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Abstract

In online marketplaces (e-commerce, cloud marketplaces), potential buyers/consumers do not have direct access to inspect
the quality of products and services offered by retailers and service providers of marketplaces. Therefore, consumers
have to trust the reputation system of the marketplace for making a meaningful decision whether they should have
interaction with the particular service provider or not. Consumer’s feedback plays an important role while evaluating
the trustworthiness of the service provider, but it brings challenges to security and the consumer’s privacy. Existing
centralized reputation systems collect and process consumer’s feedback at the centralized trusted system but these
systems could leak sensitive information of consumers (such as buying history, likes and dislikes). To ensure the privacy
of consumers, in this paper, we present PrivBox, a privacy-preserving decentralized reputation system that computes
reputation of retailers or service providers by leveraging feedback from users in a secure and private way. The PrivBox
system uses primitives of a homomorphic cryptographic system and non-interactive zero-knowledge proof to achieve
objectives of privacy-preservation and well-formedness. PrixBox performs its operations in a decentralized setting, and
ensures the following characteristics. 1) It guarantees privacy of consumers without relying on any trusted setup or
trusted third party system, 2) it ensures that the consumer’s feedback ratings remain within the prescribed range, and
3) it enables consumers and service providers to verify the computed statistics without relying on a trusted third party.
To evaluate the performance, we have implemented operations of the PrivBox system. The results demonstrate that
the proposed system has a small communication and computation overheads with the essential properties of privacy-
preservation and decentralization.

Keywords: Online Marketplaces, Privacy Preservation, Decentralized Reputation Aggregation, E-commerce, Cloud
Marketplaces

1. Introduction

In 2017, an estimated 1.61 billion people have pur-
chased products and services over the Internet (online)
marketplaces (for example Amazon, eBay, Taobao, Rakuten,
Alibaba) [1]. These transactions have resulted in an aggre-
gate revenue of around $1.9 trillion [2], and is expected to
reach an overall revenue of $4 trillion by the year 2020,
approximately a double of 2017 [3]. Other online sys-
tems such as Airbnb and Uber have also attracted a large
number of users for services other than purchasing prod-
ucts (for example room sharing, room, and car booking).
Recently, cloud marketplaces operated by cloud service
providers (like AWS Marketplace, Oracle Marketplace, sales-
force, Azure Marketplace) have also attracted a large num-
ber of customers by providing software applications and
hardware platforms as a service for the computationally
expensive tasks. Gartner has predicted that cloud mar-
ketplaces will be expected to reach a revenue of around
$71.55 billion by the year 2021 [4].
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Although, online marketplaces play an important role
in provid-ing business opportunities to small retailers. The
growing market-places have also attracted a large num-
ber of fraud retailers whomisuse the platform for financial
benefits by committing frauds with the consumers. Some
of the most common frauds happening today over online
marketplaces are: buyers are not receiving goods that they
have ordered, receiving products which have inferior value
or are significantly different from the original description
[5, 6]. The Experian statistics reveals that e-commerce
frauds (online auctions, buying products) have increased
by 33% since 2015 [7]. Frauds over online marketplaces
have resulted in an annual loss of billions of dollars to con-
sumers all over the world [8, 9, 10].

In an electronic marketplace, a consumer1 does not
have an opportunity to physically inspect and evaluate the
quality of products and services before purchasing them.
Therefore, the consumer has to trust the system that pro-
vides information about the trustworthiness of retailers of
the marketplace. Similarly, in a cloud-based edge com-
puting system, the consumer may wish to know the trust-

1The term consumer, user, and buyer are used interchangeably in
this paper, and refer to the same entity.
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worthiness of nearby mobile edges before outsourcing his
sensitive computation to the edge nodes. The market-
place (e-commerce, mobile edge or cloud marketplace) de-
ploys a reputation system that could assist consumers in
evaluating the trustworthiness of the retailers and ser-
vice providers. Consumers then consider this information,
while making a meaningful decision whether they should
transact with the retailer or not. The trustworthiness score
of a retailer is computed by aggregating feedback scores
submitted by consumers of the marketplace who already
have had transactions with the retailer.

Reputation systems can be classified into two types.
1) a content-driven system that computes reputation of
a retailer using text comments left by consumers for the
retailer2 (for example, whether the product is received on
time, tracking is provided) [11]. 2) a user-driven system
that utilizes feedback scores (like, dislike, rating score (0-
5)) left by the consumer for his past transactions [12, 13,
14]. The system can also be implemented by combining
both content-driven and user-driven systems. The reputa-
tion system of online marketplaces (e.g. e-Bay, Amazon,
Airbnb, Stack-overflow, online dating applications) mainly
uses user ratings in a trusted centralized setup [12, 13].
The trusted system has to protect private information of
consumers and ensure the privacy, security, and integrity
of the consumer’s data. However, consumers are reluc-
tant to trust the centralized system, especially in provid-
ing a negative rating to the particular entity because of
fear of retaliation if their negative ratings are exposed to
others [15, 16]. The data anonymization approaches [17,
18, 19] could provide a privacy-preservation layer by hid-
ing real identities of feedback providers, but anonymiza-
tion is prone to de-anonymization and de-identification at-
tacks [20, 21, 15]. For example, Minkus et al. [15] were able
to identify private information of eBay consumers by cor-
relating feedback scores left by consumers for their pur-
chases on the eBay network and information from their
Facebook profiles. The reputation system could protect
privacy of feedback providers by using cryptographic sys-
tems [22, 23, 24, 25]. However, these systems not only
require high system resources but also rely on a trusted
group of users for the privacy protection.

In this paper, we present PrivBox, a novel decentral-
ized and verifiable reputation system that securely com-
putes reputation of retailers in a marketplace. The system
enables feedback providers to provide their rating scores
for retailers in an encrypted form. The design of a PrivBox
system consists of three major components: the consumer
who uses services, the service provider (a retailer on the
marketplace or an online seller) who provides services to
consumers, and a public bulletin board (a response collec-
tor or the tally system) that holds cryptograms of ratings
submitted by consumers. Consumers can rate retailers
on the binary scale–likes (1) or dislikes (0)–and submit

2Terms retailer, seller, and service provider are used interchange-
ably in this paper.

cryptograms of ratings to the public Bulletin Board (BB).
Anyone (collector, analyst, marketplace, seller or buyer)
can then compute the reputation of the particular retailer
by simply multiplying the cryptograms from the public
bulletin board in a secure way. The PrivBox system guar-
antees privacy in the presence of active and passive ad-
versaries. Furthermore, the PrivBox system also incor-
porates non-interactive zero-knowledge proofs to prevent
malicious consumers from providing out-of-range values
for their ratings. We prototyped cryptographic operations
of the PrivBox system, and evaluate its performance for
the computation and communication overheads. Exper-
imental results demonstrate that the computational and
communication overheads of the PrivBox system are rea-
sonable with the inherent property of privacy-preservation.

In summary, this paper makes the following contribu-
tions:

• It presents a decentralized system that does not re-
quire any trusted setup or trusted set of users for pro-
tecting private inputs of participants. The feedback
ratings are exchanged to the public bulletin board in
an encrypted form. We apply non-interactive zero-
knowledge proofs to ensure the well-formedness of
feedback ratings while ensuring the privacy of con-
sumers. The proposed system is also publicly verifi-
able without the use of any trusted third party.

• We prove the security and privacy properties of the
system under malicious and honest-but-curious ad-
versarial models.

• We implement the cryptographic operations of the
system and analyze the computational and commu-
nication overheads.

The PrivBox system can also be applied in other do-
mains such as collaborative intrusion detection systems
[26, 27], where multiple Internet service providers could
collaborate for the effective and early identification of at-
tackers; collaborative filtering of spammers in online so-
cial networks, where multiple service providers collaborate
with each other [28, 29, 30, 31] for the quick detection
of stealthy and smart spammers; and the private statis-
tics aggregation in the private and secure surveys [32, 33].
Currently, the trustworthiness of a cloud marketplace is es-
timated based on the service level agreement by the cloud
service provider; however, it is necessary that the trust-
worthiness estimation should be take into account feed-
back from consumers of the cloud provider. PrivBox can
be adopted in this context by providing reputation aggre-
gation as a service to consumers.

This paper is organized as follows. Section 2 describes
systems proposed for computing the reputation of entities
in commercial and non-commercial systems. Section 3 pro-
vides an overview of the PrivBox system, and Section 4 de-
tails the cryptographic operations of the proposed system.
Section 5 presents the security and privacy properties of
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PrivBox. Section 6 presents a prototype implementation
and evaluation of PrivBox. Section 7 presents discussion
on defenses against attacks on PrivBox. Section 8 provides
discussions on other potential application domains where
the PrivBox system could be applied. Finally, Section 9
concludes the paper.

2. Potential Reputation Systems

Broadly, reputation systems can operate in two modes:
1) systems that require a trusted third party for the collec-
tion and aggregation of ratings from consumers of the sys-
tem [12, 13, 34], and 2) systems that compute reputation in
a decentralized way without relying on any trusted third
party system [35, 36, 37, 38]. Although, a trusted third
party system promises to ensure privacy, security, and in-
tegrity of the information submitted by its users, but the
system poses a serious threat to the privacy of users when
the third party itself becomes a malicious entity [39, 40] or
maliciously collaborates with other entities for the finan-
cial benefits (for example selling information to marketing
or insurance companies) [41, 42]. Furthermore, users are
also reluctant to exchange any sensitive information to a
centralized system because of privacy concerns and fear of
the retaliatory effect if their negative ratings are exposed
to the rated entity.

The identity of the feedback provider can be anonymized
by using a one-time or life-time anonymous identity [43, 18]
but this approach has two limitations: 1) the anonymized
data can be de-anonymized by correlating the informa-
tion from different sources [20, 21, 15], and 2) anonymiza-
tion would not provide any meaningful information which
could be used to characterize behaviour of entities and par-
ticipants. Furthermore, it is more important to protect
feedback values rather than hiding or anonymizing source
identities. Li et al. [44] proposed a cryptographic system
that enables enterprises to divide the outsourced data and
separately stores them in a distributed cloud setup. This
approach prevents the cloud service provider from infer-
ring information from the outsourced data, but it has a
search overhead at the cloud service provider. Gai et al.
[45] proposed a fully homomorphic encryption solution to
perform blended arithmetic operations over the real num-
bers using a tensor-based solution. The proposed approach
is noise-free as compared to the Gentry’s lattice-based sys-
tem which is noisy [46].

Several systems have also been proposed for the reputa-
tion aggregation in the P2P network [22, 23, 24, 25, 47, 17]
that operates in decentralized settings. These systems nor-
mally rely on a preselected set of trusted users or peers
for ensuring privacy of participants [48, 49, 47, 17]. Fur-
ther, existing decentralized protocols require that feedback
providers should remain online during the aggregation pro-
cess. Soska et al. [50] proposed a decentralized anonymous
marketplace that uses the public ledger based consensus
for aggregating the reputation of retailers while preserv-
ing the privacy of feedback providers. Clark et al. [51]

proposed a dynamic decentralized reputation system that
allows clients to delegate their trust values to other trusted
peers before leaving the network. A Bitcoin-based decen-
tralized reputation system is proposed in [52] where the
trust of participants is expressed as Bitcoins. Post et al.
[53] proposed Bazaar, which leverages the weighted links
between buyers and sellers on the marketplace who have a
successful transaction. The weights on the link represent
the aggregate monetary value transactions between buyers
and sellers.

Major commercial reputation systems have a central-
ized trusted system architecture [12, 13] responsible for
the management and processing of the user’s data. Table
1 presents different features of commercial reputation sys-
tems. Commercial reputation systems compute reputation
of retailers, consumers, and sellers by adding or averaging
the rating scores provided by consumers. For example,
eBay3 a popular auction site allows buyers and sellers to
rate each other as a positive, a negative or a neutral (repre-
sented as 1, -1, 0) score after the transaction. The aggre-
gation process is centralized, where the eBay reputation
engine computes the aggregated score of sellers and buy-
ers by summing ratings together. The aggregated ratings
are then displayed on the page of the seller and the buyer.
Epinions.com4 is a general consumer product review site
(owned by eBay) that allows users to have a review about
the quality of different products before buying them. The
Epinions registered users provide ratings (on the scale of 1
to 5 stars) to products and other users. Amazon5 is a pop-
ular website, starting business as an online bookstore in
1994, but now it has become the largest electronic market-
place in the world. Registered users of the site are allowed
to rate retailers at the scale of 1-5 stars after the trans-
action. The system displays the average of all ratings on
the web-page about the retailer. Early web search engines
simply use the content of the search query to present the
top pages to users. However, spammers can evade these
systems by simply including the popular search queries
in their content. Web search engines now use link-based
reputation systems (for example, the PageRank used in a
Google search engine) for suggesting reputed pages at the
top of the searched query. In PageRank [54], the reputa-
tion of the web-page is computed as the number of reputed
pages pointing links to the respective page.

In this paper, we present a novel decentralized repu-
tation aggregation system that protects privacy of users
without relying on a trusted system or anonymous iden-
tities. The protocol enables feedback providers to submit
their ratings in the encrypted form to the bulletin board.
Participants or any other entity in the system would not
learn the actual feedback value of the individual, but would
learn the aggregate statistics of the retailer as whole.

3https://www.ebay.com/
4http://www.epinions.com/
5https://www.amazon.com/
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(a) Typical Reputation System (b) PrivBox System

Figure 1: A) A typical reputation aggregation system that could leak how a buyer rated a particular retailer. B) The same aggregation
system with the PrivBox system, where the adversary could not link ratings submitted by the buyer.

System Anonymous Identities Encrypted Rating Rating Scale Architecture Verifiable
Amazon X 7 (0-5) Centralized 7

Ebay X 7 (0,1,-1) Centralized 7
Uber X 7 (0-5) Centralized 7

Airbnb X 7 (0-5) Centralized 7
Epinions 7 7 (0-5) Centralized 7

OpenBazzar X 7 (0,1 or 0-5) Decentralized 7
Yelp 7 7 (0-5) Centralized 7

PrivBox X X (0,1 or 0-5) decentralized X

Table 1: Commercial reputation systems and their attributes.

3. PrivBox Overview

In this section, we present design objectives of the
privacy-preserving decentralized reputation system, define
the problem, and provide an architecture of the PrivBox
system. We also discuss the adversarial model for the pro-
posed system.

3.1. Design Objectives

A typical centralized reputation system is shown in
Figure 1.A, where the reputation system of the market-
place collects and aggregates feedback values reported by
its consumers. The consumer of the marketplace can have
an anonymized or real identity that he uses to submit the
feedback value for his interacted retailers. Suppose a con-
sumer U 1 has purchased the product from the retailer S1,
and left the feedback value for S1 on the marketplace rep-
utation system. Other consumers who transacted with
S1 have also left positive and negative feedbacks for S1.
Based on these feedback values, the reputation system up-
dates the reputation of the retailer, which would help new
or old consumers to decide whether they should have trans-
action with the retailer or not. However, the centralized
system would know ratings of the particular consumer for
his interacted retailers. From Figure 1. A, it can be seen

that the centralized reputation system can learn that con-
sumer U 1 has rated the retailer S1 positively, and also
interacted with S1,S2,S3. Further, the user of this sys-
tem does not have the ability to verify the reputation score
stated by the reputation system.

The objective of this paper is to present a verifiable de-
centralized reputation system for the online marketplace.
The system provides an opportunity to compute reputa-
tion of the retailer while hiding the buyer’s feedback scores
using a homomorphic cryptographic method. With the
placement of the PrivBox solution, a consumer of the mar-
ketplace is not required to anonymize his identity; instead,
he hides his ratings by presenting cryptograms of ratings.
The value of the rating score (0 or 1, like or dislike, rat-
ing between 1 to 5 stars) is encrypted using cryptographic
primitives as shown in Figure 1.B. To this extent, the ad-
versary on the reputation system or the reputation system
itself would not be able to learn how a particular con-
sumer has rated a particular retailer or another interacted
consumer. The PrivBox system could provide maximum
privacy unless a maximum number of consumers (n-1) in
the system collude to find the rating score of the target
consumer. Furthermore, the design choice of PrivBox en-
sures two other properties: 1) it limits consumers to pro-
vide rating scores within the prescribed range, and 2) it
provides public verification of the reputation score stated
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by the marketplace.

3.2. Problem Definition

Assume there are n consumers/users who have rated
m retailers of the marketplace. Let Fji ∈ {0, 1} be the
rating score assigned by the consumer j to the retailer i .
The objective is to design a reputation system which takes
the secret feedback score from all consumers and computes
the reputation of the retailer over the marketplace. The
reputation of a given retailer S is computed by summing
the secret feedback values. Let τ = (τ1, τ2, . . . , τη) be
the identities of consumers who rated the retailer, such
that τi ∈ [1,n] and τi 6= τj , for any i , j ∈ [1, η], i 6= j .
The PrivBox system computes the reputation REi of each

retailer i ∈ [1,n], as follows:
2∗

∑η
j=1 Fτj i

−η
η+2 ,∀ i ∈ [1,n],

where
∑η

j=1 Fτj i is the sum of feedback scores, and η is
the number of consumers. The reputation system needs
to perform its functions in a decentralized and privacy-
preserving way such that no trusted third party system
and trusted peers are needed for the management of cryp-
tographic parameters. Further, the system should provide
correct result even in the presence of malicious partici-
pants.

3.3. System Architecture

The PrivBox system consists of three major compo-
nents as shown in Figure 2 .
1) Consumers: who use services of some service provider
or users of the marketplace.
2) Service Providers: that provide services to users and
they can be registered retailers in the marketplace or in-
dependent sellers.
3) Bulletin Board (BB): that holds the cryptograms
of rating scores and public cryptographic parameters pro-
vided by consumers.

The consumer transacts directly with the marketplace
or the retailer (for example buying products from the re-
tailer over the Amazon and eBay networks, or buying
products from the independent online store). Once the
product is received by the consumer, he is then asked for
the feedback about his recent transaction. The consumer
provides his feedback to the bulletin board in an encrypted
form. The bulletin board acts as a platform for a public au-
thenticated channel, where authenticated consumers can
post data, say with a digital signature to prove the data
authenticity. In particular, the bulletin board stores the
identity of the consumer providing rating, tokens issued
by the marketplace (to ensure it is a legitimate transac-
tion), encrypted feedback scores, and the associated zero-
knowledge proof to prove the well-formedness of feedback
ciphertext. Once the information is published on the BB,
the marketplace could use this information to compute the
aggregated reputation of the retailer or seller. The mar-
ketplace can then put this aggregated reputation score on
the web page of the retailer in order to provide informa-
tion about the trustworthiness of the retailer. Further, a

new or old user can also verify the stated reputation score
by accessing the information from the bulletin board in a
secure and private way.

3.4. Adversarial Model and Assumptions

With respect to privacy, we assume a malicious ad-
versarial model for feedback providers. In the malicious
adversarial model, the participants/consumers try to dis-
rupt the functionality of the system by providing an out-
of-range rating. The malicious participant also tries to
infer private information about the target user by collud-
ing with others. We assume that users provide encrypted
feedback scores to the bulletin board, and use informa-
tion from the bulletin board for the reputation aggrega-
tion and verification of stated reputation. We assume an
Honest-but-Curious (HBC) adversary model for the bul-
letin board. In an HBC model, the party (bulletin board,
participant) correctly follow the protocol function but they
may use shared information to learn the private informa-
tion of other participants.

Let G denote a finite cyclic group of a prime order q
in which the Decisional Diffie-Hellman (DDH) problem is
intractable. Let g be the generator. There are n partic-
ipants participating in the aggregation process, and they
all agreed on (G , g). Each participant Ui generates a ran-
dom secret value (private key) and a public key. He then
broadcasts the public key to the bulletin board and keeps
the private key secret to himself. The public key is publicly
available to everyone in the system. We also assume that
marketplace issued a token to the participant for provid-
ing feedback about the interacted retailer, and this token
can be used only once. We assume that the marketplace
is honest in providing tokens to those consumers who pur-
chased products from the rated retailers.

3.5. Privacy Preservation Goals

The goal of the PrivBox system is to ensure the in-
tegrity of feedback scores provided by participants, such
that participants only know their own input and the re-
vealed aggregated score. Further, anyone could publicly
verify the aggregated score without relying on any trusted
system. Let us assume that there are n participants in
the system, and each holds a secret rating score about
the retailer. The participant would like to provide this
secret score for the aggregation process in such a way
that this score should not be revealed to other partici-
pants. The PrivBox system ensures the privacy of partic-
ipants and has the following privacy properties. 1) Only
the global reputation score is revealed while the individ-
ual feedback remains secret, unlinkable and anonymous
throughout the process; 2) the system ensures that ad-
versary participants would not be able to manipulate the
scores provided by feedback providers; 3) the system en-
sures that an encrypted feedback score must be within the
prescribed range without actually revealing the feedback
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Figure 2: The Architecture of PrivBox System.

value. The system achieves these privacy goals by com-
bining homomorphic encryption and decentralized tally-
ing [55] for the exchange of rating cryptograms, as well
as using efficient zero-knowledge proofs for ensuring the
cryptogram well-formedness.

4. PrivBox System Operations

In this section, we present cryptographic operations of
the PrivBox system. First, we present the system oper-
ations for binary responses (Section 4.2) and, second, we
extend it to multiple responses (Section 4.7).

4.1. Notations

Table 2 summarizes notations used throughout the pa-
per. We denote the set of all consumers as U = U1,U2, . . .Un .
For cryptographic operations, we use xi to represent the
private key of Ui , Xi = gxi to represent the public key of
the Ui and Ri to represent the restructured key of Ui .

4.2. Providing Feedback

Let U = {1, 2, . . . ,n} be consumers in the network
holding the secret feedback scores (0,1) for their interacted
retailers and service providers. Assume a multiplicative
cyclic group where p and q are large primes that satisfy
q | p − 1. Let there be a subgroup Gq of order q of the
group Z∗p , and g is a generator of Gq . Once the product
is purchased from the marketplace and is delivered to the
consumer, the marketplace generates a token for the trans-
action and sends it to the consumer. In order to provide
the encrypted feedback for the retailer, the consumer has
to generate the cryptographic parameters (public, private
and restructured keys). First, the ith consumer generates

Variables Description
Ui i ’th user, consumer or participant
[n] the set {1, 2, . . . ,n}
vij trust value assigned to seller Pj by Ui

τ the vector of indices of actual partici-
pants

η no. of elements in τ
G group of order p in which DDH prob-

lem is hard
Yi public key of participant Ui , i ∈ [η]
xi private of participant Ui , i ∈ [η]
Ri Restructured key of participant Ui , i ∈

[η]
Ci = (cτi1, cτi2, . . . , cτin ) vector of encrypted scores of n partic-

ipants
θj product of cryptograms
θ (θ1, θ2, . . . , θn )
T ′ updated global trust/Reputation vec-

tor

Table 2: Notation used in PrivBox.

a random value i.e. a secret key (xi ∈ Z∗q) and computes
the public key (Xi) as follows.

Xi = gxi (1)

The consumer then publishes the public key Xi on the
bulletin board. Table 3 represents the structure of the bul-
letin board in this phase. Second, the consumer computes
the restructured key Ri used for creating the cryptogram
as follows.

Ri =
∏

j∈n,j<i

Xj

/ ∏
j∈n,j>i

Xj (2)

The computation of Ri as above ensures that∏
i∈n

RXi
i = 1. (3)
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SETUP:G, p, g

INITIALIZATION:
T = (t1, t2, . . . , tn)

Keyτ1 Keyτ2 · · · · · · Keyτη
gxτ11 gxτ21 · · · · · · gxτη1

gxτ12 gxτ22 · · · · · · gxτη2

...
...

...
...

gxτ1n gxτ2n · · · · · · gxτηn

Table 3: Phase 1: Computing Restructured Key from the public keys
published on the public bulletin board.

Finally, the consumer generates the cryptograms of
feedback scores using the restructured key and the pri-
vate key, and presents them to the bulletin board along
with the token. The token alone cannot reveal any in-
formation about the purchased product, the retailer from
whom the products is purchased or the consumer private
feedback score. The range of the feedback score can be dif-
ferent on different applications. For example, on Amazon,
the feedback score takes the value between 0-5 stars, while
on the eBay network, it can be -1,0 or 1. For simplicity,
we provide details for the binary responses. This is simi-
lar to the way Amazon and eBay ask their consumers for
the feedback once the product has been delivered to them.
For example, Amazon asks buyers the following questions
about their transactions with the retailer: item arrived by
the due date (yes or no), item is the same as described
by the retailer (yes or no), and prompt and courteous ser-
vice (yes or no). PrivBox can also be extended to queries
having answers on a scale of 0-5 or any other scale with a
slight modification in the non-interactive zero-knowledge
(NIZK) proof, which proves that only one value has been
chosen from the possible responses.

In Privbox, we use +1 for the positive feedback, and
0 to represent the negative feedback, respectively. The
feedback submission to the bulletin board is a two-step
process. Firstly, the marketplace S generates a token
for the transaction, and sends it to the consumer. Con-
sumers have identities from the array of indices as: τ =
(τ1, τ2, . . . , τη). Obviously, η is the total number of con-
sumers who have been issued a token by the marketplace
S. The consumer then generates the private and the pub-
lic keys (xτi j ,Xτi j = gxτi j ) : i ∈ [1, η], j ∈ [1,n], where
g is a generator shared among consumers. The consumer
then posts the public key (Xτi j ) over the public bulletin
board. Secondly, the consumer generates the restructured
key (Rτi j =

∏i−1
k=1 Xτk j/

∏η
k=i+1 Xτk j ) that he can use to

generate his encrypted feedback. The consumer creates
the cryptogram as follows: cτi j = gxτi j yτi j gvτi j = R

xτk j

τk j
gvτi j

where yτi j =
∑i−1

k=1 xτk j −
∑η

k=i+1 xτk j ,∀ i ∈ [η], j ∈ [n],
and vτi j is either 0 or 1.

In addition to the cryptograms, the consumer Uτi also
provides the non-interactive zero-knowledge proof (NIZK)
to prove the feedback score vτi j is either 0 or 1. At the end
of this process, the following information is published over
the public bulletin board: the identity of the consumer
providing the feedback, the encrypted value of the feed-
back, the identity of the retailer or the service provider for
which this response has been provided, the token, and the
1-out-2 NIZK proof. Table 4 presents structure of the bul-
letin board after consumers have submitted cryptograms
to the bulletin board.

4.3. Computing Reputation

Once consumers have submitted their cryptograms and
NIZK proofs to the bulletin board, any entity (participant,
marketplace, or analyst) can compute the aggregated rep-
utation of the retailer. This can be done by simply mul-
tiplying the cryptograms from the bulletin board. The
positive score of the retailer or seller θ(θ1, θ2, . . . , θn) is
computed as below:

θr =

η∏
k=1

cτkr (4)

=

η∏
k=1

gxτk ryτk r gvτk r (5)

= g
∑η

k=1 xτk ryτk r+
∑η

k=1 vτk r (6)

As
∑η

k=1 xτkryτkr = 0, then θr =θr = g
∑n

k=1 vτk r . Since,
values of vτkr ∈ {0, 1}, 0 6

∑η
k=1 vτkr 6 η, so a brute force

search would yield
∑η

k=1 vτkr for all values of r ∈ [n].
At this point, we already have the aggregate sum of

positive ratings i.e. the sum of consumers who have shown
trust (1) on the retailer. The number of negative rating
can be computed by subtracting the positive ratings from
the total number of users who have provided ratings. The
simplest approach to compute the reputation of the retailer
is to use the negative and positive ratings together, i.e.
subtracting negative ratings from the positive ratings [56].
We use the beta reputation system [57] to compute the
final aggregated reputation of the business entity or the
retailer E on the marketplace. Let n be the number of
consumers providing ratings, PE represents the number of
consumers who provided positive ratings about entity E ,
and NE represents the number of consumers who rated
the entity E as non-trustworthy, then the final reputation
REE of an entity can be computed as follows:

REE =
PE −NE

n + 2
(7)

The system can be easily extended to other reputation
systems, e.g. the average of ratings can be computed by
simply averaging the sum of individual ratings over the
number of users.
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Token1 Token2 · · · · · · · · · Tokenη
Cτ1 Cτ2 · · · · · · · · · Cτη
cτ11 cτ21 · · · · · · · · · cτη1
PWF [cτ11 : Xτ11,Rτ11] PWF [cτ21 : Xτ21,Rτ21] · · · · · · · · · PWF [cτη1 : Xτη1,Rτη1]
cτ12 cτ22 · · · · · · · · · cτη2
PWF [cτ12 : Xτ12,Rτ12] PWF [cτ22 : Xτ22,Rτ22] · · · · · · · · · PWF [cτη2 : Xτη2,Rτη2]

...
...

...
...

...
...

...
...

cτ1n cτ2n · · · · · · · · · cτηn
PWF [cτ1n : Xτ1n ,Rτ1n ] PWF [cτ2n : Xτ2n ,Rτ2n ] · · · · · · · · · PWF [cτηn : Xτη1,Rτηn ]

Table 4: Phase 2: Providing Feedback and NIZK proof to the public bulletin board.

4.4. Zero Knowledge Proof of Knowledge

A non-interactive zero-knowledge (NIZK) proof is a
single zero-knowledge statement that can be sent from
the prover (consumer) to the public bulletin board, and
could be verified by anyone without interacting with the
prover. In PrivBox, we prove knowledge of a secret value
of the feedback score assigned by the consumer in a non-
interactive manner by applying the Fiat-Shamir heuristic
[58].

Here, we show how the consumer would construct a
non-interactive zero-knowledge proof to prove the well-
formedness for his responses as discussed in Section 4.2.
The consumer provides a NIZK proof for a statement of
this form: Z = gxygv , given gx , gy and v ∈ {0, 1}. In other
words, the statement can be written as (Z = gxy) ∨ (Z =
gxyg), where gx and gy are given. Since the prover has
a logical ‘OR’ statement to construct a proof, she needs
to provide a simulated proof for the false statement and a
real proof for the true statement.

Case I: Let us suppose Z = gxy . Hence, the prover needs
to provide a real proof for the statement Z = gxy ,
and a simulated proof for the second statement Z =
gxyg . We show how this could be done.

The prover selects r1 ∈ Zp uniformly at random and
generates two commitments com1 = (gy)r1 , com2 =
gr1 .The prover also generates two other commitments
as follows:
com ′1 = (gy)res

′
(Z/g)ch2 , com ′2 = gres′(gx )ch2 where

res ′, ch2 ∈R Zp . Now, let ch be the challenge gener-
ated by feeding the commitments into a secure hash
function. The prover calculates ch1 = ch − ch2. She
generates a response res = r1 − ch1 ∗ x . Now, the
verification equations are listed below.

1. (gy)res
?
= com1

z ch1

2. gres ?
= com2

(gx )ch1

3. (gy)res
′ ?

=
com′1

(z/g)ch2

4. gres′ ?
=

com′2
(gx )ch2

This proof comprises 4 commitments, 2 responses,
and 2 challenges.

Case II: Now, suppose Z = gxyg . Here, the prover needs
to provide a real proof for the statement Z = gxyg ,
and a simulated proof for the second statement Z =
gxy . The prover selects a random value r1, and
generates commitments com ′1 = (gy)r1 , com ′2 = gr1 .
The prover also generates two other commitments:
com1 = (gy)resZ ch1 and com2 = gres(gx )ch1 , where
res, ch1 ∈R Zp . Let ch be the grand challenge gen-
erated by the hash function that takes all system
parameters and commitments as inputs. The prover
computes ch2 = ch − ch1 and then calculates re-
sponse as res ′ = r1 − ch2 ∗ x .
The verification equations are as below:

1. (gy)res
?
= com1

z ch1

2. gres ?
= com2

(gx )ch1

3. (gy)res
′ ?

=
com′1

(z/g)ch2

4. gres′ ?
=

com′2
(gx )ch2

This proof comprises 4 commitments, 2 responses,
and 2 challenges.

4.5. Verification

The PrivBox system allows consumers to verify the cor-
rectness of the information provided by the marketplace or
the business entity. The marketplace publishes the aggre-
gated reputation scores on the account area of the retailer’s
portal. The consumer simply accesses the encrypted scores
and the associated non-interactive zero-knowledge proofs
from the bulletin board, to verify the correctness by us-
ing the verification equations mentioned in Section 4.4. If
all the NIZK proofs are found to be correct then the ag-
gregated score θr is computed using the information from
the public bulletin board. All verification operations are
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Figure 3: Transaction Workflow in PrivBox System.

performed without actually decrypting the individual re-
sponses presented by the consumers, thus preserving each
customer’s privacy.

4.6. Protocol Workflow

The transaction workflow in the PrivBox system is pre-
sented in Figure 3, and each step is described as follows.

1. The buyer/consumer places an order for the prod-
uct or service from the service provider of an online
marketplace (eBay, Amazon, cloud provider).

2. Once the product has been delivered to the buyer,
the online marketplace asks the buyer for the feed-
back about his experience with the retailer. The
marketplace asks buyers to provide answers to a set
of questions in the form of a survey. The responses
are submitted to the bulletin board.

3. Each buyer Uτk ; k ∈ [1, η] who has received a to-
ken from the marketplace then generates the cryp-
tographic parameters i.e. private key (xτk j ∈ Zp , j ∈
[1, η]) and the public key (Xτk j = gxτk j , j ∈ [1, η]).
The public key and the NIZK proof Π [xτk j : g ,Rτk j ]
of knowledge of xτk j = logg Rτk j are then posted to
the bulletin board for all j ∈ [1, η]. This proof proves
that the buyer Uτk knows the value of xτk j for all
j ∈ [1,n]. Finally, the buyer generates the restruc-
tured key used for encrypting the feedback score.

4. The buyer submits the feedback in the following form:

cτk j = R
xτk j

τk j
gvτk j , j ∈ [1, η]

Here vτk j ∈ {0, 1} is the secret feedback of Uτk for
the seller. A value of vτk j equal to 1 represents
a positive feedback and a value equal to 0 implies
a negative feedback. Uτk also posts a NIZK proof
Π [xτk j : g ,Xτk j ,Rτk j , cτk j ] on the bulletin board. The
construction of this NIZK proof is detailed in the
section 4.4 . This NIZK proof shows that cτk j is ei-

ther R
xτk j

τk j
or R

xτk j

τk j
g given g ,Xτk j and Rτk j , where

Rτk j =
∏k−1

i=1 Xτi j/
∏η

i=i+1 Xτi j for j ∈ [1, η]. Rτk j is
called the restructured key of Uτk and can be com-
puted by anyone immediately after every buyer has
completed step 3.

5. The marketplace or the analyst can utilize cryptograms
from the bulletin board to compute the aggregated
reputation of the retailer or seller on the marketplace∏η

i=1 cτi j = g
∑η

i=1 vτi j . A limited brute force search
will yield the value of Sj =

∑η
i=1 vτi j for all j ∈ [1, η].

6. The new buyer gets the aggregate reputation of the
seller or the retailers from the seller’s portal on the
marketplace. He can verify the statistics by mak-
ing the query to retrieve the public data from the
bulletin board. Similarly, the buyer can also ver-
ify whether his feedback is included in the bulletin
board as intended.

4.7. Allowing Multiple Choices

So far, we have presented the working of the protocol
for binary answers: i.e., participants are allowed to choose
one choice from the two available choices (zero or one).
However, in online marketplaces, consumers are often al-
lowed to provide the feedback over a range of discrete val-
ues (e.g 0-5 starts). The scheme can be trivially extended
to allow the participant to have more than two options
at their disposal. In order to enable multiple options, we
need to run c parallel instances of the same scheme, where
c is the total number of choices available to the partici-
pants. A participant will have to generate c distinct pri-
vate/public key pairs, each for a single choice. The user
will provide c cryptograms, each one for a distinct option.
A one-cryptogram will mean that the particular user has
selected the option that corresponds to the cryptogram.
Similarly, a zero-cryptogram will mean that the partici-
pant does not choose the particular option. Hence, each
of the c cryptograms will be a zero-cryptogram or a one-
cryptogram. In addition to that, exactly one of the c cryp-
tograms should be a one-cryptogram. This is because of
the fact that the participant can choose exactly one of the
c available options. The participant will need to provide
NIZK proofs that their cryptograms meet these two con-
straints. That is:

• Each of c cryptograms is either a one-cryptogram or
a zero-cryptogram
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• Exactly one of the c-cryptograms is a one-cryptogram.

Thus, the participant will have to provide c +1 distinct
NIZK proofs for c+1 statements. They together constitute
the proof of well-formedness of the cryptograms.

4.8. Public Bulletin Board

A public bulletin board (BB) is used for facilitating
the communication between the entities participating in
the reputation aggregation process. The use of BB is a
realistic choice as it has been used in privacy-preserving
recommendation systems [59, 60, 61] and in electronic vot-
ing systems [62, 55, 63]. The bulletin board serves as an
authenticated public channel with memory. Participating
parties have write-only access (append-only), and other
parties (not participating in protocol operation, e.g. ana-
lyst, marketplace, or third party system) can read the in-
formation from the bulletin board. The bulletin board it-
self does not have the ability to generate the cryptograms;
it can only write the committed information from the par-
ticipants. The bulletin board can also validate the received
scores for their correctness before putting them on the bul-
letin board, and make sure that no entity could delete or
change the published data.
The bulletin board holds the following information: the
cryptograms of the feedback scores, the zero-knowledge
proof to prove that cryptograms are well-formed, the token
to prove that the feedback provider has really interacted
with the marketplace, and the identity of the retailer. Any-
one can access the information from the bulletin board to
compute the aggregated reputation of the retailer or seller.
All the computation performed by using information from
the bulletin board will be publicly verifiable by executing
the aggregation process.

5. Security and Privacy Analysis

In this section, we prove that our scheme is secure in
the sense that it does not reveal individual ratings of the
users; in other words, at the end of protocol operations,
the secret vector Tis is not compromised provided that
some conditions are met.

5.1. Verifiability of Output

In this scheme, the aggregated score of the retailer or
seller is publicly available on the bulletin board along with
non-interactive zero-knowledge proofs. The proofs provide
assurance that the provided encrypted ratings are well-
formed. Further, NIZK proofs provide public verifiability
for the computation of the aggregated score. If a retailer
displays the aggregated score on their website then every-
one can check its correctness by looking into the bulletin
board. As such, no retailer can misrepresent their own
aggregated score on their web page without being caught.

5.2. Unlink-ability

In this section, we show that our scheme protects pri-
vacy of the participants of the protocol. Our main result is
in Lemma 1. This lemma proves that if there are at least a
pair of participants, who provided feedback differently (i.e.
one of them submits 0 as an input and the other one pro-
vides 1 as an input) then the adversary will not be able to
breach the privacy of any of the two participants. In other
words, if the feedback values of all the honest participants
are not the same, then the adversary will not be able to
learn the feedbacks of any of the honest participant. Note
that, if the aggregate score of all the participants (both
honest and colluding) is known by the end of the proto-
col operations and the adversary knows the inputs of the
colluding users, then the adversary can trivially learn the
aggregate or sum of all the inputs of honest users. Now,
if all the inputs of the honest users are the same, then the
sum will simply expose the inputs of all the honest users.
This is because, if all the honest users submit 0 as inputs,
then the sum of their inputs will be 0, and if they all sub-
mit 1 as inputs, then the sum of their inputs will be equal
to the number of honest users. So, in order to preserve
the privacy of all the honest users, we must have at least
a pair of honest users, who provided distinct inputs. More
precisely, the adversary learns nothing more than the ag-
gregate of all the inputs of honest users. Lemma 1 proves
this fact. We prove Lemma 1 by reducing it to the well-
known Decisional Diffie Hellman problem (DDH). Hence,
if the DDH problem is intractable in the mathematical
group G , the PrivBox protocol is secure.

Assumption 1. DDH assumption: Given g , ga , gb ,
and Ω ∈ {gab , gabg}, it is hard to decide whether Ω = gab

or Ω = gabg.

Lemma 1. If there exist at least two participants Uτα and
Uτβ , α, β ∈ [η], α 6= β, such that vταr + vτβr = 1 for some
seller r ∈ [n], then no adversary can distinguish between
following two cases:

1. vταr = 1, vτβr = 0

2. vταr = 0, vτβr = 1

Proof. We show that an adversary A who can distinguish
between two bulletin boards where the values of vταr and
vτβr are interchanged, then A could be used to construct
another adversary B against the assumption 1. B works
as follows:
it receives as input ga , gb and a challenge Ω ∈ {gab , gabg}.
It allows A to choose a set of secret keys {xτir : i ∈
[η] \ {α, β}}. A also chooses the set of scores {vτir : i ∈
[η] \ {α, β}}. Then A sets Xτir = gxτi r . B sets Xταr =
gxταr = ga and Xτβr = gxτβ r = gb . Now, A computes the
set of ballots for each participant Uτi : i ∈ [η] \ {α, β} as
follows:
cτir = gxτi ryτi r gvτi r : i ∈ [n] \ {α, β}. B sets cταr =

(ga)zταr g/Ω and cτβr = (gb)zτβ ∗Ω. Here, zταr =
∑α−1

i=1 xτir−
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∑β−1
i=α+1 xτir −

∑η
i=β+1 xτir and zτβr =

∑α−1
i=1 xτir

+
∑β−1

i=α+1 xτir −
∑η

i=β+1 xτir . zταr and zτβr can be com-
puted by B with the help of A, as the values of xτir are
chosen by A for all i ∈ [n] \ {α, β}. Now note that, if

Ω = gab , then cταr = R
xταr
ταr g and cτβr = R

xτβ r

τβr . That is

if Ω = gab , then vταr = 1 and vτβr = 0. Alternatively, if

Ω = gabg , then cταr = R
xταr
ταr and cτβr = R

xτβ r

τβr g . That is if

Ω = gabg , then vταr = 0 and vτβr = 1. IfA can distinguish

between these two cases, B can identify Ω ∈ {gab , gabg}
correctly.

5.3. Correctness of Protocol

Lemma 2. In the PrivBox system, participants can
learn the correct aggregated reputation of other par-
ticipants. We prove this under the model where
participants are honest in providing their feedback,
but they try to learn the feedback score of other
participants.

Proof. For any seller r , feedbacks provided by the partic-
ipant Uτir is cτir = gxτi ryτi r gvτi r . The product of all cryp-
tograms is given by θr =

∏η
i=1 cτir =

∏η
i=1 gxτi ryτi r gvτi r =

g
∑η

i=1 xτi yτi
+vτi = g

∑η
i=1 xτi yτi

+
∑η

i=1 vτi . We know that∑η
i=1 xτi yτi = 0, then θr = g

∑η
i=1 vτi r , or

∑η
i=1 vτir =

logg θr . This proves computation correctness of the proto-
col.

5.4. Attacks on the System

As described in Section 5.2, the scheme is secure as long
as for each r ∈ [n], there are at least two participants Pα
and Pβ satisfying vαr+vβr = 1, that is if Pα and Pβ assigns
different scores to Pr . Let us suppose, the attacker has
colluded with some c participants to deduce the score vαr
assigned to Pr by an honest participant Pα. Alternatively,
the attacker can also launch a Sybil attack by creating c
fake participants to deduce the score vαr . Now, if there ex-
ists at least one uncompromised participant Pβ such that
either vαr = 0 ∧ vβr = 1 or vαr = 1 ∧ vβr = 0, then
it would be computationally infeasible for the attacker to
find vαr = 0 or vβr = 1. The scheme assumes that all
the participants who completed step 2 of the reputation
aggregation protocol in Section 4.6, would provide their
feedback as in step 3 of the protocol. If some participants
abort after step 2, the system cannot compute the aggre-
gated reputation in that iteration. As such, the iteration
has to be started afresh. Though, this kind of denial of
service attacks cannot compromise the privacy of any par-
ticipant, an attacker can use this as a means to disrupt
the normal flow of the protocol. A participant who has
intentionally aborted the protocol in the middle should be
excluded from the network in order to ward off possibilities
of sabotage in the future.

5.5. Privacy and Integrity Analysis

In this section, we analyze privacy aspects of partici-
pants in the reputation aggregation process. At the end of
the reputation aggregation process, each participant or the
marketplace can only hold the global reputation score of a
particular retailer, which cannot be linked to infer the indi-
vidual feedback of users, neither can be used to infer who
voted positively or negatively for the retailer. The pub-
lished feedback is the valid score of either 0 or 1 in the fol-
lowing format gxygv for v = 0 or 1. It is indistinguishable
from random feedback and the associated 1-out-of-2 ZKP
reveals nothing more than the statement: the v is either
0 or 1. The encrypted feedback value and computation
on the encrypted data ensure that participants would not
learn anything about the feedback value other than the fi-
nal aggregated reputation score. The scheme is also secure
if a number of feedback providers collude with each other
to learn the feedback score of some target user. However,
the scheme can reveal the feedback value when n − 1 par-
ticipants collude against the single remaining user. Note
that, the final aggregate of all feedbacks has to be made
public. Hence, it is impossible to ensure the privacy of an
honest feedback provider when all other feedback providers
collude against her. The protocol assures the maximum
possible privacy for any honest feedback providers, which
a scheme of this sort can achieve. Moreover, our protocol
does not require any centralized trusted third party for
the generation of cryptographic parameters and can pro-
vide reputation aggregation even if a certain participant is
not online at the time of the reputation aggregation.

6. Implementation and Evaluation

We have implemented functionalities of the PrivBox
system in a Java program using the bouncycastle6 cryp-
tographic library. We choose the standard elliptic curve
NIST P-256 for the cryptographic setting and SHA-512
for the hashing. The functionality of the bulletin board
is implemented as a web server, and the functionality of
the feedback provider is implemented as a Java client. We
evaluate the performance of various cryptographic opera-
tions in terms of computational cost and bandwidth over-
head. All experiments were performed on an Intel i-7
3.4GHz system running Windows 10, with 8 GB RAM.
The experiments were carried out for the single core.

6.1. Computation Complexity

We present the computation costs in terms of time re-
quire for creating the cryptograms (the encrypted feed-
back and the non-interactive zero-knowledge proof ) at
the client side, and the time require for aggregating the
cryptograms from the bulletin board. Table 5 presents a
comparison of the PrivBox system architecture and com-
putational complexity with other reputation systems. The

6https://www.bouncycastle.org/
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Proposal Architecture Adversarial Model Privacy Complexity Verifiability
Hassan et al. [24] Decentralized Malicious depends on preselected peers O(n)+O(log n) No

Androulaki et al. [64] Decentralized Semi-honest compromised if user colludes O(n) No
Gudes et al. [22]-1 Decentralized Semi-honest depend on witness peers O(n2)+O(N) No
Gudes et al. [22]-2 Decentralized Semi-honest depend preselected peers O(1) No

Zhai et al. [18] Distributed Honest depend selected peers O(log n)+O(log n) No
Schaub et al. [47] Decentralized Malicious protects privacy not provided No

Bethencourt et al. [36] Centralized Malicious depend trusted party O(1) No
Stefanos et al. [52] Decentralized Semi-honest protects privacy not provided No

Clark et al. [51] Decentralized Semi-honest protects privacy not provided No
PrivBox Decentralized Malicious/Semi-honest protects privacy O(n)+O(n) Yes

Table 5: Comparison of the PrivBox system with other Centralized and Decentralized Reputation Systems. n is the number of users, and N
is the number of preselected users for the privacy protection.

Entity Computational overhead (number of exponentiations) Communication overhead (bits)
Key Encrypted Feedback NIZK Proof Key Encrypted Feedback NIZK Proof

User n n 7n n n 8n
Aggregator. − - 8n ∗ η n ∗ η n ∗ η 8n ∗ η

Table 6: Computation and Communication complexity for n retailers and η number of feedbacks.

Item Computation Cost Communication Cost
Setup - n
Key - nη

Feedback - nη
NIZKP 8nη exponentiations 8nη

Table 7: Computation and Communication complexity for the Public Verification.

computation and communication complexities of the privacy-
preserving reputation system for the client and the analyst
are given in Table 6. Table 7 presents the computation
time and communication overhead required for verifying
the reputation statistics.

Generating the cryptograms of feedback score:
Each participant in the PrivBox system has to compute
the cryptograms of the feedback score. An encrypted feed-
back is of the form 〈cτir ,Xτir 〉 : i ∈ [τ ], r ∈ [n]. Xτir =
gxτi r is the public key and cipher text cτir ∈ {R

xτi r
τir ,R

xτi r
τir g}.

The restructured key is Rτir =
∏i−1

j=1 Xτj r/
∏η

j=i+1 Xτj r

=
∏i−1

j=1 gxτj r /
∏η

j=i+1 gxτj r = g
∑i−1

j=1 xτi r−
∑η

j=i+1 xτi r . For
computing the encrypted feedback for one retailer, the
feedback provider needs to compute one exponentiation,
and for n retailer the computational cost would be n ex-
ponentiations.

Computing NIZK Proof: The feedback provider
also has to compute the NIZK proof to prove that his com-
mitment is within the prescribed range without revealing
the actual value of the feedback. The computation of the
NIZK proof of the public key requires one exponentiation
for one retailer. The computation of the NIZK proof of
well-formedness of the feedback scores needs 7 exponen-
tiations for one retailer. Hence, for the n retailers, the
total computation cost for the NIZK proofs will be equal
to 7n exponentiations. This is the most expensive opera-
tion among all the operations at the client side. Thus, the
total time for generating the complete cryptograms for the

n retailers would be 7n exponentiations.
Aggregation: The aggregation process consists of three

steps: checking the NIZK proof of well-formedness, the
multiplication of cryptograms, and the brute force search
to get the final aggregated score. The checking of well-
formedness requires 8 exponentiations per feedback, thus
for the n retailers and η participants, the total number of
exponentiations required for checking the well-formedness
is 8(nη). The multiplication of cryptograms is carried
out with negligible cost and the brute force search is car-
ried out O(m) where m is the number of patterns to be
matched.

6.2. Communication Complexity

The communication overhead depends on the size of
data sent by the feedback provider to the bulletin board.
The most expensive data unit in the PrivBox protocol is
the NIZK proof of well-formedness, which consumes most
of the communication bandwidth. An encrypted feedback
is of the form gxygv where v ∈ {0, 1}, and the feedback
provider has to generate n cryptograms for n retailers.
The NIZK proof for one retailer consists of 4 commitments,
2 responses, and 2 challenges. The entire communication
cost for n retailers thus will be 8n*(Bytes requires for one
commitment). For the aggregation, the analyst has to
download all the data i.e. 8nη, where η is a number of
participants providing the feedback to the bulletin board.
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Figure 4: Computation time required for generating the restructured
key at the user side.

6.3. Efficiency

We present experimental results of our protocol in terms
of generating the restructured key, creating the cryptogram
of the feedback values and its associated zero-knowledge
proof, checking the well-formedness of NIZK proof, and
performing the feedback aggregation. We obtain estimates
for the standard NIST Curve P-256 [65]. We performed
experiments for 10 times and presented the average of ob-
servations. In the first phase, while computing the restruc-
tured key, we varied the number of participants who posted
their public keys from 100 to 20000. The time required for
generating the restructured key increases linearly with the
number of feedback providers posting their public keys as
shown in Figure 4. Figure 5.A presents the computation
time required by a user client to present the cryptogram
of his feedback score about the retailers. The number of
retailers varies from 100 to 1000, and the number of users
is fixed at 10000. The result reveals that the computation
time is not very high even for a high number of retailers i.e.
1000. In the experiment, we have not included the time
consumed while issuing the token to the user. We con-
sider the time when the user has received the token from
the marketplace and is ready to submit the rating score.
Each user requires around less than a second to present
the feedback to the bulletin board. Figure 5.B represents
the computation time required by the analyst for checking
the NIZK proof and aggregating the encrypted response
from the bulletin board. The expensive operation is NIZK
that consumes much of the system resources, i.e. around
700 seconds when the number of feedbacks on the bul-
letin board is 100K. However, this computation cost can
be minimized by using the multiple cores in parallel. On
I-7 system with 8 cores, this time reduces to around less
than 100 seconds.

In terms of communication cost, the cryptogram of the
feedback score and NIZK proof would require the band-
width of less than one megabyte as shown in Figure 6.A.

Specifically, for 1000 retailers, the bandwidth required is
around 800 Kb which is acceptable. The experiments re-
veal that communication overhead for the user increases
linearly with the number of retailers (Figure 6.A), and the
communication overhead for the aggregator also increases
linearly with the number of cryptograms present on the
bulletin board as shown in Figure 6.B.

7. Defenses against other Attacks

In this section, we discuss the system’s defense against
other attacks.

7.1. Self-Promotion

In a self-promotion attack, the seller/retailer wants to
falsely increase his overall reputation score. In our system,
such an attack is possible when the retailer issues a large
number of fake tokens to a large number of users that
are actually controlled by the retailer. These fake users
then submit positive ratings for the retailer. This attack
could be mitigated by imposing some cost on the number of
tokens the marketplace can issue to the service provider or
retailer, or imposing limit on the number of tokens issued
to the retailer.

7.2. Reputation Whitewashing

In a whitewashing attack, the non-reputed retailer dis-
cards his identity, and re-joins the reputation system with
a new identity and develops its reputation from the scratch.
The attack is feasible under the conditions when the rep-
utation system does not impose a reasonable cost on the
participants of the reputation system. The PrivBox rep-
utation system can be joined and left by any participant.
The effect of the whitewashing can be minimized in two
ways: first, imposing a certain cost for the new retailer or
seller identity, and second, linking the retailer identity to
the physical business address or the web-page address.

7.3. Bad Mouthing

In a bad-mouthing attack, retailers or users collude to
lower the reputation of a certain retailer. In this attack,
the users would internationally issue negative recommen-
dations about the particular retailer, resulting in a neg-
ative aggregate reputation of the retailer. The PrivBox
system requires the token and well-formedness of feedback
to limit the feedback provider to provide a value within the
prescribed limits. The token is only issued to a user who
has interacted with the retailer. Thus the user who wants
to attack the system with bad mouthing has to acquire the
token to submit his negative feedback.

8. Other Application Domains

In this section, we discuss other application domains
where the PrivBox system can be used as a reputation
system.

13



(a) User (b) Analyst

Figure 5: Computation time for the User and Analyst. A) User computation time for encrypted feedback and NIZK proof, and B) Analyst
computation time for checking NIZK-proof and aggregating feedback.

8.1. Application to Edge Computing

The Edge computing paradigm allows users to perform
computationally expensive tasks near their premises on be-
half of the cloud service provider. In an edge computing
system, an end user device is not the only one that asks
for computational services from the edge node, but it can
also act as the service provider by offering a computational
platform as the edge node. The outsourcing of sensitive
data to malicious edge nodes or offering computational
services to malicious nodes could bring catastrophic con-
sequences to edge providers and consumers. Therefore,
participants – either the edge devices or the consumers
have to assess the trustworthiness of computing platform
before providing and accessing services. This is similar to
evaluating the trustworthiness of nodes in a P2P network
before downloading the content from the specific nodes or
peers [66, 67, 68]. In edge computing, the trustworthiness
of the edge provider could be evaluated using a service
level agreement, but these service level agreements are not
considering how consumers of the service see the trust-
worthiness of the service provider. The reputation sys-
tem could provide information about the trustworthiness
of consumers and edge devices by collecting the feedback
from other consumers and service providers.

The PrivBox system could provide the platform for
computing the trustworthiness of edge providers and edge
consumers in a decentralized privacy-preserving way. Sim-
ilar to our e-commerce application, consumers in the edge-
computing scenario are the users requesting computational
resources from the edge nodes, and edge nodes are the ser-
vice providers providing computational resources to con-
sumers. The consumer rates the services of an edge node
on the scale of 0 or 1 or 0-5 stars for a different set of fea-
tures (for example, latency, effectiveness, overhead). The
PrivBox system can be deployed in an edge computing

scenario in the following way. First, the consumer re-
quests services from the edge node, and upon completion
of services, the cloud marketplace handling the edge node
would ask the consumer to rate his transaction with the
edge node. In this setting, the cloud marketplace sends
the questionnaire to the consumers (having 0 and 1 an-
swer), and the consumer replies these queries to the bul-
letin board similar to the way discussed in Section 4. Once,
the feedback responses have been published on the bul-
letin board, the consumer first checks the reputation of the
nearby nodes using information from the bulletin board.
The consumer chooses the most trustworthy edge node
for the transaction based on the aggregated reputation of
nodes and his selection criteria.

8.2. Collaborative Intrusion and Misbehaviour Detection

The traditional standalone intrusion detection systems
(IDS) have been mostly deployed within the network. These
systems monitor and analyze the Internet traffic logs at
the single point. However, malicious users can circum-
vent the detection system by making stealthy attacks to
a large number of operators. The standalone system does
not have any information about behavior of the traffic orig-
inating from other networks thus does not show effective
resistance against sophisticated attackers that make a slow
rate or stealthy attack against a large number of networks
simultaneously. It is estimated that 20% of the malicious
IP sources can attack multiple networks [69]. Naturally,
collaboration among network providers would significantly
improve the detection of the attacker in a timely man-
ner, show effective and early defense against zero-day and
stealthy attackers. However, the collaborative system has
the challenge of privacy-preservation as network operators
are not willing to share private information of their users,
because they are concerned about their user privacy and
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Figure 6: Bandwidth consumption for the user and analyst while generating an encrypted response and NIZK proof.

their own network configurations. However, network op-
erators can be encouraged for the collaboration [70] if the
privacy of their exchanged data is guaranteed. The pro-
posed system can be used to ensure the privacy of collabo-
rating operators using the encrypted exchange of feedback
score for monitoring the Internet traffic in their networks.
The implementation would ensure privacy with small com-
munication and computation overheads. The proposed ap-
proach can also be used in a dshield (Internet storm center)
setup for aggregating the feedback without anonymizing
the identity of feedback providers.

9. Conclusion and Future works

Online marketplaces utilize reputation systems for eval-
uating the trustworthiness of their retailers based on the
feedback submitted by their consumers. The reputation
system can assist consumers in the marketplace to decide
whether to have a transaction with the retailer or not. Ex-
isting reputation systems have serious privacy problems as
these systems either require trusted centralized systems or
a set of trusted peers to protect the private information of
consumers. Further, marketplaces do not have an ability
to prove that their reported statistics are correct and the
results are not publicly verifiable. In this paper, we have
presented a verifiable privacy-preserving reputation proto-
col that aggregates feedback values provided by consumers
of the marketplace in a secure and private way. The pro-
tocol is designed to prevent participants from providing
out-of-range high or low scores to their retailers. The pro-
tocol performs its operations in a decentralized way. The
performance of the proposed system has been evaluated
through the prototype implementation that demonstrates
the effectiveness of the system in terms of computational
and bandwidth overheads.
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