the supplier directly links the retrieved data to its ciphertext. Oblivious keyword search
(OKS) has been regarded as a solution to this issue. OKS allows a user to retrieve
the data associated with a chosen keyword in an oblivious way. That is, the chosen
keyword and the corresponding ciphertext are unknown to the data supplier. But if the
retrieval privilege is with an authorized keyword set, OKS is unavailable due to one-
keyword restriction and public key encryption with keyword search (PEKS) might lead
to high bandwidth consumption.

In this paper, we introduce Searchain, a blockchain-based keyword search system.
It enables oblivious search over an authorized keyword set in the decentralized stor-
age. Searchain is built on top of a novel primitive called oblivious keyword search
with authorization (OKSA), which provides the guarantee of keyword authorization
besides oblivious search. We instantiate a provably secure OKSA scheme, featured
with one-round interaction and constant size communication cost in the transfer phase.
We apply OKSA and ordered multisignatures (OMS) to present a Searchain protocol,
which achieves oblivious peer-to-peer retrieval with order-preserving transaction. The
analysis and evaluation show that Searchain maintains reasonable cost without loss of
retrieval privacy, and hence guarantees its practicality.

Keywords: Decentralized Storage, Oblivious Keyword Search, Authorization,
Blockchain

∗Corresponding author
Email addresses: pennyjiang0301@gmail.com (Peng Jiang), fuchun@uow.edu.au

(Fuchun Guo)

Preprint submitted to Elsevier October 20, 2017

1. Introduction

Data storage with encryption is essential for data suppliers to protect their sensi-
tive data from being compromised by network attackers. However, traditional storage
systems (e.g., Google, Dropbox and One drive) need an individual service provider
to transfer and store the encrypted data. Although considering integrity protection or
deduplication [1, 2, 3, 4], these storage systems may suffer from potential security
threats (e.g., malware or man-in-the-middle attacks) due to lack of end-to-end encryp-
tion. Bitcoin [5] has triggered a new trend of decentralized computing. It brings a great
advantage: decentralized control, i.e., no one owns or controls the network. Single
monolithic blockchain technology [6] provides an elegant method to achieve decen-
tralized storage. A blockchain is a list of blocks, each covering the encrypted data with
verifiability in the current transaction and referring back to previous blocks.

Modern storage systems employ blockchain technology and public key encryption
to flexibly share encrypted data, just via a federation of nodes with voting permissions,
that is, a peer-to-peer network [7]. Figure 1 depicts the basic framework of blockchain-
based storage, where a node speaks to the rest of the nodes without a central party
and all of blocks recording transactions are linked to a chain according to their orders.
Such a peer-to-peer storage system removes the reliability to the service provider and
addresses the security shortcomings from network attacks. It has three features, namely
Decentralized control, Immutability (written data is tamper-resistant and the block is
ordered) and Independent ability to create & transfer assets.

Figure 1: Blockchain-based Storage.

In the practical point of view, data search is necessary while the traditional encryp-
tion limits search capabilities. To bridge encryption and search, searchable encryption
[8] is designed to allow search over encrypted data without revealing the keyword.
Searchable encryption can be realized in either the symmetric setting or the asymmet-
ric setting. Although the symmetric searchable encryption (SSE) enjoys better effi-
ciency [9, 10], it suffers from complicated secret key distribution/management in data
sharing stage. To address this issue, Boneh et al. introduced a more flexible primitive,
namely public key encryption with keyword search (PEKS) [11] that enables users to
search data in the asymmetric encryption setting. Although supporting keyword search

2

in the asymmetric encryption setting, PEKS is incompatible with decentralized data
storage, which requires peer-to-peer communication between nodes without the aid of
the server.

Motivation. In the decentralized storage, each node represents a supplier (who speaks
and shares its data with others) or a user (who listens and wants to retrieve data). For
users, privacy is on the top of the priority list [12], since the data retrieval leakage will
reveal their private interests. Users often prefer the retrieval to link no ciphertext, i.e.,
reveal no additional information. To tackle the issue, Ogata and Kurosawa [13] intro-
duced an interesting notion, called oblivious keyword search (OKS). With a two-party
oblivious transfer protocol, OKS allows the user to retrieve the plain data containing
the keyword of his choice while the supplier learns nothing about the chosen search
keyword and the retrieved plain-cipher data. However, in some special databases, such
as databases for commercial secrets and databases for DNA information, data is highly
confidential. In such a scenario, users are with various retrieving rights. That is, the
choice of a keyword must be within an authorized keyword set previously specified
by the supplier and the user. To be precise, if W is the authorized keyword set for a
user, the user can search data associated with any keyword w ∈W and meanwhile, the
retrieving rights corresponding to all the encrypted data associated with W is granted
by the supplier. The supplier is able to verify that the chosen keyword belongs to W ,
while unknowing what the keyword is.

This paper presents a blockchain-based keyword search called Searchain that aims
to enable oblivious search over conditional keyword privacy in the decentralized stor-
age. Searchain is not a trivial combination of blockchain technique and data retrieval
technology. It builds on top of a new notion named oblivious keyword search with
authorization (OKSA). The core idea of OKSA is to generate the trapdoor based on the
authorized keyword set, the received token as well as the secret key of the supplier, so
that the supplier can only know the search keyword belonging to the authorized key-
word set but cannot distinguish which one it is. OKSA allows Searchain to support
peer-to-peer keyword search and to preserve the retrieval privacy with order by further
combining the ordered multisignatures (OMS).

Naive Solution. OKS supports only one keyword and cannot be directly extended to
the context where a keyword set is needed. A potential approach is that the supplier
encrypts all trapdoors of keywords in W (we assume |W | = n) and runs a 1-out-of-n
oblivious transfer protocol with the user on each encrypted trapdoor. This however
comes to the price of the linear size communication cost between the supplier and each
user. It is obvious that this solution does not scale well due to high bandwidth overhead
(i.e. O(n)).

Our Contributions. To summarize, our contributions are fourfold.

• We introduce the Searchain architecture, a peer-to-peer keyword search system.
It allows the user to search his/her interested data and hide the retrieval privacy
in the decentralized environment, while the block can record the retrieval trans-
action with its order. It removes the dependency on a third party and hence
eliminates the threat of compromising service provider in data retrieval.

3

• We propose the notion of OKSA, which augments OKS with the idea of embed-
ding an authorized keyword set. It provides authorization and verification for
the search keyword in an oblivious way. We propose a provably secure OKSA
instantiation with constant-size transfer communication.

• We present the design of Searchain by using OKSA. The protocol supports en-
crypted retrieval over an authorized keyword set, while hiding the search key-
word and data. The block, generated by OMS to record the retrieval transaction,
works seamlessly with keyword search and hence reliably preserves the transac-
tion order.

• We evaluate our proposed Searchain protocol and the results show its scalability
and practicality in the decentralized storage.

Differences Between This Work and The Conference Version [14]. In this version,
we start from the decentralized storage, and build a blockchain-based data retrieval
framework with its objectives and threat model. Under the new framework, we present
a Searchain protocol by employing OKSA, which was proposed in [14], and OMS. In
addition, we evaluate the performance of the Searchain protocol by functionality analy-
sis and implementation. So the conference version [14] is just one of four contributions
in this work.

Organization. The rest of this paper is organized as follows. In Section 2, we re-
view some related work. Section 3 and Section 4 describe the Searchain overview and
OKSA, respectively. We present a Searchain protocol from OKSA in Section 5 and
evaluate it in Section 6. The formal security proof of OKSA is given in Section 7.
Finally, we conclude the paper in Section 8.

2. Related Work

Blockchain Technology. Decentralized cryptocurrency (e.g., Bitcoin [5]) has gained
popularity and is also quoted as a glimpse in the future [15]. The cryptocurrency system
builds on top of a novel technology named blockchain [16], which is essentially a
distributed database of transactions. Digital information has been executed and shared
among participating parties and allows public ledger of all transactions. A blockchain is
composed of verifiable records for each single transaction ever made which is verified
by consensus of a majority of the participants in the system. Blockchain technology
is finding applications in wide range of non-financial areas besides current financial
areas, such as decentralized proof of the existence of documents [17], decentralized
IoT [18] and decentralized storage [19].

Blockchain-based storage has become a newly of growth engine in data sharing
since it does not need a central service provider. We find that the data retrieval ap-
proaches are rarely studied in the blockchain-based system. To date, a personal data
management system [20] was proposed with the assistance of the blockchain tech-
nology to ensure users own and control their data against the honest-but-curious ser-
vices. A decentralized smart contract system named Hawk [15] was proposed to retain
transaction privacy from the public’s view, while no detailed retrieval algorithm was

4

given. A healthcare chain [21] was constructed to facilitate data interoperability in
health information networks. However, these systems focus on the concepts with the
corresponding frameworks instead of the concrete algorithms to guarantee data utiliza-
tion and data secrecy. Also, the linkable transaction privacy is still a margin in the
blockchain-based retrieval.

Public Key Encryption with Keyword Search. Boneh et al. introduced the notion of
public key encryption with keyword search (PEKS) [11] to address the issue of the
complicated key management in SSE and achieve search over the encrypted data in
the asymmetric setting. Afterwards, combinable multi-keyword search schemes have
been proposed to provide diverse search functionality, such as public-key encryption
scheme with conjunctive keyword search (PECKS) [22, 23, 24] and public key encryp-
tion with temporary keyword search (PETKS) [25]. To improve the keyword privacy,
secure channel free-PEKS (SCF-PEKS) schemes [26] and ciphertext retrieval against
insider attacks (CR-IA) [27] were proposed to resist outsider attacks and insider at-
tacks, respectively, and public key encryption with oblivious keyword search (PEOKS)
[28] was proposed to permit authorized private search. We find that PEKS is unsuitable
in the two-party database operation.

Oblivious Transfer. Originally, the notion of oblivious transfer was introduced by Rabin
[29], which is a two-party protocol between a sender S and a receiver R. S has two
bits and R wishes to get one of them satisfying the followings properties: S does not
know which bit R obtains, and R does not know any information about the bit that he
did not obtain. In an OT system, the most general type is k-out-of-n oblivious transfer
(OTkn), where S holds n messages and R retrieves k of them simultaneously, such
that S does not know which messages R obtains. There have been many works on
oblivious transfer, such as adaptive oblivious transfer [30, 31], oblivious transfer with
fully simulatable security [32], oblivious transfer with universally composable security
[33], oblivious transfer with access control [34] and priced oblivious transfer [35, 36].
Some proposed OTkn protocols, such as [37, 38], have ideal communication rounds.

Oblivious Keyword Search. Ogata and Kurosawa [13] introduced the notion of oblivi-
ous keyword search to address the user privacy issue in the keyword search, which was
based on a two-party OT protocol between a supplier and a user. Their OKS employed
the blind signature, where the ciphertext is generated with the master secret key of the
supplier (denoted by msk) and some keyword, and each trapdoor is transferred from
the supplier to the user using msk and the keyword token generated by the user. Rhee
et al. [39] presented an oblivious conjunctive keyword search to allow search over
boolean combinations of keywords. Freedman et al. [40] considered privacy concerns
in keyword search using oblivious evaluation of pseudorandom functions. Zhu and Bao
[41] addressed the OKS in the public database by using linear and non-linear oblivious
polynomial evaluation. Camenisch et al. [28] proposed the public key encryption with
oblivious keyword search (PEOKS) to build a public key encrypted database permitting
private information retrieval (PIR), where computationally expensive zero-knowledge
proof (ZKP) was employed.

Ordered Multisignatures. Ordered Multisignatures (OMS) was proposed in [42] to al-
low signers to attest to a common message as well as the order in which they signed. In

5

OMS, a group of signers sequentially form an aggregate by each adding their own sig-
nature to the aggregate-so-far. [43] proposed sequentially aggregate signed data based
on uncertified claw-free permutations in the random oracle model, to minimize the to-
tal amount of transmitted data rather than just the signature length. [44] presented a
practical synchronized aggregate signature scheme without interactive complexity as-
sumption used in [42]. [45] constructed a provable secure OMS scheme in the standard
model, which also improved the efficiency compared with original OMS [42].

3. Searchain Overview

3.1. Architecture

Figure 2 depicts an overview of the Searchain architecture. It includes transaction
nodes with a peer-to-peer structure and a blockchain with all of ordered blocks. Their
functions and the Searchain workflow are described as follows.

Figure 2: Searchain Architecture.

• Node. Nodes can share data in a peer-to-peer mode. A node plays the role of
the supplier, the user or verifier. As a user, the node generates the data retrieval
request, and accordingly creates a block and broadcasts it. As a supplier, the
node who owns the data can respond the request to help retrieve the data. As a
verifier, the node collects the unconfirmed block and approves it or not. No third
party controls the data retrieval process.

• Block and Blockchain. A block provides a record for the current data retrieval
information (or we call it as transaction record). The block can be added to
the chain after being approved by most nodes in the network. We note that the
optimization issue on the number of nodes in the block approval is out of the
scope in this work.

Workflow. We assume that the transaction happens between two nodes, i.e., Node A
and Node B, where Node A acts as a data supplier and Node B acts as a user. The goal
of Node B is to retrieve the data owned by Node A. Searchain mainly consists of the
following five phases.

Initialization Transaction. Node A generates some parameters for this transaction,
where the public parameters are public while the secret key is only kept by Node A.

6

Node A negotiates a keyword set with Node B. Node A can control whether Node B
is able to retrieve his data.

Data Sharing. Node A leverages the encryption module to handle the sensitive
plaintext data before sharing with other nodes. Each plaintext data is associated with
its respective keyword. The ciphertext data should provide both search capability and
confidentiality, that is, a valid node can search and access the plain data. The ciphertext
data is transmitted in the public network and available to any other nodes.

Retrieval Request. Node B, who submits a request to Node A for his/her retrieval
target data. To hide the target of Node B, this request should be in an encrypted form,
e.g., the encryption of some keyword. Meanwhile, a block which can record the data
transaction is generated. After that, the request and the block are broadcasted to other
nodes in the network.

Verification. The block needs to be approved for validity before it is added to the
chain with an unchanged order. Node A verifies the validity of the request, that is, the
keyword in this request is in the negotiated keyword set, and thereafter distributes a key
to NodeB. During the request verification, decryption key generation and distribution,
Node A learns nothing about the retrieved data.

Data Retrieval. Upon receiving a valid key, Node B can search and access its
interested data with other secret information.

3.2. Objectives

Searchain works with each block being verified publicly. Considering the structure
features of the blockchain-based storage system and the properties of keyword search
over encrypted data, Searchain aims to satisfy the objectives, i.e., Decentralizing, Rule
Independence, Transaction Order-preserving, Secrecy and Retrieval Privacy.

• Decentralizing. Searchain provides peer-to-peer data retrieval in the distributed
storage without relying on a third party (e.g., the storage server).

• Rule Independence. Searchain should provide each retrieval transaction to be
executed independently. On one hand, it sets rules about a transaction (business
logic) that are tied to the transaction itself instead of at the entire database level.

• Transaction Order-preserving. Searchain should guarantee transactions to be ex-
ecuted orderedly. That is, each transaction block can be linked into the previous
chain with a non-broken order.

• Secrecy. Searchain provides the secrecy of the to-be-search data and its associ-
ated keywords.

• Retrieval Privacy. Under a case that Node B wants to retrieve data from Node
A, Searchain supports the Node B’s retrieval privacy. That is, Node A does
not know the retrieved plain-cipher data and its associated keyword although
assuring the authorization of this keyword.

7

Supplier User
(W) (W)

Generate ciphertext {CTi}.
{CTi}−−−−−−−−→

Generate a token for any negotiated keyword.
Token←−−−−−−−−

Verify the keyword in Token belonging toW ,

Generate a trapdoor for the received token.
Trapdoor−−−−−−−−→

Search the interested data.

Figure 3: OKSA Framework.

3.3. Threat Model

This paper focuses on decentralized storage that achieves peer-to-peer data retrieval
while tying the records into the blockchain. This blockchain is an ordered sequence of
all retrieval transactions. We assume that each transaction maps to a unique block that
is added to the previous chain, such that it provides an indelible and transparent record.
We also assume that each plaintext data is encrypted into the corresponding ciphertext
that is searchable. In addition, we allow all adversaries to access the system public
parameter and the transferred data stream in the public channel.

We consider that there exists an “honest-but-curious” adversary that follows all
prescribed protocols and attempts to infer the retrieved data based on the two attack
modes: (i) The chosen plaintext attack models the case that an adversary knows some
of the ciphertexts of arbitrary plaintexts and guesses the used plaintext. (ii) The chosen
keyword attack models the case that an adversary knows some of the ciphertexts of
arbitrary keywords and guesses the used keyword.

Our threat model makes the following assumptions. First, all keywords are short
strings and allowed to guess by brute-force attacks. Second, we default the target
node itself not to be the adversary, that is, the adversary cannot identify the secret key
with associated information. Third, we do not consider any collusion of entities with
different roles. Here we disallow private, peer-to-peer communication between the
nodes except via the system’s built-in communication, for great savings in complexity
and for reduced security risk. This means that malicious nodes are unable to transmit
data to others.

4. Oblivious Keyword Search with Authorization

In this section, we build blocks of OKSA, which follows the supplier-user mode in
OKS [13]. We systematically study the keyword authorization problem in the oblivious
keyword search, where the supplier has an agreed authorized keyword set with each
user. In OKSA, the user generates a keyword token for any keyword in the authorized
keyword set and thereafter the supplier generates the trapdoor with the received token,
his secret key and the authorized keyword set. Figure 3 presents the OKSA framework
and its detailed algorithms are described as follows.

8

4.1. Algorithm Definition
Definition 1. An oblivious keyword search with authorization scheme consists of the
following polynomial time randomized algorithms.

Setup. The supplier T takes a security parameter λ and an integer n as input, and
outputs the public parameter pp and the master public/secret key pair (mpk,msk)
to establish the system. Note we assume pp is implicitly included in the following
algorithm. T negotiates a keyword set W with each user, where |W | ≤ n.

Commit. T takes a messagemi, a keyword wi and the master public keympk as input,
and outputs the ciphertext CTi, where each message mi has its own unique keyword
wi. T commits all ciphertexts {CTi} to the user U .

Transfer.

Transfer 1. U → T : U takes the authorized keyword set W , a specified keyword
w′i ∈W and the master public keympk as input, and outputs the keyword
token P(w′i), the secret key of the user sk and the proof information for
accountability Σ. Then U sends (P(w′i),Σ) to T . Here, P(w′i) is com-
puted from sk, w′i,W,mpk. Σ helps T to verify the accountability, that
is, the received token is used to generate a trapdoor for only one keyword
in the authorized keyword set.

Transfer 2. T : T takes the received keyword token P(w′i), the authorized keyword set
W and the master public key msk as input. It verifies the accountability
by checking |P(w′i)| = 1.

Transfer 3. T → U : Once the verification passes, T outputs a trapdoor T to U .
Transfer 4. U : U takes CTi, T, sk as input and outputs mi if wi = w′i, otherwise, ⊥.

Correctness. An oblivious keyword search with authorization is correct if the user
obtains the message of his choice when all of entities follow the protocol steps above.
Also, passing the verification of accountability means that the trapdoor generated from
the received token will be for only one specific keyword and this specific keyword is in
the authorized keyword set.

4.2. Security Notions
Based on [11] and [13], we define security requirements to be user privacy, indis-

tinguishability and accountability. User privacy guarantees that the supplier T does not
learn the search keyword from the user’s token in the i-th Transfer sub-phase. Indis-
tinguishability guarantees that a malicious user U cannot distinguish the message and
keyword from the ciphertext. Accountability guarantees that the trapdoor the user asks
for is for only one keyword in the authorized keyword set.

• (User Privacy.) Given (P(w),Σ) and two keywords w0, w1, it is hard to distin-
guish whether w = w0 or w1.

• (Indistinguishability.) Given two message-keyword tuples (m0, w0), (m1, w1)
and a ciphertext CT for (m,w), it is hard to distinguish (m,w) = (m0, w0) or
(m,w) = (m1, w1).

9

• (Accountability.) Given (P(W),W, sk) satisfying |W | > 1, it is hard to gener-
ate (P(W),Σ) that passes the verification.

Based on the above requirements, we define the security models via the following
games played between a challenger C and an adversary A. More formally,

User Privacy Game.

Setup. C runs the Setup algorithm to generate mpk and sends it to A.
Challenge. A gives two keywords w0, w1 to C. C responds by choosing a coin θ ∈
{0, 1}, setting w = wθ and generating (P(w),Σ).
Guess. A outputs θ′ and wins the game if θ′ = θ.

We define A’s advantage as Adv = |Pr[θ′ = θ]− 1/2|.

Definition 2. We say that an OKSA scheme satisfies user privacy if there exists no
probabilistic polynomial time adversary to win the above user privacy game with a
non-negligible advantage.

Indistinguishability Game.

Setup. C runs the Setup algorithm to generate mpk and sends it to A.
Phase 1. A makes the trapdoor query for w and C responds with the trapdoor T .
Challenge.A gives two same length message-keyword tuples (m0, w0), (m1, w1) to
C with the restriction thatw0, w1 have not been issued the trapdoor queries in Phase 1.
C responds the challenge ciphertext CT ∗ for randomly choosing θ ∈ {0, 1}.
Phase 2. A issues more trapdoor queries with the same restriction in Challenge, C
responds as Phase 1.
Guess. A outputs θ′ and wins the game if θ′ = θ.

We define A’s advantage as Adv = |Pr[θ′ = θ]− 1/2|.

Definition 3. We say that OKSA has indistinguishability against chosen keyword at-
tack if there exists no probabilistic polynomial time adversary to win the above game
with a non-negligible advantage.

Accountability Game.
In OKSA, the verification of accountability is to assure that the trapdoor is for only

one authorized keyword. It captures the attack that an adversary A can forge a proof
for a valid keyword token P(W ′), where W ′ is a subset of the authorized keyword set
W with 1 < |W ′| < |W | ≤ n. Here, the validness means that A knows W ′,W, sk of
computing P(W ′).

Setup. C runs the Setup algorithm to generate mpk and sends it to A.
Challenge. A outputs (P(W ′),W,W ′, sk) and 1 for challenge, where P(W ′) is
generated from W,W ′, sk,mpk and |W ′| > 1.
Win. A outputs (P(W ′),Σ) and wins the game if (P(W ′),Σ) passes the verification
algorithm.

We define A’s advantage as Adv in computing (P(W ′),Σ).

Definition 4. We say that OKSA has accountability if there exists no polynomial time
adversary to win the above game with a non-negligible advantage.

10

4.3. Construction

In this section, we propose an oblivious keyword search with authorization pro-
tocol. Our protocol allows the user to obliviously obtain an authorized trapdoor by
submitting a keyword token adaptively. It features with constant size communication
cost between the supplier and the user. The proposed scheme achieves that T can
generate the trapdoor for any keyword in the authorized keyword set but cannot guess
which one it is. Like OKS, OKSA is played between a supplier T and a user U , and it
consists of three phases: Setup, Commit and Transfer as follows.

Setup. T takes as input a security parameter λ, an integer n. It chooses a bilin-
ear map system PG = (p,G,GT , e) [46] and a cryptographic hash function H :
({0, 1},GT) → {0, 1}`. It also randomly selects g, h ∈ G, α, x ∈ Zp and com-
putes gα, hi = hα

i

for i = 1, 2, · · · , n. The public parameter is denoted as pp =
(PG, H, g, h), and the master public/secret key pair is

mpk = (gα, h1, h2, · · · , hn) , msk = α.

T publishes pp,mpk to all and keeps msk private.

Commit. The universal keyword space is denoted asKS with the size n. Each message
has its associated keyword. Given a message mi ∈ {0, 1}` and a keyword wi ∈ KS ,
T chooses ri ∈R Zp and computes the encrypted message CTi as

CTi =
(
c1i = gri(α+wi), c2i = H (0, e (g, h)

ri) , c3i = H (1, e (g, h)
ri)⊕mi

)
.

T commits all the ciphertexts {CTi} to U .

Remark. There is a little difference between our OKSA and traditional OKS [13].
In OKS, the ciphertext is based on the master secret key and only the supplier, who
holds msk, can generate it. In our OKSA, the ciphertext is based on the master public
key and anyone in the system can generate it.

Transfer.
We suppose T negotiates a unique keyword set W with each user, where W ⊆ KS

and the size of W is denoted as |W | = k ≤ n.

Transfer 1. U → T : Given the authorized keyword set W , a keyword wi ∈ W and
the master public key mpk, U picks s ∈R Zp as his secret key sk = s and
computes the token P(wi) and the proof Σ as

P(wi) = h
s
∏
wj∈W,j 6=i

(α+wj),Σ =
(

Σ1 = h
α+wi
s , Σ2 = Σα

n−1

1

)
.

Then U sends (P(wi),Σ) to T .
Transfer 2. T : Given the tuple (P(wi),W,Σ) and the master public key mpk, T

checks the accountability by the following equations,

e (Σ2, h
α) = e

(
Σ1, h

αn
)
, e
(
h, h

∏
wi∈W

(α+wi)
)

= e (P(wi),Σ1) .

11

If both equations hold, T accepts the received keyword token is for the
trapdoor for one keyword, and we denote it as |P(wi)| = 1; otherwise,
aborts.

Transfer 3. T → U : Given msk and W , T computes the trapdoor T as

T = P(wi)
1∏

wj∈W (α+wj) .

Then T returns the trapdoor T to U .
Transfer 4. U : Given CTi, T, sk, U executes the searching operation by

c2i = H
(

0, e (c1i, T)
1
s

)
.

If the above equation holds, U continues the decryption operation by

mi = c3i ⊕H
(

1, e (c1i, T)
1
s

)
.

Correctness. Given the master public secret key pair (mpk,msk) from running Setup
algorithm and token/proof tuple (P(wi),Σ), the correctness of the accountability is
verified by the following equations.

e (Σ2, h
α) = e

(
Σα

n−1

1 , hα
)

= e
(

Σ1, h
αn
)
,

e
(
h, h

∏
wi∈W

(α+wi)
)

= e
(
h
s
∏
wj∈W,j 6=i

(α+wj), h
α+wi
s

)
= e (P(wi),Σ1) .

Given a ciphertext CTi from running the Commit algorithm, a trapdoor T from
running the Transfer algorithm and the secret key of the user sk, the correctness of
searching and decryption can be verified by

H
(

0, e (c1i, T)
1
s

)
= H

(
0, e
(
gri(α+wi), h

s
α+wi

) 1
s

)
= H (0, e (g, h)

ri) = c2i

c3i ⊕H
(

1, e (c1i, T)
1
s

)
= H (1, e (g, h)

ri)⊕mi ⊕H
(

1, e
(
gri(α+wi), h

s
α+wi

) 1
s

)
= H (1, e (g, h)

ri)⊕mi ⊕H (1, e (g, h)
ri) = mi.

4.4. Security
OKSA achieves User Privacy, Indistinguishability and Accountability. The formal

security proof will be presented later in Section 7.

5. Searchain Design

This section shows a Searchain protocol from OKSA and OMS. OKSA allows the
user to obliviously retrieve data from the supplier without a third party. We employ the
OMS into the block generation, which records data sharing information of the current
transaction. All blocks can thereafter be added into the chain, where OMS provides
the attestation for the order of the data retrieval transaction. This chain guarantees the

12

transparency and order of the record. Searchain hides the retrieved plain-cipher data
but verifies the authorization of the keyword in the decentralized storage. The used
notations are summarized in Table 1.

Table 1: Notations Used in Searchain.

Notation Description

W A authorized keyword set negotiated by two nodes.
wi A keyword from the authorized keyword set.
mi Plaintext data associated with the keyword wi.
CT Ciphertext data shared by a node (i.e., supplier).
Req A request for retrieving data associated with some keyword.
σ′ A block, used to record information in the current retrieving transaction.
Key A key, used to retrieve the plain data associated with some keyword from the cipher data.

Before presenting the Searchain protocol, we review the OMS scheme [42].

Definition 5. An OMS scheme OMS = (OPg,OKg,OSign,OVf) consists of four
algorithms.

OPg. The parameter generation algorithm returns some global information for the
scheme.
OKg. The key generation algorithm inputs global information and returns a public-
private key-pair (pk, sk).
OSign. The signing algorithm inputs the secret key sk, a message m, an OMS-so-far
sigma and a list of i − 1 public keys L = (pk1, · · · , pki−1), and returns a new OMS
σ′, or ⊥ if the input is deemed invalid.
OVf. The verification algorithm inputs a list of public keys (pk1, · · · , pkn), a message
m and an OMS σ′, and returns a bit.

We intuitively illustrate the Searchain protocol in Figure 4 and describe its details
as follows. In the Searchain protocol, we just consider an independent transaction
between two nodes. We say that the block will be added into the chain once approved
by more than half of nodes in this system. Nodes will adopt the same verification
algorithm for the same block.

5.1. Initialization Transaction

We assume that this data retrieval transaction happens between Node A and Node
B. Node A pre-sets the basic parameters (we can also regard them as the transaction
rule), which are denoted as R = {PG, g, h,H,KS}. Each node accepts the rule and
operations used in the protocol also follow the rule. Given the transaction ruleR, Node
A and Node B generates the public/secret key pair, respectively.

T.1 NodeA runs the OKSA Setup algorithm to generate its public/secret key (pkA, skA),
where pkA = OKSA mpk, skA = OKSA msk.

T.2 Node B runs OMS OKg algorithm to generate its public/secret key (pkB , skB),
where pkB = OMS pk, skB = OMS sk.

T.3 Node A and Node B negotiate a keyword set W ⊆ KS .

13

NodeA NodeB
Data Sharing: {mi, wi}
For i:
Compute the cipher data CTi ← OKSA Commit,
End For

{CTi}−−−−−−→
Retrieval Request:
Choose some keyword wi,
Compute the request Req← OKSA Transfer 1,
Compute the block σ′ ← OMS OSign,
Broadcast (Req, σ′).

(Req,σ′)←−−−−−−
Verification:
Run OMS OVf,
If more than half of nodes approve σ′,
Add σ′ to the chain;
Run OKSA Transfer 2 ,
If Req is verified,
Compute the key Key← OKSA Transfer 3.

Key−−−−−−→
Data Retrieval:
Run OKSA Transfer 4,
Search the target cipher data CTi ,
Decrypt the messagemi ← OKSA Transfer 4.

We note that other nodes also verify the block σ′. Only when approved by more than half of nodes, this block are denoted
as passing the verification and added into the chain.

Figure 4: Searchain Protocol.

5.2. Data Sharing
If Node A wants to shares its data with other nodes, it firstly needs to encrypt the

data as well as its associated keyword before transferring the ciphertext data to the
network.

S.1 For the message mi ∈ {0, 1}` and its associated keyword wi ∈ W , Node A runs
the OKSA Commit algorithm and generates the ciphertext CTi.

S.2 Node A sends out all his encrypted data {CTi} to some location in the public
network.

5.3. Retrieval Request
Since aiming to retrieve the data owned by Node A, Node B needs to generate a

request, which is for NodeB’s interest while hiding that. Also, NodeB creates a block
to record this transaction. Before asking the request, Node B can find available storage
location of {CTi} through the pre-set interface. In this paper, we give no consideration
about how to set interface and find the ciphertext location.

R.1 Node B selects a keyword wi ∈W based on its interest.
R.2 NodeB runs the OKSA Transfer 1 and generates a request Req for keyword wi.

This request is verifiable and used to ask Node A for the retrieving key.
R.3 Node B runs the OMS OSign(Req) and generates σ′. We remark that the block

should include σ′ as well as data location, merkle root and so on. Concrete oper-
ations about data location and merkle root are out of the scope, therefore, we just
regard σ′ as the block for this transaction in this work.

R.4 Node B broadcasts Req, σ′ to the whole network.

14

5.4. Verification

The verification includes transaction validity and the request authentication. During
this phase, Node A executes no decryption operation to catch the keyword wi in the
request.

V.1 Any node runs the OMS OVf algorithm to verify the block. Once more than half
of nodes in the network approve this transaction, the block σ′ is added to the chain.

V.2 Node A runs the OKSA Transfer 2 algorithm to check whether the request is for
a negotiated keyword.

V.3 Once accepting it, Node A runs the OKSA Transfer 3 algorithm to generate a
key Key to Node B. This key helps Node B to search and access the data associ-
ated with wi from Node A.

5.5. Data Retrieval

Upon receiving a valid key T for wi, Node B executes the decryption to obtain the
data associated with wi.

U.1 NodeB runs the OKSA Transfer 4 to searchCTi from all the ciphertexts {CTi}.
U.2 Node B runs the OKSA Transfer 4 to access the data mi for wi.

6. Performance Evaluation

We deploy a static environment composed of 10 nodes, without adding or revoking
nodes. The block will be seen as to be valid once 6 nodes approve it, respectively. We
employ the OKSA construction in Section 4.3 and OMS construction [42] to instanti-
ate our Searchain protocol. We conduct the algorithm implementation on a Windows
system with an Intel(R) Core(TM) i5-2400 CPU@3.10GHz 4 cores 8G Memory. We
exploit PBC (Version 0.5.12) and OpenSSL (Version 1.0.1c) libraries, where the lan-
guage is C. We select a symmetric elliptic curve α-curve [47, 48], where the base field
size is 512-bit and the embedding degree is 2. The α-curve has a 160-bit group or-
der, which means p is a 160-bit length prime. We quantify the transfer bandwidth
between two nodes and computation overhead of different phases in one transaction,
where there are 10 plain messages. Since there are no previously comparable schemes,
we only consider Searchain in the following experiments.

0 2 4 6 8 10 12
0

100

200

300

400

500

Size of Keyword set

B
an

dw
id

th

Cipher data
Request
Key

Figure 5: Transfer Bandwidth (bytes).

15

Transfer Bandwidth. We test the bandwidth from three kinds of parameters, including
cipher data, request and key and exclude the response bandwidth from other nodes for
block approval. We select a hash function whose output is 64-bits and the plain data
with the same-length string. We vary the size of the negotiated keyword set and test
the corresponding parameter size. The experiment results are shown in Figure 5. It is
clear to see that each parameter is almost of size constant with the increase of the size
of the negotiated keyword set, respectively. Therefore, the bandwidth for transfer is
independent of the keyword set, as well.

Computation Overhead. We measure the computation overhead in different phases.
The detailed settings and necessary assumptions depend on the corresponding phases.

• Data Sharing phase. We test the computation time to generate the cipher data.
Encryption for each message is an independent process, so the measurements
run ten times for ten pre-set messages, respectively. Figure 6 presents the data
encryption speed versus the size of the authorized keyword set. We can observe
that the computation time in Data Sharing phase is independent of the size of the
keyword set.

• Retrieval Request phase. We test the computation time to generate the request
and the block Req, σ′. Our measurements rely on that the size of the keyword
set is i in the i-th retrieval transaction and that the size of the keyword set varies
from 1 to 10. We show the measured results in Figure 7. From Figure 7, the
curve of the request generation speed keeps a linear growing trend with the size
of the keyword set.

• Verification phase. We measure the verification speed, which includes the block
approval, the request accountability and key generation. In our experiment, we
make an assumption for block verification, that is, the block is valid as long as
6 nodes approve it. Figure 8 shows the verification speed versus the size of the
keyword set. We can see that this phase costs linear-size-increasing computation
time when the keyword set includes more keywords.

• Data Retrieval phase. We test the time to retrieve one message. As the Searchain
protocol in Section 4, the computation operations should be mainly contributed
by the data search and decryption. The result is presented in Figure 9. When the
size of the keyword set increases, there is no explicit changing engendered in the
time to retrieve the message. This tallies with the Searchain protocol, which has
an independent retrieval algorithm of the keyword set.

7. Security Analysis

7.1. Assumptions
We define two hard problems to provide foundation for the security of OKSA,

i.e., (f, n)-DHE Problem and (f, q)-MSE-DDH Problem. Since (f, n)-DHE Problem
has been proposed and analyzed in [49, 50], we only give its description and omit its
intractability analysis. We refer readers to the corresponding references for details.

16

0 2 4 6 8 10 12
0

0.05

0.1

0.15

Size of Keyword set

E
nc

ry
pt

io
n

S
pe

ed

Figure 6: Computation Time in
Data Sharing Phase (ms).

0 5 10
0

0.005

0.01

0.015

Size of Keyword set

R
eq

ue
st

 S
pe

ed

Figure 7: Computation Time in
Retrieval Request Phase (ms).

0 5 10
0

0.005

0.01

0.015

0.02

Size of Keyword set

V
er

ifi
ca

tio
n

S
pe

ed

Figure 8: Computation Time in
Verification Phase (ms).

0 5 10
0

0.005

0.01

0.015

0.02

Size of Keyword set

R
et

rie
va

l S
pe

ed

Figure 9: Computation Time in
Data Retrieval Phase (ms).

Definition 6. (f, n)-DHE Problem. Let G be a group of prime order p, h ∈ G and
a ∈ Zp. Given h, ha, · · · , han , output (f(x), hf(a)), where f(x) ∈ Zp[x] is a polyno-
mial function with deg f(x) > n.

Then we introduce a new hard problem named (f, q)-MSE-DDH Problem, which
is slightly modified from MSE-DDH problem while still preserving its hardness. Our
(f, q)-MSE-DDH problem is a special instance of general Diffie-Hellman exponent
assumptions in [46], and its intractability will be analyzed later on.

Definition 7. (f, q)-MSE-DDH Problem. Let PG be a bilinear map group system
and g0, h0 be the generators of the group G. We assume two pairwise co-prime poly-
nomials f and q with degree 1 and n − 1, respectively, where n is an integer. Given
g0, g

α
0 , g

r
0, h

f(α)
0 , · · · , hα

n−2f(α)
0 , h

f(α)q(α)
0 , · · · , hα

nf(α)q(α)
0 , and Z ∈ GT , the goal is

to distinguish Z = e(g0, h0)rq(α) or a random group element in GT .

Intractability Analysis of (f, q)-MSE-DDH Problem.

The (f, q)-MSE-DDH Problem can be reformulated as D,E, F . Since g0, h0 are
generators in group G, we suppose h0 = gβ0 ,

D =
(
1, α, r, βf(α), · · · , βαn−2f(α), βf(α)q(α), · · · , βαnf(α)q(α),

)
E = 1,

F = rβq(α).

17

We need to show that F is independent of (D,E), i.e. no coefficients {xi,j} and y1
exist such that F = Σxi,jdidj + Σy1e1, where the polynomials di, dj are listed in D
and e1 is listed in E above. By making all possible products of two polynomials from
D which are multiples of rβ to F ′, we want to prove that no such linear combination
F ′ leads to F ,

F ′ =
(
rβf(α), · · · , rβαn−2f(α), rβf(α)q(α), · · · , rβαnf(α)q(α),

)
Any such linear combination associated with rβ can be written

rβf(α)A(α) + rβf(α)q(α)B(α) = rβq(α),

where A(α), B(α) are polynomials with degree deg A ≤ n− 2 and deg B ≤ n.
If B(α) 6= 0, we have deg f(α)q(α)B(α) ≥ n. Since deg (q(α) − f(α)A(α)) ≤

n − 1, we have B(α) = 0. We simplify the above equation as f(α)A(α) = q(α), so
f(α)|q(α), which contradicts that f(α) and q(α) are comprime. Therefore, there exist
no coefficients {xi,j}, y1 such that F = Σxi,jdidj + Σy1e1 holds, (f, q)-MSE-DDH
Problem is intractable.

7.2. Security Proof of OKSA
We formally analyze the security of our OKSA protocol, which is under the security

model defined in Section 4.2. The security reduction is based on the hard problems
defined in Section 7.1. We show the detailed proof process as follows.

Theorem 1. The proposed scheme satisfies the unconditional keyword privacy of the
token from the user under the User Privacy game.

PROOF. Let W be the authorized keyword set and (P(w),Σ) be generated from w =
w0. We have the keyword token and proof as

P(w) = h
s
∏
wj∈W,wj 6=w0

(α+wj),Σ =

(
Σ1 = h

α+w0
s , Σ2 = h

αn−1(α+w0)
s

)
.

For any distinct keyword w1, let s′ ∈ Zp, we implicitly set s′ = s · α+w1

α+w0
. We find that

the keyword tokens are identical, i.e., P(w0) = P(w1), which can be verified as

P(w0) = h
s
∏
wj∈W,wj 6=w0

(α+wj) = h
s′

∏
wj∈W,wj 6=w1

(α+wj) = P(w1).

Suppose Σ′ = (Σ′1,Σ
′
2). The proofs of accountability are also identical, i.e., Σ1 = Σ′1

and Σ2 = Σ′2, which can be verified as

Σ1 = h
α+w0
s = h

α+w1
s′ = Σ′1, Σ2 = h

αn−1(α+w0)
s = h

αn−1(α+w1)

s′ = Σ′2.

We have (P(w0),Σ) = (P(w1),Σ′). Since s is randomly chosen from Zp, we have s′

is also universally random in Zp. The distributions of (P(w),Σ) for both w0 and w1

are identical and therefore A has no advantage in guessing the keyword in P(w). This
completes the proof of Theorem 1.

18

Theorem 2. The proposed scheme is semantically secure and indistinguishable un-
der the Indistinguishability game in the random oracle model if the (f, q)-MSE-DDH
Problem is hard.

PROOF. Suppose there exists an adversary A who can break the indistinguishability.
We can construct an algorithm B that solves the (f, q)-MSE-DDH Problem. That is,
given an instance of (f, q)-MSE-DDH Problem and Z ∈ GT , the goal of B is to dis-
tinguish Z = e(g0, h0)rq(α) or a random group element in GT . B interacts with A as
follows.

Setup. We assume the universal keyword space as KS = {w1, w2, · · · , wn}. B
chooses wθ from KS and its corresponding message is denoted as mθ. It implicitly
sets polynomials f(α) = α + wθ, q(α) =

∏
wj∈KS,wj 6=wθ (α + wj). It also sets

g = g0, h = h
f(α)q(α)
0 and computes hi = h

αif(α)q(α)
0 . The public parameter is

denoted as pp =
(
g0, h

f(α)q(α)
0 ,PG

)
. B sends the master public keympk toA, where

mpk = (gα0 , h1, h2, · · · , hn) .

H-Query. B maintains a hash list L(ai, Xi, h
i), which is initially empty. Upon re-

ceiving an H query for (ai, Xi), if (ai, Xi) is in the list L, B returns the corresponding
hi to A. Otherwise, B sets the hash value hi as follows.

hi = H(ai, Xi) =

{
bi0, if ai = 0,
bi1, if ai = 1,

where bi0, b
i
1 are randomly chosen from {0, 1}`. Then B adds (ai, Xi, h

i) to the list and
returns hi to A.

Phase 1. A chooses a keyword set W ⊆ KS, where |W | ≤ n. When asking for the
trapdoor query for a keyword wi ∈ W , A randomly chooses s ∈ Zp as the secret key
sk = s, and sends (wi, s) to B.

• If wi = wθ, abort.

• If wi 6= wθ, B responds T = h
sqi(α)f(α)
0 to A, where qi(α) = q(α)

α+wi
. The

trapdoor can be verified

T = P(wi)
1∏

wj∈W (α+wj) = h

s
∏
wj∈W,j 6=i(α+wj)∏
wj∈W (α+wj) = h

sf(α)q(α)
α+wi

0 = h
sqi(α)f(α)
0 .

It is easy to see that hqi(α)f(α)0 can be computed from elements hf(α)0 , hαf(α)0 ,

· · · , hα
n−2f(α)

0 in the instance.

Challenge. A sends two tuples (m0, w0), (m1, w1) to B for challenge, where the
trapdoor for w0 or w1 has not been queried.

• If wθ /∈ {w0, w1}, abort.

19

• If wθ ∈ {w0, w1}, B checks whether (0, Z) and (1, Z) are in the list L. If yes,
obtains the corresponding hash value and denotes them as b∗0 and b∗1. Otherwise,
B chooses b∗0, b

∗
1 ∈R {0, 1}` and sets

H (0, Z) = b∗0, H (1, Z) = b∗1.

Then B adds (0, Z, b∗0) and (1, Z, b∗1) to the list L. B responds A with the chal-
lenge ciphertext CT ∗ = (c1 = gr0, c2 = b∗0, c3 = b∗1 ⊕mθ).

If Z = e(g0, h0)rq(α), one can verify it by implicitly setting r = rif(α)

c1 = gri(α+wθ) = g
rif(α)
0 = gr0,

c2 = H (0, e (g, h)
ri) = H

(
0, e(g0, h0)rq(α)

)
= H (0, Z) = b∗0,

c3 = H (1, e (g, h)
ri)⊕mθ = H

(
1, e(g0, h0)rq(α)

)
⊕mθ = H (1, Z)⊕mθ = b∗1⊕mθ.

Therefore, CT ∗ is a valid challenge ciphertext.

If Z is a random element in GT , the challenge ciphertext CT ∗ will be random from
the A’s view.

Phase 2.A continues to ask trapdoor queries for wi with restrictions wi 6= w0, w1. B
responds as Phase 1.

Guess. A outputs a guess θ′ of θ.

This completes the description of our simulation. We will analyze the advantage
of B to solve the hard problem. Suppose that the total number of trapdoor query is
qT and the size of the keyword space is n. According to the above simulation, we
have the probability that B does not abort is Pr[qabort] = (1 − 1

n)(1 − 1
n−1) · · · (1 −

1
n−qT+1) = n−qT

n . Sincew0, w1 have not been queried in Phase 1 and Phase 2, we have
qT ≤ n − 2. Then Pr[qabort] ≥ 2

n . Assume that A’s advantage to break the security
game is at least ε, then we have εreduction = Pr[θ′ = θ|Z = e(g0, h0)rq(α)]−Pr[θ′ =
θ|Z is random] = 1

2 + ε − 1
2 = ε. Therefore, B’s advantage to solve the (f, q)-MSE-

DDH Problem is at least εB = Pr[¬abort] · εreduction = 2
nε.This completes the proof

of Theorem 2.

Theorem 3. The proposed scheme captures the accountability under the Accountabil-
ity game if the (f, n)-DHE Problem is hard.

PROOF. Suppose there exists an adversary A who can break the security of account-
ability. We construct an algorithm B that solves the (f, n)-DHE Problem. Given a
challenge instance of (f, n)-DHE Problem, B interacts with the adversary as the fol-
lows.

Setup. B sets α = a, we have h1 = ha, · · · , hn = ha
n

, which are from the (f, n)-
DHE instance. B chooses a hash function H as in the real scheme and the public

20

parameters can be denoted as pp = (PG, H, g, h). B sends mpk to A, where

mpk = (ga, h1, h2, · · · , hn).

Challenge. The adversary chooses two keyword sets W,W ′ with restriction |W ′| >
1, |W | ≤ n, and selects a random number s ∈ Zp as the secret key of the user sk = s.
A outputs (P(W ′),W,W ′, sk) and 1 for challenge, where the token is denoted as

P(W ′) = h
s
∏
wj∈W−W ′

(a+wj).

Win. The adversary A outputs (P(W ′),Σ) and wins the game if (P(W ′),Σ) passes
the verification algorithm.

In this case, the proof for accountability should be denoted as

Σ =
(

Σ1 = h
1
s

∏
wj∈W ′

(a+wj), Σ2 = Σa
n−1

1 = h
1
sa
n−1 ∏

wj∈W ′
(a+wj)

)
.

Then the token and its proof can pass the verification as

e (Σ2, h
a) = e

(
Σ1, h

an
)
, e
(
h, h

∏
wi∈W

(a+wi)
)

= e (P(W ′),Σ1) .

Let f(x) = 1
sx

n−1∏
wj∈W ′ (x+ wj), then Σ2 = hf(a). We have f(x) is a poly-

nomial function with deg f(x) > n. B outputs (f(x),Σ2) as the solution to the
(f, n)-DHE Problem. This completes the proof of Theorem 3. Hence we obtain
|W ′| = 1, |P(W ′)| = 1.

7.3. Security Analysis of Searchain
According to the proposed Searchain protocol, Node A shares data with Node B

without relying on a third-party. We assume that Node B specifies the keyword wi
and retrieves the data mi associated with wi and the block σ′ is verified by more than
half of nodes. In the current transaction, all parameters for data retrieval is set between
Node A and Node B. The security of the proposed Searchain protocol can be directly
obtained from the security of OKSA and the security of OMS.

Firstly, Indistinguishability of OKSA guarantees secrecy protection of mi and wi
in Searchain, which cannot be obtained without the corresponding secret key of the
user. Secondly, Privacy and Accountability of OKSA provides oblivious retrieval of
Searchain. In Searchain, Node A is able to know the relationship wi ∈ W but not to
know what is the specific keyword wi in an oblivious way. As well as, Node A learns
nothing about the retrieved plain-cipher data (mi, CTi). Thirdly, Unforgeability and
Ordering of OMS [42] guarantee the impossibility to re-order the positions of blocks
in the chain.

Acknowledgments.

This work is supported by NSFC (Grant Nos. 61502044), the Fundamental Re-
search Funds for the Central Universities (Grant No. 2015RC23).

21

8. Conclusion

Motivated by the privacy concern of the data retrieval in the decentralized storage,
we proposed Searchain, a blockchain-based keyword search mechanism that aims to as-
sure private search over authorized keywords with unchanged retrieval order. The core
design of Searchain is oblivious keyword search with authorization (OKSA), which
supports keyword authorization. Searchain adopts OKSA to build the retrieval protocol
so that the node who owns the data can verify the authorization of the keyword in the
retrieval request but learns nothing about it. By further employing ordered multisigna-
tures (OMS) into block generation, Searchain remains an ordered retrieval transaction.
We evaluated Searchain by algorithm implementations, where the results showed its
cost-efficiency.

References

[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson,
D. X. Song, Provable data possession at untrusted stores, in: CCS 2007, ACM,
2007, pp. 598–609.

[2] F. Armknecht, J. Bohli, G. O. Karame, F. Youssef, Transparent data deduplication
in the cloud, in: CCS 2015, ACM, 2015, pp. 886–900.

[3] C. Qin, J. Li, P. P. C. Lee, The design and implementation of a rekeying-aware
encrypted deduplication storage system, TOS 13 (1) (2017) 9:1–9:30.

[4] J. Li, C. Qin, P. P. C. Lee, X. Zhang, Information leakage in encrypted dedupli-
cation via frequency analysis, in: DSN 2017, Vol. To appear, IEEE Computer
Society, 2017.

[5] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, https://
bitcoin.org/bitcoin.pdf (2009).

[6] T. McConaghy, R. Marques, A. Müller, D. de Jonghe, T. McConaghy, G. Mc-
Mullen, R. Henderson, S. Bellemare, A. Granzotto, BigchainDB: A scalable
blockchain database, https://www.bigchaindb.com/whitepaper/
bigchaindb-whitepaper.pdf (2016).

[7] M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems, 3rd Edition,
Springer, 2011.

[8] D. X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted
data, in: S&P 2000, IEEE Computer Society, 2000, pp. 44–55.

[9] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, M. Steiner, Highly-
scalable searchable symmetric encryption with support for boolean queries, in:
CRYPTO 2013, Vol. 8042 of LNCS, Springer, 2013, pp. 353–373.

[10] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, M. Steiner, Outsourced symmetric
private information retrieval, in: CCS 2013, ACM, 2013, pp. 875–888.

22

[11] D. Boneh, G. D. Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption
with keyword search, in: EUROCRYPT 2004, Vol. 3027 of LNCS, Springer,
2004, pp. 506–522.

[12] C. Fan, V. S. Huang, Provably secure integrated on/off-line electronic cash for
flexible and efficient payment, IEEE Trans. Systems, Man, and Cybernetics, Part
C 40 (5) (2010) 567–579.

[13] W. Ogata, K. Kurosawa, Oblivious keyword search, J. Complexity 20 (2-3) (2004)
356–371.

[14] P. Jiang, X. Wang, J. Lai, F. Guo, R. Chen, Oblivious keyword search with autho-
rization, in: ProvSec 2016, Vol. 10005 of LNCS, Springer, 2016, pp. 173–190.

[15] A. E. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts, in: S&P 2016,
IEEE Computer Society, 2016, pp. 839–858.

[16] M. Crosby, Nachiappan, P. Pattanayak, S. Verma, V. Kalyanaraman, Blockchain
technology, Tech. rep., Sutardja Center, Berkeley, University of California (2015).

[17] Proof of existence, https://proofofexistence.com/.

[18] Filament, https://filament.com/.

[19] Storj, https://storj.io/.

[20] G. Zyskind, O. Nathan, A. Pentland, Decentralizing privacy: Using blockchain to
protect personal data, in: SPW 2015, IEEE Computer Society, 2015, pp. 180–184.

[21] K. Peterson, R. Deeduvanu, P. Kanjamala, K. Boles, A blockchain-
based approach to health information exchange networks,
https://www.healthit.gov/sites/default/files/
12-55-blockchain-based-approach-final.pdf (2016).

[22] E. Ryu, T. Takagi, Efficient conjunctive keyword-searchable encryption, in:
AINA 2007, Vol. 1, IEEE Computer Society, 2007, pp. 409–414.

[23] J. Bethencourt, D. X. Song, B. Waters, New constructions and practical appli-
cations for private stream searching (extended abstract), in: S&P 2006, IEEE
Computer Society, 2006, pp. 132–139.

[24] D. Boneh, B. Waters, Conjunctive, subset, and range queries on encrypted data,
in: TCC 2007, Vol. 4392 of LNCS, Springer, 2007, pp. 535–554.

[25] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, H. Shi, Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions, in: CRYPTO 2005, Vol.
3621 of LNCS, Springer, 2005, pp. 205–222.

23

[26] H. S. Rhee, J. H. Park, W. Susilo, D. H. Lee, Improved searchable public key
encryption with designated tester, in: ASIACCS 2009, IEEE Computer Society,
2009, pp. 376–379.

[27] P. Jiang, Y. Mu, F. Guo, X. Wang, Q. Wen, Online/offline ciphertext retrieval on
resource constrained devices, Comput. J. 59 (7) (2016) 955–969.

[28] J. Camenisch, M. Kohlweiss, A. Rial, C. Sheedy, Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data,
in: PKC 2009, Vol. 5443 of LNCS, Springer, 2009, pp. 196–214.

[29] M. O. Rabin, How to exchange secrets with oblivious transfer, Tech. Rep. Tech-
nical Report TR-81, Aiken Computation Laboratory, Harvard University (2005).

[30] C. Chu, W. Tzeng, Efficient k-out-of-n oblivious transfer schemes with adaptive
and non-adaptive queries, in: PKC 2005, Vol. 3386 of LNCS, Springer, 2005, pp.
172–183.

[31] K. Kurosawa, R. Nojima, Simple adaptive oblivious transfer without random or-
acle, in: ASIACRYPT 2009, Vol. 5912 of LNCS, Springer, 2009, pp. 334–346.

[32] J. Camenisch, G. Neven, A. Shelat, Simulatable adaptive oblivious transfer, in:
EUROCRYPT 2007, Vol. 4515 of LNCS, Springer, 2007, pp. 573–590.

[33] M. Green, S. Hohenberger, Universally composable adaptive oblivious transfer,
in: ASIACRYPT 2008, Vol. 5350 of LNCS, Springer, 2008, pp. 179–197.

[34] J. Camenisch, M. Dubovitskaya, G. Neven, Oblivious transfer with access con-
trol, in: CCS 2009, ACM, 2009, pp. 131–140.

[35] W. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: How to sell digital
goods, in: EUROCRYPT 2001, Vol. 2045 of LNCS, Springer, 2001, pp. 119–
135.

[36] J. Camenisch, M. Dubovitskaya, G. Neven, Unlinkable priced oblivious transfer
with rechargeable wallets, in: FC 2010, Vol. 6052 of LNCS, Springer, 2010, pp.
66–81.

[37] Y. Chen, J. Chou, X. Hou, A novel k-out-of-n oblivious transfer protocols based
on bilinear pairings, IACR Cryptology ePrint Archive 2010 (2010) 27.

[38] F. Guo, Y. Mu, W. Susilo, Subset membership encryption and its applications to
oblivious transfer, IEEE Trans. Information Forensics and Security 9 (7) (2014)
1098–1107.

[39] H. S. Rhee, J. W. Byun, D. H. Lee, J. Lim, Oblivious conjunctive keyword search,
in: WISA 2005, Vol. 3786 of LNCS, Springer, 2005, pp. 318–327.

[40] M. J. Freedman, Y. Ishai, B. Pinkas, O. Reingold, Keyword search and oblivious
pseudorandom functions, in: TCC 2005, Vol. 3378 of LNCS, Springer, 2005, pp.
303–324.

24

[41] H. Zhu, F. Bao, Oblivious keyword search protocols in the public database model,
in: ICC 2007, IEEE, 2007, pp. 1336–1341.

[42] A. Boldyreva, C. Gentry, A. O’Neill, D. H. Yum, Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure rout-
ing, in: CCS 2007, ACM, 2007, pp. 276–285.

[43] G. Neven, Efficient sequential aggregate signed data, in: EUROCRYPT 2008,
Vol. 4965 of LNCS, Springer, 2008, pp. 52–69.

[44] J. H. Ahn, M. Green, S. Hohenberger, Synchronized aggregate signatures: new
definitions, constructions and applications, in: CCS 2010, ACM, 2010, pp. 473–
484.

[45] N. Yanai, M. Mambo, E. Okamoto, An ordered multisignature scheme under the
CDH assumption without random oracles, in: ISC 2013, Vol. 7807 of LNCS,
Springer, 2013, pp. 367–377.

[46] D. Boneh, X. Boyen, E. Goh, Hierarchical identity based encryption with constant
size ciphertext, in: EUROCRYPT 2005, Vol. 3494 of LNCS, Springer, 2005, pp.
440–456.

[47] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo, L. Zhou, On emerging family of
elliptic curves to secure internet of things: ECC comes of age, IEEE Transactions
on Dependable and Secure Computing 14 (3) (2017) 237–248.

[48] Z. Liu, J. Groschdl, Z. Hu, K. Jrvinen, H. Wang, I. Verbauwhede, Elliptic curve
cryptography with efficiently computable endomorphisms and its hardware im-
plementations for the internet of things, IEEE Transactions on Computers 66 (5)
(2017) 773–785.

[49] F. Guo, Y. Mu, W. Susilo, V. Varadharajan, ACISP 2013, Vol. 7959 of LNCS,
Springer, 2013, pp. 219–234.

[50] F. Guo, Y. Mu, W. Susilo, V. Varadharajan, http://www.uow.edu.au/
˜fuchun/publications/ACISP13.pdf, full Version (2013).

25

