

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

Newcastle University ePrints - eprint.ncl.ac.uk

Wang M, Jayaraman P, Solaiman E, Chen L, Li Z, Jun S, Georgakopoulos D,

Ranjan R. A Multi-layered Performance Analysis for Cloud-based Topic

Detection and Tracking in Big Data Applications. Future Generation Computer

Systems 2018. DOI: 10.1016/j.future.2018.01.047

Copyright:

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:

https://doi.org/10.1016/j.future.2018.01.047

Date deposited:

18/02/2018

Embargo release date:

03 March 2019

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=246224
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=246224
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2018.01.047

A Multi-layered Performance Analysis for Cloud-based
Topic Detection and Tracking in Big Data Applications

Meisong Wang1, Prem Prakash Jayaraman1, Ellis Solaiman1, Lydia Y. Chen1,
Zheng Li1, Song Jun1, Dimitrios Georgakopoulos1, Rajiv Ranjan1

aSchool of Computer Science, Australian National University, ACT, Australia
bSchool of Computer Science, Newcastle University, Newcastle Upon Tyne, UK

cDepartment of Electrical and Information Technology, Lund University, Sweden
dFaculty of Science, Engineering and Technology, Swinburne University of Technology,

Melbourne, Australia
eZurich Research Laboratory, IBM, Zurich, Switzerland

fDepartment of Computer Science, Chinese University of Geosciences, Wuhan

Abstract

In the era of the Internet of Things and social media; communities, gov-

ernments, and corporations are increasingly eager to exploit new technological

innovations in order to track and keep up to date with important new events.

Examples of such events include the news, health related incidents, and other

major occurrences such as earthquakes and landslides. This area of research

commonly referred to as Topic Detection and Tracking (TDT) is proving to

be an important component of the current generation of Internet-based appli-

cations, where it is of critical importance to have early detection and timely

response to important incidents such as those mentioned above. The advent of

Big data though beneficial to TDT applications also brings about the enormous

challenge of dealing with data variety, velocity and volume (3Vs). A promising

solution is to employ Cloud Computing, which enables users to access powerful

and scalable computational and storage resources in a ”pay-as-you-go” fash-

ion. However, the efficient use of Cloud resources to boost the performance of

mission critical applications employing TDT is still an open topic that has not

been fully and effectively investigated. An important prerequisite is to build a

performance analysis capable of capturing and explaining specific factors (for

example; CPU, Memory, I/O, Network, Cloud Platform Service, and Workload)

that influence the performances of TDT applications in the cloud. Within this

Preprint submitted to Future Generation Computer Systems February 18, 2018

paper, our main contribution, is that we present a multi-layered performance

analysis for big data TDT applications deployed in a cloud environment. Our

analysis captures factors that have an important effect on the performance of

TDT applications. The novelty of our work is that it is a first kind of verti-

cal analysis on infrastructure, platform and software layers. We identify key

parameters and metrics in each cloud layer (including Infrastructure, Software,

and Platform layers), and establish the dependencies between these metrics

across the layers. We demonstrate the effectiveness of the proposed analysis via

experimental evaluations using real-world datasets obtained from Twitter.

Keywords: Cloud-based TDT, Big Data, Performance Analysis, Cloud

Computing

1. Introduction

The advent of Big Data applications that are fueled by numerous data

sources such as social media and the Internet of Things, has created new oppor-

tunities for individuals, communities, governments, and corporations to make

use of this new and potentially important data that is continuously being gen-5

erated. This area of research commonly referred to as Topic Detection and

Tracking (TDT) is becoming a critical component of the current generation

of Internet-based applications. An example where TDT research is of critical

importance is in developing the capability to provide early detection and then

timely response to potential landslides using data obtained from sensors, and10

from social media outlets such as Twitter. The Achilles heel for TDT applica-

tions thus far has been limited access to real-time data which has an impeding

effect on the accuracy of the application. The Big Data era has the potential

to enhance the development of TDT applications by satisfying the requirement

of acquiring large volumes of data from variety of sources at high velocity. Tra-15

ditional TDT techniques are incapable of coping with Big Data challenges best

characterized by the 3V features, which are Variety, Velocity, and Volume. Vol-

ume means that the amount of data is so large that traditional storage devices

2

cannot store it (e.g. Every day, around 2.5 quintillion bytes of data is created,

which means that 90% of the data in the world was created in the last two20

years [?]). Variety refers to the many sources and types of data, which creates

problems for storing, mining and analysing the data. Velocity means being able

to deal with the massive and continuous speed at which data flows from sources

like sensors, social media, and various networks to the cloud to be processed

and stored.25

Recently, cloud computing techniques have emerged as reliable, effective and

practicable means for tackling the problems confronting TDT in the Big Data

era. For instance, there are a number of cloud storage frameworks both com-

mercial and free such as Amazon S3 that can be used to store large amounts

of data (Volume). Some NO-SQL databases can be used to store, process and30

analyse various types of data (Variety). In addition, parallel computing frame-

works such as Apache Spark can be effectively used to significantly enhance the

speed of processing Big Data, and even to meet real-time analysis requirements,

which consequently addresses the ”Velocity” problem. Another benefit that

Cloud computing can offer is the scalability that can satisfy the requirement of35

processing data which is rapidly increasing in volume.

1.1. Motivation and Research Problem

Although Cloud computing creates clear advantages for TDT applications

(for processing and analysing Big Data) such as those identified above, it also

generates new challenges, and one of the most important challenges is how to40

optimise the cloud resources to support mission critical TDT applications. An

important first step is to study and analyse the performance of cloud-based

TDT (CTDT) applications. Developing analysis capabilities that can capture

the performance of CTDT applications is not a trivial task given 1) the multi-

layered nature of cloud computing (IaaS, SaaS, and PaaS), 2) different metrics45

required to capture the performance of TDT applications when compared with

other cloud-based applications such as e-commerce and customer relationship

management systems, and 3) dependencies between each of the metrics across

3

cloud layers. Existing TDT analysis techniques [?] [?] [?], capture the

performance of processing and analysing Big Data in clouds, but cannot be50

applied accurately to model the performance of CTDT applications due to the

lack of consideration for all layers (end-to-end) that constitute a typical CTDT

application (i.e. IaaS, SaaS, PaaS, etc.).

1.2. Overview of Methods and Contributions

In this paper, we present a first kind of vertical multi-layered (infrastructure,55

platform, and software) performance analysis which captures and analyses the

key metrics that have an important effect on the performance of CTDT big data

applications. The main contributions of this paper are:

• We clearly identify the key performance metrics that impact the perfor-

mance of CTDT applications with respect to each cloud layer (i.e. IaaS,60

PaaS and SaaS).

• We then analyse and establish the dependencies between these metrics.

The aim of the analysis is to be able to capture the performance of CTDT

applications in order to be able to effectively optimise resources for such

applications deployed in clouds.65

• We conduct comprehensive experimental evaluations using real-world datasets

obtained from Twitter to validate the effectiveness of the identified metrics

and their dependencies.

The paper is organized as follows: Section ?? summarizes a comprehen-

sive survey of existing work related to the optimization of CTDT applications,70

and also existing work related to performance analysis for Cloud resource opti-

mization; Section ?? illustrates our performance analysis framework in detail;

To evaluate our performance analysis, we apply it to a specific case, which is

a Näıve Bayesian based CTDT application in Section ??; In Section ?? we

present experimental results based on a CTDT applications that we implement;75

Conclusions and future directions are in Section ??.

4

2. Related Work

Studies that are related to our work can be divided into: 1) development and

implementation of cloud-based TDT applications using machine learning tech-

niques; and 2) performance analysis for platform-as-a-service TDT applications80

running on clouds using frameworks such as MapReduce. As we shall see, none

of these studies can be used to efficiently analyse the end-to-end performance of

CTDT applications. The first class of studies mainly focuses on how to develop

and implement a CTDT application using various machine learning algorithms

(e.g. state vector machine, Naive Byaes etc.). However, these works lack an85

analysis of factors that influence the performance of the CTDT application. On

the other hand, the second set of studies are heavily focused on PaaS-based

approaches such as Map Reduce and lack consideration for metrics such as

performance of the distributed machine learning algorithms and related depen-

dencies across the cloud layers layers (IaaS, PaaS and SaaS). These factors are90

important, and when not considered often lead to inaccuracy of performance

modelling results. This will have significant consequences on mission critical

CTDT applications that are dependent on fast, scalable and accurate analysis

of events. For example, consider a landslide scenario. Under normal conditions,

the sensors deployed in the field monitoring the activity of the land (e.g. move-95

ment of earth) produce data at a constant rate, and data coming from social

media streams is relatively less constant. However, in case of an abnormal situa-

tion, the sensor data rate and social media data increases significantly resulting

in increased volume. The challenge here is that a CTDT application running

in the cloud needs to be able to optimise the cloud resources to cater for such100

diverse situations (normal and abnormal). Failing to do so will result in mission

critical applications failing to meet their goals; i.e. detecting and alerting their

users to important events [?] [?]. In cloud computing terminology, this is

generally referred to as Quality of Service (QoS) guarantees enforced by service

level agreements (SLA) [?].105

Table ?? presents a summary of CTDT applications focusing on develop-

5

Table 1: Characteristics of cloud-based TDT applications.

Study Performance
Model

Performance
Guarantee

Performance
Metrics

IaaS PaaS SaaS

[?] No No No Yes No No

[?] No No No Yes Yes No

[?] No No No Yes No No

[?] No No No Yes Yes No

[?] No No No Yes No No

ment and implementation. As described earlier, the first class of CTDT appli-

cations lack performance analysis and evaluation capabilities, and provide no

performance guarantees (QoS or SLA). This means that they cannot be used to

develop QoS guarantees for mission critical CTDT big data applications.110

A summary of platform-as-a-service CTDT applications is shown in Table

??. As stated earlier, the focus of this related work is to develop a performance

model for map-reduce or similar distributed framework-based TDT applications.

We compare these approaches by using the taxonomy presented below:

1) HDFS: Are factors of HDFS taken into consideration?115

2) Memory: Whether this work considers effects of memory.

3) Task Scheduler: Whether this work consists of scheduling mechanisms of

MapReduce tasks.

4) Real Environment: Whether this work is based on a real environment or

another approach such as simulator.120

5) Simulator: Whether this work is based on a simulator.

6) Greedy Algorithm: Whether this work uses greedy algorithms to calculate or

estimate the execution time of MapReduce tasks. This is a separate research

problem as different Map/Reduce scheduling strategies will lead to vary-

ing run-time performance (e.g., Mapper/Reducer response time). However,125

analysing how different scheduling strategies affect run-time performance is

not the focus of this paper. In our model this is an input parameter available

through workload benchmarking.

7) Network: Whether this works considers the impact of the network.

6

Table 2: Characteristics of related performance models.

Study H
D

F
S

M
e
m

o
r
y

M
L

T
a
sk

S
c
h

e
d

u
le

r

R
e
a
l

E
n
v
ir

o
n

m
e
n
t

S
im

u
la

to
r

G
r
e
e
d

y
A

lg
o
r
it

h
m

N
e
tw

o
r
k

[?] Yes Yes No No Yes No No Yes

[?] Yes No No Yes No No No No

[?] No No No Yes No Yes Yes No

[?] No No No Yes No No Yes No

[?] Yes No No No Yes No No No

[?] Yes No No Yes Yes Yes No No

[?] No No No Yes No Yes Yes No

[?] Yes Yes No Yes Yes No No Yes

[?] No No Yes No No Yes No No

[?] No No Yes No No No No No

[?] Yes No No No Yes No No Yes

In summary, both classes of CTDT applications surveyed, lack the ability to130

represent the key metrics that influence the performance of CTDT applications

across cloud layers. In order to support QoS guarantees (which we believe will

be an essential part of future CTDT applications), it is essential to understand

the impact of the application’s components on each layer in order to optimise

and orchestrate cloud resources. To the best of our knowledge, we are the first135

to present a performance analysis that considers the performance metrics within

all end-to-end layers of a typical CTDT application, as well as the dependencies

between each of those metrics.

3. Multi-layered Performance Model for CTDT Big Data Applica-

tions140

3.1. Background

Let us consider a disease detection CTDT system. Such a system could

potentially use a combination of MapReduce, HDFS and Amazon or Spark

Streaming, HDFS and Windows Azure or Storm, HDFS and Google Compute

7

Engine. The goal of such a CTDT application is to provide timely and accu-145

rate notification to its users allowing them to respond to adverse events such as

earthquakes or diseases outbreak. Current CTDT approaches depend on QoS

guarantees provided by the cloud provider, which are limited and restrictive.

For instance, it limits QoS to IaaS resources such as CPU, Memory and Storage

[?]. However, to support CTDT applications such as the ones described earlier,150

there is a need to go beyond a simple QoS guarantee strategy to a more end-

to-end approach, i.e., the QoS must satisfy constraints such as events detected

within x minutes of occurrence and notification delivered with y minutes. We

need to acknowledge that factors exerting substantial effects on the performance

of a CTDT application come from different layers (SaaS, PaaS, and IaaS). For155

example, consider a typical Batch Processing architecture (e.g., MapReduce)

presented in Figure ??. From the figure, we can see that several factors from

different layers can affect the performance of a system. In the machine learn-

ing libraries layer, the accuracy and precision of the classification techniques

such as the Support Vector Machine (SVM) and the Naive Bayesian model de-160

pends on the underlying input data sets (e.g., Tweets). However, in this work

we validate the performance analysis technique in context of Naive Bayesian

classification algorithm. Moreover in a MapReduce-based TDT application, the

optimal number of Map Tasks is also essential for achieving the highest speed

of a system. In addition, an appropriate scheduling method equally has a piv-165

otal role to play in the speed of a system. For a CTDT application using a

master-slave distributed file system (e.g., HDFS), single failure is obviously a

catastrophe in terms of speed. In IaaS layer, for example, whether the applied

memory is sufficient has a significant influence on the speed of a Spark-based

TDT application.170

In summary, we cannot ignore factors from any layer. Also in addition to

considering factors from all layers we need to identify dependencies between

these factors and how they can influence the performance of big data applica-

tions. Because, commonly, the cooperative effect of more than one metric has

more effect or at least has equal effect on performance. Finally, the developed175

8

Figure 1: Factors which affect the performance in different layers.

analysis needs to cater to a range of CTDT big data applications rather than

being constrained to a specific class.

3.2. Metrics influencing the Performance of CTDT applications

To capture the performance of CTDT applications, the first step would be

to identify and determine which metrics should be used to measure the perfor-180

mance of a CTDT application at each layer. There are different performance

metrics in terms of different practical needs. Be that as it may, there can be cer-

tain common important metrics that can be applied to most TDT applications

such as speed, accuracy, price (for commercial applications), etc. Regardless of

economic terms, speed is the factor of first-rate importance in a CTDT applica-185

tion particularly for mission critical disaster detection systems such as epidemic

detection, earthquake detection, fire detection, etc. Consider earthquake detec-

tion for instance. Detecting the earthquake and warning citizens even a fraction

of a minute earlier may save many lives. Furthermore, accuracy is another

important metric for CTDT applications. A speedy but inaccurate traffic con-190

gestion detection system aiming to inform travellers about traffic jams or even

9

1

Data Mining

Algorithm

Algorithm Class

Algorithm Name

Others

Parallel Implementation Method

Related Factors

Parallel Computing Paradigm

Distributed File System

CPU,Memory,I/O,Network

Figure 2: Architecture of a Performance Analysis Framework for CTDT Applications.

suggest alternative routes, for example, would mean nothing because it provides

outdated or fraudulent information that misleads travellers, and could even lead

to more traffic jams. We select speed and accuracy as two key metrics in our

performance analysis. Speed can be measured by calculating the execution time195

of a CTDT application while accuracy differs in different kinds of CTDT ap-

plications in terms of different data mining algorithms adopted. Within this

paper, and for the purposes of our experiments, “precision” is used to describe

the accuracy of classification algorithms whereas “perplexity” is used to measure

the accuracy of clustering algorithms.200

3.3. CTDT Big Data Applications: Performance Analysis Framework

Figure ?? illustrates our proposed performance analysis framework. We

develop a generic framework that could be easily adopted to model a range of

CTDT big data applications that could include several technologies at each of

the IAAS, PAAS and SAAS layer.205

Data Mining Algorithm means the group of factors related to the data min-

ing algorithm adopted. Different kinds of data mining algorithms [?] have

different effects on both accuracy and speed. For instance, as we discussed be-

fore, measuring the accuracy of a clustering algorithm based CTDT application

10

requires the calculation of perplexity. In contrast, for a classification based one,210

we need to compute the precision. Algorithm Class means the type of data min-

ing algorithm (e.g., Classification or Clustering) while Algorithm Name means

the exact algorithm used (e.g., K-means, LDA, Naive Bayesian, etc.). Even in

the same class, different algorithms might influence the performance of a sys-

tem in different ways. For example, K-means and Canopy are both clustering215

algorithms, yet their influences on the speed of the system are substantially

different, as K-means can be executed in more than one iteration whilst Canopy

has only one iteration. Others refers to factors that might be important but

beyond the scope of our existing work (providing scope for improvement). Par-

allel Implementation Method represents factors related to different paralleling220

methods of conversion of sequential data mining algorithms into parallel ones,

such as MapReduce or MPI. Parallel Computing Paradigm means the different

kinds of parallel computing frameworks adopted and relevant factors such as

MapReduce (e.g., the factor of Number of Mappers or Reducers), Storm, Spark,

etc. Distributed File System refers to factors related to the distributed system225

such as Hadoop Distributed File System. In the IaaS layer, we consider CPU,

memory, I/O and Network related factors.

From the above architecture, it is obvious that our performance analysis

defines several groups of factors rather than specific factors. Because different

CTDT applications might adopt different implementation methods, such as dif-230

ferent parallel computing paradigms (MapReduce or Storm). Our performance

analysis can now be applied to almost all MapReduce-based TDT applications.

In the next step, we will illustrate how to use it for a MapReduce-based Flu

Detection system.

4. Using the Multi-layered Performance Analysis Framework to un-235

derstand MapReduce-based TDT applications

In this section, we demonstrate how the proposed multi-layered performance

analysis framework could study the impact of key identified parameters for

11

Figure 3: Architecture of Distributed Disease Detection System.

MapReduce-based TDT application.

4.1. MapReduce based TDT Application Architecture240

We present the architecture of a MapReduce [? ?] based TDT application

in Figure ??. The disease detection TDT application in this scenario uses data

from Twitter to detect Flu-related events by analysing the tweets. First, we

store the Twitter data in HDFS (Hadoop Distribute File System). In our work,

the data was provided by COSMOS project (https://www.cs.cf.ac.uk/cosmos/).245

We run MapReduce-2 and the HBase Database. On top of Hadoop, we

employ Mahout [?] which is a distributed and scalable machine learning

library. One of the advantages of Mahout is that most of its ML algorithms

can be executed as a Map-Reduce job. The disease detection application (also250

known as an “epidemic detection” application) [? ?] is built on a combination

of clustering, classification and topic detection algorithms.

12

Table 3: Factors in the IaaS Layer.

Name Explanation

T The capacity of a single node (the number of floating point operations FLOPs
per second).

B The bandwidth (Mbps).

P The number of computers.

Data Including data size and information in data.

4.2. Modelling of the Disease Detection System

As discussed in Section 3, speed is an important performance metric, there-

fore we will discuss how to model the speed of a MapReduce TDT application255

(Diseases Detection System).

The execution time of a MapReduce TDT process is actually a MapReduce

data mining process consisting of one or more MapReduce jobs. In the MapRe-

duce paradigm most jobs are executed in a sequential way, therefore calculating

the execution time of a MapReduce data mining process can be divided into two260

parts: calculating the execution time of a single MapReduce job and calculating

how many MapReduce jobs contained in a MapReduce data mining process. To

calculate the execution time of a single MapReduce job, we need to identify the

process of a single MapReduce job.

The calculation of a single MapReduce job involves capturing the perfor-265

mance in IaaS, PaaS and SaaS layers. Factors relevant to the IaaS Layer can be

seen in Table ??. We explain the details of PaaS and SaaS using the example

of using Naive Bayes’ classification for predicting disease types.

4.2.1. IaaS Layer Analysis Factors

As discussed earlier, the analysis can be divided into three independent270

layers, which have dependencies on each other. We will illustrate the practical

use of the analysis based on the diseases detection application in terms of the

three layers. Factors relevant to the IaaS Layer can be shown in Table ??:

4.2.2. PaaS Layer Analysis Factors

For the PaaS Layer, by adopting Hadoop MapReduce and HDFS, the factors275

of the performance analysis are listed as shown in Table ??.

13

Table 4: Factors in the PaaS Layer.

Name Explanation

Ttotal The execution time (seconds) of a single MapReduce job.

Tmap The execution time (seconds) of a mapper task.

Tshuffle The execution time (seconds) of a shuffle task.

Treduce The execution time (seconds) of a reducer task.

Pstart The percentage of the finished mapper tasks when the “shuf-
fle” starts.

Wmap The product of the amount of workload for a single mapper
task and it is related to the set of the blocksize of the HDFS
, the spilt of the MapReduce, the data size (IaaS).

Nmap The number of the mapper tasks.

W The workload of the whole input data size (MB or GB).

Cumap Coefficient describing the relationship between the node
(TaskTracker) and mapper.

Cureduce Coefficient describing the relationship between the node
(TaskTracker) and Reducer.

Tureduce The execution time (seconds) of a single Reduce task.

Nreduce The number of reducer tasks.

Wreduce The workload for a single reducer task.

Tumap The execution time (seconds) of a single mapper task.

Wuoutmap The workload of the single mapper task.

Woutmap The workload of all the mapper task.

BHDFS Blocksize of HDFS.

Nreplication The number of replication of data in HDFS.

MaxMemory of Map &
Reduce task

Maximum Memory allocated to mapper or reducer Task can
use, it can affect the execution time of a single task.

In fact, a MapReduce-based Data mining algorithm consists of one or several

MapReduce jobs. Now we can calculate the execution time of each MapReduce

job. The total execution time of a MapReduce job can be computed according

to Equation (??).280

Ttotal = Tmap × StartPercent + Tshuffle + Treduce (1)

Execution time of a map task can be computed using Equations (??) and

(??).

Tmap = Tumap ×Nmap/P (2)

Tumap = Wmap × Cumap/T (3)

Cumap depends on several factors, such as the CPU speed, memory size, and

14

available network bandwidth, etc. From the above formula, we can see that

by increasing the number of nodes (i.e. number of Map and Reduce instances),285

end-to-end execution time of a MapReduce job (and the CTDT application)

can be reduced. Unfortunately, it is not always the case, due to that Cumap will

change with the changing of other parameters, such as CPU, Memory, Number

of Mapper, etc.

In the MapReduce based Hadoop framework the Nmap parameter (number290

of Map Tasks) is determined by setting: “dfs.block.size”, “mapred.map.tasks”,

“mapred.min.split.size”, “input data size”, “goal number of mapper”, and “mapred.max.split.size”.

How to compute Nmap will be illustrated in the following equations.

The execution time of a reduce task can be computed by using Equations

(??), and (??).295

Treduce = Tureduce ×Nreduce/P (4)

Tureduce = Wreduce × Cureduce/T (5)

The coefficient Cureduce is similar to Cumap , and the only difference is that

Cureduce is for Reduce tasks (Reducer). The formula to compute the execution

time of a shuffle task is shown in (??) and (??).

Tshuffle = Wuoutmap × (Nmap mod P)/B (6)

Wuoutmap = Woutmap/Nmap (7)

The number of Map tasks is determined by the following parameters: size

of block in HDFS “dfs.block.size”, the goal number “mapred.map.tasks”, the300

minimum size of splitting data for each mapper “mapred.min.split.size” and

the maximum size of splitting data for each mapper “mapred.max.split.size”.

15

Table 5: Factors in the SaaS Layer.

Name Explanation

Execution Time The whole execution time of Bayes’ classification in-
cludes time taken for training, testing and learning.

Precision The accuracy of the classification.

Njob Depends on the PaaS level the number of Mappper
and Reducer parameter/factor.

Class of ML Algorithm Classification.

Name of ML Algorithm Näıve Bayes’.

Complement (Boolean value) Training process is based on C Näıve Bayesian or Stan-
dard Näıve Bayesian.

RunSequential (Boolean value) MapReduce way or sequential way.

4.2.3. SaaS Layer Analysis Factors

We consider the Naive Bayes’ classification ML algorithm [?] to aid our

discussion of performance modelling at this layer. Except speed, we will also305

discuss the accuracy (“Precision” for Classification algorithms). See Table ??

which details features of this ML algorithm.

The total execution time of the whole classification process can be computed

as shown below in Equation (??).

Tbayes = Njob × Ttotal (8)

“RunSequential” is a special parameter which determines if the Näıve Bayesian310

training process has to be executed in a MapReduce way. If this is set to “true”,

the training set will be executed in a sequential way. This can be a typical sit-

uation for a TDT application where the training data is not large enough to be

processed in parallel by exploiting the MapReduce distributed parallel program-

ming abstractions. While the training can be done sequentially on one cluster315

node, the actual classifying (testing) phase can be implemented in the MapRe-

duce way. In other words, the performance analysis has to capture such complex

configuration decisions if it has to guarantee end-to-end execution times.

As noted earlier, Precision depends on the underlying ML algorithms and

the type of data sets under consideration. Hence, we need to undertake various320

experimental studies to verify which ML algorithm leads to best possible pre-

16

cision for a given dataset. Even for a given classification (ML) algorithm, the

precision can change due to the changing of other parameters. For instance, the

parameter “complement” determined if the MapReduce Näıve Bayesian classi-

fier is trained by using “Complementary Näıve Bayesian”. This could lead to325

different precision as compared to standard Näıve Bayesian.

Some parameters in this layer might have influence on factors from other

layers or require the assistance from factors of other layers to cooperate in order

to affect the speed, or precision of the system. For instance, the “RunPartial”

(MapReduce-based Random Forest) will determine if the MapReduce job will330

be executed in memory. If the MapReduce job is executed in memory, the

job will be memory-intensive and more memory (IaaS resources) might lead

to less execution time of Random Forest MapReduce-based jobs. One of the

advantages of our performance analysis is that it can capture or reveal these

inter-layer dependencies. Next, we will discuss such specific dependencies in335

relation to different algorithms such as Random Forest, Näıve Bayesian.

The basic theory of Näıve Bayesian classifiers is to group an unclassified

item into a class where such an item has the highest probability related. For

instance, x = a1, a2...am is an unclassified dataset and each a is a feature of x

while C = y1, y2...yn is a set of all classes and each y represents a class. Take340

the disease detection application for instance, x is an unprocessed tweet and yi

means a sort of known epidemic such as “flu”, “measles” or “Ebola”.

Traditionally a näıve Bayesian classifier process is sequential, which means it

will not scale to processing of large volumes of Big Data. To efficiently process

big data, it is better that naive Bayesian classification algorithm should be345

parallelized. We adopt the MapReduce programming model to parallelize naive

Bayesian classification algorithm and explain the key steps and analyzing factors

in the following.

There are two main steps in the training part of näıve Bayesian classifier: 1)

Counting the ClassPrior P (yi) for each class. 2) Counting the conditional prob-350

ability for each attribute per class P (a|yi) (in text classification, the attribute

can be the word).

17

Precision

Speed

Class: Classification

Name: Naïve Bayesian

RunSequentialComplement

Number of
MapReduce
Jobs

StartTime of Reducer

Maximum Memory for Mapper or Reducer

Reducer Number

HDFS Replication Number

HDFS BlockSize

Mapper Number

MinSplitSize

CPU

Memory

Bandwidth

Data Information

Evaluation
Parameters

SaaS Layer

PaaS Layer

IaaS Layer

Dependency 1

Dependency 2

Dependency 3

Dependency 4

Dependency 5

Dependency 6

Figure 4: Dependency Across Layers

As a consequence, it is necessary for a näıve Bayesian classifier based on

MapReduce to have two main MapReduce jobs to undertaking the above 2

steps: first for counting the Classifier and second for computing the conditional355

probability.

The practical implementation of näıve Bayesian classifier in MapReduce

varies, especially for the training part. In this paper, we study Näıve Bayesian

implementation based on the MapReduce framework by exploiting Mahout (an

open-source scalable machine learning library) as an ML engine. Even in Ma-360

hout, the specific implementation of näıve Bayesian classifier has been changed

since its initial release.

18

4.3. Dependency across layers

Here, we use the training process of Näıve Bayes in Mahout to illustrate the

dependencies across layers as shown in figure ??. Red lines represent depen-365

dencies from different layers while purple lines represent dependencies from the

same layer.

1) Dependency1: Dependency between “Complement” and “Data Information”.

Means that the influence of “Complement” on “Precision” might be affected

by “Data Information”. For instance, the Complementary Näıve Bayesian370

method is more effective for classifying unbalanced data than the balanced

data.

2) Dependency2: Dependency between “Memory” and “Maximum Memory for

a Mapper or a Reducer”. It means that “Memory” in IaaS layer has to co-

operate with “Maximum Memory for a Mapper or a Reducer” in order to375

manage speed of executing of analytics tasks. Specifically, without tuning

the “Maximum Memory for a Mapper or a Reducer”, Memory available at

the IaaS layer cannot affect the performance of the underlying TDT appli-

cation. On the other hand “Maximum Memory for a Mapper or a Reducer”

has an upper bound. For instance, if the total available Memory (IaaS) is380

1000MB and the total number of Reducers and Mappers are 10, the “Max-

imum Memory” cannot be over 100MB, and otherwise the MapReduce job

execution will not commence.

3) Dependency 3: Dependency between “RunSequential” and MapReduce. As

we mentioned before, the MapReduce training process can be executed only385

when this parameter is false.

4) Dependency 4: Dependency between “Bandwidth” and “HDFS Replication

Number”. When the replication of data is not enough, the node might

need to copy required data from another node to process. In this situation,

“Bandwidth” has a more significant role to play in the speed of the system,390

for the reason that low Bandwidth might lead to the slow speed of copying

data from one node to another.

19

Table 6: Clusters adopted in experiments in CSIRO ICT Cloud.

Cluster Specification

Cluster 1 1 node, pseudo-distributed Hadoop 2, HDFS 2, 1 CPU,

Cluster 2 2 nodes, 1 master node (Namenode, ResourceManager, JobTracker),
1 slave node (DataNode, NodeManager, TaskTracker), Hadoop2.4.1,
Mahout 1.0, 2 CPU cores (2.40GHz)

Cluster 3 3 nodes, 1 master node, 2 slave nodes, Hadoop2.4.1, Mahout 1.0, 3
CPU cores (2.40GHz)

Cluster 4 4 nodes, 1 master node, 3 slave nodes, Hadoop2.4.1, Mahout 1.0, 4
CPU cores (2.40GHz)

Cluster 5 5 nodes, 1 master node, 4 slave nodes, Hadoop2.4.1, Mahout 1.0, 5
CPU cores (2.40GHz)

Cluster 6 6 nodes, 1 master node, 5 slave nodes, Hadoop2.4.1, Mahout 1.0, 6
CPU cores (2.40GHz)

Cluster 7 7 nodes, 1 master node, 6 slave nodes, Hadoop2.4.1, Mahout 1.0, 7
CPU cores (2.40GHz)

Cluster 8 8 nodes, 1 master node, 7 slave nodes, Hadoop2.4.1, Mahout 1.0, 8
CPU cores (2.40GHz)

Cluster 9 9 nodes, 1 master node, 8 slave nodes, Hadoop2.4.1, Mahout 1.0, 9
CPU cores (2.40GHz)

Cluster 10 10 nodes, 1 master node, 9 slave nodes, Hadoop2.4.1, Mahout 1.0, 10
CPU cores (2.40GHz)

5) Dependency5: It is an inner Dependency within the SaaS layer. The param-

eter “Number of MapReduce jobs” is determined by the parameter “Name of

Algorithm”. In a Näıve Bayesian performance analysis it is 3 for training set395

(in the new edition of Mahout) and 1 for the testing (classifying) part, and

for another classification algorithm (e.g. Random Forest), it might require a

different number of tasks at training and testing steps/phases

6) Dependency6: An inner Dependency within PaaS layer, the number of map-

pers is affected by the size of the HDFS block and the min splitting size of400

input data.

5. Experimentation and Evaluation

5.1. Experimental Environment

The environment of our experiments is based on a CSIRO ICT Cloud which

is built with OpenStack. There are 10 clusters adopted in our experiment,405

shown in Table ??. As explained previously, the data for our experiments is

collected from Twitter in order to detect outbreaks of flu.

20

We did all the experiments that required maximum 4 nodes at first, then we

created snapshots of Clusters 1-4 and we did experiments on Cluster 5, Cluster

6, Cluster 7, Cluster 10. The reason we run our experiment under these different410

settings is that we will present the effect generated by the IaaS resources upon

the speed of the system.

5.2. Experimental Results

5.2.1. IaaS Experiment (Number of VCPU cores)

Description of Experiment: In accordance with our performance analy-415

sis, when the CPU resource is enough, increasing of the CPU resource does not

affect the execution time of a TDT application significantly. However, when

the CPU resource is in shortage, for example, there is only a virtual machine

with 1 core CPU in a cluster and the MapReduce-based data mining algorithm

in a TDT application requires more than 5 Map tasks, the increasing of CPU420

resource might lead to the increasing of the speed of such a TDT application.

Because our system is built on CSIRO Cloud where we do not have the high-

est level of access privilege, we can only change the number of VCPU (Virtual

CPU) cores. As we mentioned in this chapter, we built cluster 1-10 (Shown in

Table ??). To eliminate the effect of memory, we kept the memory size of each425

Mapper or Reducer unchanged and the number of Mappers or Reducers un-

changed. In this experiment, we chose Naive Bayesian as our algorithm, Figure

?? shows the result of the experiment.

The first figure shows that the speed increased with the increasing of the

CPU core number, but the second figure shows that the speed was not affected430

by the increasing of the CPU core number. The first figure shows a group of

experiments based on the Mapper number of ”18” while the second figure repre-

sents a group of experiments based on the Mapper number of ”1”. Specifically,

in the first group from cluster 1 to 10, the CPU resource of each cluster might

not have the maximum required CPU resource, which led to the situation that435

all the Mappers might not be able to start at the same time. Consequently,

with the increasing of CPU resources, the number of Mappers which could be

21

1

Figure 5: Result of execution time of Näıve Bayesian Trainings with Different Number of CPU
Cores.

open in the meantime increased and this led to the increasing of the speed. The

second group of experiments was based on 10% of the data of the first group (for

saving time), 1 Mapper and 2 Reducer (the same as with the first group). The440

Mapper Number is ”1” and we set the parameter ”mapreduce.map.cpu.vcores”

(number of virtual cores to request from the scheduler for each map task) as ”1”

and ”mapreduce.reduce.cpu.vcores” (number of virtual cores to request from the

scheduler for each reduce task) as ”1”.

Conclusion of Experiment: The number of CPU cores will affect the445

speed when the CPU resource is so little that it cannot start all the Mappers

at the same time. When the CPU resource is sufficient, the increasing of CPU

numbers cannot affect the speed significantly. The result also shows how the

influence of different parameters: ”Number of CPU” (IaaS), ”Mapper Number”

and ”mapreduce.map.cpu.vcores” might affect the speed together. This has450

been identified in our performance analysis.

5.2.2. PaaS Experiment (Number of Mappers and Reducers)

Description of Experiment: As mentioned in our performance analysis

there is an optimal number of Mappers for the speed of the system, and the

number of Mappers might affect the speed significantly. We change the number455

of Mappers and make other factors fixed. The result can be shown in Figure

22

1

Figure 6: Execution Time of Näıve Bayesian Training with Different Mapper Numbers.

??.

Conclusion of Experiment: From the results, we can conclude that the

number of Mappers can affect the speed of Näıve Bayesian training and Random

Forest Training. Furthermore, there is an optimal number of Mappers for a460

MapReduce-based Näıve Bayesian and Random Forest (Training). There is an

optimal value for mapper number that can achieve a minimum execution time.

5.2.3. SaaS Experiment

Description of Experiment: According to our performance analysis, the

other parameter possessing a significant role to play in the performance of a TDT465

application based on Näıve Bayesian is “trainComplementary” which determines

whether the Näıve Bayesian algorithm is executed as ”Complementary Näıve

Bayesian” or “Standard Näıve Bayesian”. Complementary Näıve Bayesian is

a Näıve Bayesian variant overcoming some weaknesses of the standard Näıve

Bayesian. The Näıve Bayesian classifier tends to classify documents into a470

category possessing a great number of documents while the complementary uses

data from all categories apart from the category that is worked on.

This parameter might affect the precision of the system, in accordance with

our performance analysis. To evaluate the effect of this parameter, we conducted

23

1

Figure 7: Varying Precision with Different Classification Algorithms.

the following experiment: keeping other parameters unchanged and seeing the475

result of precision in terms of different kinds of classification algorithms. In this

experiment, we also compare the precision of Random Forest classifier with the

same data. The result of this experiment is shown in Figure ??.

Conclusion of Experiment: The parameter “Complement” can control

whether the classification algorithm is based on C Bayes or standard Bayes480

and indirectly affects the precision of the system. Furthermore, the parameter

”name of classification algorithm” can affect the precision of the classification-

based system, which means different classification algorithms have a different

precision based on the same data.

5.3. Evaluation Summary485

In conclusion, our experiments show that our performance analysis has

achieved the following: 1) Our performance analysis is capable of capturing

metrics which affect the performance of a CTDT application across all three

layers. 2) Our performance model can illustrate the dependencies between these

metrics.. 3) Our performance analysis can reflect on how these factors affect490

performance. 4) Our performance analysis can be used to predict the execution

time of a TDT application under various conditions. As discussed in Section ??

to the best of our knowledge we are the first to present a performance analysis

24

that considers the performance metrics within all end-to-end layers of a typical

CTDT application, as well as the dependencies between each of those metrics.495

6. Conclusions and Future Work

Cloud computing technology offers a possible solution to tackle new chal-

lenges of TDT (Topic Detection and Tracking) techniques in the Big Data era.

However, this new combination of Cloud resources and TDT (CTDT) generates

a new issue – how to analyze the performance of CTDT to meet the demands500

posted by big data applications. Our performance analysis framework provides

a practical and generic solution to analyse and model the performance of big

data-based CTDT applications. We demonstrate the effectiveness of the per-

formance analysis framework using the case study of MapReduce-based TDT

applications. Within our analysis, we have identified key parameters in each505

cloud layer, and established the dependencies between these metrics across the

layers. We have also demonstrated and validated the correctness of parameters

and their relationship across cloud layers via experimental evaluations using

real-world datasets.

There are a number of issues that require further work. For example, we510

need to apply this performance analysis framework to more MapReduce-based

TDT applications using different data mining algorithms, such as Random For-

est, LDA, SVM, etc. Moreover, we will also extend this performance analysis

framework to other classes of Big Data Applications, which can be based on

other types of programming paradigms such as Stream Processing. To achieve515

such generalization, we will extend the performance analysis framework to cap-

ture the limited sets of data flow and analytic patterns generated by different

classes of Big Data Applications (e.g., real-time traffic modelling, and real-time

energy modelling). For example, in context of the Stream Processing paradigm,

we will need to consider real-time analytic latency as the most important per-520

formance model parameter (at the PaaS layer), as compared to batch processing

response time of the Hadoop programming paradigm. In our view, such exten-

25

sions will not affect formulations across the other layers of the Big Data stack

including SaaS and IaaS.

26

