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Abstract—Disk encryption is frequently used to secure confi-
dential data on mobile devices. However, the high energy cost
of disk encryption poses a heavy burden on those devices with
limited battery capacity especially when a large amount of
data needs to be protected by disk encryption. To address the
challenge, we develop a new kernel-level disk encryption software,
Populus. Almost 98% of Populus’sencryption/decryption compu-
tation is not related with the input plaintext/ciphertext, so we
accomplish the computation in advance during initialization when
a consistent power supply is available. We conduct cryptanalysis
on Populusand finally conclude that state-of-the-art cryptanalysis
techniques fail to break Populus in reasonable computational
complexity. We also conduct energy consumption experiments
on Populus and dm-crypt, a famous disk encryption software
for Android and Linux mobile devices. The experimental results
demonstrate that Populus consumes 50%-70% less energy than
dm-crypt.

Index Terms—privacy protection, disk encryption, energy-
efficient computing.

I. I NTRODUCTION

In recent years, mobile devices, such as smartphones,
smartwatches and mobile video surveillance devices [1], have
become an integral part in our daily life. Meanwhile, mobile
devices are usually facing profound security challenges, es-
pecially when beingphysically controlled by attackers. For
example, due to device loss or theft, data leakage in mobile
devices happens more frequently than before [2]. To deal with
the aforementioned security challenge, mobile devices can
encrypt secret data and store its ciphertext locally on itself,
which is also known asdisk encryption[3]. This method
attracts extensive attention in industry and academia [4].
Generally speaking, there are two types of disk encryption
solutions: software and hardware solutions. This paper mainly
focuses on software solutions as they usually have advantages
in compatibility and scalability.

However, for data-intensive applications such as mobile
video surveillance [1] and seismic monitor [5], the whole en-
ergy consumption of mobile devices highly rises after applying
existing disk encryption software. One evidence proposed by
Li et al. states that for data-intensive applications nearly 1.1-
5.9 times more energy is required on commonly-used mobile
devices when turning on their disk encryption software [6].

Worse, mobile devices are usually battery-powered in order
to improve portability. For example, sometimes mobile video
surveillance device is equipped on a multi-rotor unmanned
aerial vehicle, so battery becomes its sole power supply [7].
Due to mobile devices’ limited battery capacity, existing disk
encryption software may strongly affect their normal usage.

The significant energy overhead of existing disk encryption
software can be explained by the following two reasons.
First, the ciphers used in existing disk encryption software
contain many CPU and RAM operations, which are usually not
energy-efficient. Second, massive data needs to be protected by
disk encryption for data-intensive application, which multiplies
its energy consumption. For instance, mobile video surveil-
lance devices need to real-timely record and securely storea
large amount of video data [7]. According to our experiments,
nearly 1/3 of energy consumption comes from existing disk
encryption software in mobile video surveillance.

In fact, energy consumed by CPU and RAM operations
tends to become more prominent than other conventional con-
cerns such as screen and network communication, especially
when disk encryption software participates in data-intensive
tasks. Aboutsix years ago, about 45%-76% of daily energy
consumption came from screen and GSM when disk encryp-
tion software is disabled [8]. However, the distribution of
energy consumption has been changed dramatically in recent
years due to software&hardware optimization and usage habit
transformation. A recent study [9] shows that for typical usage
only about 28% of energy consumption results from screen
and GSM, while CPU and RAM spend about 35% energy
and become the largest energy consumption source in mobile
devices when disk encryption is disabled. In addition, both[8]
and [9] measures energy consumption without enabling disk
encryption function. So when considering that existing disk
encryption software owns many CPU and RAM operations,
we believe that the energy consumption percentage of CPU
and RAM may be more higher than 35% if data-intensive
mobile devices enable disk encryption software. Li’s experi-
ment results [6] exactly verified it. Hence, to build an energy-
efficient mobile system, reducing the energy consumption in
disk encryption software is a rational starting point.
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To reduce energy consumption of disk encryption software,
some researchers try to reduce the number of CPU or RAM
operations in disk encryption software. But it is really chal-
lenging to make disk encryption software both energy-saving
and cryptographically secure in this way. Generally speaking,
the less computation disk encryption software needs, the less
energy it costs, but possibly the more insecure in cryptography.
For example, some trials [10] are faced with challenges in
terms of cryptography [11]. In existingcryptographically
securedisk encryption software, the disk encryption software
used in Linux and Android, also known asdm-crypt, theoreti-
cally owns less computation than others. But our experimental
results show that nearly 30%-50% of mobile device’s energy
consumption comes from dm-crypt for typical usage of data
collection and transmission. So the energy consumption of
state-of-the-art disk encryption software is still unnegligible.

In this paper, we design and implement a new energy-
efficient kernel-level disk encryption software,Populus. The
basic idea behindPopulusis to extract the “input-free” compu-
tation from the cipher in disk encryption software and accom-
plish it during initialization, where the input-free computation
refers to the cipher’s operations that are not involved withthe
input text (i.e., plaintext or ciphertext). For example, inAES-
CBC cipher, its key expansion can be regarded as input-free
computation. The initialization’s energy consumption is not
considered in this paper because it is performed only once
when a mobile device is first used and a consistent power
supply is usually available. Therefore, the more input-free
computation we can extract, the more energy we can save.

However, the ciphers used in existing disk encryption soft-
ware only have a little input-free computation. For example,
we found that input-free computation of AES-CBC cipher
accounts for at most 1% of all its computation. To improve the
proportion of input-free computation,Populusfirst generates
pseudo random numbers(PRNs) and global matrices in an
input-free manner. Next, it use those PRNs and global matrices
to construct temporary matrices and then conduct carefully
designed matrix multiplication when encrypting user’s privacy.
Each PRN can only participate in disk encryption once so
that sufficient PRNs are usually needed for data-intensive
application. To protect those PRNs and matrices,Populus
encrypts them in aniterative manner. In this way,Populus
can save much energy because almost 98% of its computation
is input-free and the residual real-time computation is much
smaller than current disk encryption software. In addition,
Populus costs acceptable extra storage space (typically≤
256MB) for those PRNs and matrices.

To assessPopulusin the respect of cryptographic security
and energy efficiency, we conduct cryptanalysis onPopulus
and a series of energy consumption experiments on both
Populusand dm-crypt. Finally we find thatPopuluscan defend
against state-of-the-art cryptanalysis techniques and simulta-
neously consume less energy than dm-crypt. Our contribution
can be generalized into the following items.

• To the best of our knowledge, this paper is the first work
focusing on extracting input-free computation from disk

encryption software, which can be used to reduce its
energy consumption.

• We design and implement an energy-saving kernel-level
disk encryption softwarePopulus that can both defend
against state-of-the-art cryptanalysis techniques and save
50%-70% more energy than dm-crypt.

The remainder of the paper is organized as follows. Sec-
tion II explains why existing disk encryption software is lack
of input-free computation and how to improve its proportion
in Populus. Section III presents our systemPopulusin detail.
Section IV evaluates the cryptographic security ofPopulus.
Section V presents the experimental results of mobile devices’
energy consumption. Section VI summarizes related work.
Concluding remarks then follow.

II. I NPUT-FREE COMPUTATION

In this section, we present more details about input-free
computation. We first introduce the design consideration of
existing disk encryption software (e.g., dm-crypt) and explain
why they are lack of input-free computation. Then, we show
the basic idea ofPopulusand illustrate why it can improve
the proportion of input-free computation.

Existing disk encryption software including dm-crypt is
usually based ontweakable scheme[12], where each disk
sector should correspond to an independent key used only for
its encryption and decryption. However, in practice, a user
only provides one master key. To solve this problem, most of
existing disk encryption software achieves tweakable scheme
in the following two steps:1) produce sector-specific keys
based on master key and sector ID;2) use sector-specific key
to encrypt certain disk sector with a block cipher.

Due to the fact that attackers can get multiple (plaintext,
ciphertext) pairs in the same disk sector, they can conduct
chosen-plaintext attack(CPA) [13] by exploiting (plaintext,
ciphertext) pairs sharing same sector-specific key. Hence,to
secure the whole crypto system, the block cipher in2) must
have the ability to defend against CPA. To achieve this, one
effective solution is to construct a block cipher insubstitution-
permutation network(SPN) [14]. Unfortunately, we find that
nearly all SPN-based block ciphers have a little input-free
computation because their core components,substitution box
andpermutation box, directly or indirectly rely on input.

To improve input-free computation, we give up aforemen-
tioned tweakable scheme and SPN when designingPopu-
lus. Instead, we constructPopulus based onnonce-based
scheme[15]. Populus’score design can be briefly described
as follows: a) for ith encryption, produce an independent
temporary key based on master key andi; b) use the tem-
porary key and a light-weight block cipher to accomplish
ith encryption. Our design has four advantages. First, it is
compatible to tweakable scheme. Second, it makes attackers
hard to get multiple (plaintext,ciphertext) pairs sharingsame
key, and thereafter basically eliminate the threat from CPA.
Third, nearly all procedures ina) are input-free. Forth, SPN
becomes unnecessary inb), which gives us more freedom to
design a light-weight block cipher owning much input-free



Fig. 1: Overview forPopulus

computation. As a trade-off, our scheme needs extra storage
space for input-free computation. Fortunately, the storage
space can be reduced to an acceptable level by carefully
designing the temporary key production method ina) and
the block cipher inb). In Section III, we complement details
regarding the design and implementation ofPopulus.

III. POPULUS: A N ENERGY-SAVING DISK ENCRYPTION

SOFTWARE SYSTEM

The overview ofPopulusis shown in Fig. 1.Populuscon-
sists of two parts:system initializationand real-time encryp-
tion/decryption. We perform system initialization once when
a mobile device is first used and we assume that a consistent
power supply is available and the energy consumption is
not a concern during system initialization.Populus initially
accomplishes all input-free computation and stores its result
on disk, which is used for processing real-time encryption and
decryption requests later.Populusworks at a512-byte disk sec-
tor level, and it allows users to manually configureprivate disk
sectors, which store users’ confidential information. For each
private disk sector,Populusinitially assigns it atemporary key,
which is used for encrypting/decrypting the confidential data
on it. Each temporary key can only be used for one encryption.
If a sector has ’consumed’ its temporary key due to encryption,
Populuswill recycle its current temporary key and allocate a
new temporary key for its next encryption. We designPopulus
for 64-bit systems because 64-bit processors are popular for
mobile devices [16]. Throughout the paper, the default value
of a number’s size is 64 bits unless stated otherwise. For the
ease of reading, we list notations used throughout the paper
in Table I. Next, we introduce each part ofPopulusin detail.

A. System Initialization

The system initialization includes three input-free modules:
PRN generator, master key generatorand IFCR encryption.
Here, IFCR is the abbreviation ofinput-free computation
result. PRN generator produces PRNs, which are basic for

TABLE I: Table of notations.

Notation Meaning

P or Pi

A 512-byte plaintext consisting of64 numbers.
In particular,i is used to differentiate multiple
plaintexts.

P (j) or P (j)
i

The jth number inP or Pi.
In particular,i is used to differentiate multiple
plaintexts.

C or Ci

A 512-byte ciphertext consisting of64 numbers.
In particular,i is used to differentiate multiple
ciphertexts.

C(j) or C(j)
i

The jth number ofC or Ci.
In particular,i is used to differentiate multiple
ciphertexts.

U Master key that consists of 1252× 2 matrices.
U (i) The ith matrix in U .

M or Mi

A temporary key that consists of 1252× 2 matrices.
In particular,i is used to differentiate multiple
temporary keys.

M (j) or M (j)
i

The jth matrix in M or Mi.
In particular,i is used to differentiate multiple
temporary keys.

R RT-PRNs

R(i) The ith PRN inR.
E(P,M) Encryption for one plaintextP .
E(Pi,Mi) Encryption for one plaintextPi.
E(P1:θ,M1:θ) (E(P1,M1), . . . , E(Pθ,Mθ))
D(C,M) Decryption for one ciphertextC.
D(Ci,Mi) Decryption for one ciphertextCi.
D(C1:θ,M1:θ) (D(C1,M1), . . . ,D(Cθ ,Mθ))

n
The numbers of disk sectors storing input-free
computation result (IFCR).

Si The set containing alli-byte sequences.

generating master key and real-time encryption/decryption.
Next, Populusencrypts IFCR and then stores it on disk.

1) PRN Generator: To produce PRNs, we use Salsa20/12
stream cipher, which has been extensively studied and foundto
produce PRNs of very high quality [17]. Salsa20/12 requiresa
320-bit input, hence we use the SHA3 algorithm [18] to map a
user’s arbitrary-length key into a 384-bit number, and extract
the first 320-bithash keyas the input of Salsa20/12 stream
cipher. PRNs are mainly used for master key production and
real-time encryption/decryption, which are separately named
MK-PRNsandRT-PRNs.

2) Master Key Generator: Populusgenerates master key
using MK-PRNs. We define a square matrixA is 264 modular
invertible when there exists a matrixB such thatAB = I
mod 264, whereI is the identity matrix. If this is the case,
then the matrixB is uniquely determined byA and is called
the modular inverse ofA (mod 264). For simplicity, we
denote it byA−1 in this paper. We denote master key as

U = (U (1), . . . , U (125)), where eachU (i) =

(

u
(i)
1,1 u

(i)
1,2

u
(i)
2,1 u

(i)
2,2

)

,

1 ≤ i ≤ 125, is a2× 2 matrix andU (i) is modular invertible,
which is critical for the real-time encryption and decryption
discussed later.

We randomly select matricesU (1), . . . , U (125) from the
set of modular involutorymatrices based on the Acharya’s
method [19]. Here a modular involutory matrix is defined
as a matrix whose modular invertible matrix is itself. Since



there exists7.66× 1038 modular involutory matrices [20], the
number of all possibleU is (7.66×1038)125 ≈ 3.38×104860,
which is much larger than the size of our hash key space (i.e.,
2320 ≈ 2.14×1096). Therefore, the master key is more difficult
to brutally crack than the hash key.

3) IFCR Encryption and Decryption: To protect IFCR
(i.e., RT-PRNs and master key),Populus encrypts them
and then stores them on disk. During real-time encryp-
tion/decryption,Populusdecrypts master key and RT-PRNs
from disk. Later, we will introduce more detail in Sec-
tion III-C.

B. Real-Time Encryption and Decryption

Populusperforms disk encryption/decryption when the file
system writes/reads data on disk in real time. We introduce
each of its modules as follows:

1) Transparent Encryption and Decryption: Our trans-
parent encryption and decryption is based on matrix mul-
tiplication in modular linear algebra[21]. In cryptography,
matrix multiplication has achieved Shannon’s diffusion [22]
and it dissipates statistical structure of the plaintext into long-
range statistics of the ciphertext to thwart cryptanalysisbased
on statistical analysis [14]. However, matrix multiplication
is usually computationally intensive. For example, a general
matrix multiplication between a64× 64 matrix and a64× 1
matrix requires64× 64 + 64× 63 + 128 = 8256 operations.

To reduce its computation,Populus only constructs125

64×64 sparse matricesH(i) =





I62−|63−i| 0 0
0 M (i) 0
0 0 I|63−i|





where i ∈ {1, . . . , 125}, Ii is the i-dimensional identity
matrix, and M (i) is a 2 × 2 modular invertible matrix.
Then Populus computesH(125) . . . H(1)P as encryption or
(H(1))−1 . . . (H(125))−1C as decryption whereP is a 64× 1
matrix as one 512-byte plaintext andC is a 64× 1 matrix as
one 512-byte ciphertext. ExploitingH(i) is a sparse matrix,
125 64-dimensional matrix multiplications can be simplified
to 125 2-dimensional matrix multiplications. The simplified
encryption and decryption only consists of125× (2× 2+2×
1) + 128 = 868 operations.

Next, we describe our transparent encryption and de-
cryption in more detail. Fig. 2 presents its full view. Let
P = (P (1), ..., P (64))T , C = (C(1), ..., C(64))T , and M =
(M (1), . . . ,M (125)) denote its plaintext, ciphertext, and tem-
porary key respectively, whereP (i) is the ith number in
the plaintext,C(i) is the ith number in the ciphertext and

M (i) =

(

m
(i)
1,1 m

(i)
1,2

m
(i)
2,1 m

(i)
2,2

)

is the ith 2 × 2 matrix in M . For

simplicity, we use the notation[m]n to denote the function
m mod n, i.e., [m]n = m mod n. The encryption function
E(P,M) works as follows: We first setβ(1,j) = P (j) and
then iteratively computeβ(i+1,j), 1 ≤ i ≤ 125, 1 ≤ j ≤ 64,

as

β(i+1,j) =











[β(i,j)m
(i)
1,1 + β(i,j+1)m

(i)
1,2]264 , j = i, 126− i

[β(i,j−1)m
(i)
2,1 + β(i,j)m

(i)
2,2]264 , j = i+ 1, 127− i

βi,j , otherwise.

Finally, we setE(P,M) = (β(126,1),. . . , β(126,64))T .
The decryptionD(C,M) function works as follows: Let

(M (i))−1 =

(

l
(i)
1,1 l

(i)
1,2

l
(i)
2,1 l

(i)
2,2

)

andk = 126 − i. We setγ(1,j) =

C(j) and then iteratively computeγ(i+1,j), 1 ≤ i ≤ 125,
1 ≤ j ≤ 64, as

γ(i+1,j) =











[γ(i,j)l
(k)
1,1 + γ(i,j+1)l

(k)
1,2 ]264 , j = i, 126− i

[γ(i,j−1)l
(k)
2,1 + γ(i,j)l

(k)
2,2 ]264 , j = i+ 1, 127− i

γ(i,j), otherwise.

Finally, we setD(C,M) = (γ(126,1), . . . , γ(126,64))T .
2) Temporary Key Manager: Each temporary key consists

of 125×2×2×8 = 4000 bytes, therefore storing all temporary
keys requires a large storage space. To solve this problem,
Populuscomputes itsM based onU , R2j−1 andR2j for jth

encryption, whereR = (R1, ..., Rd) denote RT-PRNs,Ri, 1 ≤
i ≤ d, is a pseudo random number, andd is the size ofR.
Note thatU is shared by all temporary keys’ construction and
its size is4000 bytes, so on average, we only need about16
bytes for storing a temporary key. Then, forjth encryption,
we compute eachm(i)

p,q (p, q = {1, 2}) in M (i), as

m(i)
p,q =























[2(u
(i)
p,q ⊕R2j−1) + [u

(i)
p,q]2]264 , i = 1,

[2(u
(i)
p,q ⊕R2j−1 ⊕R2j) + [u

(i)
p,q]2]264 , i = 63,

[2(u
(i)
p,q ⊕R2j) + [u

(i)
p,q]2]264 , i = 125,

u
(i)
p,q, otherwise.

(1)

Theorem 1:M (i) is modular invertible.
Proof: From [21], we find thatM (i) is modular invertible

if and only if |M (i)| and 264 are co-prime, where|M (i)|
denotes the determinant of matrixM (i). Therefore,M (i)

is modular invertible when|M (i)| is an odd number. Next,
we prove |M (i)| is an odd number. From Eq. (1), we can
easily find thatm(i)

p,q and u
(i)
p,q have the same parity for any

p, q ∈ {1, 2}. Thus, |M (i)| = m
(i)
1,1m

(i)
2,2 − m

(i)
1,2m

(i)
2,1 and

|U (i)| = u
(i)
1,1u

(i)
2,2 − u

(i)
1,2u

(i)
2,1 have the same parity.U (i) is

modular invertible, so we know|U (i)| and 264 are co-prime
from [21]. Thus,|U (i)| and |M (i)| are both odd numbers.

Considering that RT-PRNs can only be used once,d should
be as large as possible in order to securely store mass data. But
if d is too large, RT-PRNs will occupy a lot of storage space so
that there may be no enough space for user’s data. To mitigate
this contradiction,Populus only stores a balanced amount
of RT-PRNs that can support real-time encryption/decryption
before battery uses up and then replenishes RT-PRNs during
device charging or battery replacement.

After applying our method, only small storage space of
RT-PRNs is able to satisfy most of applications in practice.



Fig. 2: An illustration of transparent encryption and decryption

Suppose that on average mobile devices require to securely
store l-byte data each day and can workt days without
enabling disk encryption.Populusneeds at mostd = lt/256
pseudo random numbers in RT-PRNs. For example, as for
smartphone, we lett = 4 and l = 231 so that only256 MB
are required to stored = 225 pseudo random numbers.

C. Iterative Encryption and Decryption on IFCR

In Section III-A3, we have briefly introduced the function of
IFCR encryption and decryption. However, IFCR decryption
may cost much energy if we choose existing block ciphers as
its encryption/decryption algorithm. For example, ifPopulus
uses AES-CBC to encrypt IFCR, nearly all encrypted IFCR

should be decrypted for each time of transparent encryption,
which obviously costs lots of energy.

To reduce the aforementioned energy cost, we propose a
dedicated encryption method callediterative encryptionfor
IFCR protection. The basis idea of iterative encryption comes
from our observation thatPopulusonly needs one new master
key (4000 bytes) andk new RT-PRNs (16k bytes) when
encryptingk disk sectors (512 bytes for each disk sector)
whose data is never changed. Considering that master key and
RT-PRNs are never changed once generated, we iteratively
encrypt them as follows:a) If IFCR only occupiesk ≤ 9
disk sectors in all,Populus directly encrypts them through
a SPN-based cipher (e.g., AES-CBC);b) If IFCR occupies
k > 9 disk sectors,Populus produces another new IFCR



including one new master key and⌈(16k + 4000)/512⌉ new
RT-PRNs and use them to encrypt original IFCR through our
proposed transparent encryption method;c) Encrypt new IFCR
by repeatinga) andb). As for iteration decryption, just reverse
the whole process of iteration encryption.

We can usemaster methodto prove that the compu-
tation complexity of our iterative encryption/decryptionis
O(log(n)). Here,n denotes the number of disk sectors occu-
pied by IFCR. Compared with AES-CBC which needsO(n)
computation in same task, our iterative encryption/decryption
save much energy.

IV. SECURITY ANALYSIS OF POPULUS

To rigorously assessPopulus’ssecurity, we first introduce
widely-used security definitions in cryptanalysis theory such
asmessage indistinguishability. Based on those definitions, we
analyze whetherPopuluscan effectively defend against state-
of-the-art cryptanalysis techniques such aslinear [23], differ-
ential [24], algebra[25], slide [26], andBiclique attacks[27]
. The analysis results show that all those techniques fail to
breakPopulusin reasonable computational complexity.

A. Security Definition

Our security analysis mainly focuses on message indis-
tinguishability, an important property in cryptography that
most of existing security analysis works always discuss.
Message indistinguishability ofPopulus can be briefly ex-
plained as the difficulty to distinguish two groups of ci-
phertexts. In detail, we assume thatPopulushas produced a
group of temporary keys denoted byM1:θ = (M1, . . . ,Mθ)
with the same hashed key randomly chosen by a user and
then encrypted two groups of 512-byte plaintexts denoted
by P1:θ = (P1, . . . , Pθ), P

′

1:θ = (P
′

1, . . . , P
′

θ) with M1:θ

and getC1:θ = (E(P1,M1), . . . , E(Pθ,Mθ)) and C
′

1:θ =
(E(P

′

1,M1), . . . , E(P
′

θ,Mθ))). Provided withC1:θ andC
′

1:θ,
P1:θ, P

′

1:θ, and Populus’sencryption algorithm, attackers try
to design a distinguisher that can propose a correct corre-
spondence betweenP1:θ,P

′

1:θ and C1:θ and C
′

1:θ. Then we
informally conclude thatPopulusis message indistinguishable
if attackers can’t accomplish the distinguishing work in both
low computational complexity and high success probability
without any prior knowledge ofM1:θ and the hashed key.

Next, we give a formal definition ofPopulus’s message
indistinguishability.

Definition 1: Populus is (t, ǫ, θ) message indistin-
guishable against an attack methodAdv defined as
{sequences of 512 bytes}θ → {0, 1} if and only if the
computational complexity ofAdv is not more thant and for
everyP1:θ, P

′

1:θ, andC1:θ, C
′

1:θ,

|P(Adv(C1:θ) = 1)− P(Adv(C
′

1:θ) = 1)| ≤ ǫ. (2)

In Def. 1, the values oft, ǫ and θ are strongly linked to the
real-world security ofPopulus. From Luca’s suggestion [28],
we can get that typical parameters adopted in practical secure
crypto system followst ≤ 280, ǫ ≤ 2−60 andθ ≤ t. We will

later discussPopulus’ssecurity against certain attack method
based on Def. 1 and Luca’s suggestion.

In addition, when discussingPopulus’ssecurity, we assume
that our pseudo random number generator (i.e., Salsa20/12)is
secure so we don’t conduct secure analysis on it. We don’t
discuss attack techniques out of cryptography such as DMA-
based attack, cold boot attack and evil maid attack because
they are beyond this paper’s scope.

B. Linear Attack and Differential Attack

Linear attack [23] and differential attack [24] are two pow-
erful cryptanalysis techniques towards block ciphers. Both of
the two techniques are chosen-plaintext attacks exploiting the
design defects inS-box. Here, S-box is a widely-used compo-
nent in block ciphers that substitutes its input bit sequence with
another bit sequence in same length as its output. For example,
a functionf(x) = (x + 1)mod(256), x ∈ {0, . . . , 255} is a
S-box.

Even though linear and differential attacks have broken
various kinds of block ciphers such as DES [29], [30], it is
hard for them to distinguish messages protected byPopulusin
reasonable computational complexity in the eye of our security
definitions in Section IV-A. InPopulus, each S-box is hidden
from attackers and closely randomly chosen from a huge S-
box space containing at least21600 S-boxes, which makes it
computationally impractical to analyze all possible S-boxes.
Circumventing the useless brute force, some attackers may
endeavor to collect special (plaintext,ciphertext) pairswhose
corresponding S-boxes are the same and then consider linear
or differential characteristics. However, they still requires to
distinguish ciphertexts encrypted by different S-boxes before
exploiting linear or differential characteristics. Obviously, it
is an infinite logic loop. Hence, we conclude that linear and
differential attacks can’t effectively breakPopulus.

Note thatzero correlation linear attack[31], Boomerang
attack [32], impossible differential attack[33], higher-order
differential attack[34], truncated differential attack[35] and
differential-linear attack[36] are derivative from linear attack
or differential attack. After finding those attack methods still
can’t elegantly deal withPopulus’smultiple S-Boxes, we con-
clude that those existing derivatives of linear and differential
attacks can’t breakPopulusin an effective manner.

C. Algebra Attack

Algebra attack pays close attention on the algebraic system
adopted by a cipher and then break the cipher by exploiting
its algebraic characteristics [25]. In practice, existingciphers
on linear system are easier to break because linear system
has been fully studied. For example, Hill cipher, a classical
block cipher based on modular linear algebra, is not secure
against algebra-based chosen-plaintext attack through easily
solved linear transformation. Considering thatPopulusis also
constructed on linear system, algebra attack seems to imperil
Populusmore intensely than other attack methods.

However,Populus’salgebraic system is a volatile linear sys-
tem, which substantially reduces its conspicuousness of linear



characteristics. We propose a thorough cryptanalysis based on
linear-based algebra attack. The cryptanalysis results show that
Populuscan’t be broken by existing linear-based algebra attack
methods in reasonable computational complexity. Its whole
process is shown in Appendix A.

D. Other Attacks

Slide attack is another excellent cryptanalysis techniqueand
can only be used to analyze the ciphers that constitute multiple
rounds and each round shares same key [26]. For example,
DES, who consists of 16 rounds and the keys of every rounds
remain equal, can be broken by slide attack [26]. Given that
Populusconsists of125 matrix multiplications which can be
regarded as125 so-called rounds, it seems that slide attack
may breakPopulus. However, inPopulus, the probability of
the equivalence among ’keys’ (i.e.,M (i), i ∈ {1, . . . , 125})
in all rounds is lower than2−36000. Given the precondition
of slide attack is nearly impossible, we don’t think that slide
attack is suitable to breakPopulus.

Biclique attack is a distinguished chosen-plaintext attack
that can theoretically attack full AES-128 with the compu-
tational complexity2126.1 [37]. It can also attackPopulus
by skillfully searching correctM1:θ in the meet-in-the-middle
strategy [38]. However, allM (j)

i are nearly independent and
randomly chosen, which extremely extends its search space
(i.e., at least24097). Due to the unacceptable search space, we
conclude that Biclique attack can’t breakPopulusin rational
computational complexity.

In conclusion, we have studied five popular cryptanalysis
techniques and find thatPopulussuccessfully defends against
them. We don’t discuss other existing cryptanalysis techniques,
for they are not quite matched toPopulus.

V. ENERGY CONSUMPTION EVALUATION

In this section, we useMonsoon power monitor[39] to
measure energy consumption of the whole mobile device
and estimate the energy cost by disk encryption software.
We choose Google Nexus 4 smartphone with Android 5.0
OS as our tested mobile device. To compared with Populus
proposed in this paper, dm-crypt is chosen as the baseline
for the following two reasons. First, the architecture of dm-
crypt is similar to other popular disk encryption software and
their computation is close. So we can use dm-crypt as a
representative of existing disk encryption software. Second,
dm-crypt is compatible with Android. So it is convenient for
us to conduct energy consumption experiments on our Google
Nexus 4 smartphone.

A. Evaluation on Typical Usages for Mobile Device

We conduct a series of experiments to measure the en-
ergy consumption of mobile device’s typical usage. Through
those experiments, we can verify whether enabling dm-crypt
tremendously raises the whole device’s energy consumption
and whetherPopuluscan mitigate it.

We choose Google Nexus 4 smartphone with Android 5.0
OS as our tested mobile device. We also design three config-
urations for the mobile device: only enabling dm-crpyt, only

Fig. 3: Energy consumption of video playing

enablingPopulusand disabling any disk encryption. For each
configuration, we measure the mobile device’s whole energy
consumption in four typical usage: video recording, video
playing, data sending throgh WIFI, data receiving through
WIFI. As for video playing and recording, video format is
mp4, video resolution is 480×270, the choices of video length
are 50min, 100min, 150min and 200min and video quality is
of high definition. As for WIFI network, the choices of trans-
ferred data size are 256MB, 512MB, 768MB,. . ., 2048MB.

Then we introduce our experiments separately. Video play-
ing is a common function for handheld mobile device such
as smartphone and its energy consumption status is shown in
Fig. 3. Note that when playing an encrypted video, decryption
is necessary so that part of energy consumption comes from
Populusor dm-crypt if they are enabled. As you can see, nearly
1/2 of energy is cost by dm-crypt andPopuluscan reduce it
to nearly 1/4.

We also present relevant experimental results of video
recording in Fig. 4, as video recording on mobile device is
widely used in personal life, industry and military (e.g., mobile
video surveillance [1]). Obviously when recording a secret
video, disk encryption is necessary so that part of energy
consumption comes fromPopulus or dm-crypt if they are
enabled. Our experimental results show that nearly 1/3 of
energy is cost by dm-crypt andPopuluscan reduce it to nearly
1/6.

As for network data transference, Fig. 5 demonstrates
mobile device’s energy consumption when it sends data to
remote terminal through WIFI network. Here, data has been
encrypted by disk encryption software in advance so that data
decryption before network transference should be considered
if disk encryption software is enabled. Apparently, there is
an approximate linear relation between transferred data size
and mobile device’s energy consumption. On average, 51% of
energy consumption on mobile device is cost by dm-crypt and
Populuscan reduce it to 20%.

Fig. 6 shows mobile device’s energy consumption when it
receives data from remote terminal through WIFI network.
Here, we regulate that those received data will be encrypted



Fig. 4: Energy consumption of video recording

Fig. 5: Energy consumption of data sending through WIFI

by disk encryption software if enabled. As you can see, it is not
a pure linear relation between data size and mobile device’s
energy consumption. In detail, the energy consumption of
the mobile device enabling dm-crypt is close to the mobile
device enablingPopuluswhen data size is small and gradually
changed to linear relation as data size grows larger. Due to file
system buffer and disk I/O buffer, part of received data may
be lazily cached in buffer so that disk encryption may not be
fully triggered. On average, 56% of energy consumption is
cost by dm-crypt andPopuluscan reduce it to 25%.

B. Evaluation on Pure Disk Encryption/Decryption Opera-
tions

To compare dm-crypt withPopulus, one effective way is
to compute the energy consumption of pure disk encryption
operations in dm-crypt andPopulus and then compute the
improvement percentage. However, both of them can not be
directly measured by Monsoon power monitor. To solve this
problem, we design a comparison model to estimate them.

Next, we formally introduce our comparison model. The
energy cost of dm-crypt is denoted byAEi and the energy cost
of Populusis denoted byPEi. Here, i denotes the file size

Fig. 6: Energy consumption of data receiving through WIFI

in certain experiment. For example, when recording a video,
i denotes the video file size. LetGEi =

AEi−PEi

AEi
denote the

percentage of energy thatPopulussaves in comparison with
dm-crypt when processingi-megabyte file, and we useGE,
the average of allGEi, to compare the energy consumption
betweenPopulusand dm-crypt. We regulate three different
configurations as:Conf.1, all disk encryption systems are
disabled;Conf.2, only dm-crypt is enabled;Conf.3, only
Populusis enabled.

We first measure the energy consumptionECi,j (j ∈
{1, . . . , 3}) and the time costETi,j (j ∈ {1, . . . , 3}) of
our mobile phone with differentconf.j (j ∈ {1, . . . , 3}). In
addition, we observe that the energy consumption of Android
OS is stable, so we denoteSP as the energy cost of system
per second, andSP can be directly computed by measuring
the power consumption when our mobile device is idle. Then
we computeGEi based onECi,j , j ∈ {1, . . . , 3}, ETi,j , j ∈
{1, . . . , 3}, andSP . Let FEi denote the energy consumption
of the pure file and disk operations oni-byte file excluding disk
encryption/decryption andSEi,j , j ∈ {1, . . . , 3} denote the
energy consumption of Android OS forConf.j. Considering
SEi,j = SP · ETi,j ,ECi,1 = FEi + SEi,1, ECi,2 =
FEi + SEi,2 + AEi, andECi,3 = FEi + SEi,3 + PEi, we
can computeGEi as follows:

GEi =
AEi − PEi

AEi

=
(ECi,2 − FEi − SEi,2)− (ECi,3 − FEi − SEi,3)

ECi,2 − FEi − SEi,2

=
(ECi,2 − SEi,2)− (ECi,3 − SEi,3)

ECi,2 − (ECi,1 − SEi,1)− SEi,2

=
(ECi,2 − ECi,3)− (SEi,2 − SEi,3)

(ECi,2 − ECi,1)− (SEi,2 − SEi,1)

=
(ECi,2 − ECi,3)− SP (ETi,2 − ETi,3)

(ECi,2 − ECi,1)− SP (ETi,2 − ETi,1)

(3)

Then we can computeGE with all GEi.
To prepare for this experiment, we implement a test APP

using JNI technique to invoke random file reading and writing



Fig. 7: Samples of SP

Fig. 8: Energy consumption of the whole mobile device

without caching data into various buffer mechanism. We also
turn off irrelevant APPs and sensors and then run our test APP
while measuring energy consumption.

Then we use Monsoon power monitor to observeSP ,
ECi,j , ETi,j . Samples ofSP are shown in Fig. 7. As you
can see, most of samples are closed and a few samples are
higher than others. We think those exceptional samples are
mainly caused by periodic system scheduling and it doesn’t
affect our assumption thatSP is nearly fixed. Finally, we
average all samples and get 294 milliwatt as the estimation
of SP . Fig. 8 shows the observations ofECi,j . The curve
shows linear feature of energy consumption.

Based on comparison model, we computeGE to show the
improvement percentage of energy consumption inPopulus
compared to dm-crypt. Fig. 9 shows fiveGE in five repeated
experiments. We can see thatGE is roughly between 50% and
70%. Therefore, we can conclude thatPopulussaves 50%-70%
less energy than dm-crypt.

VI. RELATED WORK

Popular and secure disk encryption software includes dm-
crypt (for Linux and Android), BitLocker (for Windows),
FileVault (for Mac OS X) and TrueCrypt (for Windows and
Linux) [40]. They conduct encryption/decryption with tweak-
able scheme [12] and SPN-based block ciphers [22]. However,

Fig. 9: Percentage of improvement

we found that tweakable scheme and SPN essentially lead to
the energy overhead in disk encryption software and explained
it in Section II. As an attempt to improve efficiency, Crow-
ley and Paul proposed Mercy, a lightweight disk encryption
software [10]. Unfortunately, Fluhrer proved that Mercy is
insecure in cryptography [11].

VII. CONCLUSION

In this paper, we develop a kernel-level disk encryption
softwarePopulusto reduce the high energy consumption of
disk encryption, which is critical for mobile devices. We
observe that at most 98% ofPopulus’sencryption/dycryption
computation is input-free, which can be accomplished in
advance during initialization, soPopulusis energy-efficient for
processing real-time encryption/decryption requests. Wecon-
duct cryptanalysis onPopulusand find it is computationally
secure when facing state-of-the-art cryptanalysis techniques.
We also conduct energy consumption experiments and our
experimental results show thatPopulusconsumes 50%-70%
less energy in comparison with dm-crypt.
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APPENDIX A
CRYPTANALYSIS IN L INEAR-BASED ALGEBRA ATTACK

In this section, we conduct cryptanalysis to assess whether
Populus can defend against linear-based algebra attack. To
keep pace with aforementioned sections, we continue to use
notations of our security definitions in Section IV-A.

Linear-based algebra attack usually breaks linear-based ci-
phers by solving certain linear equation. For example,C1 =
LP1,. . .,Cn = LPn whereL is n × n matrix andPi, Ci are
n × 1 matrices or vectors. Then attackers can solveL by
computingL = [C1, . . . , Cn][P1, . . . , Pn]

−1. In the same way,
linear-based algebra attack can breakPopulusif it collects64
(plaintext,ciphertext) pairs sharing same sector key inM1:θ.
Here, ’collect’ denotes that attackers can conductchosen-
plaintext attack[13] to get several (plaintext,ciphertext) pairs.

In detail, we assume that attackers can getr pairs
(P

′′

1 , C
′′

1 ), . . ., (P
′′

r , C
′′

r ) whereC
′′

i = E(P
′′

i ,M
′′

i ). We define
Eventµ, µ ∈ {1, . . . , θ} as an event thatMµ = M

′′

i1
= . . . =

M
′′

i64
whereµ ∈ {1, . . . , θ} and i1, . . . , i64 ∈ {1, . . . , r} and

r ≥ 64 and i1, . . . , i64 are all different from each other. If
Eventµ happens, attackers can solveMµ by computing

Mµ = [C′′
i1 , . . . , C

′′
i64 ][P

′′

i1
, . . . , P

′′

i64
]−1 (4)

and then construct the distinguisher as

Adv(X1:θ) =

{

0, D(Xµ,Mµ) = Pµ

1, D(Xµ,Mµ) = P
′

µ

(5)

whereX1:θ = (X1, . . . , Xθ) ⊂ {sequences of 512 bytes}θ.
However, findingfitted µ, i1, . . . , i64 (i.e., ∃µ(Eventµ)) is

either complicate (i.e, with high computational complexity) or
hopeless (i.e., with low success probability). Then we givetwo
lemma and one theorem to prove our statement.

Lemma 1:For everyM1:θ, P1:θ, P
′

1:θ, we have

P(Eventµ) = 1−
63
∑

l=0

(ri )(
1

2128
)l(1−

1

2128
)r−l, (6)

where(ri ) denotes the combinatorial number ofi-combinations
in {1, . . . , r}.

Proof: Let α(l), l ∈ {0, . . . , r} denote the proposition:
∃i1, . . . , ir(i1, . . . , ir are different ∧ M

′′

i1
= . . . = M

′′

il
=

M0 ∧ Mil+1
, . . . ,Mir 6= M0) where i1, . . . , ir ∈ {1, . . . , θ}.

Given allα(l) are mutually exclusive from each other, we have

P(Eventµ) = 1−

63
∑

l=0

(rl )P(α(l)|µ) (7)

Next, we computeP(α(j)|µ). From production of sector
key, we can get thatP(M

′′

i = Mµ|µ) =
1

2128 . ForM
′′

i = M0



is conditionally independent fromM
′′

j = M0, α(l)|µ obeys
binomial distribution so that:

P(α(l)|µ) = (rl )(
1

2128
)l(1−

1

2128
)r−l. (8)

From Lemma 1, we can useinclusion-exclusion principle[41]
andChernoff bound[42] to infer that

Lemma 2:For everyM1:θ, P1:θ, P
′

1:θ, we have

P(∃µ(Eventµ)) ≤ θe−rT ( 64
r
, 1

2128
), (9)

whereT (x, y) = xlog(x
y
) + (1− x)log(1−x

1−y
) andr ≤ 2120.

Proof: Based on inclusion-exclusion principle [41] and
Chernoff bound [42], we have

P(∃µ(Eventµ)) ≤

θ
∑

µ=1

P(Eventµ)

= θ(1 −

63
∑

i=0

(ri )(
1

2128
)i(1−

1

2128
)r−i)

< θe−rT ( 64
r
, 1

2128
)

From Lemma 2, we can get the folloing theorem.
Theorem 2: Populusis (t, θe−tT ( 64

t
, 1

2128
), θ) message indis-

tinguishable from linear-based algebra attack ift ≤ 280.
Proof: Assume that the distinguisher’s computational

complexity is not more thant. Thenr ≤ t because choosing
(plaintext,ciphertext) pairs belongs to attackers’ computation.
So r < 280 < 2120 when t < 280. Therefore, Lemma 2 can
derive that the possibility of a successful distinguish is not
more thanθe−tT ( 64

t
, 1

2128
).

Supported by the scientific computational softwareWolfram
Mathematica, we get θe−tT ( 64

t
, 1

2128
) ≪ 1

280 when t ≤ 280

and θ ≤ t. Hence, Theorem 2 implies that linear-based
algebra attack can’t breakPopulusin reasonable computational
complexity.
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