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Abstract

In a typical Internet of Things (IoT) "~nloy. “ent such as smart cities and Indus-
try 4.0, the amount of sensory data co.’ »cted from physical world is significant
and wide-ranging. Processing large ~mount of real-time data from the diverse
IoT devices is challenging. For example, in IoT environment, wireless sensor
networks (WSN) are typic .lly usea for the monitoring and collecting of data in
some geographic area. patial . * ge queries with location constraints to facili-
tate data indexing are ‘rac.tior Jly employed in such applications, which allows
the querying and r anaging ne data based on SQL structure. One particular
challenge is to minimize . ~mmunication cost and storage requirements in multi-
dimensional dr .a ir lexing approaches. In this paper, we present an energy- and
time-efficiert mu. ‘dimensional data indexing scheme, which is designed to an-
swer rang . qu cy. <'pecifically, we propose data indexing methods which utilize
hierarchical 1. '»~ ing structures, using binary space partitioning (BSP), such as

kd-tr e, quaa ‘ree, k-means clustering, and Voronoi-based methods to provide
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more efficient routing with less latency. Simulation results deme stra e that
the Voronoi Diagram-based algorithm minimizes the average ener. - con. mp-
tion and query response time.

Keywords: Range query processing, multi-dimensional data .. 1 xing, Voronoi

diagram, IoT energy efficiency

1. Introduction

Internet of Things (IoT) has many applications . ow society, which is not
surprising given the capability to facilitate the ¢. lection nd analysis of a broad
range of information in our physical environmew. ‘e.g. smart cities, smart vehi-
cles, and smart factories). For example, n.. ‘m1-attribute sensors collaboratively
and periodically collect data from their ~~<nective environment, and such data
are generally multi-dimensional. However, + ie diversity and ever-increasing vol-
ume of data from IoT applications c.u, ~und the challenge in processing and
making sense of such multi-dim. ~.c_ ~! "ata. For example, how do we design
an energy-efficient spatial index structu.e to search the multi-attribute sensors
in our constantly evolving t .chno. *gical landscape? Range query is a viable so-
lution, which has been usea "~ a n" .mber of topics, such as area locations, sizes
and aggregated data < ( ar as (min, max, average,...), particularly in mobile
applications.

Range queries cep =sent a typical database operation by which one can re-
trieve stored de’.. “hat satisfies a specific set of interval-based constraints, such
as temperatu. - (e g. between ¢; and to), humidity (e.g. between hy and hs)
and light ¢ .ndition (c.g. between [; and l3). These constraints may refer specif-
ically to a. “< -valr s of some particular tuples of interest, or in the context of
spatiz -query processing, the locality-bounds of the data.

Sp tial-qu ry processing is particularly relevant in a large wireless sensor
r :twork (WSN) environment, as the region of interest may not span the en-
ti = WSI geographic coverage. As an example, a typical range query can be

.. '~ follows: “retrieve the locations of the nodes, where the temperature is
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between 90F and 110F”. More formally, a range query bears the fo' owi' g type
of formulation: “retrieve all the records for which a subset of tu. ‘= atu. bute
values satisfy a set of interval-based constraints ¢”. When the rawn re query has
a small life-span or is about simple instantaneous events, cow. ‘* .cting routing
structures in existing approaches is achievable [1]. Howev ¢, in u any real-world
scenarios, the queries are continuous in nature, (i.e. mo. itoring of some phe-
nomena over a long period). These types of querie, are -merally referred to
as range-monitoring queries, where the answer can cuange ¢ ver time and such
changes (and not the actual values) need to be reporte.’ to the query initiator.

There are, however, a number of challenges in '~sig» ing a range monitoring
query mechanism for a resource constrained WSi1. For example, continuous
sampling of the environment for prolonged , ~riods of time in an attempt to
capture the changes in state can be ex. e , aergy consuming. In addition,
when the environment being monits ~d is . ighly dynamic, the transmission of
an excessive number of updates, either dirc tly or through intermediary aggre-
gations nodes, has several adverse ~ffecus, such as increased delay/latency of
the response and increased energy consumption. Clearly, inefficient range query
approaches can affect the .etwork ifetime (NL) of the underpinning WSN en-
vironment, where NL is defin. ' s the maximum total time period from the
initial deployment un’ | tb . net vork connectivity or coverage is lost. Real-time
query/message rout .ng in W "N considering power/energy consumption and NL
issues is an active resea. “h topic [2, 3].

We have pr sen >d prediction techniques and aggregation trees with or with-
out synopsis in . - previous work [4, 5, 6]. However, most of existing approaches
focus on  aly ,ne or two particular characteristics, such as how fast the phe-
nomena chan, s - ver time and spatial-variability, as well as assuming that these
chars :teristic. do not change over time. In practice, one may need an additional
flexihili, - = Jhe sense that a range monitoring query should be able to adapt to
(1anging network or phenomena conditions, by means of workload-balancing,

s

rece ©-urable routes [7, 8], etc. This is the focus of our proposal in this paper

(s e dection 3).
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We also observe that the issue of minimizing energy and ban wid’a con-
sumption resources by lowering the minimum required coefficient 1. -ls he.  not
been formalized and addressed in the literature. Therefore, 7« t1is paper, we
approach this issue from a scalability perspective and devise s.'*".ons for large-
sized WSN. In addition, for mobile object identification ind tr~cking, we will
investigate the extent in which the size of the moving tai _ets car influence the
results in a practical setting. Firstly, to obtain the < imer- ~unality information
of the objects that are detected is a problem on its owu. TF s, we will employ
a mix of existing techniques, such as triangulation «. 1 dead-reckoning. We
believe that estimating the size of the targets ca.. lead to more effective solu-
tions for the tracking, counting and identification -~roblem of moving objects.
Secondly, we will develop efficient distribute. Jata indexing algorithms for the
widely used spatial-temporal range moi toi. o _ueries, considering the context
of each syntactic variation. Each s -tact. construct will be incorporated as
extensions of the TinySQL, and the c. rre.ponding processing algorithms will
be integrated with the query procc <ing engine of the TinyDB (see Figure 1).
Also, we will adapt our centralized approach for the processing of dynamical
topological predicates in /SN set ings, by providing an alternative, scalable,

distributed implementat on.

D) Sensor nodes
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" igure 1: Query processing mechanism with the introduction of TinyOS.
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Specifically in this paper, in order to efficiently optimize the us of t'.e net-
work resources and improve the performance of energy consumptic ana . uery
response time in WSN, we propose a novel range data aggrega on anproach by
exploiting spatial structures of sensory data. The contributi. ~< of this paper

are summarized as follows:

e We propose effective multidimensional data ind~ving -*- .ctures to help
process spatial queries efficiently. This results n e .igl dimensional data
indexing architecture for addressing existing , robl. .s and enables us to
present approaches which are more suited in mobil y and spatial continu-
ous range queries, than those proposed 1. ~revious works. In this scheme,
the indexing scheme equally handle: _ouu vypes of information, and ag-
gregates them in an energy efficient mann. . Our approach also includes
a hierarchical in-network storage t. at is capable of responding to differ-
ent queries in a timely fashion, v *h 1.amediate answers to approximate

queries and some types of ~~t au ries.

e In order to determine whether the proposed data indexing algorithms are
sufficiently generic fc comm. nly used spatial query processing, we evalu-
ate on four data st uctu. <. iamely: kd-tree, quad-tree, k-means cluster-
ing and Vorono' diarcam (VD). VD data indexing model is suitable for
general querie , opera. = 18, which can, for example, be applied to process

location-ba: od se. -ice in the cells in O(log n) time.

In the nex’ two .ections, we present related literature, and relevant materials
on spatial < aery a. 1 key factors that may affect query processing. Section 4
presents ir v ;opc ed architecture for spatial query processing. In the section,
we alsr o valuave che applicability of the indexing algorithm on four data struc-
tures. Section 5 presents the findings from our experimental simulation analysis

ar . .ts’ perrormance analysis. Finally, we conclude the paper in Section 6.
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2. Related work

The quality of a query answer, which we represent by its confide. ~e level,
can be improved in a naive manner by committing more resour ces t ,wa. 1S query
processing (e.g., increasing the number of nodes involved ir ~uery ' answer and
the frequency these nodes participate). In other words we cai increase the
confidence level of the answer of a query if we are willi=~ to . _ce more energy
and bandwidth resources. However, focusing on tl » o ality of an answer for
a particular query should also take into considera ‘on ... Quality of Service
(QoS) provided by the underpinning network. NoS can e expressed using the
average, median and standard deviation of the nfiuence levels of the answers
of all possible queries and the lifetime o -.c scusor networks. Clearly, it is
desirable to have a sensor network that i< able to Jrovide “adequate” results for
a prolonged period of time, rather than 1. v .mum-error results for a very short
time. In other words, we should be L. to accept a slightly lower confidence
level in order to benefit from a1 .~ <e. sor infrastructure’s shelf life.

In the literature, there are a numbe. of definitions for the lifetime of a WSN,
such as the time the first - .0oaec " the network dies, the time when a preset
percentage of the nodes a.. and “ae time the network loses connectivity [9].
These definitions are, 71 far i, inscances of a general criteria by which the life-
time of a network is cow. " lere . expired (i.e. QoS degradation of a WSN below
some acceptable t’.. “hold). The degradation in QoS can also be expressed ei-
ther in terms of ' -vered network resolution or by not being able to route query
answer to qu’ v ir .tiator, in a timely manner, due to dis-connectivity or rout-
ing holes is sues. kilier way, various choices of the admissible QoS thresholds
can be mc. > d to one of the former definitions of lifetime. Unfortunately, QoS
thresk sias are application specific and their relevance can only be discussed in
the cc 'text of their application. Arguably, a slightly more generic definition of
t' e tfet'me, which is not explicitly bound to the specifics of the covered phe-
1. menon is the following: the time interval during which the confidence levels

€ the query answers that the network can provide are above some predefined
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thresholds. Our work will rely on the confidence-level criteria, sinc it p ovides
a clearer connection between the query answer’s accuracy and the “fetinu.

These ideas are not necessarily new as they have been exp ess. d difterently
in various contexts, albeit not by means of confidence levels. 7 example, the
authors in [10, 11, 12] proposed optimal transmission sc’.edulirs for point-to-
point routing with end-to-end delay constraints that re.’es on .elay margins
to extend the NL. In a sense, it fits the definition ¢ the ' “time that we pro-
pose, in terms of confidence levels, since they are leve.agine delay margins for
lifetime purposes. This translates into trading (lowerw. *) the confidence levels
requirements, within admissible bounds, for the sa. ~2 p* rpose. A separate class
of algorithms concerning the balancing of worklo. 1 by leveraging end-to-end
delay margins [13, 14, 15] is similar to our p. nosed approach. Other lifetime
extension techniques rely on various da. " rec .. “ons (e.g. data aggregation and
filtering), in order to reduce the mec ¢ ene. “y-expensive function of the sensor
nodes communication [16, 17, 18]. Som o1 .hese techniques are lossy, with con-
trolled error bound, which leverage “e aava filtering principle. Lifetime extend-
ing techniques have been pronosed for all networking layers in WSN, namely:
application, network, link und phy ical. These , in essence, perform the same
task: trade answering p- ecision. ‘o mfidence levels) for energy efficiency.

The importance ¢ aur.nen’.ng query responses with confidence levels has
also been studied. For ex. aple, authors of [12, 19, 20] explore how confi-
dence levels can uffect J~ta management decisions, and their approaches rely
on the static 2 «d ¢ mamic adjustment of the transmission parameters in order
to achieve the 1. _aest confidence level when some specific application request.
Another r late . work is the QUASAR project [21], which highlights the need to
leverage appi. ~t7)n’s imprecision to minimize resource consumption and to rep-
resen and ha. dle the flow of data of varying quality. The authors acknowledged
the diti,. -1+ of interpreting the results of complex queries by relying solely on
¢ psolute rror margins, tied to the application environment specifics. However,
sig..’ %~ ut energy and bandwidth resources can be further minimized by low-

er'ag vhe minimum required coefficient levels, which has not been addressed in
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the existing literature.

Most existing approaches are designed for small-sized, personai -ireles. sen-
sor network of sensors. In addition, existing lifetime extendins alg rithms gen-
erally rely on the assumption that the level of admissible ”imp.. =i 1on” is known
apriori, by being hardcoded, pre-configured in the devices or by heing explicitly
declared in the query statement. The first method is le. ~ flexit e, but never-
theless it should be adopted at all times and used s th~ Jefault imprecision
margins when users do not specify their own. The »econs method provides
the most flexibility in specifying the tolerance margin. but its performance is
limited by the subjective imprecision margins the “1ser colerates and specifies.
Also, it requires the users to have domain expert n. “wledge about the intrinsic
parameters of the phenomena that is being 1.. ~nitored in order to choose these
parameters efficiently. This method s\ ~wiu = employed only when absolute
precision is required. For this, it is © vich ¢ sier for the user to be able to alter
(increase or decrease) the default minii. un confidence level of the expected an-
swer of a prospective query, whict "~ simpler to understand, normalized value.
Under these considerations, we intend to investigate how to prolong the net-
work’s lifetime without co’ ipromis 1g on trade the accuracy of the answer.

Another important a- pect L.t aning to the tracking of mobile objects queries
is the choice of an ad aue e m bility model (e.g. periodical, such as location,
time, and velocity, ".pdates . nerated by mobile units [22, 23], and fully-known
future trajectorie, [24, .~ 26]). The main reasons are: (1) limited sensing cov-
erage, memory ana power budgets of the nodes in the sensor networks; (2) the
objects that are acked need not be cooperative in the sense of communicating
their (loc cior time) information. Some existing works for spatial-temporal
data for mown."~ ¢ jects in WSN may be readily adapted for processing a NN-
query For e ample, the processing of the following query: Q-NN1:“retrieve
Nearesy Mo abor of object ol between 2:30 and 3:00” can be achieved with
11iinor me dification of some of the results in [27] by enforcing a detection of the
ob,. “*~ within the proximity of the tracked-object (01) and properly updating

th : answer when needed. The local changes of the answer can subsequently be
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transmitted to the (static and or mobile) sink. However, scalabilit; bec smes a
problem when processing the K-NN variant or, for that matter, ." = all-, airs-
NN [28]. In general, the approaches proposed in the in thr M. ving Ubject
Database (MOD) literature [29, 30, 31] cannot be directly ‘v .nslated” into

sensor networks settings.

3. Range Queries

There are a number of known challenges when | voce...ng spatial-temporal
range queries in WSN settings, such as those ‘lustrate 1 in Figure 1. Let us
assume that the following query is posted in « densec network: Q-R;p:"retrieve
the number of distinct objects inside the «wu n petween 12:00 and 12:30”.
One observation is that some objects, like o1, w’ll need to be tracked for the
purpose of correct maintenance of the qu. =+ like Q-R; even when they exit the
region of interest for the query. Nai. ¢, uiiess ol is tracked and its identity
maintained by the sensors outsic ™ it 1. ay (leave or) re-enter the region more
than once during the time-interval o. mterest [12:00, 12:30] and result in an
incorrect update to the ar .wei-. ~t. Another important observation is that,
although Q-R; seems to by ~learls stated, its syntax is, in a sense, not quite
complete. Note that o .e of the teatures offered by TinySQL is that users can
specify certain construc. tha influence the processing, such as the sampling
frequency and the .. ~ation of a given query.

In the case ~“ Q-R;, although its nature is continuous, distinct syntactic
variations wi' imr ose different processing vs. communication trade-offs. For
example, (") repory "he full answer at the end of the time-interval of interest;
(2) repory "he miti .l answer and present cumulative updates every 5 minutes; or
(3) rer ort the initial answer and present updates whenever the answer changes.

T, ~re hav . been attempts [29, 30, 31] to design efficient reactive manage-
r ent of topological predicates. In such solutions, it is necessary to manage
t. e conti mous and persistent conditions in order to measure the satisfiability

€ ench estimation in mobile and dynamic environments. In spatial settings,
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the alongness property has also been investigated both from topc ogic « (the
9-intersection model in [32]) and spatial database [33] perspectiv.® W.on it
comes to the ”alongness” in mobile environments, in reality o .e ¢. nnot expect
that a mobile object can move exactly along a particular topo. = :al curve (e.g.
a river). Thus, a distance threshold d has been introd ced (i=. for as long
as the object is within distance from a given 2D polyline P, the Hbject will be
assumed to be moving along). Also, one needs to ct :ck v’ ~ther a predicate is
satisfied within a portion t of a time-interval [t1,fs]. s a 7 articular example,
consider the following request which is important in s. »narios like adversarial
environment such as battlefields: Q-Rs: “Notity me v hen the object obj; is
moving along the polyline P and within distance .* less than 90% of the time
between 5:00 and 5:30”.

Figure 2 shows an example scenario, vne: . ch circle indicates some update
sent to the MOD server (e.g. locat'~n or ‘ime update). In this example, we
assume that they are sent every two m.nuwes. A blank circle denotes (location,
time) pair of no interest for proce. “ing W-Ry because the value of their time
component is outside the time-interval of interest for Q-Ry ([5:00, 5:30]).

The moving towards p 2dicatio is concerned with detecting if a particular
mobile object is continu usly 1. v ng towards a given static entity, like a point-
object, region or a pc vlir .. T illustrate the aspects of the reactive behavior
that are of interest egardin, .his predicate, let us consider the following query:
Q-R3 "notify me when “he object objs is moving towards the landmark LM
continuously fr » 5 / 1inutes between 5:00 and 5:30”. As observed, Q-R3 is satis-
fied at 5:18 beca e between 5:12 and 5:18 the object was continuously moving
towards I VI fc 6 minutes.

Current s.'t" )ns for the evaluation of these topological predicates, however,
assur e that .he location information are sent to a central server before being
processc ' “uch centralized approaches are not suited in a distributed WSN,
1 articula ly in dealing with spatial-temporal tracking queries. Specifically, we
req. ™» an approach that provideds primitives for implementing the moving

al ng and moving towards dynamical topological predicates in WSN. Hence, we

10
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implement a dead-reckoning algorithm for the purpose of estimatir_ the future
locations of the mobile objects. This is necessary to decide when and ~vhici. 10de
should transmit location updates to the sink nodes for process’ 1g, nd push the
decision processing logic for these topological predicates towai. ~  ne nodes that
are currently active in the process of tracking a particv ar moring object, in
order to achieve scalability and de-centralization of the o.’einal 7 gorithms.
One main task of a WSN is to respond to the tric gered matial queries. The
queries may inquire values of the sensed phenomena, cither in the entire field
or in a specific region. They may also inquire the loca. »n from which a value,
or a range of values, were reported. Spatial auei. = ar more likely to inquire
information about the overall behavior rather thain mecifics. Also, the reported
values of sensor nodes are generally not accu.. “e due to imperfection and other
physical aspects. Hence, approximate ¢ ‘eric 2 more suited for WSN, where
the query contains a field to specify ¢ = acce, “able accuracy level. Hence, queries

are considered as predicates with attri.te., as follows: Q(P, L, R, T), where:
P means the sensory phenomenon (e.., Temperature, Light)
L means a sensor location

R means the query wit'.in the sc..sed geometric range (R), and/or, either value
range within the . ~ sed alues or an extreme (M, where M = min or M

= max ).
T T means thr reo nired time for the query response.

An query e- ampic vith range constraint would be straightforwardly translated
to an SQ’ ~lik’ sypn’ax:
SET " CT n..* £(Sensor.Temerature) FROM Sensor WHERE Sensor.Location

INSII ' E REC "ANGLE [0, 0], [100, 100] AND Sensor.Time BETWEEN 12/21/2017

ar ' ['12/ .., 2017,

11
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4. Proposed Spatial Range Query Processing Approach

Firstly, we intend to investigate the benefits of adopting a mo-ified , rsion of
the probabilistic uncertainty model which will support singl con jue., results
but augmented with a simple confidence coefficient, rather thai. ~ confidence
interval. To support out intentions, let’s consider the fc lowing xample: in a
military application, a user submits the following infor~al . ,: "retrieve the
number of enemy vehicles that have been moving tov ard pas station Bl in the
last M minutes and are less than D miles away.” "L.. > use., which can be a field
combatant, knows that if, say, n or more ener - vehicle 3 are moving towards,
then he needs to trigger an alarm. Under a L. nt uucertainty model, the an-
swer could be, for example, "n”, which m . v1 way not be correct. Adopting
the interval uncertainty model, the answer of ti.  query may be, for example,
represented as a numerical interval I=[n;, v,|, n1 < n < ng, which, considering
the particularities of this query, will "¢ nrcvide sufficient information for the
combatant to trigger the alarm 7"~ in.nlications of such lack of information
can be even deeper: let’s imagine tha. » meta-trigger is placed in the network
monitoring the number of _uew. ~ vehicles that are moving towards, and the
specification of the trigger . dicate , that an alarm should be triggered when n
such vehicles are detec’ :d. Dnly a probabilistic uncertainty model may provide
insight onto the like'tho. - of .ach possible value in the given answer interval,
but, as we have a’.c 1y mentioned, it can be difficult reason in real time and
time critical ap~'‘~ations, especially when the answer is not as trivial as the
one we consic red  We argue that an answer on the form "n enemy vehicles”
with confic:nce levi' 1 (0 < ¢ < [) represents a better representation on the
answer fo. = st ar plications and we intend to develop a methodology for query
proces .ing with confidence coefficients, with a specific focus on spatial-temporal
range monitor ng queries. As a justifiable argument is that we can configure the
1 cta-triogering mechanism with a singleton threshold 1t for the answer is { > It
t. ¢ alarn should be fired. Moreover, this threshold can be unanimously be set

- default value for all the mete-triggering mechanism that are dispatched in

12
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the network, regardless of the specifics of the queries.

We will analyze spatial queries in stages for a better understan.. ~g ot . iem.
As is known to all, different numbers of stages can be defined or . natial query
processing in WSN. However, as we have previously stated, ti. -« stages can be
further broken down into simpler ones. In this paper, we * ould snecifically ana-
lyze spatial queries from the following six steps: 1) pre-prc -essing .) forwarding;
3) dissemination; 4) sensing; 5) aggregation; and 6) r ¢urn / ~e Figure 2). In the
step of pre-processing, queries are formatted so that tucy car oe diffused via the
intermediate nodes. Such procedure is usually done in . ‘er’s computer, as there
are more resources on this computer than sensor ~ode . Also, in the stage of
pre-processing, it is a necessity and a must to peri. “m application-independent
task, for example, representing the informat.. » with max appropriateness and
suitability, so that the queries can be m¢ < en .2t and less packets will be taken
up. Then comes to the forwarding ¢ - dis. ‘mination stages, where queries are
forwarded and spread to the region ov inte.est(Rol) from the Originator (the
first node that the query can be rec ‘ved in the network). It is noteworthy that
these queries are only forwarded and propagated to nodes within the Rol. This
is different from traditions = query , rocessing, which requires the dissemination
of queries to all nodes ir the v "N through Flooding. Specifically, the purposes
to forward and disser inat: qu ries to all nodes within the Rol are to ensure
the best energy co .sumptic and minimized the number of packets that are
transferred in the WSiv. Then moves on to the sensing stage in which the data
required by th . qu ry are collected by the nodes within the Rol and are then

transmitted to v. - sink node to calculate the query result.

Pre-Prc ssing srwarding Dissemination Sensing Aggregation Return
. ° hd o . ° ._ _____ . . . .7 77777 . . ° L . L] ° ._ _____ [
. 0 b Ll * i i * i i * i
% o R | N o | CNE T D | S g
e o ! o o * o o o
IR RS o g ity o d
» HC I L] T L) ! L] | ! L] |e i. ! o ! !
L] ° L] Y J L : J L] 1 J L] 1 J
. - « * « * e * o e * o

Figure 2: Data aggregation of spatial query processing.
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4.1. Kd-tree Query Processing Routing

The distributed index structure drives efficient processing ot ., “eries and
imposes restrictions on the number of sensor nodes involved. T? e qu > -~ broblem,
in effect, is finding the data within a specified query range or 1.." ‘rval. Usually,
we will regard numerical fields of objects as coordinates (wherc a point set is
stored in higher dimensions). A set of n points inside a 'D av :ry range can
then be answered in a fast manner, provided that th :y ar | -eprocessed on the
real line. That is to say, these points p1, ..., p, ¥l be kne yn in advance and
the query [x, z¢] is known later. To solve the query prclem, a data structure,
a query algorithm, and a construction algorit™m a. ~*.en used.

Kd-tree represents d-dimensional trees which - > general, simple, and ar-
bitrary dimensional. However, its complexity nalysis result may not be very
good for asymptotic search. Kd-tree ha ex’cuued 1D tree by alternate use of
xy-coordinates to split and cycled ti . 1ime. sions in k-dimensions. Specifically,
it splits x-coordinate by a vertical line .o tnat half of the points are right and
the other half are left; it splits y-coo. 'inate by virtue of a horizontal line so that
half of the points are above =~ the other half are below (see Figure 3). Each
node within this binary t ee has t vo values: split dimension and split value.
In case it is split along . at the ordinate s, points with x-coordinate < s are
included in the left ci.'dr n ar 4 the others are included in the right children.
The same principle applies to the split along y. If O(1) points remain, they will
be put in a leaf node, w..™ the data pointing at leaves only and internal nodes
for splitting ar 4 br nching. In order to balance trees, median coordinate is used
since splitti~g-me.“an itself is accessible in either half. The height of the tree is
guaranter 1 to ve C (log n) by using median to split. Then comes two options:
1) cycli=~ thre < a the splitting dimensions; 2) making data-dependent choices

(such as: seled Sing dimension with max spread).

14




365

370

375

I
kL )
, L
by P Py
*Py
Ly D
gg b1 b . I
*p; s
I Ps
b
] 7
A A

Figure 3: Kd-tree Query Cc strucu.oa.

Kd-tree has a space subdivision by the w. - that an x- or y-aligned cut is
introduced for each node, and the poin = or uvwo sides of the cut will then be
passed to nodes in left and right ¢ .'dren. The subdivision is composed by
rectangular regions or cells that may b unbounded. Root corresponds to the
entire space where each child shares ‘me of the half-spaces. Different from that,
leaves correspond to the terminal cells. A general partition BSP is a special
case. Its structure can be constru ted in O(n - logn) time in a recursive way.
Then, points need to be presorw. ” by x and y-coordinates, and such two sorted
lists need to be cross-. ~ke .. T" e way to find the x-median is to scan the x list.
Then it comes to t' e splittin,, of the list into two, and the use of cross-links for

splitting of y-list m O(n, “ime.

4.2. QUAD-1.% , PROCESS ROUTING

In a g ad-t ee, there are exactly four children inside each internal node. In
such a tree a. “a < .ructure, each node represents a bounding box that has some
part « f index. 1 space covered, and has the entire area covered by root node. In
the stru “v of a quad-tree, the depth is set as O(log n) for the uniform sensor
cistribut. »n. It is simple to insert data into a quad-tree, with the following
thi~ < _ps taken: 1) starting at the root and identifying which quadrant your

pc.u stays; 2) finding a leaf node through recursing to that node and repeating;
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Algorithm 1 Kd-TreeQuery

Require:

1: P,R P denots a kd-tree’s root and R denotes a range;
Ensure:

2: All the leaves nodes below P which are within the rar .,

3: if P is a leaf node then

4: Output the nodes stored at P if it is in R;

5: else if area(lc(P)) is completely located in R th =

6: OutputSubtree(lc(P));

7: else if area(lc(P)) crosses R then

8: Kd-TreeQuery(1c(P),R);

9: if area(rc(P)) is completely locatea "~ R then
10: OutputSubtree(rc(P));

11: else if area(rc(P)) crosses R then

12: Kd-TreeQuery(rc(P),R);

3) putting your point into the list of pouints of that node. In case that the list
exceeds the max number ¢ some “lements that are pre-determined, the node
needs to be split and then 1.~ pe ats need to be moved into the correct sub-
nodes. To query a qus A-trv 2, the following steps are needed: 1) starting at the
root and examining each ("' 1 node; 2) checking if child node intersects with
the query area. If it ac °<. what needs to do next is recursing to that child node.
Whenever a le . 1. de is found, each entry needs to be examined to make it
clear if it intei. "’ s with the area being queried for, then return to it if it does.
Then, we  an ¢ mstruct the quad-tree in a recursive way, given a list of particle
positions.

Fi ure 4 Jepicts the structure of a quad-tree, where, obviously, all inter

nodes . ave fr ar children.
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Figure 4: Quad indexing tree.

4.3. K-MEANS CLUSTERING BASED QUERY PRUCESS.NG ALGORITHM

Among the many different choices of learning algo. thms, k-means is the
most popular one being adopted for clustering. Cons. ' _ring the fact that highly
correlated measurements are obtained fror~ ~~=~-  _aat are closely located, we
purport to cluster nodes in accordance with t..~> locations of those nodes and
the similarity of their physical attribute. T . aadition, as previously stated, it
is unavoidable that a great amoun. .‘ rea. ndancy exists with regard to the
readings from each sensor over tjme. To, ether those constitute the foundations
for modeling the spatiotemporal corre’ ~tion in data. Therefore, what we need to
do is to define a feature vecte - each node so that entire behavior of that node
can be well reflected. Em, 'oying } -means algorithm is helpful in electing the
cluster head in an effici nt manwn.r, and in particular, selecting an appropriate
cluster head can exert g ~ ¢ im ,act on the reduction of energy consumption and
the improvement ¢ NL (see pigure 5). This is because the more demanding the
accuracy and computatio..ul requirements are, the greater energy consumptions
will be. Othr . wisr, developed systems might be used in replace of K-means
algorithm, - ad the the learning task is performed by centralized and resource
capable ¢ 'mp .tati nal units.

It i Zound u. « the widely employed clustering algorithms in WSN are good
for tl = cluste ing of sensor nodes so as to meet the objectives of scalability
ar . cnergy efficiency as well as the election of the head of each cluster. In
1 cent ye rs, although an extensive number of clustering routing protocols have

heen put forward for WSN [34, 35, 36, 37], little of them have considered the
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use of the data science clustering techniques in a direct way. In -ead those
data clustering techniques are used for the purpose of finding the s. ~ilari, s or
correlations in data between neighboring nodes, and partition  ens r nodes into
clusters accordingly. The following is the application of K-.. ~r.as in wireless
networks. In [34, 35, 36, 37], the sensory data is cluster d via *he distributed
k-means clustering algorithms, and then is aggregated anc *ransir itted towards
a sink node. The purpose of such summary of data s to ~sure the reduction
of communication transmission and processing time, a. well .s the reduction of
energy cost of the sensor nodes.

It is inappropriate to adopt a centralized meti. 1 (¢ lecting data from sen-
sors as predetermined and transmitting the collecte. data to a server for storage
and querying) for query processing in WSN. his is because in such conditions,
valuable resources will be occupied for « -aus. .. "ag large quantities of raw data
to the cloud system, and in most ca -s. the transfer can be redundant. In fact,
it is a must to save energy in sensor . etwurks so that the lifetime of sensors
can be extended, as those sensors . e usually recharged by batteries with low
capacity. Considering that data processing is a lot cheaper than wireless com-
munication cost, it is not . necess 7y of transmitting all data to sink node for
processing. Instead, par . of da.> .an be transmitted from the sink to the base
station. Under such ¢ ndi’.ons che power dissipation can be reduced.

The purpose of “«-means "5 to partition n observations to k clusters, so that
observations are .espec. vely grouped to the clusters with the nearest mean,
which serve ac the prototypes of the clusters. Assume that within a set of
values (21,73, ..., '), each one of them is a multi-dimensional real vector. Then
a k-mean: clu cerirg is employed to divide such n values into k (k < n) sets
S=81, 89 ..., 54 h’ ceby minimizing the sum of squares within the cluster.

T e follov. 'ng three parts composes the query processing algorithm: 1) K-
mesns . ~o+-_mg algorithm, 2) energy-efficient query transmission and 3) result
Oollection Upon the user’s specific request on precision, head nodes are selected
to 1. .ud to the user’s query, and results are collected in an energy-efficient way

th ough the clustering algorithm. Based on the simulation results, it implies that
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Figure 5: Data aggregation example in « “lusteircd architecture, where the nodes are marked

as first level and second level cluster heads.

Algorithm 2 K- -ans Clu;ering

1: Select k clust r hee "= of the n sensors;
2: Associate ¢ s«ch 10de to the closest cluster head;
3: Calculate 1.~ mitial cost (sum of the Euclidean distances of each point to

its clv cer ".ead);

4: repeat
5: Swap  cluster head with a non-cluster head point;
6: Ta-co apute the cost (sum of distances of points to their cluster heads);

7: untyr. the total cost of the configuration increased
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with head node selection of K-means clustering, the query processir * alg orithm
not only can ensure a more precise result but also can reduce . ore e. 2rgy
consumption than the other algorithms. Specifically, each nr de »erforins the
task of sensing and then each node will send the data to its ci. =t r head. Then
the cluster head reconstructs the data sent from all node , befor= its averaging
all measurements for the reduction of dimensionality. Fii ~lly, tb . cluster head
will compress those data by performing it on the avr rage bsequent to which

the data will be sent to the sink node.

4.4. VD-based multi-dimensional data indexing "lgorith n

In computational geometry, a Voronoi diagi.m (VD) is one of the most
significant models, and widely used to divi. a plane into regions which relies
on the points in a definite subset of th. .. ~ Assume P = py,p2, ..., pn to be
a set of nodes in the plane, called sites. . 1e VD divides the two-dimensional
continuous space (or any dimensional s, ace, into closed subspaces by equidistant
partitioning between any two pow.“<. wi.l h is called Voronoi cell. The Voronoi
cell for p;, V(p;), is defined to be the set of nodes ¢ in the plane whose Euclidean
distances between p; and o are sm. 'ler than that to any other site. That is, the

formal representation of the " vor ui cell for p; is:
Vipi) = (ist( 1, pi) < dist(q,p;),p; € Pi # j} (1)

Clustering a set Of sew. ~rs tries to categorize the nodes into their respective
clusters accord ag ) the distance to cluster head. In monitoring applications of
IoT, VD partiti. - ng space into dissimilar regions facilitates the sensing task to
the differe it re Jions in a distributing way. Sensors from different clusters sense,
process, ana . “an’ mit data to the intra-cluster head respectively, and then inter-
cluste s efficic 1tly perform data-processing to the higher level. This paper has
explore. » 4" tributed clustering and hierarchal algorithm which layers sensors
i1 a large volume Voronoi cells based WSN for the purpose of reducing the total
enc ~v onsumption. The key point of this algorithm is VD’s construction, a

k- tuscering of P problem, which is to find k clusters (subsets) by partitioning
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P, Cy,Cs, ...,Cy (see Figure 6). Let us assume p(C) denotes an " tra- luster

criterion, and 6(Cy, Cs, ..., Cx) means the inter-cluster criterion. ‘1. ~oret. lly,

0(Cs, Cj) = max{dist(p,q)|lp € Ci,q € Cj,i # 1} (2)
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Figure ,: Centroi Jl Voronoi tessellation clustering.

The VD is a gre ¢ distan. -based strategy of space division in computational
geometry. It div.des ti. space into different non-overlapping polygon regions
according to t! ¢ m mber of given non-coincident seed nodes. There is one and
only one seed ne @ in every region, and the seed node is the nearest choice to
all planar poir ¢s ir each single region than any other seed nodes. The ways
to calculate ™™ .re various, such as the grappa tree [37]. It is evolved from
anotl or data . tructure called link-cut tree that proposed by Sleator and Tarjan.
It exte. '~ *.e given binary tree so that each original node has three linked
1 odes. b - inserting an additional node to every node that lack of child and add
a p. =7, node for the root node, all original nodes on a tree have three nodes

cc mected to it. In the extended tree, the new root node and leaf nodes are all
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external nodes. It performs well on query operation of VD with  firs .~order

linear complexity at the algorithm level in O(log n) time.

5. Evaluation and Findings

In order to verify the performance of the proposed de¢ sa index ng structures
for range query processing in WSN, simulation experim~nts .~ real data have
been implemented and the results shown so far are nre- :nte | and analyzed in
this section. In the follows, we first describe the . ner.__.cntal environments.

Then, the experiments are quantitatively and < malitativi ly explored.

5.1. SIMULATION SETUP

A simulation prototype was implemented 1. Matlab. The experimental pa-
rameters of the energy model are summ. "iz- d 11 Table 1. All simulations doc-
umented here are run on a Intel(R) « « (T ") i5-4210U CPU @ 1.70GHz com-
puter configured with 8 GB RAM and he 7ing Windows 10 (64 bits) as operating

system.

Tabl- 1: Syste. Parameters and Setting

Parameter Setting
Number of ,ens' r ne les 500
Message .1ze 8 bytes
Transr .issic. distance 50m

Ene gy ost for radio transmitting a message 19.2uJ

Ene. _~ cost for radio receiving a message 3.2uJ
£ne gy cost for sensing a light intensity 100nJ
L. ~rgy cost in radio sleeping 0.016mW
In -ial energy budget at each sensor node 1J

!.2. Th"ORETICAL PERFORMANCE ANALYSIS

2=~ search paths have O(log n) nodes in 1D range tree, these O(log n)

svosels can be found in O(log n) time, which means answering range queries in
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O(log n) time. Storing sizes of the sets at nodes needs O(n) space v ~ile ".d-tree
also needs to store an O(n) space which responses 2D range query . wors. case
time O(y/n + k), where k is the output size. Without loss of ¢ meility, the 3D
range search complexity can try and then be deduced. For a- “ir. range query,
the space complexity of kd-tree is an O(d - n) space an'. the vorsi-case time
complexity is Q(n'~/?+m). By simplification of fraction. ! casca .ing methods,
for 2D range search, the final query time complexi.y is ‘log n + k), while
space is O(n - logn). Hence, a set of n points in the p.ane ¢ a be responded in
O(nlog'@=" n) time into kd-tree of O(nlog(®=Y n) size s. that any d-dimensional
range query takes O(log(dfl) n + k) time, where . is t} 2 output size.

The distribution of the particles in the boundin, box decides the quad-tree’s
complexity. The quad-tree is one of the trec “ke hierarchical structure that is
gradually divided from top to bottom, a. 1ev. ., “ode contains at most four child
nodes. It is suited to two-dimensior ' spau 2l data, because the given range of
space is recursively divided into four eq *al .abspaces until the depth of the tree
reaches a defined threshold or mee.. 2 planned requirement. The structure of a
quad-tree is not complicated so that it is easy to search and insert a data node
when the spatial data obje .ts are a stributed uniformly. However, there may be
a much deeper level of t'.e quac + 2e and the great waste of storage space if the
distribution of the sp- ial .ata s not evenly, which makes low query efficiency.
The complexity of i .serting . 1 the nodes is O(n log n)=0(n-b). (Since the max
value of the disti.ct pa. ‘cles is 2, and then logn < b).

Before lear ing ‘ome algorithms solving the point-location queries problem,
we lay the emp.. <is on the parameters of the clustering algorithms in which
n is the r .mb’ ¢ of nodes and k is the number of clusters. The first algorithm
is k-means c¢.. “te ing algorithm whose time complexity is O(n - k) because of
the ¢ mplexi. » of the mathematical model. The second is more efficient and
sunerio, ~h se time complexity is O(n - logn). Unfortunately, the algorithms
¢ re diffic. It to understand using computational geometry. But later a algorithm
can. ' - .ane sweep was invented by Steven Fortune, whose time complexity is

si” 1lar to the former one but easier to understand. Finally the most efficient
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algorithm called incremental algorithm was invented, the time c: mpl xity is

O(log n).

5.8. IMPLEMENTATION AND PERFORMANCE EVALU ‘TIC N

To realize a more efficient query processing, a hierarr ucal indeg structure
is constructed. The distributed index tress then drives -fficient processing of
queries and imposes restrictions on the number of s .sor noints involved. For
queries whose results have already been stored in the . ex str acture, the results
can be acquired by accessing one or some index nodes . *her than numerous sen-
sor nodes. VD data indexing algorithm has prov. ~ to p’ rform well with regard
to the latency and communication cost of a grea. ariety of queries. The selec-
tion criterions may cover the following sever.. metrics, such as query responding
delay, energy consumption, as well as . -v.. ~ network traffic. Specifically, the
network traffic refers to the average ~umbc of messages forwarded and sent by
all sensors, and it can greatly affect e. ery - efficiency, which is the reason it is
taken as the criterion for perforn.. nce c._luation. The query responding delay
refers to the time for query responding from the issuing of the query till the
user’s receiving of results. dowev. =, in our simulation, we have not taken the
computation delay of sersor 1. Jes .nto consideration, and the query responding
delay is evaluated by t "« n» mbe- of hops that lead to the longest path to trigger
a query and receive Jhe fec "> «ck.

The aggregate « dav. ‘max, minimum, and average) needs to be calculated by
each attribute . e« “h sensor node on a periodical basis. And an update interval
is specified by .. =~ administrator as much larger than the sensing interval. After
each upde e ir .erval ends, the aggregation including min, max, and average
values of th. int cval, is sent by one node to its parent node within the index
struc’ are. Il the sensing interval, for example, is set as 10 minutes, and the
update ‘mterr il of the index is set as 2 hours. Given different number of cluster
I vels in WSN, we can demonstrate how the increase in cluster levels lead to
the »edr- _tion of energy cost in WSN. The following Figure 7 has illustrated the

de 1oose of energy consumption goes along with the increase of number of levels
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in the hierarchy.

Image the case to process 1000 queries during 72 hours, as .. = sho. n in
Figure 7. The location condition in a query determines such par. meter. It is
clear to witness an obvious huge increase in network traffic or "~ .d, along with
the increase of involved node percentage. This is because .l the ‘nvolved nodes
are supposed to report results. We then have made a co. ‘variso . between the
four data indexing methods, and under the circumsta.ce th * the query region is
flooded by query node, and corresponding data are sew. back to the query node
by all sensor nodes that have query conditions satisfiea. "n order to evaluate the
proposed multi data indexing methods, 1000 que.. ~s h- ve been performed. As
presented in Figure 8, the accumulative total netw ~k traffic is less for the VD
with data indexing scheme than the other ti. ~e schemes, due to the fact that
query optimization has avoided the rep ‘ate. . sess to the same data that are
shared by multi queries. Moreover, “e mc ‘e the queries are, the more energy
the multi query optimization can decr. ase, since index structure have already
saved more results.

As presented in Figure 9. it is implied that the larger the network size is,
the longer the query resps nding « lay will be. This is attributed to the fact
which the length of patis inc. = es along with the WSN size when it comes
to the sending of que' es ¢ 1d 17 ceiving of results. Compared to the other data
indexing methods, vD ma.. ges to realize a shorter delay. The main cause
is the index structure ¢ n help it acquire partial or all results and it has no
requirements t sea ch all satisfied sensor nodes. To conclude, VD data indexing
structure is suiv.’ le to be applied for large-scale networks, given its quick and

energy-eff cien’ processing of spatial range data query.

6. Cnclud. \g Remarks

10T application will increasing as our society becomes more digitalized, for
e.ample "1 industry 4.0 and beyond. Hence, we need approaches that allow us to

~hiave low cost data sensing, collecting and processing, as well as aggregation.
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Figure 9: Query responding delay € vr -iant sensor nodes in WSN.

In this paper, we proposed an archi. ctu.e for distributed data indexing and
evaluated its utility using simulatic. <. 'Luere are, however, limitations in using
simulations in the evaluation. Hence, one possible extension of this work is to
implement a prototype of t".e propc ed architecture, in collaboration with a real-
world service provider. ""his w.”" low us to evaluate its utility in a real-world

environment.
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In this paper, in order to efficiently optimize the use of the network resources and improve
the performance of energy consumption and query response time in WSNSs, we propose a novel
range data aggregation approach by exploiting spatial structures of sensory data. Thr . ~tributions
of this paper are summarized as follows:

We propose effective multidimensional data indexing structures to "elp .-cess spatial
queries efficiently, which provides a high-dimensional data indexing arch’ec. ire foi tackling the
problems and enables us to present approaches which have much more app.. *able to mobility and
spatial continuous range query than those proposed in previous works. n this scheme, the
indexing scheme equally handles both types of information, ar g agnregates them in an energy
efficient manner, providing a hierarchical in-network storage *hat is car able of timely responding
to different queries,and further able to provide immedia’~ answer to approximate queries and
some types of exact queries.

In order to prove that the data indexing algorithms & ~ aeneric enough to fit a wide variety of
the commonly used spatial query processing,we pre.»r . the applicability of the algorithm on four
data structures:kd-tree, quad-tree, k-means clu.*ei.>1 and Voronoi diagram (VD). VD data
indexing model is suitable to general queries ~nerauons, which can, for example, be applied to
process location-based service in the ce'’s .~ O(log n) time.

Robust performance analysis is p.~form .d for the effect of each data structure in the data
indexing. Our simulation result shc v th, efficiency of the presented algorithm, in respect of

query response time, and mair ‘2nance eiergy cost.
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