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Abstract

Volunteer computing is a type of distributed computing in which a part or all

the resources (processing power and storage) necessary to run the system are

donated by users. In other words, participants contribute their idle computing

resources to help running the system. Due to the fact that the nodes which com-

pose the system are provided by a large number of users instead of a single (or a

few) institution, a main drawback of volunteer computing is the unreliability of

these nodes. For this reason, the selection of nodes to be involved in each task

becomes a key issue. In this paper, we propose the Multi Criteria Biased Ran-

domized (MCBR) method, a novel selection method for large-scale systems that

use unreliable nodes. MCBR method is based on a multicriteria optimization

strategy. We evaluated the method in a microblogging social network formed

by a large number of microservices hosted in nodes voluntarily contributed by

their participants. Simulation results show that our proposal is able to select

nodes in a fast and efficient manner while requiring low computational power.

Keywords: Distributed Computing, Volunteer Systems, User assignment,

Allocation methods, Resource provisioning



1. Introduction

Volunteer Computing (VC) [1] systems are large-scale heterogeneous dis-

tributed systems where resources (nodes) are donated by volunteers. Public

contributors share a part of their idle computational resources to execute com-

putationally expensive applications.

This kind of computation has become increasingly popular due to the fact

that it provides a scalable, elastic, practical, and low cost platform to increase

the computational and storage demands of many applications. However, the

nodes are provided by users in a voluntary way, which means that they may

suffer from a lack of reliability, since they are usually non-dedicated and dy-

namic. Therefore, the system must be able to tolerate both sudden connections

and disconnections of nodes. An efficient mechanism to select which nodes will

run a job or store some data is of high importance for two main reasons: (a)

it is necessary to guarantee the fulfillment of the task or the availability of the

data; and (b) it is recommended to minimize the quantity of nodes required for

it.

Regarding to this second aspect, it is important to minimize the number

of replicas involved to provide the service, specially from the storage point of

view: each time a node fails a new node must be selected and all data must

be replicated into it. In a VC environment with not enough highly available

nodes, the selection mechanism should be able to combine nodes with different

availability levels to guarantee that the system provides a good quality of service

(QoS). In addition, this mechanism should be fast in order to quickly react to

changes in the system.

In this paper we propose the Multi Criteria Biased Randomized (MCBR)

method, a novel selection strategy for large-scale systems composed of unreliable

nodes. MCBR allows to select the most suitable nodes in an efficient and fast

way, ensuring a minimum QoS to the users. The proposed method is based on

ideas of the Lexicographic Ordering (LO) multicriteria optimization strategy [2].

Thus, MCBR is a hierarchical method in which the intrinsic properties of the
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nodes are categorized according to different priority levels. Then, a sequence

of decisions is made following the previous established priority order. Biased

randomization techniques [3] are used to distribute and balance the load of the

nodes. The proposed method provides high quality solutions in a very fast way,

since it does not require costly computations in runtime. Moreover, due to the

flexibility of this method to prioritize the properties of the nodes, it can be

applied to a wide range of large-scale distributed systems other than VC, as

could be P2P or Grid Systems.

We tested MCBR by simulating a real large-scale social network called Gar-

lanet [4], that stores all data in computers voluntarily contributed by its par-

ticipants. More precisely, for each user, Garlanet deploys a set of replicated

microservices (in the voluntarily contributed nodes) that are in charge of guar-

anteeing the availability of the data. The MCBR method is used to select which

node will allocate each replica of each microservice.

To validate and quantify the quality of MCBR, we have developed a meta-

heuristic [5]. Metaheuristic algorithms are widely recognized as efficient ap-

proaches for many optimization problems. They focus on exploring the search

space to obtain optimal or quasi-optimal solutions in a reasonably short time.

The metaheuristic developed in this work allows us to compare the evolution

experimented by the system when applying MCBR in real time, with the results

of a near optimal selection of nodes obtained with it. The experimental valida-

tion proves that the MCBR method provides high quality solutions, ensuring

the minimum QoS and avoiding the excess of data movement. This last point

is crucial when selecting a solving method for this kind of systems.

The remainder of this paper is structured as follows: Section 2 presents

a literature review on similar approaches. Section 3 is devoted to describe the

proposed MCBR method. Then, Section 4 presents the prediction quality model

needed by the MCBR method. In Section 5, the metaheuristic used to compare

our results is described. Section 6 presents a complete set of experiments and

analyses the results. Finally, Section 7 concludes this work and proposes possible

future research lines.

3



2. Related Work

Several recent works in the literature have focus their attention on the selec-

tion of resources in distributed large-scale systems based on heterogeneous and

non-dedicated components, due to the importance of making an efficient use of

the resources in them. Thus, next sections are devoted to go through the main

works about it. As mentioned in each section, none of these works solves the

particular problem at hand.

2.1. Resource allocation in VC systems

Since the efficient resource allocation is a key factor in VC systems, sev-

eral authors have worked on this research line. Estrada et. al [6] propose a

distributed evolutionary genetic algorithm to design scheduling policies in VC,

which maximize the throughput of the system. The proposed algorithm auto-

matically generates scheduling policies that increase throughput across a variety

of different VC projects, in contrast to the manually-designed policies, which are

limited to increasing throughput for single projects. The algorithm is based on

searching over a wide space of possible scheduling policies, using a small subset

of IF-THEN-ELSE rules, which are used to generate the most suitable policies.

Ghafarian et al [7] [8] focus on proposing a method to schedule scientific

and data intensive workflows, to enhance the utilization of VC systems. The

proposed method increases the percentage of workflows that meet the dead-

line, satisfying the QoS constraints in terms of the deadline, minimum CPU

speed, and minimum RAM or hard disk requirements. The proposed workflow

scheduling system partitions a workflow into sub-workflows, to minimize data

dependencies among the sub-workflows.

Sebastio et. al [9] propose a distributed framework to allocate tasks in

large-scale Volunteer Clouds platforms, according to different scheduling poli-

cies. The framework takes into account five different policies, which attempt

to maximize the number of executed tasks and minimizing the time at which

the execution ends, both for the entire task set and for each task in the set.
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Each policy is formalized as a mathematical optimization problem with con-

straints, which is solved in a distributed fashion. In order to solve the problem

in a distributed way, the framework uses the Alternating Direction Method of

Multipliers (ADMM) [10] to decompose the optimization problem. Then, it

is distributed and independently solved by the volunteer nodes. Besides the

throughput, another important point to consider by users of Volunteer Clouds

platforms is the money budget. Guler et al [11] propose various heuristics to

distribute jobs, while maximizing the throughput done by the users, without

violating established money budget constraints. The heuristics are based on the

price of electricity consumed by the peers, considering its temporal variation

during the time, and the CPU time used.

These previous approaches are focused on maximizing the throughput of the

VC system under some constraints, taking into account the types of jobs/tasks

to execute in the system previously. Unlike these works, our method is focus on

the resources selection in dynamical real time environments, trying to quickly

react to changes in the system, e.g., sudden disconnections or the arrival of new

users to the system.

2.2. Resource allocation in Distributed Social Networks and Applications

Due to the increasing popularity of social networks, other works have fo-

cused on the assignment of resources in Online Distributed Social Networks,

which run over large-scale distributed systems. Thuan et al [12] propose three

heuristic algorithms for solving the client-server assignment problem in online

social network applications. The algorithms are based on the user communi-

cation patterns. The authors objective is to find an approximately optimal

client-server assignment that results in small total communication load, while

maintaining a certain level of load balance.

Zhang et al [13] propose three heuristics to assign clients to servers in contin-

uous Distributed Interactive Applications (DIA) [14]. The heuristics are focused

on reducing the network latency for maximizing the interactivity under consis-

tency and fairness requirements. They are based on analyzing the minimum
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achievable interaction time for DIA’s to preserve consistency and provide fair-

ness among clients. Zheng et al [15] add a complementary study to the previous

work. Authors present two efficient server placement algorithms for hosting

continuous DIA’s. These algorithms are addressed to find optimum locations

of servers in the network, with the goal of optimizing the interactivity perfor-

mance, while maintaining the consistency and fairness of DIA’s. The proposed

algorithms take into account the interaction between clients, considering their

path in the network and the latency, to produce near-optimal server placements.

Hiroshi et al [16] present a heuristic algorithm via relaxed convex optimiza-

tion, that takes a given communication pattern among the clients, providing

an approximately optimal client-server assignment for a pre-specified trade-off

between load balance and communication. This heuristic can be used in dis-

tributed applications such as Instant Messaging Systems (IMS).

The proposed methods in these works are based on profiling the user behav-

iors (i.e. obtaining information about the user communication patterns), to find

optimal client-server assignments in large-scale distributed systems. However,

the MCBR method does not need to gather user behavior to make optimal as-

signments. All the information needed is obtained from the nodes that compose

the distributed system.

2.3. Resource allocation in Cloud Computing Systems

In a more general context, with the advent of the cloud and federated clouds

[17], Coutinho et al [18] proposed the Cloud Resource Management Problem

(CRMP). The CRMP is a multi-criteria optimization problem which consists of

assigning resources to users, taking into account both cost and performance

preferences of consumers for supporting purchasing. To solve the problem,

an Integer Programming (IP) formulation, and a GRASP heuristic [19], called

GraspCC, are presented by the authors. Both methods consider time and bud-

gets limits of consumers, and different application requirements in terms of

resource demands. Authors claim the need for both approached, since exact

procedures have often proved incapable of finding optimal solutions in real-
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world problems, as they are extremely time-consuming. Conversely, heuristics

and metaheuristics provide sub-optimal solutions in a reasonable short time.

More recently, the same authors have published a new work [20] addressing

the CRMP in multi-cloud environments. They propose GraspCC-fed, a GRASP

heuristic approach for dimensioning the amount of virtual machines to allocate

for a parallel workflow in federated cloud environments, before its execution.

GraspCC-fed takes into account both costs and execution times in a weighted

sum objective function. Same problem has also been resolved by Heilig et al

[21] using a Biased Random-Key Genetic Algorithm (BRKGA) [22]. They pro-

pose the BRKGA-MC, which is based on a cloud brokerage mechanism. The

BRKGA-MC is a deterministic algorithm that takes as input a vector of n ran-

dom keys and it returns a feasible solution of the optimization problem at hand

along with its objective value. The algorithm is able to determine a feasible

solution in the millisecond range with an excellent quality, and it is suitable

for being included as a real-time decision support tool in related deployment

processes.

As explained in the next section, due to the flexibility of the MCBR method

to adapt the parameters and the use of priority levels, it could be applied to a

wide range of large-scale distributed systems. Although it is not the purpose

of the present work, it could be used to solve this multi-objective problem,

maintaining the fast and efficient node selection process.

3. Multi Criteria Biased Randomized Method

This section presents the MCBR method, which focuses on selecting the

most suitable nodes to allocate resources, in an efficient and fast way.

In a previous work [23], we proposed a multicriteria optimization approach

based on a node-quality function. This method consists of parameters and

weights associated to these parameters (weighted-sum optimization method), in

which multiple objective functions are combined to form a single function.

This method is effective when using a reduced number of parameters to op-

7



timize. However, it becomes more challenging when the numbers of parameters

increases. This is because the best values of the weight factors cannot be easily

determined, since: (a) the numerical quantities are typically not based on a

uniform scale; (b) the number of objective functions can be large; and (c) the

consequences of a given trade-off cannot be quantitatively known prior to the

optimization.

In order to overcome this issue, this paper proposes the MCBR method,

which is a hierarchical allocation method based on Lexicographic Ordering (LO),

traditionally used in multi-objective combinatorial optimization problems. The

MCBR method categorizes the parameters to optimize into different priority

levels, providing good quality solutions in a fast and efficient way. Using this

approach, we avoid to categorize the parameters of the objective function quan-

titatively. With the aim of making possible its use in a wide range of systems,

the MCBR method allows an easy-to-use adaption of the parameters and their

priority levels.

3.1. Hierarchical allocation method

As mentioned before, the MCBR method is based on the concept of a multi-

criteria optimization strategy called Lexicographic Ordering (LO). This method

potentially avoids the use of weight factors by incorporating priorities of the

individual planning criteria (objective functions) explicitly in the optimization

process.

The LO method assumes that the objectives can be ranked in order of im-

portance (from best to worst). The optimal value is then obtained by mini-

mizing/maximizing the objective functions sequentially, starting with the most

important one and proceeding according to the order of importance of the ob-

jectives. Thus, this multi-objective optimization technique can be represented

as an objective function F (x) = [f1(x), f2(x), ..., fN (x)], which contains a collec-

tion (i.e., a vector) of N individualized functions (fi(x)) ordered by importance,

so that f1(x) is the most important and fN (x) the least important. Addition-

ally, the optimal value found for each objective is added as a constraint for
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subsequent optimizations. This way, the optimal value of the most important

objectives is preserved.

Mathematically, this method can be modeled as an ordered sequence of real

objective functions with a set of constraints as follows:

Min/Max fi(x) (1)

subject to:

fj(x) ≤ fj(∗j ) (2)

where i = {1, 2, ..., N} and j = {1, 2, ..., i− 1}.

As the method progresses down from level 1 to level N (the last level), the

preceding objective functions are converted to new constraints with boundary

values f∗j , set by the a priori attained solutions min/maxfj(x), subject to the

constraints from the upper level. Accordingly, the number of constraints in-

creases with each level up to N −1, reducing the feasible search space gradually

in each new level.

3.2. MCBR components

Figure 1 shows an overview of the MCBR method, which is composed of

two main steps. During the first step, given the complete list of active nodes

and a set of criteria parameters, ranked by their order of importance, an iter-

ative procedure based on the LO method is applied to obtain a reduced set of

best nodes according to each criteria. For each iteration of the procedure, the

list of nodes is sorted by a criteria parameter. Afterward, we apply a Biased

Randomization (BR) [3] mechanism to select a set of best nodes for this criteria

parameter, discarding the remaining nodes. This subset of nodes is provided

as input to the next iteration of the procedure, and the procedure is repeated

for each criteria parameter. Finally, we obtain a reduced sublist of best nodes.

Subsequently, during the second method stage, a Biased Randomization (BR)

mechanism is applied to the final list to select the nodes to be used.
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Figure 1: Overview of MCBR method

More specifically, during the first stage, the initial list of active nodes is

filtering by the criteria parameters. The set of criteria parameters used by the

MCBR method are represented as a vector of tuples as follows:

C = [{1, threshold1,%elite1, type1}, ..., {N, thresholdN ,%eliteN , typeN}]
(3)

The first parameter of the tuple represents the importance of the parameter,

with 1 representing the most important. The second parameter represents the

threshold value, i.e., the minimum or maximum value that can be accepted

to meet the requirement of a criteria parameter. The third value represents

the maximum percentage of nodes to be selected to obtain the next list of

high quality nodes according to a criterion, i.e., the nodes with high values

- maximizer parameter - or low values - minimizer parameter - for a criteria

parameter, hereinafter ‘elite nodes’. Finally, the last parameter indicates if it is

a maximizer parameter (type = 1) or a minimizer parameter (type = 0).

Using this filtering procedure at the beginning of the first stage, the nodes

that do not meet the minimum quality requirement imposed by the threshold

value of each the criteria parameter are removed, reducing the list of active

nodes. Therefore, we are trying to carry out an efficient sorting procedure,

avoiding to sort nodes without possibility of being selected as candidate nodes.

In case all nodes meet the requirement of this parameter, the size of the list will

be the same that the size of the initial list.

Once this initial filtering procedure is done, we obtain a non-sorted list of
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Figure 2: Biased randomization using geometric distribution with β 0.2

viable nodes, where all nodes included fulfill the requirements to be used to

allocate resources. Subsequently, the MCBR method chooses the nodes to be

used from this list, applying an iterative procedure which takes into account the

priority of the criteria parameters.

Firstly, the list of viable nodes is sorted by the first parameter, which is

the most important. Depending on whether it is a maximizer parameter or a

minimizer parameter, the list will be sorted in an ascendant or descendant way.

When the list is sorted, a percentage of nodes is selected until the maximum elite

percentage value of the criteria parameter (%elitex) is reached. The selection of

the elite nodes is carried out by means of a Biased Randomized (BR) method

[3]. This method consists of using a non-uniform and non-symmetric (biased)

distribution, such as the geometric distribution or the decreasing triangular

distribution, instead of using the uniform distribution. In this work we have

used a geometric distribution. The used of the geometric distribution associated

to BR has been proven to be a good combination in the literature [24]. Figure

2 shows the probabilities of being selected in a list with 25 elements using a β

parameter 0.2. The geometric distribution depends on that β parameter. Figure

3 shows how the β parameter influences the geometric distribution. As can be
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(a) β = 0 (b) β = 0.1

(c) β = 0.5

Figure 3: Influence of β parameter on the resulting distribution

seen, the higher β values leads to increase the times the first values are chosen.

We set this parameter to 0.3 as this value is best suited for the experimentation

system used, but it can be modified as input parameter of the MCBR method.

Using a BR procedure, we ensure that nodes on the top positions of the

list will be selected, i.e., the highest quality nodes for a criterion, diversifying

the node selection. If we would apply a uniform selection finishing when the

maximum percentage value of nodes to be selected is reached, there could be

nodes on the top of the list that never would be chosen although they were

quality nodes. Therefore, the BR procedure allows diversification and load

balancing, keeping the logic behind the sort.

Once the elite nodes have been selected considering the first parameter, we
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obtain a new reduced sublist, which keeps only a set of elite nodes for the next

specific parameter. By default, we keep the 10% of the total nodes of the original

list for each criteria parameter, although this value is an input parameter which

can be modified. The obtained sublist will be sorted again by the next criteria

parameter in the next iteration, and the elite nodes will be selected taking into

consideration that criteria parameter. This procedure (sort/BR) is repeated

iteratively for all the criteria parameters, until the final list of elite nodes to be

used is obtained.

The algorithm used to sort the list is the QuickSort [25]. We have selected

this algorithm since its average complexity isO(n∗log(n)). Thus, the asymptotic

complexity of our algorithm (lower bound) will be O(n ∗ log(n) ∗ t), where t is

the number of sorts, which depends on the number of criteria parameters used

in the algorithm. Concerning to the worst case of our algorithm, it is closely

related to the QuickSort algorithm, whose complexity is O(n2) in the worst case.

Hence, the worst asymptotic complexity (upper bound) of our method will be

O(n2 ∗ t). Note that in each iteration of the algorithm, the n variable decreases,

since we select a subset of nodes (10% of the overall).

Once the final list of elite nodes is obtained, it is used in the second stage

of the method. Thus, when a node is required, it is selected from this final

list. The selection of a new node is also carried out by means of using the BR

method.

The objective to use BR is to assure that good quality nodes are chosen

and, at the same time, preventing that the best ones to be completely saturated

too fast. As in the first stage, we have used a geometric distribution, with a β

parameter set to 0.4.

It is important to notice that depending on the system, the final list could be

not static, and the quality of the nodes can change over time. For this reason,

depending on the variability and dynamism of the system, the list should be

periodically updated.

The proposed method can be used in a wide range of distributed systems

such as the mentioned in the related work section. In order to validate the
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method, we have used a real case scenario of a large-scale distributed social

network (Garlanet) based on VC nodes. The following section provides more

details about it.

3.3. Garlanet Simulation environment

Garlanet [4] is a Twitter-like decentralized alternative implementation of a

microblogging social network, that stores all its data in computers voluntarily

contributed by its participants. In more detail, messages and data information

of a user are handled by a microservice. Each user has her/his microservice that

is replicated across different nodes to guarantee its availability. Replicas of a

microservice follow the eventual consistency model. Additionally, Garlanet has

a Centralized Control System (CCS) responsible for detecting available nodes at

any moment and assigning the most suitable nodes to each microservice instance.

Moreover, the CCS guarantees that all users have the minimum number of nodes

assigned and the minimum quality of service (QoS). The quality of each user is

defined as the sum of the quality of the nodes that host its data.

Garlanet imposes these two user constraints to deal with the unreliability

of the nodes. The main purpose of these constraints is to try of guaranteeing

all the time the availability of the user data, avoiding critical situations, where

users access to the system and they have not access to their data. This way, if

the available nodes do not have highly enough quality in an instant of time, and

the user do not reach the minimum QoS with the minimum number of nodes,

new nodes are assigned until fulfill this constraint. Using these two metrics,

Garlanet tries to guarantee the data availability, reflecting in a better QoE.

Figure 4 provides a brief scheme of the actions that occur after a node

disconnects. Figure 4 (a) shows the initial state: connected nodes and User

Microservices (UM) hosted in the nodes. Some time afterward, in Figure 4 (b),

node 6 disconnects and the UMs kept in this node are no more available. Since

nodes send heartbeat signals to the CCS, this, after some time without receiving

them, will consider that node 6 is disconnected. Next, the CCS will select new

nodes to replicate the UMs kept in node 6 (from users 1 and 2). In this example,
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the CSS decides that UM from user 1 will go to node 3, and UM from user 2

will go to node 1. Once nodes 1 and 3 are aware that they should host the UMs

from users 1 and 2 (respectively), they ask for the node list in charge of hosting

currently these UMs (1) to the CCS. Then, the CCS sends the node list that

hosts the UMs to replicate them (2). After that, the nodes (both node 1 and

node 3) select randomly a candidate node of the node list to replicate the UMs,

and they start a replication session with the selected nodes (3) and (4). Finally,

Figure 4 (c) shows the final situation of the system. As can be seen, the UMs

of users 1 and 2 have been replicated into node 3 and node 1 respectively.

We have developed a simulator using Java Standard Edition 7.0, which tries

to reproduce the behavior of the above-mentioned environment in the most

realistic way. As is shown in Figure 5, the simulator is composed of three main

modules: Initialization, Activity and Control.

The first module (Initialization) is responsible for initializing the environ-

ment. It creates both the users and nodes with their properties. We have

considered as properties of a node: the maximum number of UM that it can

host, the download speed, the probability of disconnection, the probability of

reconnection and its quality. The first four are provided as input parameters

and the last is predicted using the simulator. We have assumed that all nodes

can host the same number of maximum UMs. The download speed of each

node is randomly established between 1 MB/sec and 20 MB/sec. Regarding the

users, they have as properties their minimum quality and the minimum number

of replicas of their UMs (nodes to use per user).

The second module (Activity) is made up of two submodules: the Activity

Generator submodule and the Prediction Quality Model submodule. The Activ-

ity Generator submodule is in charge of modifying the state of the nodes. They

are turned on and off following a probability. We have defined three kinds of

nodes in function of their quality: low, middle and high. Low nodes have a high

probability of disconnection and a low probability of reconnection, while High

nodes have a low probability of disconnection and high probability of connec-

tion. Each of these kinds of nodes behaves differently, and allows us to simulate
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different scenarios. On the other, the Prediction Quality Model submodule is

responsible of predicting the quality of each node.

The third module (Control) is composed of two submodules: the CCS sub-

module and the Monitoring submodule. The CCS submodule simulates the

CCS of Garlanet. It detects the state of the nodes, selects the most suitable

nodes to allocate UMs and guarantees that the users have the minimum QoS

and the minimum number of nodes. As in the Garlanet real environment, these

minimum QoS and number of nodes are input parameters, and their values have

been assigned based on the user experience. Other systems with more dynamic

behavior in function of the state could be monitored by another module, and

the parameters values would be periodically updated. Notice that each time a

node is assigned to a user, we consider a time lapse to simulate the data transfer

time (replication session). Currently, this time is constant. After this time, the

node is assigned to this user. As we can see in Figure 5, we have integrated the

MCBR method with this submodule, with the objective of using this mechanism
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to select the most suitable nodes. The second submodule, Monitoring submod-

ule, is in charge of monitoring the system during the simulation process, and

providing the output files of the simulation.

Regarding the simulation process, we simulate three months of the real sys-

tem, which corresponds to 30 minutes of simulation. The total time of the real

system to simulate is an input parameter, which can be set up by the user. We

have defined three main periods of simulation: Initialization, Stabilization, and

Monitoring. The first one is carried out when the simulation starts and it calls

to the Initialization module to create users and nodes. The second period (Sta-

bilization) consists in giving some time to the system to generate the prediction

quality model of each node. In this period the Activity Generator and the CCS

submodules respectively start turning on and off nodes, and reallocating UM.

These two modules are run as events, which are triggered regularly until the

simulation finished. This period corresponds to one month in real time. After

this period, the Monitoring submodule is called to start monitoring the system.

This monitoring time corresponds to a time period of two months.

At the end of the simulation, the simulator provides as output the nodes

assigned to each user, the QoS of each user, the re-connections of each user

(number of times that the information has been replicated), and the average

time of MCBR to select a new node to allocate the information. The simulator

also allows to take snapshots of different simulations times.

With the objective of applying the MCBR method in Garlanet, we have used

three parameters of the system:

• Node Quality: It is ranked as the most important parameter. It indicates

the node quality, and it is represented as the predicted probability of a

node to be connected in a certain period of time. Its value is normalized

between 0 and 1, being 1 the highest node quality. To obtain this value, we

have generated a prediction model, which is based on the next parameters:

– Percentage of connected time: This parameter indicates the percent-

age of time the node has been connected (serving) since its first con-
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nection. Its value is a normalized percentage between 0 and 1. A

node with a high percentage of connected time is desirable, as the

stored information is less likely to be reallocated.

– Number of disconnections: This parameter complements the previous

one and represents the number of times the node has disconnected.

Its value is normalized between 0 and 1, taking as upper bound the

highest value obtained from a node so far.

Although for the MCBR method the node quality is just a parameter to

select the most suitable nodes, with the aim of clarifying how this value

is obtained, in next section the highlights of the prediction model are

described.

• Percentage of occupation: It is ranked as the second most important pa-

rameter. This parameter indicates the degree of occupation of a node. It

is used to prevent the saturation of nodes. Each node can only host a

maximum number of UMs. Its value can be an absolute number between

0 and the maximum number of UMs to host.

• Download Speed: It is ranked as the least important parameter. This

parameter indicates the download speed of each node. Its value is an

absolute number expressed in MB/s.

4. The prediction quality model

This section presents the prediction model used to obtain the quality of a

node.

The quality of a node is represented by the likelihood of it keeping connected

for a certain period of time. To predict this quality we take into account its

behavior during the last month, by obtaining the probability of it being con-

nected for every day of the week. This allows a prediction whether a node will

be connected (or not) in the following days.
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 Sun      Mon    Tue      Wed      Thu       Fri       Sat      

R2 

RN 

R1 PrR1Sun    PrR1Mon  PrR1Tue  PrR1wed  PrR1Thu   PrR1Fri    PrR1Sat 

PrR2Sun    PrR2Mon  PrR2Tue  PrR2wed  PrR2Thu   PrR2Fri    PrR2Sat 

PrRNSun   PrRNMon  PrRNTue  PrRNwed  PrRNThu   PrRNFri   PrRNSat 

Figure 6: Representation of the data structure for the disconnection probabilities, being n the

number of nodes

In order to do so, a data structure is kept for every node which contains the

probabilities of disconnection calculated by the prediction model. This struc-

ture has the form of an array of seven positions, each of them corresponding to a

day of the week. For each day, we store the probability of the pertinent node to

disconnect that day, taking into account its disconnection pattern throughout

the last four weeks. This data structure is represented in Figure 6, where Rn

stands for the node n ∈ {1, 2, ..., N}, and PrRn,j is the probability of disconnec-

tion of the node n the day of the week, j ∈ {1, 2, ..., 7}. The intuition behind

this procedure represents an effort to learn the habits of the owner of the node,

which are relatively consistent from one week to the other.

To record the nodes behavior, that is, the disconnection pattern of each of

them over the last four weeks the following procedure is followed.

The data structure of a single node is a four-position matrix, corresponding

to each of the four weeks. Each of these indexes contains an array of seven

positions, one for each day of the week. This matrix represents the last 28 days
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 Sun      Mon     Tue      Wed      Thu       Fri       Sat      

WeekW 

DW-3,Sun  DW-3,Mon DW-3,Tue  DW-3,Wed  DW-3,Thu  DW-3,Fri   DW-3,Sat 

WeekW-2 

WeekW-1 

WeekW-3 

M1 

Mi 

MN 

R1 

Ri 

RN 

DW-2,Sun  DW-2,Mon DW-2,Tue  DW-2,Wed  DW-2,Thu  DW-2,Fri   DW-2,Sat 

DW-1,Sun  DW-1,Mon  DW-1,Tue  DW-1,Wed  DW-1,Thu  DW-1,Fri   DW-1,Sat 

DW, Sun     DW, Mon    DW, Tue   DW, Wed     DW, Thu      DW, Fri      DW, Sat 

Figure 7: Representation of the data structure used to store the disconnection pattern of the

last four weeks of execution for every node

of execution, in which each position will store the number of times the node has

moved from a connected to a disconnected state that particular day. In order

to update this matrix, every new week an update procedure is performed. This

one simply takes all the disconnections from the past seven days of the node,

and sums them up for each day of the week in a new seven-position array; then,

it removes the oldest recorded week of the node from the matrix, and replaces it

with the new one. It then recalculates the probabilities array taking into account

all four weeks currently in the matrix. This last step consists, for every day of

the week, in getting the average number of disconnections of the past four weeks,

and normalizing this value to get a probability of disconnection between 0 and

1. This data structure is represented in Figure 7, where Mi is the four-position

matrix corresponding to the node i, W is the number of the last week, and Di,j

represents the number of disconnections experienced by the corresponding node

of weekday j ∈ {1, 2, ..., 7} from week i ∈ {W −3,W −2,W −1,W}. Given this

notation, we can define the probability of disconnection of a node n any given

weekday j as

PrRn,j = normalize(

∑W
w=W−3Dw,j

4
) (4)

assuming that Dw,j is an integer from the corresponding node matrix. The

normalize function returns a real number between 0 and 1 representing the
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Algorithm 1 Disconnection Probability

1: procedure discProb(n,x)

2: nDays← numbDays(x) . Number of days within x

3: sum← 0

4: if x > 0 then

5: for i← 1 to i = nDays do

6: WDi ← weekDay(today() + i)

7: sum← sum+ PrRn,WDi

8: else

9: for i← 1 to i = nDays do

10: WDi ← weekDay(today()− i)

11: sum← sum+ PrRn,WDi

12: return sum/nDays

likelihood of disconnection.

Once a new prediction model has been generated, and we have a probability

array for every node, we can obtain the probability of a node to be connected

in a certain period of time. If we name this requested time t, this is done by

calculating two different probabilities and taking the product between them:

the disconnection probability of the node for the next t units of time, and the

disconnection probability of the node for the past c units of time, where c stands

for the time the node has been connected. Using information about the current

connection allows for more precise predictions, as the longer a node has been

connected, the more likely it is to disconnect in the near future. The obtained

result represents a disconnection probability, and therefore has to be subtracted

to one in order to get the probability of connection. If we name this probability

Prn,t,c, we can formulate it as

Prn,t,c = 1− (discProb(n, t) ∗ discProb(n,−c)) (5)

where discProb(n, x) stands for the function that, given a node n and a lapse of

time x, returns the disconnection probability of n in that period. If x is positive,

it takes into account, the next x units of time starting with the current day. On

the other hand, if x is negative, it considers the previous x units of time. The

22



Algorithm 2 ILS framework

1: procedure ILS

2: s← GenerateInitialSolution

3: bestS ← s

4: while Stopping condition not met do

5: s
′ ← Perturb(s)

6: s∗ ← LocalSearch(s
′
)

7: if V alueObjectiveFuntion(s∗) better than V alueObjectiveFunction(bestS) then

8: bestS ← s∗

9: s← AcceptanceCriterion(s, s∗)

10: return bestS

pseudo-code for this function is shown in Algorithm 1. The function takes the

average of their disconnection probabilities stored in the probabilities array for

every day of the week found in the specified lapse of time.

5. Metaheuristic algorithm

In order to evaluate the quality of the results provided by the MCBR method,

we have developed a metaheuristic algorithm that provides optimal or pseudo-

optimal solutions in a reasonably short time. The proposed algorithm is based

on the well-known Iterated Local Search (ILS) metaheuristic framework [26].

Algorithm 2 depicts the main components of the ILS framework. First, an

initial solution is generated. Then, an iterative process is carried out combining

a perturbation stage and a local search stage to improve the initial solution.

The perturbation diversifies the search to be able to escape from local op-

tima. In order to do this, it applies random movements big enough so that

the local search cannot undo it in one step. The local search stage aims at

searching the best solution inside the neighborhood of the current search space.

This procedure consist of exploring the current space performing little changes

in the previous solution. Every time a solution which improves the best current

solution if found, the best solution is updated. This is done until a predefined

stopping condition is met. Then, the best found solution is returned.
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Therefore, it is necessary to define each of these stages for the particular

problem dealt in this work. The Garlanet scenario and its particularities have

been taken into account to propose the algorithm.

For this purpose, first, we depict each node in the network with the attributes

explained in section 3: a maximum capacity for hosting UMs, a quality level,

and the download speed. All users have a minimum number of replicas of its

UMs, and a minimum quality (the sum of the qualities of the nodes assigned to

it). Second, we define the goal of the algorithm as the minimization of the total

number of replicas of each UM, while ensuring the user restrictions (minimum

number of replicas and quality). The reason to consider this objective function is

that the lower the number of replicas, the better assignation of nodes have been

done, since it involve less movement of data in the system (and therefore better

quality of service of the system) while keeping the requirements. Finally, each

stage of the ILS framework need to be established for the particular problem:

how to generate the initial solution, how to perform the perturbation, and how

to perform the local search. Next sections are devoted to explain our proposals

in detail.

5.1. Initial solution generation

As mentioned before, the ILS metaheuristic requires an initial solution to

start. Therefore, we have defined a method to obtain it. We propose a Multi-

Start procedure [27] which executes several instances of the heuristic depicted in

Algorithm 3, and chooses the best one as initial solution. This heuristic works

as follows. Given the list of nodes decreasingly sorted by their quality, the al-

gorithm assigns UMs to the nodes in the list. Each node is selected randomly

by applying BR, using a geometric distribution over the whole list, until the

user has reached its minimum demanded quality and the minimum number of

required replicas. As stated above, we use a BR selection process to diversify

the search space from the beginning. This procedure is applied iteratively for

all users. When a node has reached the maximum number of UMs it can hold,

it is removed from the sorted list.
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Algorithm 3 Heuristic to generate the initial solution

Require:

nodes← Nodes list

users← User list

1: procedure ConstructSolution

2: sortNodes← nodes.sortDecrByQuality()

3: users.shuffle()

4: pointer ← users.first()

5: while users.notEmpty() do

6: u← users.get(pointer)

7: microservice← u.getMicroservice()

8: n← randomGeom(sortNodes)

9: assign(n,microservice)

10: if n.isFull() then

11: sortNodes.remove(n)

12: if u.minNodes() ∧ u.minQuality() then

13: users.remove(u)

14: pointer ← pointer.next()

5.2. Solution perturbation

We propose a perturbation stage where the goal is to change a percentage

δ of the total assignations UMs-nodes. Experimentally, after some tests, we

have set this parameter to 15%. The algorithm consists of uniformly choosing

two random nodes, and trying to move a UM from the first node to the second

one. If this is not possible, all potential UMs swaps between both nodes are

computed, and a random one is chosen to be performed. This process gives us

a modified version of the current solution that we can then be refined to find a

local optima.

5.3. Local search

Algorithm 4 describes the implemented local search. Firstly, the users are

sorted decreasingly by the total number of replicas of their UMs, and secondly,

by their assigned quality. Then, nodes are filtered by all their parameters to
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Algorithm 4 LocalSearch

Require:

nodes← Nodes list.

users← Users list.

1: procedure LocalSearch

2: users.sortDecrByMicroservicesAndQuality()

3: for all param in a Node do . Filter Nodes by their parameters

4: nodes.sortBy(param)

5: nodes.cutList()

6: nodes.sortDecrByQuality()

7: for all u in users do

8: uNodes← u.assignedNodes()

9: uNodes.sortAscendByQuality()

10: N ← SelectNodesWithHighQualityAvailable(Nodes)

11: nodesQuality ← 0

12: IndexToExchange← 0

13: for all ni in uNodes do

14: IndexToExchange← IndexToExchange+ 1

15: userNode← ni

16: nodesQuality ← nodesQuality + userNode.getQuality()

17: if nodesQuality >= N.getQuality() then

18: break

19: N ← assingMicroservice(u.getMicroservice)

20: uNodes← ExchangeRespos(N, uNodes[1..IndexToExchange− 1])

avoid the worst ones, excluding their quality. Lets k be the number of parame-

ters for every node. Then, we perform k sorting (one for each of the parameters).

After this filtering process is done, the nodes are finally sorted by their quality

in decreasing order. This leads to a sublist of the best nodes to be used during

the assignment.

Afterward, iteratively for each user, we get the first node (n) of the list

to be exchanged by the largest subset of nodes assigned to the user. If it is

not possible to select the first node due to occupancy restrictions, we look for

the following node with the highest possible quality. The idea behind it is to
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reduce the number of replicas of UMs of each user, while ensuring the minimum

demanded quality and nodes.

To do this, we sort the list of nodes already assigned to the user by their

quality in an increasing way and iterate over it. During each iteration, we check

if we can exchange n by the subset of nodes in the list formed from current

iteration node until the one with the lowest quality (first element of the list).

When the constraints are violated, node n is exchanged by the subset node list

of the previous iteration. Then, the UM of that user is replicated in the node n,

the node list and the level of occupancy of the nodes are updated, and finally,

the list is sorted for the next user.

An example of this procedure is provided in the following. Consider a useri

which has 4 nodes with the following qualities: 1, 0.8, 0.6, and 0.4, making a

total quality of 2.8. On the other hand, we have a node n obtained from the node

list with a quality of 1. Supposing that the minimum demanded quality by the

users is 2.5, and the minimum number of nodes per user is 3, we can exchange

the nodes with qualities 0.6 and 0.4 by n, without violating the mentioned

constraints. The algorithm first tries to exchange the node with quality 0.4 by

n, which is possible since we would fulfill the constraints of quality and number

of nodes. The same holds when it tries to exchange 0.6, 0.4 by n. Then, during

the next iteration, it tries to exchange 0.8, 0.6, 0.4 by n, as we we would fulfill

the constraints of quality, since the minimum quality allowed is 2.5, we select

the sublist of nodes of the previous iteration (0.6, 0.4) to be exchanged by n.

Finally, the best solution will be updated if the algorithm value is decreased.

We have set up a maximum time of 150 seconds to find the final solution,

since the metaheuristic is able to obtain large improvements at the beginning,

but later very small improvements are achieved.

6. Experimental validation

This section is dedicated to assess the performance of MCBR method inside

the simulation environment proposed in this paper.
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Table 1: Percentages of each kind of nodes in each scenario

High Medium Low

Scenario 1 5% 20% 75%

Scenario 2 5% 40% 55%

Scenario 3 5% 55% 40%

Scenario 4 10% 45% 45%

Scenario 5 10% 50% 40%

Scenario 6 20% 20% 60%

Scenario 7 20% 40% 40%

Scenario 8 70% 15% 15%

As mentioned, the simulator has been implemented using the programming

language Java Standard Edition 7.0. All the computational experiments have

been carried out on a workstation with an AMD quad-core processor of 2.3Ghz

with 4GB of RAM memory. As operating system we have used CentOS 6.6.

In order to test the behavior of the MCBR method working inside the sys-

tem, it has been compared with the proposed metaheuristic algorithm. As stated

before, this metaheuristic is used to evaluate what would be the near optimal

assignment of nodes to users in a idealistic scenario where it can be done from

scratch. To allow it, we have taken some snapshots of the simulator when it

is working using the MCBR method. With all the information of these snap-

shots we compare the solution provided by the MCBR method and the solution

provided by that metaheuristic in this situation.

Due to the different environments that can appear in these kind of systems,

we have simulated different scenarios composed of different percentages of high,

medium, and low quality nodes in terms of connection patterns. Table 1 depicts

the different tested combinations. We have assumed the most representative

scenarios of a real situation. Thus, we have scenarios where low and medium

quality nodes (Scenario 1 to 7) prevail. Moreover, we have consider an “ideal”

case (scenario 8), which is more unlikely to appear.
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For each scenario the number of nodes has been fixed to 300 and the number

of users to 2100. We have considered a realistic scenario where only a 15%

of total users of the system contribute by donating free resources. Although

other ratios have been tested, e.g., 10% and 5%, the only difference noticed

in the results is that the system activity, i.e., connections and re-connections,

increases as the ratio decreases. Obviously, if the system is not interesting and

the number of users providing resources voluntarily is too low, then the system

will fail due to lack of resources. However, this would happen considering any

approach.

We have obtained results with 2, 2.5, and 2.75 minimum qualities required for

users. We have performed other tests with lower and higher minimum qualities:

(a) with a minimum quality lower than 2 users might be at risk of non being

able to access the service; (b) a minimum quality higher than 2.75 may produce

the situation where there are not enough available nodes to be assigned in order

to guarantee that minimum quality.

With the described scenarios and parameters, we have considered different

performance indicators for the algorithms. The choice of these indicators has

been made considering the possible failures or weaknesses in the system.

One of the most important features regarding the algorithm to use in the

system is the computational time it requires. Since the system works in real

time, the sooner it provides the output, the better it works. While the algorithm

is running, system changes occur (e.g. new connections and disconnections)

and the algorithm result may not be appropriate. Figure 8 shows a comparison

between the proposed algorithm working inside the simulator (MCBR) and the

proposed metaheuristic (MET) for each different minimum quality tested (MQ).

The box-plots depict the distribution of the computational times obtained for

the different considered scenarios. As can be checked, the times required by the

metaheuristic are too large (around 150 seconds) to be considered in a real time

system. On the contrary, the proposed MCBR method only needs an average

of 2 seconds to provide a result, which seems more appropriate for the system.

Regarding the quality offered to each user of Garlanet once the minimum
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Figure 8: Computational times

Figure 9: Quality assigned to each node in the network

quality is fixed (i.e., 2, 2.5, 2.75), we have noticed that the metaheuristic is able

to better fit it, since it takes into account the whole system at once and can

manage qualities better. The MCBR method tends to provide more quality than

the minimum required because it has to work with the remaining free nodes, as

highlighted in Figure 9.

Due to the way the MCBR method works, when a node disconnects the
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Figure 10: Number of connections between nodes and nodes

CSS needs to find new available nodes that, together with the ones assigned

to each user, allows to reach the minimum quality for each of them. Thus,

the connections between the users and their nodes are kept and new ones are

added to reach the minimum quality, while the metaheuristic tries to find the

best group of nodes to be assigned to each user without taking into account

the currently assigned ones. For this reason, in Figure 10 we can see that the

metaheuristic is able to obtain a best combination of connections between users

and nodes to reach the minimum quality, while the MCBR method needs more

connections (with an increase of 30%).

However, the MCBR method is able to avoid the movement of a large quan-

tity of information to be copied between nodes within the network, so that

time and network overload are saved. This kind of network is devoted to serve

the users of the application, and information flows as copies could slow down

and reduce the quality of service provided to users. In this regard, Figure 11

shows the number of copies or re-connections needed if a node disconnects for

the MCBR method and the metaheuristic algorithm. As can be checked, the

number of copies when applying the metaheuristic is so high (more than 6 times

the number of copies with the MCBR method) that it is impossible to think
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Figure 11: Number of re-connections needed when a node disconnect

about using it inside a real system.

Therefore, we have verified that the MCBR method is a fast method and

is working properly, providing the quality required to each user of the applica-

tion through a set of assignments of users to nodes that guarantees a correct

functionality of the system, i.e., avoiding excess of data movement around the

network and servicing all users.

Regarding the minimum quality to offer, it seems that a quality of 2.5 pro-

vides results with a trade-off among the different dimensions considered: aver-

age time, average connections, average re-connections, and average final quality.

Figure 12 is a visual representation of the solutions obtained when using the

different minimum qualities (MQ). For each dimension, it shows averages. On

the one hand, when the minimum quality is 2, we can guarantee the smallest

number of connections and short computational times. However, this involves

the highest number of re-connection and, therefore, movement and copy of data.

On the other hand, when the minimum quality is 2.75 the situation is the op-

posite, i.e., the algorithm needs more computational time and, although we can

guarantee a low level of re-connections, the number of nodes servicing each user

is high. In this case, the system needs to keep many nodes updated and leads to
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Figure 12: Comparative of the different dimensions for solutions obtained using different

minimum qualities

a high flow of data through the network. For these reasons, a minimum quality

2.5 is chosen, which presents a balance among the different dimensions.

7. CONCLUSIONS

In this work we have presented and validated the MCBR method, which is

a generic selection method based on a multi criteria optimization strategy to

select the most suitable nodes in VC distributed systems. MCBR strives to

provide high quality solutions in a fast way, using very low computing times.

Due to its flexibility, the MCBR can be applied in a wide range of distributed

systems.

As we have shown in the experimental validation section, MCBR provides

good quality solutions in a fast way, under the consideration of different user

constraints, such as the minimum number of nodes and QoS. Moreover, MCBR

avoids the excessive data movement within the network. A metaheuristic has
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been used to check the quality of our results. Although this metaheuristic is able

to improve the results obtained with our MCBR method, due to the inherit time

constraints of a real-time system and the volume of data that this metaheuristic

involves, it is not possible to apply it inside the system.

As future work, we plan to extend the current method taking into account the

data location to select the most suitable nodes. Data location has a significant

impact on several network performance criteria. For example, placing data

near users may reduce the network congestion and improve the load balancing.

Therefore, through this extension, we planing to consider a trade-off between

the node quality and its location within the network.
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