
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Alonso-Monsalve, S., García-Carballeira, F., Calderón,
A. (2018). A heterogeneous mobile cloud computing
model for hybrid clouds. Future Generation Computer
Systems, 87, pp. 651-666.

DOI: 10.1016/j.future.2018.04.005

© Elsevier, 2018

https://doi.org/10.1016/j.future.2018.04.005
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

A Heterogeneous Mobile Cloud Computing
Model for Hybrid Clouds

Saúl Alonso-Monsalve, Félix Garćıa-Carballeira, Alejandro Calderón

Avda. Universidad 30, 28911 Leganés, Madrid, Spain

Computer Science and Engineering Department

Carlos III University of Madrid

Abstract

Mobile cloud computing is a paradigm that delivers applications to mobile devices by using cloud com-

puting. In this way, mobile cloud computing allows for a rich user experience; since client applications

run remotely in the cloud infrastructure, applications use fewer resources in the user mobile devices. In

this paper we present a new mobile cloud computing model, in which part of the resources of the cloud

are provided by platforms of volunteer devices, inspired in both volunteer computing and mobile edge

computing paradigms. These platforms may be hierarchical, based on the capabilities of the volunteer

devices and the requirements of the services provided by the clouds. We also describe the orchestration

between the volunteer platform and the public, private or hybrid clouds. As we show, this new model

can be an inexpensive solution to different application scenarios, highlighting its benefits in cost savings,

elasticity, scalability, load balancing, and efficiency. Moreover, with the evaluation performed we also

show that our proposed model is a feasible solution for cloud services that have a large number of mobile

users.

Keywords: fog computing, heterogeneous cloud, hybrid cloud, mobile cloud computing, mobile edge

computing, participating device.

1. Introduction

Throughout the last few years, cloud computing (CC) has provided computing solutions to lots of

companies, organizations, and individual users in the form of services over the Internet. CC provides

on-demand, pay-per-use, and highly scalable computing capabilities for services that enhance the user

experience in a transparent way for the user [1]. Meanwhile, with the current exponential growth of

mobile devices, there is an emerging concept called mobile cloud computing (MCC) that has erected

in order to integrate CC into the mobile environment [2]. In MCC, user applications are computed in

remote clouds rather than in their own mobile devices, providing multiple benefits to the mobile users,

such as a longer battery lifetime or a lower processing load.

Among the different approaches to MCC, we can bring the computation capabilities closer to the

mobile users. This model locates small-scale servers or cloudlets at the edge of the network (e.g. base

stations or coffee shops) in order to avoid latency of bandwidth issues CC experiment. This approach is

related to novel paradigms such as fog and mobile edge computing, and is supposed to be a key aspect

in 5G [3, 4]. On the other hand, it needs a periodic synchronization between the edge servers and the

cloud, so several questions arise: when should the edge servers upload data to the cloud servers? How

will the cloud handle such amounts of data from multiple edge servers located all over the world? How

will these systems guarantee consistency (one of the desired properties of a distributed system according

to Brewer’s theorem [5])? There are only a few published works related these issues [6, 7] and they are

all also theoretical. Besides, this approach has numerous security issues (e.g. authentication, mobility,

or access control) [8, 9], and not all companies and organizations will be able to deploy multiple servers

at the edge of the network due to the high investment that it entails.

For all these reasons, we have developed a heterogeneous mobile cloud computing model that can

provide most of the benefits of the fog and mobile edge computing solutions but it can also be deployed

in an easy and inexpensive way by enterprises into their current cloud systems. More specifically, our

work provides the following contributions:

• A heterogeneous mobile cloud computing model, which combines the current mobile cloud archi-

tecture with the utilization of volunteer platforms as resource providers.

• A complete description of this model and how it can be deployed in public, private, and hybrid

clouds by using a slight modification of the BOINC open-source software: the devices that form

the volunteer platforms should run the BOINC client software and the cloud side should run the

BOINC server software.

• An implementation of the new proposed model using ComBoS, an open-source simulator for vol-

unteer computing and desktop grids created by the authors, as an entry point.

• An explanation of the benefits of our solution, including cost savings, elasticity, scalability, load

balancing, and efficiency.

• An extensive simulation-based evaluation considering several realistic scenarios that demonstrates

that our proposed model is a feasible solution for different cloud services.

The rest of the paper is organized as follows: Section 2 describes the background and discusses related

work; Section 3 introduces in detail our proposed MCC model; Section 4 analyzes the performance of our

model applied to different services; and finally, Section 5 concludes the paper and presents some future

work.

2

2. Background Related Work

In this section we describe the background and present the work related to the solution proposed

in this paper. In particular, Section 2.1 is about mobile cloud computing, while Section 2.2 deals with

volunteer computing.

2.1. Mobile Cloud Computing

Mobile cloud computing (MCC) is a concept that refers to the integration of cloud computing into

the mobile environment [2]. In this way, MCC allows for a rich user experience; since client applications

run remotely in the cloud infrastructure, applications use fewer resources in the user mobile devices. The

typical architecture of MCC is shown in Figure 1 [2]. In this figure, the user mobile devices (from Mobile

device A to Mobile device F) are connected to the mobile networks through base stations: satellites,

access points, or base transceiver stations (BTS). The network operators are the providers of wireless

communication services and they allow the mobile devices to access the cloud via the Internet. This left

half of Figure 1 is called the network edge, while the right half, where cloud computing is located, is

called the network core. Cloud controllers are located within a cloud and their job is to manage the user

requests and answer them by providing the mobile users with the corresponding cloud services. Even

though new types of cloud services have emerged in recent years - such as CaaS (container as a service),

DBaaS (database as a service) or even GaaS (game as a service) - cloud services are mainly classified as

IaaS (infrastructure as a service), PaaS (platform as a service), and SaaS (software as a service) [10]:

• IaaS: it is the lowest layer of cloud computing. It offers any type of physical or virtual resource to

the clients.

• PaaS: it is the middle layer. It provides the user with the ability to develop and manage applications

regardless of the infrastructure they use.

• SaaS: it is the highest layer. It allows the user to consume applications through the Internet using

a specific client software.

Among the multiple advantages of MCC, it can improve the user experience [2, 11] in terms of: (1)

battery lifetime and (2) lower CPU load, since the processing tasks are performed in the cloud instead

of in the mobile device; (3) storage capacity, because files can be stored in remote cloud servers, without

consuming the storage resources of the mobile device; and (4) reliability, since data is stored in a number

of computers within a cloud, thus preventing data loss. There are MCC applications of many kinds [12]:

mathematical tools, file seach, imaging tools, games, download applications, security, etc. Examples of

MCC applications are Google’s Gmail for mobile1 or Amazon Simple Storage Service (Amazon S3)2.

1https://www.google.com/mobile/mail/
2https://aws.amazon.com/s3/

3

https://www.google.com/mobile/mail/
https://aws.amazon.com/s3/

Figure 1: Mobile cloud computing basic architecture, based on [2].

According to [13], there are two other definitions of MCC. The first one is shown in Figure 2, where

some mobile devices act as cloud resource providers forming a peer-to-peer (P2P) network. In this model,

the mobile devices in the local vicinity and other stationary devices (if available) would create an ad-hoc

network which can be accessed by other mobile devices in order to run their applications. Theoretically,

this model allows to offload the cloud tasks to the mobile devices that form the virtual resource cloud.

Besides, latency is also reduced, since the mobile users just have to access the virtual cloud resource

instead of traversing lots of hops to get to the remote cloud. Examples of this approach are Hyrax [14]

and SATIN [15], but there are no real deployments of such solutions. However, there are different issues

related to this model:

• It is not clear how the mobile users will find the mobile devices forming the virtual resource cloud

and how these devices are able to process the same tasks as a remote cloud.

• Battery lifetime is a key issue in mobile devices, so, if the mobile devices of the virtual resource

4

I ;. Mobile network A
·····,·

I
I

Mobile
device A

CJ ;. ····,·
I
I

Mobile
device B ,

~
Satelite

\ (r
~

Access
Point IL,\,[IJ-·/ I I BTS

Mobile :

Mobile network
services

deviceC •------------------------1 ::::+ Mobile network B

Mobile : ~
device O

CJ :. "" " " j"
I

Mobile 1

device E
I

Satelite

er
Access
Point

\

I :[I] / \. I
I
I
1 BTS

Mobile :
device F

D D

Mobile network
services

MOBILE
USERS

NETWORK
OPERATORS INTERNET

SERVICE
PROVIDERS

{ISPs)

··~~: : Application :
servers ,. _______ ..

APPLICATION
SERVICE

PROVIDERS

Cloud computing

DATA CENTER
OWNERS OF

CLOUD SERVICE
PROVIDERS

Figure 2: Virtual resource cloud forming a P2P network and acting as a resource provider.

cloud processed complex tasks, their batteries would run out.

• Most clouds need to back up all of the user’s information in their servers, so, if the tasks are

performed by mobile devices near the mobile users, synchronization with the cloud servers becomes

much more complicated.

• The devices that form the virtual resource cloud are untrusted mobile devices, so why would a

mobile user send information to them? Nothing can warrant the user that their data will not be

treated maliciously.

The last MCC model [13] is shown in Figure 3. In this model, cloudlets are used to avoid latency

and bandwidth issues related to cloud computing. A cloudlet (also known as edge server or edge cloud)

[16, 17] is a small cloud datacenter located at the edge of the network and its aim is to provide resources

with low latency to mobile devices. In other words, their goal is to bring the cloud closer to mobile users,

by offloading the computations from mobile devices onto virtual machines (VM) [18]. In 2015, researchers

from Carnegie Mellon University created OpenStack++ [19], an open-source OpenStack extension that

allows the integration of cloudlets in an OpenStack infrastructure, in addition to VM provisioning and

handoff.

The potential for synergy between the cloudlet concept and Fog [20] and Mobile Edge Computing

[21] (FMEC) has been studied in [22, 23]. FMEC is a distributed computing paradigm that extends the

services provided by the cloud to the edge of the network [20, 24]. In fog computing, a large number

of devices of all types access cloud services. However, much of the processing is done near the edge of

the network instead of entirely in the core, taking advantage of the large number of sources on the edge

5

• ad-hoc network A ,

Mobile
device A

: Mobile network A '
'r------,

Satelite

CJ==::::::: I I,. ,.
\

(& Mobile network
services Mobile

device B

Mobile
device C

MOBILE
USERS

I

I

Access
Point

·=t .. :[IJ ; I•.:,.
I •,.:
I I
I I

: : BTS
I I
I L------------------------

MOBILE
DEVICES IN

THE VICINITY

D
NETWORK

OPERATORS

11
INTERNET
SERVICE

PROVIDERS
(ISPs)

• Cloud computing '

P~~.
' Application :
• _ servers _ •

APPLICATION
SERVICE

PROVIDERS

------------ 6
DATA CENTER
OWNERS OF

CLOUD SERVICE
PROVIDERS

Figure 3: A cloudlet providing public resources to mobile user devices.

[25]. This cloudlets-FMEC model is gaining relevance in the scientific community, since it will play an

important role in 5G [18, 22], and it will allow mobile devices to bypass the latency and bandwidth issues

of the current cloud systems, allowing the large number of mobile devices (the company CISCO systems

predicted that there will be 50 billion devices with Internet access by 2020 [26], including Internet of

Things (IoT) [27] devices) to use the services offered by cloud computing without saturating the cloud

servers and networks.

Although this approach will have solutions deployed in real environments soon, not all cloud providers

can afford its benefits, because locating cloudlets on the edge of the network (base stations, coffee shops,

malls) would need a large investment from the enterprises. This solution will only be available to the few

companies or teams that can afford them. Fortunately, the solution that we present in this paper does

not require economic investments in infrastructure, thanks to the fact that all resources are volunteered.

2.2. Volunteer Computing

Volunteer computing is a type of distributed computing in which ordinary people donate process-

ing and storage resources to one or more scientific projects. The term volunteer computing (VC) was

coined by Luis Sarmenta during his Ph.D. research [28]. BOINC [29] is the main middleware system

for VC that makes it possible for scientists to design and operate public-resource computing projects.

The applications supported by BOINC are diverse, and include communication and large storage data-

intensive applications. In order for computer owners to become volunteers, they have to download and

run a BOINC client program on their computers. Each volunteer can participate in multiple BOINC

projects. If they choose to do so, they have the freedom to specify how they would like their resources to

6

1-:· ::::-...
Mobile ·::.: ••

device A ··:·:::.i
CJ:::::::::::::::::;; ::::::::::::::

Mobile •• ;::=··
device B •••• cloudlet I ... ::====:··

.. ;::··· ·.·
I

Mobile
device C

MOBILE
USERS

LOCAL
CLOUDLET

u
INTERNET
SERVICE

PROVIDERS
(ISPs)

Application :
• _ servers _ ,

APPLICATION
SERVICE

PROVIDERS

Cloud computing

--------- ~
DATA CENTER
OWNERS OF

CLOUD SERVICE
PROVIDERS

be allocated among the projects. Examples of BOINC projects include Einstein@Home, Enigma@Home,

LHC@Home, MilkyWay@Home, SETI@Home, and Universe@Home.

The BOINC architecture is based on a strict master/worker model; it has a central server that is

responsible for dividing applications into thousands of small independent tasks. As the worker nodes

request workunits, the central server distributes the tasks among them. If this server initiated commu-

nications, NAT (Network Address Translation) may arise from a bidirectional communication. For this

reason, when a worker is ready to submit results or needs more work, it initiates communication. The

centralized servers never initiates communication with worker nodes.

Moreover, VC can be used on mobile devices. In this kind of platforms, the BOINC application only

computes when the device is plugged into a power source (AC or USB) and the battery is over 90% of

charge, so it will not significantly reduce the battery life or the recharge time. Besides, BOINC transfers

data only when the devices are connected to a WiFi network and the device screen is off. In addition,

there are current studies that try to exploit this model by using the idle computing resources of smart

TV sets as volunteer nodes [30], which shows that this type of computing can become part of the IoT

world.

Apart from BOINC, there are other VC systems, such as WeevilScout [31] and Comcute [32]. Both

solutions consist on using web browsers from anonymous users to perform master-slave VC tasks. In

fact, the solution described in [32] proposes a multi-level volunteer computing architecture and it is

similar to the approach introduced in [33], since both have volunteer users computing parallel executions.

The use of VC systems for Big Data processing has been studied in [34]. In this article, the authors

describe an architecture of intelligent agents to optimize Big Data processing. In [35], the authors

present a VC solution called FreeCycles, which supports MapReduce jobs. FreeCycles improves data

distribution (among mappers and reducers) by using the BitTorrent protocol to distribute data, and

improves intermediate data availability by replicating files throughout volunteers in order to avoid losing

intermediate data. However, these solutions are not based on BOINC, and they have plenty of future

challenges.

The use of VC in cloud computing has been explored in [36]. In this paper, the authors introduce

Cloud@Home, a combination of the VC and cloud computing paradigms used for scientific purposes.

Cloud@Home consists on creating a cloud by the combination of multiple low-power volunteer nodes.

However, this approach is completely different to ours, because our solution can be applied to any existing

cloud system that wants to expand their resources, and it is not an alternative to the current cloud

systems, unlike Cloud@Home. In addition, we wanted to propose a new MCC model based on BOINC,

because it is the most relevant middleware for VC, and there are currently hundreds of thousands of

volunteers participating in their projects.

7

3. Proposed Model

In this section we describe our solution in detail. More specifically, Section 3.1 outlines the aims and

goals of this approach, Section 3.2 shows the architecture of the proposed model, Section 3.3 describes

the volunteer platforms that we consider in our solution, Section 3.4 depicts the two main application

scenarios, Section 3.5 presents the incentive scheme we propose for the volunteer users, and finally Section

3.6 depicts the security aspects needed.

3.1. Aims and Goals

As we showed in previous work [37], some clouds are experiencing a saturation of their networks

and servers due to the high number of user devices accessing the services offered. In fact, this issue

is only going to worsen in the next few years because, as we mentioned in Section 2, the company

CISCO systems predicted in 2011 that there will be 50 billion devices with Internet access by 2020 [26],

and a huge percentage of these devices is going to access mobile cloud services. Some solutions from

previous literature provide mechanisms to solve this bandwidth saturation issues, in addition to allowing

for communications with less latency (even real-time applications). In Section 2 we have also described

these solutions, which consist on deploying small-scale clouds or servers on the edge of the network.

Unfortunately, these solutions have not been implemented yet worldwide. Besides, not all mobile cloud

applications have real-time execution as their priority, and most importantly, many companies lack enough

equity to cope with the expense of deploying small clouds at multiple base stations or other locations at

the edge of the network.

For all these reasons, we propose a new Mobile Cloud Computing (MCC) model that, unlike the

existing solutions, can be applied to the current clouds without substantial disbursement. Our solution

involves groups of volunteer users forming virtual platforms that act as resources to one or more clouds.

Apart from cost-savings, the goals of our proposed model are:

• Elasticity: a cloud system that uses our solution can use the computing resources provided by the

volunteer platforms whenever needed, enabling the system to adapt to significant workload changes.

• Scalability: after all, the volunteer platforms provide an extension to the cloud computing and

storage capabilities, so cloud systems that use our proposed model would allow more users accessing

their resources.

• Efficiency: in some cases, mobile users would rather access a device from a volunteer platform than

from a remote cloud server (geographical proximity means fewer hops), thus reducing latency.

• Load balancing: as we explain later, the cloud controllers process the user requests and provide

the mobile users with the corresponding cloud services, either by their own clouds or by devices

from the volunteer platforms that collaborate with the cloud system. This scenario allows for the

implementation of various load balancing schemes so as to not saturate the cloud.

8

• Easy deployment: the clouds and the devices from the volunteer platforms must run a slightly

modified open-source BOINC server and client software, respectively, so this solution does not

require the modification of the cloud infrastructure.

3.2. Architecture

The architecture of our proposed model is shown in Figure 4, which is a variation of the MCC basic

architecture presented in Section 2.

Volunteer platforms

Cloud computing

Internet

Application
servers

Cloud A

Cloud
controller

Data center

Mobile network A

Access
Point

Mobile network
services

Satelite

BTS

Mobile
device A

Mobile
device C

Mobile
device B

Figure 4: Architecture of our proposed model, based on the utilization of volunteer platforms.

The novel part of this approach is the utilization of volunteer platforms. A volunteer platform consists

of multiple participating devices3 that want to donate their idle computing and storage resources to cloud

systems, in a similar way to the millions of devices that currently contribute to BOINC scientific projects.

A participating device that wants to contribute to a cloud system should download a variation of the

BOINC open-source software [38], which executes in the idle CPU periods of the device, and should

request work to the clouds that the device collaborates with. By the time a cloud system has the

collaboration of multiple participating devices, it can distribute the devices in logical volunteer platforms

or even define hierarchies, depending on their capabilities. For example, the volunteer platforms can be

defined based on the storage capacity of the participating nodes, so that when a mobile user requests

storage of a file to a cloud application, the cloud system should replicate this file in a number of cloud

3We call ‘participating devices’ to desktop computers or mobile devices that collaborate in a cloud system by donating

their idle resources.

9

servers and participating devices (from a volunteer platform) that are able to store a file of such size.

Each mobile user application that wants to use a cloud service should access the cloud system in

the ordinary way (via the Internet). The cloud controller is then responsible for dealing with the user

application request and providing the mobile user with the requested service. Nevertheless, in this

model there are two options: providing the services using (1) the cloud servers of the system or (2) the

volunteer resources of some participating devices (see Algorithm 1a). From the point of view of a device

that wants to donate resources to cloud services, it is necessary that it first subscribe to a cloud system as

a participating device. Then, the cloud system would run some benchmarks on the participating device

in order to test its capabilities. Once this has been done, and depending on the type of service, the

participating device should ask the cloud for tasks during its idle CPU time (see Algorithm 1b).

1: procedure Execute(tsk) . Remote execution of task tsk

(e.g. a recorded audio)

2: send request to cloud

3: list← receive answer from cloud . list of participating

devices that are able to process the task; if the list is empty,

that means the task should be executed by the cloud

4: if list then . list is not empty

5: err ← send tsk to N participating devices

6: if not err then . there is no error

7: res list← receive answers from the N participat-

ing devices

8: res, err ← verify res list . check if the quorum

is reached

9: end if

10: end if

11: if err or not list then . list is empty or there was an

error related to the participating devices

12: send tsk to cloud

13: res← receive answer from the cloud

14: end if

15: return res . computational result of tsk (e.g.

identification that the short audio stored in tks corresponds

to the song X)

16: end procedure

(a)

1: procedure Subscribe(srvc) . Subscription of device into

cloud service srvc

2: if not subscribed then . list is not empty

3: send subscription request to srvc

4: benchmarks← receive answer from cloud . the

cloud sends the benchmarks in order to know the capabilities

of the device

5: res← execute benchmarks

6: device info file← create response file .

this file should contain the benchmark results (res) and all

other device information required (CPU model, RAM, GPS

location, etc.)

7: send device info file to the cloud

8: url← receive URL from cloud . this

URL has the code the participating device should execute in

order to collaborate in the service (e.g. a code that is able to

receive computation requests and execute a neural network

for a music identification service)

9: code← download code from url

10: subscribed← true

11: end if

12: run code in background

13: end procedure

(b)

Algorithm 1: Examples of: (a) remote execution of a mobile user task; (b) subscription of a participating device in a cloud

service.

3.3. Volunteer Platforms

Volunteer platforms consist of groups of multiple participating devices with similar computing capa-

bilities (decision of the company). As participating devices are going to run a slight modification of the

BOINC client software, there are basically desktop computers and mobile devices. Since the participating

10

devices are going to process tasks or store data, it is important to exercise caution of the battery lifetime

for mobile devices. Fortunately, the BOINC client software for mobile devices computes only under the

following conditions (as we mentioned in Section 2.2):

• The mobile device is plugged into a power source (AC or USB).

• The battery is over 90% of charge.

• The screen is off.

Volunteer platform C

Cloud computing

Cloud A

Cloud
controller

Data center

Volunteer platform B

Volunteer platform A

Mobile
device

Mobile
device

Mobile
device

Mobile
device

Mobile
device

Mobile
device

Internet

Internet

Internet

Figure 5: Mobile users access participating devices from volunteer platforms that are closer and are able to process the

tasks needed.

In this way, the cloud tasks will not significantly reduce the battery life or the recharge time. For

instance, an anonymous user can collaborate with a cloud system by just plugging their mobile device into

a power source before going to sleep. Hence, the mobile device can participate in a cloud service while

its owner is sleeping. Moreover, the ideal of this model is that mobile users leverage the computing and

storage idle resources of volunteer devices that are geographically closer than the cloud remote servers,

thereby preventing saturation of cloud networks and servers and also bypassing latency issues (because

11

participating devices may be much nearer than the remote servers, so fewer hops are needed in order to

arrive at the destination), as Figure 5 shows. However, as the resources provided by the participating

nodes are volunteered, there is no assurance that these resources are going to be long-lasting. We can

just say that they are ‘volatile’ resources and that the availability of participating devices is therefore

vitally important. That is why our solution does not consist exclusively of volunteer platforms. The main

processing and storage resources would be the ones provided by the cloud infrastructure in order to allow

fault tolerance of the participating devices and therefore data loss. That said, the volunteer platforms

will provide lots of benefits because they can back up files in storage services, process tasks, etc. even

when there are no more available resources in the cloud. In other words, this solution does not change

the current behavior of cloud services; it only provides more (inexpensive) resources to them.

3.4. Application Scenarios

Our proposed solution can be applied to different scenarios, among which we highlight storage and

computing services.

3.4.1. Storage Services

Our solution, which consists on using volunteer platforms as resource providers, can be applied to

typical storage mobile cloud services [39], such as Dropbox, Google Drive, or OneDrive. In this scenario,

once a participating device has subscribed to the cloud service, when a mobile user wants to upload a

file to the cloud, it sends the file to the cloud (for simplicity, we are ignoring all the protocol matters of

these kinds of services). Then the file is stored in a number of cloud nodes (depending of the replication

factor of the storage system) and then the encrypted file is sent to a number of participating devices of

one or more volunteer platforms. In this way, each file is backed up in several places (for example, in

two cloud servers and in two participating devices) so that the mobile user can download the file from

both the cloud servers or the participating devices (for instance, based on proximity), and then verify its

integrity by checking the hash against the cloud. This behavior is shown in Figure 6.

Participating
device

Cloud
System

subscribe

benchmark

results

Mobile user
device

Cloud
System

file

store
the file

Participating
device

encrypted
file

Cloud
system

Mobile user
device

ask for file

Participating
device

address

ask for file
encrypted

file

subscription of a participating
device in the system

a mobile user device uploads a
file to the cloud system

the mobile device downloads the previously
stored file from a participating device

key-agreement
protocol

check
hash

Figure 6: Example of a storage scenario.

In addition, as the files stored by the participating devices are encrypted (e.g. using AES-256 [40]),

there are no security risks in untrusted users storing private information, since the participating users

cannot access the file contents. Finally, we also assume that the mobile users can specify the maximum

12

storage they want to donate. For example, the default value can be a 5% of the total storage capacity of

the device (e.g. 25 GB for a computer with a hard disk of 500 GB).

3.4.2. Processing Services

Our model allows for the execution of multiple processing services. Music identification services (e.g.

Shazam or ACRCloud) or optical character recognition (OCR) services are examples of this kind of

processing services. In these scenarios, a mobile device sends a task (an audio file or a picture) to a

remote cloud where the data is processed (identifying the song from the audio or recognizing a text from

the picture) and the results of the computation performed are sent back to the mobile device. With our

model, the processing task should be performed by the participating devices, thus reducing the load in

the cloud. In our approach, when a participating device subscribes to a cloud service, it downloads from

the cloud the application that it needs to execute (e.g. the binaries with the algorithms or the neural

network to use). A mobile user device that wants to process some data first sends the processing request

to the cloud system, which answers with a list of addresses of the participating devices (usually the

addresses of all the devices of the same volunteer platform). Then, the user sends the task to a number

of participating devices (two or more) in order to rely on the results of untrusted users. If the replies

received from the participating users match, the result is considered correct. This behavior is shown in

Figure 7.

Participating
device

Cloud
System

subscribe

benchmark

results

Cloud
system

Mobile user
device

Participating
device A

task

subscription of a participating
device in the system

the processing task requested by the mobile device
is processed by two or more participating devices

addresses

Participating
device B

processing
request

answer
application

Figure 7: Example of a processing scenario.

In contrast to storage services, where the participating devices receive and store encrypted files, in

processing services the computation tasks may be performed by untrusted users (the participating devices)

over unencrypted data, so, in order to avoid security risks, it is compulsory that the participating devices

only receive public content, such as street pictures or music audios that the user wants to identify. There

are some novel techniques that try to perform computation over encrypted data [41], so probably in the

future our processing model can be applied also to tasks that use private information.

3.5. Incentive Scheme

Why would anonymous users want to donate their resources to cloud services? In BOINC, users

donate their idle processing and storage resources to contribute to scientific projects, such as Climatepre-

13

diction.net4, that helps fight climate change; Rosetta@Home5, that helps to find the cure for cancer and

Alzheimer’s; or SETI@Home6, that helps to find extraterrestrial intelligence. However, this is not enough;

that is why BOINC has an incentive scheme based on credits. BOINC projects grant credit to users to

encourage the the volunteer users to contribute to the system. Credit has no monetary value; it is only

a measure of how much a volunteer has contributed to a project (credits are calculated from the floating

point operations that a device has computed) [42]. In our solution, companies and organizations should

also include an incentive scheme based on credits in their services, as BOINC does. In this way, volunteer

users would be rewarded by their contribution to the mobile cloud computing services they collaborate

with.

Apart from that, the enterprises that want to deploy our model can also reward the volunteer users

with some ‘special’ functionalities. For example, a company that offers storage services to their mobile

clients could grant the volunteer users with some premium features or even a professional account of one

of their mobile applications for free.

3.6. Security Aspects

BOINC allows the project designers to use Secure Socket Layer (SSL) in their projects, so HTTPS

(port 443) can be used in the log-in processes. Besides, BOINC uses the ports 31416 and 1043 to exchange

data, so the client has to unblock them if they are behind a firewall. In a similar way, the implementation

of our approach must use specific ports that should be unblocked from the firewall to manage the access

between clients. We propose two alternatives to ensure a secure communication between the mobile users

and the participating devices:

• Transport Layer Security (TLS, last version is 1.2) [43]: it is available to most TCP applications

(e.g. FTPS, SMTPS, and HTTPS).

• Simple Object Access Protocol (SOAP, last version is 1.2) [44]: it is a protocol for exchanging data

using XML files. It can be combined with WS-Security (last version is WS-Security 1.1) [45] in

order to add security. WS-Security is a protocol that guarantees authentication, confidentiality and

integrity to the data exchanged.

As we explained in Section 3.4.1 (see Figure 6), when a mobile user wants to upload a file using a

storage service, it first has to specify an encryption key with the cloud through a key-agreement protocol.

For that reason, we propose the Diffie Hellman Ephemeral (DHE) or the Elliptic Curve Diffie Hellman

Ephemeral (ECDHE) [46] key-agreement protocols, because they ensure the Perfect Forward Secrecy [47].

4http://www.climateprediction.net/
5https://boinc.bakerlab.org/
6https://setiathome.berkeley.edu/

14

http://www.climateprediction.net/
https://boinc.bakerlab.org/
https://setiathome.berkeley.edu/

Then, encryption key should be stored in a secure local keystore by both the mobile device and the cloud.

Besides, the file should be transmitted from the mobile device to the cloud via a secure channel (e.g.

TLS), and then the file should be encrypted in the cloud side in order to offload the computation from

the mobile device. A good option is to use a symmetric-key algorithm, such as AES256 [40] or 3DES [48].

Once the file is encrypted, the cloud can send it to multiple participating devices ensuring confidentiality.

When the mobile device downloads the encrypted file from a participating device, it just has to verify

the file hash with the cloud (to check integrity) and decrypt it using the encryption key previously stored

in its keystore.

Apart from that, when a mobile user wants to execute a task, the cloud can reply to the mobile user

with the list of participating devices that are able to execute the task. Exactly as BOINC works, the

mobile user has to send the task to N different users, and, after receiving the computation results from

all of them, check if the quorum is reached. For instance, suppose that a mobile user wants to apply an

OCR program over a text in a poster, N is 3 and quorum is 2, so the user first takes a picture of the text,

then requests to process this text to the cloud service, so the cloud replies with the list of participating

devices that are able to process the task (normally, a whole volunteer platform). Then, the mobile user

application sends the picture to three different participating devices (N value) and then it checks if at least

two of the answers (quorum value) match. If the quorum is reached (e.g. two of the participating devices

answer “Mr. Bean Street”), the result is considered to be correct. Otherwise, the mobile user requests

it directly to the cloud. This behavior is also shown in Algorithm 1a. Apart from that, as described in

[49], BOINC prevents to distribute malware among the volunteer computers because applications have

only access to their own input and output files via sandboxing. Besides, the BOINC software is also able

to use virtualization support [50], which would facilitate the deployment of our proposed model.

4. Evaluation

In this section we present the evaluation performed. In Section 4.1 we detail an analysis of the

volunteer devices that participate in the famous SETI@Home project, apart from the description of how

we managed to characterize three different individual devices. We have used these results in order to

perform the experiments presented in Section 4.2, that consist on different case studies we have analyzed

through realistic simulations.

4.1. Devices characterization

We have analyzed the CPU performance of the 138,252 computers of the SETI@Home project that

were active on June 12, 2017, 22:02:19 UCT (published in [51]). After analyzing all the CPU models,

we found that 134,182 (97.06%) of the total number of devices were desktop computers and laptops,

while the remaining 4,070 (2.94%) computers were mobile devices. Figure 8 shows the CPU performance

15

(GigaFLOPS/core or GigaFLOPS/computer) of the aforementioned SETI@Home volunteer devices. This

huge difference (3.13 over 17.5 GigaFLOPS) between the performance per core (Figure 8a) and per

computer (Figure 8b) is because the SETI@Home tasks use the maximum number of cores available for

computation, ranging from 1 to 102 cores. As can be seen in the figure, mobile devices are much less

powerful than the desktop and laptop computers on average (4.46 vs 17.91 GigaFLOPS/computer). We

have used these SETI@Home CPU traces to model the power of the participating devices that form the

volunteer platforms of the simulations presented in Section 4.2.

 0

 1

 2

 3

 4

 5

 6

 7

Total PCs Mobile devices

G
FL

O
PS

/c
or

e

CPU performance per core

(a)

 0

 10

 20

 30

 40

 50

Total PCs Mobile devices

G
FL

O
PS

/c
om

pu
te

r

CPU performance per computer

(b)

Figure 8: CPU performance of the volunteer computers of the SETI@Home project: (a) GFLOPS/core, (b)

GFLOPS/computer.

In order to model the availability of the participating devices, we used the results obtained in [52].

This research analyzed about 230,000 availability traces obtained from the volunteer computers that

participate in the SETI@Home project. According to this paper, 21% of the volunteer computers exhibit

truly random availability intervals, and it also measured the goodness of fit of the resulting distributions

using standard probability-probability (PP) plots. For availability, the authors noted that in most cases

the Weibull distribution is a good fit. For unavailability, the distribution that offers the best fit is the

log-normal. The parameters used for the Weibull distribution are shape = 0.393 and scale = 2.964. For

the log-normal, the parameters obtained and used in ComBoS are a distribution with mean µ = −0.586

and standard deviation σ = 2.844. All these parameters were obtained from [52] too.

Furthermore, because the software the participating devices in our proposed model is based on a small

variation of the BOINC client software, we are also interested on evaluating the performance of individual

devices participating in a real BOINC volunteer computing project. To make this possible, we have used

the following devices:

• Desktop computer: Intel R©CoreTM i7-4790 (4 cores (8 threads), 3.60 GHz), OS: Ubuntu 16.04.2

LTS, 8 GB of RAM memory.

• Mobile device: Woxter Zielo ZX840HD (8 cores, 1.7 GHz), OS: Android 4.4.2, 2 GB of RAM

16

memory.

• ARM device: ODROID-C2 (4 cores, 1.5 GHz), OS: Ubuntu 16.04.2 LTS, 2 GB of RAM memory.

Each device has collaborated in the most famous BOINC project: the SETI@Home project. The

results obtained are shown in Table 2.

Table 2: Computational results (GigaFLOPs executed in 2 days of uninterrupted computation) of the three devices after

collaborating in the SETI@Home project.

Project Desktop computer Mobile device ARM device

SETI@home 3,628,800 345,600 322,600

4.2. Case Studies

We have evaluated two different mobile cloud computing services as case studies: a processing and a

storage service. In terms of implementation, we have used ComBoS [53], a complete BOINC simulator

created by the authors as a previous work, as a starting point. ComBoS is a public source software7 and

was implemented in C programming language, with the help of the tools provided by the MSG API of

SimGrid [54] and is able to perform realistic simulations of the whole BOINC infrastructure, considering

all its features: projects, servers, network, redundant computing, scheduling, etc. In order to evaluate

both case studies we have modified ComBoS to implement the scenario shown in Figure 9. This scenario

consists of two groups of mobile devices, that access a cloud in order to use the services. It also has

four volunteer platforms that provide computing and storage resources to the cloud. The bandwidth and

latency values of the networks that connect the different components are also specified in Figure 9. All

other parameters relevant to the simulations (number of devices of each type, power, etc.) are specified

in each case study.

Table 3: Platform used in the evaluation.

Value

Processor Intel R©CoreTM i7-920 (4 cores (8 threads), 2.67GHz)

RAM 32 GB

Operating System Ubuntu 14.04.5 LTS

Kernel 3.13.0-119-generic

SimGrid version 3.11

7ComBoS can be downloaded from: https://github.com/arcos-combos/combos

17

https://github.com/arcos-combos/combos

cloud controller data center

m
obile devices (cloud users)

m
obile devices (cloud users)

volunteer
platform A

volunteer
platform B

volunteer
platform C

volunteer
platform D

- bandwidth: 1 Gbps
- latency: 5 ms

- bandwidth: 1 Gbps
- latency: 10 ms

- bandwidth: 1 Gbps
- latency: 3 ms

- bandwidth: 2 Gbps
- latency: 7 ms

- bandwidth: 2 Gbps
- latency: 15 ms

- bandwidth: 2 Gbps
- latency: 2 ms

- bandwidth: 2 Gbps
- latency: 1 ms

- bandwidth: 1.5 Gbps
- latency: 5 ms

- bandwidth: 500 Gbps
- latency: 3 ms

- bandwidth: 1 Gbps
- latency: 7 ms

Figure 9: Scenario simulated in the experiments.

Table 3 shows the details of the platform used to simulate the case studies. Every execution in this

section has simulated 100 hours. In order to account for the randomness of the simulations and to deem

the results reliable, each simulation result presented in this section is based on the average of 20 runs.

For a 95% confidence interval, the error is less than ± 2% for all values.

4.2.1. Case study 1: Processing Service

A good case study to evaluate our proposed model is to analyze its performance of processing services.

These processing services can range from a music identification service (e.g. Shazam) to a text recognition

service (e.g. an OCR). We considered the scenario shown in Figure 9, where each volunteer platform has

250 participating devices and there are from 20,000 to 100,000 mobile users. The cloud infrastructure

consists of 20 nodes with a computing power of 50 GigaFLOPS each, and each mobile device requests

the cloud to compute a task of 20 GigaFLOPs8 (based on the results of [55]) and 5 MB every 30 minutes

on average. We have considered three different configurations:

• Configuration 1: it corresponds to the original behavior of a cloud system (without using volunteer

platforms).

• Configuration 2: both volunteer platforms are formed by participating devices in the same pro-

portion and with the same properties (power and availability) as in the SETI@Home project (see

8We distinguish between FLOPS (floating point operations per second) and FLOPs (floating point operations).

18

Section 4.1).

• Configuration 3: both volunteer platforms are formed only by mobile devices with the same prop-

erties (power and availability) as in the SETI@Home project (see Section 4.1).

In configurations 2 and 3, the tasks are computed either by the cloud or by the participating devices

in a round-robin basis. In the case a task is computed by a volunteer platform instead of by the cloud,

the task should be computed by three different participating devices with a quorum of two.

Processing service performance

 0
 20
 40
 60
 80

 100

 20000 40000 60000 80000 100000

cl
ou

d
lo

ad
 (%

)

number of mobile users

 0
 20
 40
 60
 80

 100

 20000 40000 60000 80000 100000
vo

l.
pl

at
fo

rm
s

lo
ad

 (%
)

number of mobile users

 7
 14
 21
 28
 35
 42

 20000 40000 60000 80000 100000to
ta

l t
hr

ou
gh

pu
t (

PF
LO

Ps
)

number of mobile users

 0.4
 0.6
 0.8

 1
 1.2
 1.4

 20000 40000 60000 80000 100000av
er

. t
im

e
pe

r t
as

k
ex

ec
. (

s)

number of mobile users

conf. 1 conf. 2 conf. 3

Figure 10: Case study 1: performance of the processing service for the three different configurations.

Figure 10 shows the results of this experiment: the load9 of both the cloud and the volunteer platforms,

the total throughput of the system in PetaFLOPs, and the average time a task is executed. With

configuration 1, the cloud became saturated with almost 85,000 mobile users. By contrast, this did

not happen with configurations 2 and 3, because the computation of the tasks is shared by both the

participating devices and the cloud, not only by the cloud as in the previous configuration. As it is shown

in the figure, the use of volunteer platforms allows for an increase in the scalability and in the total

throughput of the system, since more users can process their tasks in the system. Finally, although the

average time per task execution in configuration 1 is less than in the rest of configurations (except when

9We considered the load as the maximum of the network and the CPU load.

19

the cloud is saturated), this difference is not significant, especially for configuration 2 (less than 200 ms),

which shows that out approach would not have a negative impact on the user experience.

4.2.2. Case study 2: Storage Service

This second case study is about a file storage service. The scenario is the same as in the previous

case (Figure 9), where each volunteer platform has 25.000 participating devices. The cloud infrastructure

consists of 200 nodes, each with 3.2 Terabytes, making a total of 640 Terabytes of storage. In this case

study there are 1 million cloud users and each one uploads an average of 4.5 files of 50 MB each (following

an exponential distribution) to the cloud service. We have again considered three different configurations:

• Configuration 1: it corresponds to the original behavior of a cloud system (without using volunteer

platforms). Each file should be replicated three times in the cloud servers.

• Configuration 2: both volunteer platforms are formed by participating devices with a storage ca-

pacity that follows an statistical normal distribution, with µ = 5 and σ = 0.75 (average 5 GB

per device). Each file should be replicated two times in the cloud servers and two times in the

participating devices.

• Configuration 3: both volunteer platforms are formed by participating devices with a storage ca-

pacity that follows an statistical normal distribution, with µ = 10 and σ = 1 (average 10 GB

per device). Each file should be replicated two times in the cloud servers and two times in the

participating devices.

Storage service performance

 0

 20

 40

 60

 80

 100

conf. 1 conf. 2 conf. 3

st
or

ag
e

co
ns

um
ed

 (%
)

(a)

 0

 240

 480

 720

 960

 1200

conf. 1 conf. 2 conf. 3

te
ra

by
te

s
st

or
ed

(b)

 0

 0.8

 1.6

 2.4

 3.2

 4

conf. 1 conf. 2 conf. 3av
er

. t
im

e
pe

r f
ile

 d
ow

n.
 (s

)

(c)

cloud part. devices mobile users

Figure 11: Case study 2: performance of the storage service for the three different configurations.

Figure 11 shows the results of this experiment. As it can be seen in graphs (a) and (b), with the first

configuration (without using volunteer platforms), the cloud is not able to store more files because there

is no more available space in their nodes. On the other hand, with configurations 2 and 3 the cloud is not

20

saturated, and the service is then able to store and back up all the files from the 1 million users thanks

to the storage resources donated by the participating users. Moreover, in graph (c) we show the average

time required to download a file by the mobile users, assuming the mobile users download a file every

2 hours on average. With configuration 1, the cloud network becomes saturated soon; that is why the

download time is higher than in configurations 2 and 3, where the mobile users also download files from

the volunteer platforms.

5. Conclusion and Future Work

This paper gave an overview of mobile cloud computing (MCC), in addition to a new MCC model that

can provide more computing and storage resources to public, private or hybrid clouds. The proposed

heterogeneous model uses the computing and storage resources of devices from the general public to

contribute to cloud systems, so the organizations can leverage the idle periods of these devices to gain

computing and storage resources for their cloud services, in a similar way that volunteer devices contribute

to BOINC projects. As we have shown throughout the paper, our proposed model can provide several

benefits to the cloud systems, including: cost savings, as it avoids monetary investments in infrastructure,

since the resources are volunteered; elasticity, as it enables the system to adapt to significant workload

changes in the cloud just by using the volunteered resources; scalability, as it provides more computing

and storage resources to the system, so more users can use these resources; efficiency, as the volunteer

devices can be closer than the cloud servers for the mobile users, thus reducing the network latency; load

balancing, as the cloud controllers can choose to use the cloud’s own resources or the volunteer resources,

so different load balancing algorithms can be implemented; easy deployment, as we propose to use a

slight variation of the current BOINC open-source software in order to deploy our solution in current

cloud systems. Moreover, with the evaluation performed we have also shown that our proposed model is

a feasible solution for cloud services that have a large number of mobile users.

For future work, we plan to adapt the BOINC software to deploy a prototype of this approach. We

look forward to analyzing the impact of the proposed model in different scenarios, not only the ones

showed in this document.

Acknowledgements

This work has been partially supported by the Spanish MINISTERIO DE ECONOMÍA Y COMPET-

ITIVIDAD under the project grant TIN2016-79637-P TOWARDS UNIFICATION OF HPC AND BIG

DATA PARADIGMS.

21

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing, Commun. ACM 53 (4) (2010) 50–58.

doi:10.1145/1721654.1721672.

URL http://doi.acm.org/10.1145/1721654.1721672

[2] H. T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing: architecture, applica-

tions, and approaches, Wireless Communications and Mobile Computing 13 (18) (2013) 1587–1611.

doi:10.1002/wcm.1203.

URL http://dx.doi.org/10.1002/wcm.1203

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge computinga key technology

towards 5g, ETSI White Paper 11.

[4] T. X. Tran, A. Hajisami, P. Pandey, D. Pompili, Collaborative mobile edge computing in 5g networks:

New paradigms, scenarios, and challenges, IEEE Communications Magazine 55 (4) (2017) 54–61.

doi:10.1109/MCOM.2017.1600863.

[5] S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant

web services, SIGACT News 33 (2) (2002) 51–59. doi:10.1145/564585.564601.

URL http://doi.acm.org/10.1145/564585.564601

[6] G. Lewis, S. Echeverra, S. Simanta, B. Bradshaw, J. Root, Tactical cloudlets: Moving cloud com-

puting to the edge, in: 2014 IEEE Military Communications Conference, 2014, pp. 1440–1446.

doi:10.1109/MILCOM.2014.238.

[7] F. R. Duro, J. G. Blas, D. Higuero, O. Perez, J. Carretero, Cosmic: A hierarchical cloudlet-based

storage architecture for mobile clouds, Simulation Modelling Practice and Theory 50 (2015) 3 – 19,

special Issue on Resource Management in Mobile Clouds. doi:http://dx.doi.org/10.1016/j.

simpat.2014.07.007.

URL http://www.sciencedirect.com/science/article/pii/S1569190X1400118X

[8] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security issues, in: 2014

Federated Conference on Computer Science and Information Systems, 2014, pp. 1–8. doi:10.15439/

2014F503.

[9] S. Yi, C. Li, Q. Li, A survey of fog computing: Concepts, applications and issues, in: Proceedings

of the 2015 Workshop on Mobile Big Data, Mobidata ’15, ACM, New York, NY, USA, 2015, pp.

37–42. doi:10.1145/2757384.2757397.

URL http://doi.acm.org/10.1145/2757384.2757397

22

http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/MCOM.2017.1600863
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://dx.doi.org/10.1109/MILCOM.2014.238
http://www.sciencedirect.com/science/article/pii/S1569190X1400118X
http://www.sciencedirect.com/science/article/pii/S1569190X1400118X
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2014.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2014.07.007
http://www.sciencedirect.com/science/article/pii/S1569190X1400118X
http://dx.doi.org/10.15439/2014F503
http://dx.doi.org/10.15439/2014F503
http://doi.acm.org/10.1145/2757384.2757397
http://dx.doi.org/10.1145/2757384.2757397
http://doi.acm.org/10.1145/2757384.2757397

[10] P. M. Mell, T. Grance, Sp 800-145. the nist definition of cloud computing, Tech. rep., Gaithersburg,

MD, United States (2011).

[11] H. Qi, A. Gani, Research on mobile cloud computing: Review, trend and perspectives, in: Digital

Information and Communication Technology and it’s Applications (DICTAP), 2012 Second Inter-

national Conference on, 2012, pp. 195–202. doi:10.1109/DICTAP.2012.6215350.

[12] A. u. R. Khan, M. Othman, S. A. Madani, S. U. Khan, A survey of mobile cloud computing

application models, IEEE Communications Surveys Tutorials 16 (1) (2014) 393–413. doi:10.1109/

SURV.2013.062613.00160.

[13] N. Fernando, S. W. Loke, W. Rahayu, Mobile cloud computing: A survey, Future Generation Com-

puter Systems 29 (1) (2013) 84–106, including Special section: AIRCC-NetCoM 2009 and Special

section: Clouds and Service-Oriented Architectures. doi:https://doi.org/10.1016/j.future.

2012.05.023.

URL http://www.sciencedirect.com/science/article/pii/S0167739X12001318

[14] E. E. Marinelli, Hyrax: cloud computing on mobile devices using mapreduce, Tech. rep., DTIC

Document (2009).

[15] S. Zachariadis, C. Mascolo, W. Emmerich, SATIN: A Component Model for Mobile Self Or-

ganisation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 1303–1321. doi:10.1007/

978-3-540-30469-2_31.

URL http://dx.doi.org/10.1007/978-3-540-30469-2_31

[16] A. Ceselli, M. Premoli, S. Secci, Mobile edge cloud network design optimization, IEEE/ACM Trans-

actions on Networking PP (99) (2017) 1–14. doi:10.1109/TNET.2017.2652850.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based cloudlets in mobile

computing, IEEE Pervasive Computing 8 (4) (2009) 14–23. doi:10.1109/MPRV.2009.82.

[18] T. H. Luan, L. Gao, Z. Li, Y. Xiang, L. Sun, Fog computing: Focusing on mobile users at the edge,

CoRR abs/1502.01815.

URL http://arxiv.org/abs/1502.01815

[19] K. Ha, M. Satyanarayanan, Openstack++ for cloudlet deployment, School of Computer Science

Carnegie Mellon University Pittsburgh.

[20] L. M. Vaquero, L. Rodero-Merino, Finding your way in the fog: Towards a comprehensive definition

of fog computing, SIGCOMM Comput. Commun. Rev. 44 (5) (2014) 27–32. doi:10.1145/2677046.

2677052.

URL http://doi.acm.org/10.1145/2677046.2677052

23

http://dx.doi.org/10.1109/DICTAP.2012.6215350
http://dx.doi.org/10.1109/SURV.2013.062613.00160
http://dx.doi.org/10.1109/SURV.2013.062613.00160
http://www.sciencedirect.com/science/article/pii/S0167739X12001318
http://dx.doi.org/https://doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/https://doi.org/10.1016/j.future.2012.05.023
http://www.sciencedirect.com/science/article/pii/S0167739X12001318
http://dx.doi.org/10.1007/978-3-540-30469-2_31
http://dx.doi.org/10.1007/978-3-540-30469-2_31
http://dx.doi.org/10.1007/978-3-540-30469-2_31
http://dx.doi.org/10.1007/978-3-540-30469-2_31
http://dx.doi.org/10.1007/978-3-540-30469-2_31
http://dx.doi.org/10.1109/TNET.2017.2652850
http://dx.doi.org/10.1109/MPRV.2009.82
http://arxiv.org/abs/1502.01815
http://arxiv.org/abs/1502.01815
http://doi.acm.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052

[21] A. Ahmed, E. Ahmed, A survey on mobile edge computing, in: 2016 10th International Conference

on Intelligent Systems and Control (ISCO), 2016, pp. 1–8. doi:10.1109/ISCO.2016.7727082.

[22] E. Borcoci, Fog Computing, Mobile Edge Computing, Cloudlets - which one?

URL https://www.iaria.org/conferences2016/filesICSNC16/Softnet2016_Tutorial_

Fog-MEC-Cloudlets-E.Borcoci-v1.1.pdf

[23] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, W. Heinzelman, Cloud-vision: Real-time face

recognition using a mobile-cloudlet-cloud acceleration architecture, in: 2012 IEEE Symposium

on Computers and Communications (ISCC), 2012, pp. 000059–000066. doi:10.1109/ISCC.2012.

6249269.

[24] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, R. Buyya, ifogsim: A toolkit for modeling and simulation of

resource management techniques in internet of things, edge and fog computing environments, CoRR

abs/1606.02007.

URL http://arxiv.org/abs/1606.02007

[25] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog Computing: A Platform for Internet of Things

and Analytics, Springer International Publishing, Cham, 2014, pp. 169–186. doi:10.1007/

978-3-319-05029-4_7.

URL http://dx.doi.org/10.1007/978-3-319-05029-4_7

[26] D. Evans, The internet of things: How the next evolution of the internet is changing everything,

Whitepaper, CISCO Internet Business Solutions Group (IBSG) 1 (2011) 1–11.

[27] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): A vision, architectural

elements, and future directions, Future generation computer systems 29 (7) (2013) 1645–1660, in-

cluding Special sections: Cyber-enabled Distributed Computing for Ubiquitous Cloud and Network

Services: Cloud Computing and Scientific Applications Big Data, Scalable Analytics, and Beyond.

doi:https://doi.org/10.1016/j.future.2013.01.010.

URL http://www.sciencedirect.com/science/article/pii/S0167739X13000241

[28] L. F. G. Sarmenta, Volunteer computing, Ph.D. thesis, Massachusetts Institute of Technology, Cam-

bridge, MA, USA, aAI0803463 (2001).

[29] D. P. Anderson, Boinc: a system for public-resource computing and storage, in: Fifth IEEE/ACM

International Workshop on Grid Computing, 2004, pp. 4–10. doi:10.1109/GRID.2004.14.

[30] R. Nakanishi, A study on utilization of TV sets in volunteer computing, in: ITE Tech. Rep., Vol. 40

of BCT ’16, 2016, pp. 17–20.

24

http://dx.doi.org/10.1109/ISCO.2016.7727082
https://www.iaria.org/conferences2016/filesICSNC16/Softnet2016_Tutorial_Fog-MEC-Cloudlets-E.Borcoci-v1.1.pdf
https://www.iaria.org/conferences2016/filesICSNC16/Softnet2016_Tutorial_Fog-MEC-Cloudlets-E.Borcoci-v1.1.pdf
https://www.iaria.org/conferences2016/filesICSNC16/Softnet2016_Tutorial_Fog-MEC-Cloudlets-E.Borcoci-v1.1.pdf
http://dx.doi.org/10.1109/ISCC.2012.6249269
http://dx.doi.org/10.1109/ISCC.2012.6249269
http://arxiv.org/abs/1606.02007
http://arxiv.org/abs/1606.02007
http://arxiv.org/abs/1606.02007
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://dx.doi.org/https://doi.org/10.1016/j.future.2013.01.010
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://dx.doi.org/10.1109/GRID.2004.14

[31] R. Cushing, G. H. H. Putra, S. Koulouzis, A. Belloum, M. Bubak, C. de Laat, Distributed computing

on an ensemble of browsers, IEEE Internet Computing 17 (5) (2013) 54–61. doi:10.1109/MIC.2013.

3.

[32] P. Czarnul, J. Kuchta, M. Matuszek, Parallel Computations in the Volunteer–Based Comcute

System, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 261–271. doi:10.1007/

978-3-642-55224-3_25.

URL http://dx.doi.org/10.1007/978-3-642-55224-3_25

[33] A. Calderón, F. Garćıa-Carballeira, B. Bergua, L. M. Sánchez, J. Carretero, Expanding the volunteer

computing scenario: A novel approach to use parallel applications on volunteer computing, Future

Generation Computer Systems 28 (6) (2012) 881 – 889, including Special sections SS: Volunteer

Computing and Desktop Grids and SS: Mobile Ubiquitous Computing. doi:http://dx.doi.org/

10.1016/j.future.2011.04.004.

URL http://www.sciencedirect.com/science/article/pii/S0167739X11000550

[34] J. Balicki, W. Kor lub, J. Paluszak, Big Data Processing by Volunteer Computing Supported by

Intelligent Agents, Springer International Publishing, Cham, 2015, pp. 268–278. doi:10.1007/

978-3-319-19941-2_26.

URL http://dx.doi.org/10.1007/978-3-319-19941-2_26

[35] R. Bruno, P. Ferreira, freecycles: Efficient data distribution for volunteer computing, in: Proceedings

of the Fourth International Workshop on Cloud Data and Platforms, CloudDP ’14, ACM, New York,

NY, USA, 2014, pp. 4:1–4:6. doi:10.1145/2592784.2592788.

URL http://doi.acm.org/10.1145/2592784.2592788

[36] V. D. Cunsolo, S. Distefano, A. Puliafito, M. Scarpa, Volunteer computing and desktop cloud: The

cloud@home paradigm, in: 2009 Eighth IEEE International Symposium on Network Computing and

Applications, 2009, pp. 134–139. doi:10.1109/NCA.2009.41.

[37] S. Alonso-Monsalve, F. Garćıa-Carballeira, A. Calderón, Fog computing through public-resource

computing and storage, in: The 2nd International Conference on Fog and Mobile Edge Computing

(FMEC 2017), IEEE, 2017, pp. 81–87. doi:10.1109/FMEC.2017.7946412.

[38] D. P. Anderson et al., Boinc, https://github.com/BOINC/boinc (2017).

[39] Y. Cui, Z. Lai, N. Dai, A first look at mobile cloud storage services: architecture, experimentation,

and challenges, IEEE Network 30 (4) (2016) 16–21. doi:10.1109/MNET.2016.7513859.

[40] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback, J. F. Dray Jr,

Advanced encryption standard (aes), Federal Inf. Process. Stds.(NIST FIPS)-197.

25

http://dx.doi.org/10.1109/MIC.2013.3
http://dx.doi.org/10.1109/MIC.2013.3
http://dx.doi.org/10.1007/978-3-642-55224-3_25
http://dx.doi.org/10.1007/978-3-642-55224-3_25
http://dx.doi.org/10.1007/978-3-642-55224-3_25
http://dx.doi.org/10.1007/978-3-642-55224-3_25
http://dx.doi.org/10.1007/978-3-642-55224-3_25
http://www.sciencedirect.com/science/article/pii/S0167739X11000550
http://www.sciencedirect.com/science/article/pii/S0167739X11000550
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2011.04.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2011.04.004
http://www.sciencedirect.com/science/article/pii/S0167739X11000550
http://dx.doi.org/10.1007/978-3-319-19941-2_26
http://dx.doi.org/10.1007/978-3-319-19941-2_26
http://dx.doi.org/10.1007/978-3-319-19941-2_26
http://dx.doi.org/10.1007/978-3-319-19941-2_26
http://dx.doi.org/10.1007/978-3-319-19941-2_26
http://doi.acm.org/10.1145/2592784.2592788
http://dx.doi.org/10.1145/2592784.2592788
http://doi.acm.org/10.1145/2592784.2592788
http://dx.doi.org/10.1109/NCA.2009.41
http://dx.doi.org/10.1109/FMEC.2017.7946412
https://github.com/BOINC/boinc
http://dx.doi.org/10.1109/MNET.2016.7513859

[41] F.-H. Liu, Computation over encrypted data, Cloud Computing Security: Foundations and Chal-

lenges (2016) 305.

[42] D. P. Anderson, J. McLeod, Local scheduling for volunteer computing, in: 2007 IEEE International

Parallel and Distributed Processing Symposium, 2007, pp. 1–8. doi:10.1109/IPDPS.2007.370667.

[43] T. Dierks, E. Rescorla, The transport layer security (tls) protocol version 1.2, in: IETF RFC 5246,

2008.

[44] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, Y. Lafon, Simple

object access protocol (soap) 1.2, World Wide Web Consortium.

[45] A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Web services security: Soap message security

1.1 (ws-security 2004). oasis standard specification, 2006.

[46] S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, N. Bolyard, Elliptic curve cryptography (ecc)

cipher suites for transport layer security (tls).

[47] H. Krawczyk, Perfect Forward Secrecy, Springer US, Boston, MA, 2011, pp. 921–922. doi:10.1007/

978-1-4419-5906-5_90.

URL http://dx.doi.org/10.1007/978-1-4419-5906-5_90

[48] W. C. Barker, E. Barker, U. D. of Commerce, N. I. of Standards, Technology, Recommendation

for the Triple Data Encryption Algorithm (TDEA) Block Cipher: NIST Special Publication 800-67,

Revision 2, CreateSpace Independent Publishing Platform, USA, 2012.

[49] D. P. Anderson, Volunteer computing: The ultimate cloud, Crossroads 16 (3) (2010) 7–10. doi:

10.1145/1734160.1734164.

URL http://doi.acm.org/10.1145/1734160.1734164

[50] BOINC, Virtualbox, http://boinc.berkeley.edu/wiki/VirtualBox (2016).

[51] SETI@Home, Cpu performance, https://setiathome.berkeley.edu/cpu_list.php, online ((ac-

cessed 12 June 2017, 22:02:19 UCT)).

[52] B. Javadi, D. Kondo, J. M. Vincent, D. P. Anderson, Discovering statistical models of availability

in large distributed systems: An empirical study of seti@home, IEEE Transactions on Parallel and

Distributed Systems 22 (11) (2011) 1896–1903. doi:10.1109/TPDS.2011.50.

[53] S. Alonso-Monsalve, F. Garćıa-Carballeira, A. Calderón, Combos: A complete simulator of volunteer

computing and desktop grids, Simulation Modelling Practice and Theory 77 (2017) 197 – 211. doi:

https://doi.org/10.1016/j.simpat.2017.06.002.

URL http://www.sciencedirect.com/science/article/pii/S1569190X17301028

26

http://dx.doi.org/10.1109/IPDPS.2007.370667
http://dx.doi.org/10.1007/978-1-4419-5906-5_90
http://dx.doi.org/10.1007/978-1-4419-5906-5_90
http://dx.doi.org/10.1007/978-1-4419-5906-5_90
http://dx.doi.org/10.1007/978-1-4419-5906-5_90
http://doi.acm.org/10.1145/1734160.1734164
http://dx.doi.org/10.1145/1734160.1734164
http://dx.doi.org/10.1145/1734160.1734164
http://doi.acm.org/10.1145/1734160.1734164
http://boinc.berkeley.edu/wiki/VirtualBox
https://setiathome.berkeley.edu/cpu_list.php
http://dx.doi.org/10.1109/TPDS.2011.50
http://www.sciencedirect.com/science/article/pii/S1569190X17301028
http://www.sciencedirect.com/science/article/pii/S1569190X17301028
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2017.06.002
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2017.06.002
http://www.sciencedirect.com/science/article/pii/S1569190X17301028

[54] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile, scalable, and accurate sim-

ulation of distributed applications and platforms, Journal of Parallel and Distributed Computing

74 (10) (2014) 2899–2917.

URL http://hal.inria.fr/hal-01017319

[55] B. Ramesh, A. Bhardwaj, J. Richardson, A. D. George, H. Lam, Optimization and evaluation of

image- and signal-processing kernels on the ti c6678 multi-core dsp, in: 2014 IEEE High Performance

Extreme Computing Conference (HPEC), 2014, pp. 1–6. doi:10.1109/HPEC.2014.7040989.

27

http://hal.inria.fr/hal-01017319
http://hal.inria.fr/hal-01017319
http://hal.inria.fr/hal-01017319
http://dx.doi.org/10.1109/HPEC.2014.7040989

	Introduction
	Background Related Work
	Mobile Cloud Computing
	Volunteer Computing

	Proposed Model
	Aims and Goals
	Architecture
	Volunteer Platforms
	Application Scenarios
	Storage Services
	Processing Services

	Incentive Scheme
	Security Aspects

	Evaluation
	Devices characterization
	Case Studies
	Case study 1: Processing Service
	Case study 2: Storage Service

	Conclusion and Future Work

