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Abstract

With the increasing cost of electricity, Cloud providers consider energy con-
sumption as one of the major cost factors to be maintained within their
infrastructure. Consequently, various proactive and reactive management
mechanisms are used to efficiently manage the cloud resources and reduce the
energy consumption and cost. These mechanisms support energy-awareness
at the level of Physical Machines (PM) as well as Virtual Machines (VM)
to make corrective decisions. This paper introduces a novel Cloud system
architecture that facilitates an energy aware and efficient cloud operation
methodology and presents a cost prediction framework to estimate the to-
tal cost of VMs based on their resource usage and power consumption. The
evaluation on a Cloud testbed show that the proposed energy-aware cost pre-
diction framework is capable of predicting the workload, power consumption
and estimating total cost of the VMs with good prediction accuracy for vari-
ous Cloud application workload patterns. Furthermore, a set of energy-based
pricing schemes are defined, intending to provide the necessary incentives to
create an energy-efficient and economically sustainable ecosystem. Further
evaluation results show that the adoption of energy-based pricing by cloud
and application providers creates additional economic value to both under
different market conditions.
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1. Introduction

The emergence of cloud computing as an IT service has seen the provi-
sion of computing power and storage away from companies and organisations.
Cloud remote data centres, managed by cloud providers, handle the services
required by customers, including Small and Medium Enterprises (SMEs) in
a centralised and controlled environment rather a local IT system. These
providers make use of virtualisation in the management of ICT resources,
which provides a simplified server administration, improved resource utilisa-
tion, and reduced IT costs.

However, with the wide adoption of Cloud Computing, energy consump-
tion has become one of the main issues for Cloud providers to address. A
Cloud infrastructure along with its cooling resources consume a large amount
of energy to operate, which may cause ecological and economic issues. From
the economical perspective, Cloud providers consider energy consumption
as one of the key cost factors with a substantial impact on the operational
cost of the Cloud infrastructure [1]. Therefore, various energy efficient tech-
niques have been introduced to help Cloud providers reduce the energy cost
of their infrastructure, which can then lead to reducing the cost of operational
expenditure (OPEX) and having less negative impact on the environment.
Cost mechanisms offered by Cloud providers have become sophisticated, as
customers are charged per month, hour or minute for the services they use.
Nevertheless, there are still limited as customers are charged based on a pre-
defined tariff for the resources usage which include CPU, memory, storage
and network. This pre-defined tariff does not consider the variable cost of en-
ergy [2]. Consequently, modelling a new cost mechanism for services offered
that can be adjusted to the actual energy costs has become an interesting
research topic.

The impact of energy consumption is not only dependent on the efficiency
of the physical resources, but also on the strategies deployed to manage these
resources as well as the efficient design of the applications running on these
resources [3]. Different methods have been used to efficiently manage cloud
resources, all of which can be based on certain thresholds, called reactive, or
based on prediction, called proactive [4]. For example, once an 80% CPU util-
isation threshold is exceeded, a corrective action takes place such as adding
more resources to avoid service performance degradation. Proactive methods
have the advantage of taking corrective actions at an early stage to prevent
Service Level Agreement (SLA) violation and maintain the expected service
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performance. To efficiently design cloud applications, applications’ designers
and developers should be provided with energy-aware and cost information
for supporting the task of optimising energy efficiency resulting from run-
ning services in cloud environments. As discussed in [5], having appropriate
tools for energy monitoring is essential to support energy-awareness and con-
tributes to energy optimisation in all layers of the Cloud stack. Furthermore,
estimating the total cost of cloud services can help make effective strategies
and energy efficient resource allocation methods [5]. Thus, managing the
Cloud paradigm in all different levels and reducing the energy consumption
has received a lot of attention in the literature as it can result in reduction
of OPEX costs for the Cloud providers.

Another important aspect is to consider novel pricing schemes, intending
to provide the necessary incentives to create an energy-efficient and econom-
ically sustainable ecosystem. Pricing in cloud computing has been studied
extensively in the past and most approaches consist of a combination of
a fixed or variable price per VM instance and an additional usage charge
based on the actual use of computing resources, such as CPU cycles, net-
work bandwidth, memory and storage. Some cloud providers employ even
simpler pricing schemes, such as monthly or yearly subscriptions. However,
none of the aforementioned schemes provide incentives for efficient energy
consumption. One candidate solution could be the adoption of energy-aware
pricing by the cloud service providers for achieving a more efficient resource
usage.

Additionally, to evaluate the effect of pricing, one needs to consider the
actions taken by all the economic agents involved. For example, a price in-
crease by an Infrastructure as a Service (IaaS) provider does not necessarily
lead to an increase in its profits, as the demand of applications for VMs
might drop considerably. For this reason, a microeconomic model is consid-
ered, which incorporates the actions of IaaS as well as Platform as a Service
(PaaS) providers, applications and their users. Since an action of any of these
agents triggers a chain of subsequent responses by the others, determining
the equilibrium of such interactions is an interesting problem.

The aim of this research is to enable energy-awareness of resource usage at
virtual level in cloud computing environments, which contributes to overcome
the challenge of identifying energy usage for the VMs. Also, this research
aims to predict the workload, energy consumption and estimate total cost
of the VMs based on specific cloud workload patterns. The outcome of
this research can be used to help make efficient decisions supported with
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energy-awareness and cost estimation. This paper’s main contributions are
summarised as follows:

• a Cloud system architecture that includes the required components to
support energy-awareness and total cost estimation of Cloud infras-
tructure services;

• an energy-aware model that fairly attributes the energy consumption
to heterogeneous and homogeneous VMs in Clouds;

• an energy-aware framework for predicting the usage and cost of het-
erogeneous and homogeneous VMs by considering their resource and
power consumption;

• an adoption analysis of the proposed energy-based pricing schemes by
cloud and application providers.

This paper is organised as follows: Section 2 introduces the proposed
cloud system architecture. The energy-aware VM model and the energy-
aware cost prediction framework are presented in Sections 3 and 4, respec-
tively. In Section 5, a set of innovative energy-based pricing schemes are
proposed. Section 6 presents the experimental set up and design. Section 7
includes the evaluation of the proposed cost estimation framework, as well
as the economic implications of energy-aware pricing under different market
conditions. Section 8 discusses the related work, and Section 9 concludes this
research and discusses future steps.

2. System Architecture

In this Section, an architecture that supports energy-awareness in differ-
ent levels of the Cloud stack while at the same time aware of the impact
on other quality characteristics of the overall cloud system such as perfor-
mance and cost is proposed. Figures 1-3 provide an overview of the proposed
architecture [6]. It includes the high-level interactions of all components,
is separated into three distinct layers whose interaction supports the stan-
dard Cloud service model: construct, deploy and operate/re-configure. Next,
details on the interactions of the architectural components are discussed.
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Figure 1: SaaS Architecture - Application Construction Kit.

2.1. Layer 1 - SaaS

In the SaaS layer a set of components interact to facilitate the modelling,
design and construction of a Cloud application. The components aid in eval-
uating energy consumption of a Cloud application during its construction.
A number of plug-ins are provided for a frontend Integrated Development
Environment (IDE) as a means for developers to interact with components
within this layer. A number of packaging components are also made available
to enable provider agnostic deployment of the constructed cloud application,
while also maintaining energy awareness.

The IDE is intended to be the main entry point to the infrastructure for
service designers and developers. The idea is that the IDE integrates the
graphical interfaces to the different tools available in the SaaS layer, thus
offering a unified and integrated view to users. The Programming Model
Plug-in (PM plug-in) provides a graphical interface to use the Programming
Model and supporting tools to enable the development, analysis and profiling
of an application in order to improve energy efficiency. On the other hand, the
Programming Model provides the service developers with a way to implement
services composed of source code, legacy applications executions and external
Web services [7]. Although these complex services are written in a sequential
fashion without APIs, the applications are instrumented so they call the
Programming Model Runtime to be executed in parallel.
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The Requirement and Design Modelling Plugins are initially used during
the system testing phase of a SaaS application. In cases of iterative or in-
cremental development, this means that these SaaS Modelling tools can be
used at the end of each iteration whose results provides an executable part
of the SaaS application.

The Experiment Manager (EM Plug-in) is used prior to a SaaS application
deployment. It assumes that a current SaaS application version has an exe-
cutable version on which integration and system tests can be performed. The
DEM helps a SaaS development team in cooperation with a SaaS provider
to determine what deployment configuration alternatives of their SaaS ap-
plication is likely to provide the most effectiveness business operation. In
particular, the DEM will assist in managing experiments where application
representative workloads are exercised on different deployment configuration
alternatives of a SaaS application version to obtain measurements on cost,
energy behaviour and time performance behaviour of each workload.

The Code Optimizer plays an essential role in the reduction of energy
consumed by an application. This is achieved through the adaptation of the
software development process and by providing SaaS software developers the
ability to directly understand the energy foot print of the code they write.

Other components in this layer include 1) the Application Packager com-
ponent is in charge of packaging applications. This component takes into
account input from the Requirements and Design Modelling Plug-in in the
Open Virtualisation Format (OVF) to package the software with the differ-
ent requirements. It also generates a Service Manifest to submit to the VM
Image Constructor; 2) the VM Image Constructor (VMIC) uses the appli-
cation packages and the service manifest or application descriptor to create
VM images that can be deployed in the PaaS layer, and 3) the Application
Uploader interacts with the PaaS Application Manager to register the final
VMs ready for deployment.

2.2. Layer 2 - PaaS

The PaaS layer provides middleware functionality for a Cloud application
and facilitates the deployment and operation of the application as a whole.
Components within this layer are responsible for selecting the most energy
appropriate provider for a given set of energy requirements and tailoring the
application to the selected providers hardware environment. The Application
Manager (AM) component manages the user applications that are described
as virtual appliances, formed by a set of VMs that are interconnected between
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Figure 2: PaaS Architecture - Application Deployment.

them. The Energy Modeller aims to gather and manage energy related infor-
mation throughout the whole Cloud Service lifecycle and Cloud layers: from
requirement level Key Performance Indicators (KPIs) to programming model
annotations down to PaaS and IaaS level measurements made through the
monitoring agents present at those levels. The energy modeller provides an
interface to estimate the energy cost of a PaaSs KPIs, and the provided esti-
mations assist in the selection of the appropriate IaaS provider for running the
application. Moreover, it provides aggregated measurements of energy con-
sumption (Wh) and average instant power (W) per each application and its
events as required by other components such as the Pricing Modeller, which
needs to know the current energy consumption to get billing information, but
also forecast the price change of an application deployment/re-deployment.
It also provides energy-aware cost estimation related to the operation of
applications on top of VMs on a specific IaaS provider. The role of the Vir-
tual Machine Contextualizer (VMC) is to embed software dependencies of
a service into a VM image and configure these dependencies at runtime via
an infrastructure agnostic contextualization mechanism. Additionally, the
VMC enables the use of energy probes for the gathering of VM level energy
performance metrics. Application level monitoring is also accommodated for
here, in addition to support for Service Level Agreement (SLA) negotiation.
The Self-Adaptation manager (PaaS SAM) is the principle component in this

7



layer for deciding on the adaptation required to maintain SLAs. Its overall
aim is to manage the trade-offs between energy, performance and cost during
adaptation at runtime. The PaaS SAM is notified of the need to perform an
adaptation by the SLA manager.

Figure 3: IaaS Architecture - Application Operation and Re-Configuration.

2.3. Layer 3 - IaaS

In the IaaS layer the admission, allocation and management of virtual re-
source are performed through the orchestration of a number of components.
Energy consumption is monitored, estimated and optimised using translated
PaaS level metrics. These metrics are gathered via a monitoring infrastruc-
ture and a number of software probes.

The Virtual Machine Manager (VMM) component is responsible for man-
aging the complete life cycle of the virtual machines that are deployed in a
specific infrastructure provider. The goal of the Energy Modeller is to gather
and manage energy related information throughout the whole Cloud Service
lifecycle and Cloud layers. This components core responsibility is to pro-
vide energy usage estimates by presenting the relevant KPIs for a virtual
machine deployment on the infrastructure provided, see Section 3. This will
include cost trade off analysis based on sources such as prior experience, the
application profile as defined in the SLA, which is subsequently translated
into infrastructure level KPIs, and finally from current up to date monitor-
ing information from the deployment environment. The SLA Manager is
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responsible for managing SLA negotiation requests at IaaS level. It interacts
with the VM Manager to get the status of the available resources in order
to determine the SLA offer and the Pricing Modeller to assign a price to the
offered terms. The goal of the Pricing Modeller is to provide energy-aware
cost estimation related to the operation of the physical resources managed by
the IaaS provider and used by specific VMs, see Section 4. The Infrastructure
Manager (IM) manages the physical infrastructure and redirects requests to
hardware components. It maintains lists of hardware energy-meters, physi-
cal cluster nodes, network components and storage devices. External com-
ponents can obtain and manipulate the state of the infrastructure through
a common API that is independent of the actual hardware. The IM pro-
vides power consumption information for each cluster node. Furthermore,
it IM requires an authentication for all operations which ensures protection
against attacks as well as a sufficient separation of different parties. Finally,
the ability to self-adapt at operation time which is supported by the Self-
Adaptation Manager (IaaS SAM) is needed to keep the cloud infrastructure
in an optimal state during its operation.

2.4. Layers Interaction

The focus on performance, cost and energy can be seen in each layer, with
each component adding to the ability of the overall architecture to adapt
[4]. The SaaS components not only support the energy efficiency goal but
provide means of packaging Cloud applications in a way that enables provider
agnostic deployment thanks to the interaction with the PaaS Application
Manager through the Application Uploader.

The captured application requirements are realised in the PaaS layer by
the application manager, which enables the deployment of the application on
a cloud infrastructure thanks to the Application Scheduler. Self-Adaptation
then continues in the PaaS layer through the collaboration between the Ap-
plication manager and other key components, e.g. the Self-Adaptation man-
ager. The SLA manager continually monitors SLA conformance with the aid
of the Application Monitor while the Self-Adaptation Manager makes the
decisions of when to adapt the application through horizontal scaling.

In the IaaS layer, the VMM is at the heart of the adaptation at this layer.
Unlike the PaaS Layer that focusses on application level metrics the VMM
focuses on optimising the VMs both at deployment and again at runtime.
In order to do this it utilises energy and pricing modellers as well as key
performance data from the infrastructure monitor and performs rescheduling

9



in order to adapt either on particular events such as submission of new VMs
or periodically.

3. Energy-Aware Virtual Machine Model

The power consumption of a PM can be directly measured and mainly
consists of two parts, the idle and active power. The idle power consumption
is consumed when the PM is turned on but not running any workload, and
the active power consumption is the induced power to the PM when it is
running some workload. Thus, the total power consumption of the PM is
equal to its idle power consumption plus its active power consumption.

As the case with the PM, the total power consumption of a VM equals
its idle power consumption plus its active power consumption. However, the
power consumption of VMs is difficult to identify and not directly measured.
Hence, the power consumption of VMs can be inferred from their underlying
PMs, which is still difficult to achieve.

A PM can run one or many VMs at the same time, and these VMs
can be homogeneous or heterogeneous based on their characteristics, e.g.
the number of Virtual CPUs (vCPUs) for each VM. Thus, these conditions
should be taken into consideration when modelling and identifying the power
consumption for the VMs.

Different energy models and mechanisms have been introduced in previ-
ous work to identify the energy consumption of VMs based on the energy
consumption of their underlying PMs. Some of these models, as presented
in [8], only attribute the PMs active energy to the VMs. Other models, as
presented in [9] attribute both of the PMs idle and active energy to the VMs.
Nevertheless, these introduced models do not consider a fair attribution the
PMs idle and active energy to homogeneous and heterogeneous VMs running
concurrently.

Thus, a new energy-aware model is introduced to overcome the above
limitations of the existing VM energy models. This new energy model at-
tributes the PMs idle and active energy consumption fairly to homogeneous
and heterogeneous VMs running on the same PM.

Many of the existing approaches model and identify the energy consump-
tion in PMs, as in [10, 11], and the energy consumption in VMs, as in [12, 9],
by considering only the CPU utilisation. Understanding how the resource
usage affects the power consumption is required. Further, an experimental
study was carried out to investigate the effect of the resource usage (CPU,
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RAM, disk and network) on the power consumption. The findings [13, 14, 15]
show that the CPU utilisation correlates well with the power consumption,
which is supported in other work, for example [11, 16, 17]. Thus, the work in-
troduced in this paper follows the same approach and takes into account the
CPU utilisation only when modelling and identifying the energy consumption
for the VMs.

The energy-aware model introduced in this paper works by fairly attribut-
ing the PMs idle energy to VMs based on the number of vCPUs assigned to
each VM. As shown in Equation 1, PMxIdlePwr is the idle power consumption
of the PM where the VMs are hosted; VMxReqvCPUs is the number of the
vCPUs assigned to the given VMx; VMcount is the number of VMs running
on the same PM; and VMyReqvCPUs is the number of vCPUs assigned to a
member of the VMs set hosted by the same PM. In this way, the idle energy
of the PM is fairly attributed to homogeneous and heterogeneous VMs by
considering the size of each VM in terms of the vCPUs assigned to them.

VMxIdlePwr = PMxIdlePwr × (
VMxReqvCPUs∑VMcount

y=1 VMyReqvCPUs

) (1)

Further, the PMs active energy is fairly attributed to the VMs based on the
VM CPU utilisation as well as the number of vCPUs assigned to each VM.
As shown in Equation 2, PMxPwr is the total power consumption of the PM,
from which the PMs idle power is deducted in order to identify the PMs active
power; VMxUtil is the CPU utilisation of the given VMx; and VMyUtil is
the CPU utilisation of a member of the VMs set hosted by the same PM.
This way, the active energy of the PM is fairly attributed to heterogeneous
and homogeneous VMs by considering the VM CPU utilisation and number
of vCPUs assigned for each VM.

VMxActivePwr = (PMxPwr − PMxIdlePwr)×

(
VMx(Util×ReqvCPUs)∑VMcount

y=1 VMy(Util×ReqvCPUs)

) (2)

Therefore, the total power consumption for each VM at any given time can
be identified by summing up its both idle and active power consumption, as
shown in Equation 3.

VMxPwr = VMxIdlePwr + VMxActivePwr (3)
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Hence, the presented energy-aware model can fairly attribute the idle and
active energy consumption of a PM to the same or different sizes of VMs in
terms of the allocated vCPUs for each VM. For instance, when both a small
VM with 1 vCPU and a large VM with 3 vCPUs are being fully utilised on
the same PM, the large VM would have triple the value in terms of energy
consumption as compared to the small VM. This way the energy consumption
can be fairly attributed based on the actual physical CPU resources used by
each VM. Further, the presented model has revealed that a large portion
of the VMs total energy represents idle energy, which is attributed to the
underlying PM idle energy. Thus, attributing the PMs idle energy to the
VMs, which is already considered in the proposed model, is very important,
especially to alleviate the idle energy costs.

4. Energy-Aware Cost Prediction Framework

Cost mechanisms offered by Cloud service providers have become even
more sophisticated, as customers are charged per month, hour or minute
based on the resources they utilised. Nevertheless, there are still limited
as customers are charged based on a pre-defined tariff for the resource us-
age. This pre-defined tariff does not consider the variable cost of energy
[2]. Measuring or predicting the current power consumption is difficult and
cannot be performed directly at the VM level. Consequently, estimating the
cost of cloud services including the energy consumption can help the service
providers offer suitable services that meet their customers’ requirements.

Therefore, an energy-aware cost prediction framework that aims to pre-
dict the workload and power consumption as well as estimate the total cost of
the VMs during service operation is introduced. The VMs workload (CPU,
memory, disk and network) is firstly predicted. Then, the predicted VM CPU
utilisation is correlated to PM workload characterised by (CPU utilisation)
in order to estimate the PM power consumption, from which the predicted
VM power consumption would be based on. After that, the total cost of VMs
is estimated based on their predicted workload and power consumption.

As depicted in Figure 4, this framework includes five main steps to predict
the VMs workload and power consumption, then estimate the total cost of
VMs. To achieve this aim, the following steps are required [15].
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Figure 4: Energy-Aware Cost Prediction Framework.

4.1. VM Workload Prediction

The first step of the framework is to predict VM workload for the next
time interval, which is the requested number of VMs along with their capac-
ity in terms of (vCPUs, memory, disk and network) to execute the applica-
tion. Using the Autoregressive Integrated Moving Average (ARIMA) model,
the VM workload is then predicted based on historical workload patterns
retrieved from a knowledge database. There are five different types of work-
load patterns that can be experienced in cloud applications [18]; and two
types of these workload patterns, namely static and periodic, are considered
for the historical data to be used in this framework. A static workload pat-
tern occurs when an application is experiencing the same and stable resource
utilisation over a period of time. A periodic workload pattern can occur
when an application is experiencing repeated resource utilisation peaks in
time intervals [18].

The ARIMA model is a time series prediction model that has been used
widely in different domains owing to its sophistication and accuracy [19]. A
number of work, as in [20] have used ARIMAmodel to predict workload in the
cloud computing domain; though their objectives do not consider predicting
the energy consumption. Hence, the same approach using ARIMA model is
applied in this work to predict the workload, but with the objectives toward
predicting the energy consumption and estimating the total cost of VMs.
Unlike other prediction methods, like sample average, ARIMA takes multiple
inputs as historical observations and outputs multiple future observations
depicting the seasonal trend. It can be used for seasonal or non-seasonal
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time-series data. The type of seasonal ARIMA model is used in this work as
the targeted workload patterns are reoccurring and showing seasonality in
time intervals. To use the ARIMAmodel for predicting the VM workload, the
historical time series workload data has to be stationary, otherwise Box and
Cox transformation [21] and data differencing methods are used to make these
data stationary. Further, the model selection of ARIMA can be automatically
processed in R package [22] using the auto.arima function, which selects
the best fit model of ARIMA based on Akaike Information Criterion (AIC)
or Bayesian Information Criterion (BIC) value [19].

After predicting the VM workload using the ARIMA model based on
historical data, the next steps take place to predict the PM workload and
the PM/VM power consumption using regression models.

4.2. PM Workload Prediction

Once the VMs workload is predicted, the second step is to understand how
this workload would be reflected on the physical resources and predict the
PMs workload, which is PM CPU utilisation. This would require measuring
the relationship between the number of vCPU and the PM CPU utilisation
for a PM. Therefore, the relationship between the number of vCPUs and the
PMs CPU utilisation is characterised for the targeted PMs. For the purpose
of this work, two different PMs (Host A and Host B) in a cloud testbed
have been characterised with regression models, as shown in Figure 5 and 6.
This experiment was carried out on a local Cloud Testbed by stressing the
CPU to its full capacity using the Stress-ng tool [23]. More details on the
experimental set up are found in Section 6. A linear regression model has

Figure 5: Number of vCPUs vs CPU
Utilisation for Host A.

Figure 6: Number of vCPUs vs CPU
Utilisation for Host B.

been applied to predict the PM CPU utilisation based on the used ratio of
the requested number of vCPU for the VMs with consideration of its current
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workload as the PM may be running other VMs already. The following
Equation is used (4):

PMxPredUtil = (α× (
VMCount∑

y=1

(VMyReqvCPUs ×
VMyPredUtil

100
)) + β)

+ (PMxCurrUtil − PMxIdleUtil) (4)

PMxPredUtil is the predicted PM CPU utilisation; α is the slope and β is
the intercept of the CPU utilisation. The VMyReqvCPUs is the number of
requested vCPU for each VM and VMyPredUtil is the predicted utilisation
for each VMs. The PMxCurrUtil is the current PM utilisation and PMxIdleUtil

is the idle PM utilisation.

4.3. PM Energy Consumption Prediction

After predicting the PMs workload, the third step is to predict the PMs
power consumption based on the correlation of this predicted workload with
PM power consumption. Thus, the considered PMs need to be characterised
in terms of their power consumption in relation with CPU utilisation using
regression models, as shown in Figures 7 and 8. Therefore, the PMs predicted

Figure 7: CPU Utilisation vs Power Con-
sumption for Host A.

Figure 8: CPU Utilisation vs Power Con-
sumption for Host B.

power consumption, PMxPredPwr measured by Watt, can be identified using
a linear relation with the predicted PMs CPU utilisation, as shown in Figure
7 and in Equation (5). α and β are the slope and interceptor values obtained
from the regression relation.

PMxPredPwr = (α× (PMxPredUtil) + β) (5)

However, not all existing PMs necessarily follow a linear power model with
their CPU utilisation, since the PMs are heterogeneous in nature, as shown
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for example in Figure 8. In this case, other regression models, such as polyno-
mial, can be used to characterise the relation between the power consumption
and CPU utilisation of the targeted PM, as shown in Equation (6).

PMxPredPwr = (α(PMxPredUtil)
3 − γ(PMxPredUtil)

2

+ δ(PMxPredUtil) + β) (6)

Where α, γ and ϕ are all slopes, β is the intercept and PMxPredUtil is pre-
dicted PM CPU utilisation.

4.4. VM Energy Consumption Prediction

The fourth step of this framework is to attribute the predicted PMs energy
consumption to the new requested VM and to the VMs already running on
the physical host based on the energy-aware model introduced in Section 3.
Hence, the predicted power consumption for the new VM, VMxPredPwr, can
be identified for the next interval time using Equation (7).

VMxPredPwr = PMxIdlePwr × (
VMxReqvCPUs∑VMcount

y=1 VMyReqvCPUs

)

+ (PMxPredPwr − PMxIdlePwr)

× (
VMx(PredUtil×ReqvCPUs)∑VMcount

y=1 VMy(PredUtil×ReqvCPUs)

) (7)

Where VMxPredPwr is the predicted power consumption for one VM mea-
sured byWatt. VMxReqvCPUs is the requested number of vCPU and VMxPredUtil

is the predicted VM CPU utilisation.
∑VMcount

y=1 VMyPredUtil is the total of
vCPU for all VMs on the same PM. The PMxIdlePwr is idle power con-
sumption and PMxPredPwr is the predicted power consumption for a single
PM.

4.5. VM Total Cost Estimation

The final step in this framework is to estimate the total cost of the VM
based on the predicted VM resource usage and the predicted VM power
consumption. The energy providers usually charge electricity by the Kilo-
watt per hour (kWh). Therefore, converting power consumption to energy
is required using the following Equation (8):

VMxPredEnergy =
VMxAvgPredPwr

1000
×

T imes

3600
(8)
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To estimate the total cost for the VM [14]. The following Equation is used
(9):

VMxEstTotalCost = ((VMxReqvCPUs ×
VMxPredUtil

100
)

× (CostpervCPU × T imes))

+ (VMxPredRAMUsage × (CostperGB × T imes))

+ (VMxPredDiskUsage × (CostperGB × T imes))

+ (VMxPredNetUsage × (CostperGB × T imes))

+ (VMxPredEnergy × CostperkWh) (9)

Where VMxEstTotalCost is the estimated total cost of the VM. The VMxReqvCPUs

is the number of requested vCPUs for each VM and VMxPredUtil is the pre-
dicted utilisation for each VM times the cost for the requested vCPUs for a
period of time. VMxPredRAMUsage is the predicted resource usage of RAM
times the cost for that resource for a period of time and so on for each
resource such as CPU, disk and network. VMxPredEnergy is the predicted
energy consumption of the VM times the electricity price as announced by
the energy providers.

5. Energy-Aware Pricing Schemes

Cloud IaaS/PaaS providers mainly charge for their resources which come
in the form of VMs with specific performance characteristics on the basis of
fixed rates per unit of time. The rate levels depend on specific VM character-
istics, such as CPU speed, network bandwidth, memory and storage space.
At the same time, applications take decisions which can have an important
impact on both energy consumption and performance. An example of such
a decision is the level of parallelism in the event of multiple tasks scheduled
on many different VMs. The application has the choice of the parallel ex-
ecution of a number of tasks on many different VMs instead of using only
a few, which may incur unnecessarily high energy costs by requiring a large
number of physical servers to host the VMs. These increased energy costs
are carried over to increased IaaS/PaaS prices and so lower profit levels for
the providers.

One candidate solution could be the adoption of energy-aware pricing
by the cloud providers in order to provide the necessary incentives to the
customers for achieving a more efficient resource usage. Under such a scheme
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the applications will be aware of the economic impact of their decision and so
they will have the incentive to take energy costs into account, e.g., when they
decide on the level of parallelism. Indeed, task scheduling at the application
level may be more energy and performance effective than server consolidation
by the IaaS/PaaS providers, since it is the applications which know what
should be run in parallel and what should not.

However, additional information need to be provided by the existing in-
frastructure (e.g., energy consumption monitoring) to support such schemes.
In response, the Pricing Modeller component is responsible for providing
energy-aware price estimation and billing related to the operation of appli-
cations or VMs associated with them, see Figure 3.

The previous sections have focused on aspects related to the prediction
of the energy consumption, as well as the resulted cost. As a next step,
innovative energy-based pricing schemes are proposed, which were initially
proposed in [24].

Static pricing: In this scheme, the price does not depend on energy
consumption and depends only on VM characteristics, i.e.,

p =
1

T

∫ T

0

pstatic (VM, t) dt (10)

Where VM is a parameter identifying the characteristics of the VM and
pstatic (VM, t) is the static price of VM at time t. If the static price does not
vary in time, i.e., p (VM, t) is constant in the time parameter t, then no time
averaging is necessary.

Two-part tariff: The actual form of IaaS price is comprised by two
parts: a fixed one, depending only on static information of a VM, and a
dynamic one, which depends on the average power usage. In a simple scheme,
we consider a fixed part based on the static VM characteristics, plus the
average power usage multiplied with the price per Watt-hour (Wh). Thus,
the price p of a VM (starting at time 0 and up to time T ) is computed by
the formula

p =
1

T

∫ T

0

pstatic (VM, t) dt+
1

T

∫ T

0

penergy (t)W (t) dt (11)

Where penergy (t) is the energy price at time t, and W (t) is the power usage
of the VM at time t.

Two-part tariff with energy-savings discounts: A disadvantage of
the dynamic usage price is that the actual energy that an application may
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use is not known by the developers at the time the SLA is established. A
simple alternative is to pay a lump sum and then apply a discount based on
the actual power consumption. Hence, the following two-part price can be
used: α is a fixed price based on static info of a VM which also incorporates
energy costs through the historical average power consumption or based on
the prediction mechanisms presented in the previous sections, and b is a price
discount depending on the level of power savings below the historical average
or prediction. In this way it is not possible to pay more than the lump sum
initial payment. More specifically, the price p is computed by the formula:

p =
1

T

∫ T

0

pstatic(VM, t)dt

+min (
1

T

∫ T

0

penergy(t)W (t)dt−
1

T

∫ T

0

penergy(t)Wnominaldt, 0) (12)

where,Wnominal is the nominal average power consumption, i.e., the power
consumption already accounted for in the static price. Any average power
consumption above Wnominal does not increase price above the (time average)
static price. Deviations below Wnominal result into a proportional discount.
The function min (x1, x2, . . .) yields the numerically smallest of the xi.

Linearly increasing pricing: The two-part tariff and energy-saving
discounts pricing schemes assume that the price of energy could potentially
vary in each epoch. However, such schemes do not consider any direct relation
between the energy price and the total energy consumption. For example,
an energy provider would reasonably like to avoid facing energy consumption
bursts (e.g., during summer). Most of the energy providers usually provide a
lower price per energy unit during the less burst periods (e.g., day / night).
Motivated by this approach, the price per energy unit based on the total
consumed energy in considered to be a linear increasing function. Other ap-
proaches (e.g., exponential function) may be also applied, in order to capture
the notion of setting higher price per energy unit, as more energy is consumed
during an epoch. The slope of the charging function will be set by the IaaS
provider based on the factors consisting his own cost function (e.g., charg-
ing scheme or/and SLAs between IaaS and energy provider). For the linear
assumption, penergy can be written as cW (t), assuming that c is a constant
parameter set by the IaaS provider, showing how aggressively penergy will
increase with respect to the total energy consumption. In order to prevent

19



IaaS provider to charge arbitrarily high prices, an upper bound is set, such
that cW (t) ≤ penergy.upper. Thus, the price p is computed by the formula:

p =
1

T

∫ T

0

pstatic(VM, t)dt

+min (
1

T

∫ T

0

cW 2(t)dt,
1

T

∫ T

0

penergyupper(t)W (t)dt) (13)

95th percentile rule-based pricing : The 95th percentile rule is a
widely used pricing scheme in telecommunications for charging the transit
traffic sent by lower-tier ISPs. By employing this scheme, transit ISPs intend
to penalise lower-tier ISPs in case of traffic bursts. A similar pricing scheme
could be employed by IaaS providers for penalising bursts of the consumed
energy. To implement this scheme, it is assumed that the energy consumption
within the infrastructure of an IaaS provider is measured or sampled and
recorded (e.g., log file). At the end of each billing cycle (e.g., every month),
the energy consumption samples are sorted from highest to lowest, and the
top 5% of data is thrown away. The next highest measurement is the 95th%,
and the customer will be billed based on that energy consumption. Let l∗ (t)
denote the 95th% measurement of the energy consumed by the customer at
time t. l∗ is then defined as max {l | P (W > l) ≥ 0.05}. Thus, the price will
be:

p =
1

T

∫ T

0

pstatic (VM, t) dt+
1

T

∫ T

0

penergy (t) l
∗ (t) dt (14)

6. Experimental Set Up and Design

This section describes the environment and the details of the experiments
conducted in order to evaluate the work presented in this paper. In terms of
the environment, the experiments have been conducted on the Leeds Cloud
testbed. The details of this testbed and the experiments will be discussed
next.

6.1. Cloud Testbed

The cloud testbed consists of a cluster of commodity Dell servers, and
each one of these servers has Centos version 6.6 installed as its operating
system (OS). Two of these servers, one with a four core X3430 Intel Xeon
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CPU (Host A) and the other with an eight core E3-1230 V2 Intel Xeon
CPU (Host B), have been used for the experiments presented in this paper.
Also, each server has a total of 16GB of RAM and 250GB of SATA HDD.
Additionally, the testbed has a Network File System (NFS) share running
on the head node of the cluster and providing a 2TB total storage for VM
images.

The architecture of this testbed is shown in Figure 9. The testbed utilises
OpenNebula [25] version 4.10.2 as the Virtual Infrastructure Manager (VIM).
For the Virtual Machine Monitor or Manager (VMM), the KVM hypervisor
is used [26] hypervisor.

Figure 9: Cloud Testbed Architecture.

6.2. Monitoring Infrastructure

The resources usage and energy monitoring on the Cloud testbed is shown
on Figure 10. At the physical host level, each PM has a WattsUp [27] meter
attached to directly measure power consumption at per second basis for each
PM. The measured power consumption are then pushed to Zabbix [28], which
is used for resources usage monitoring purposes.. Additionally, Zabbix also
monitors the resources usage, like CPU, memory, network and disk, for each
of the running PMs and VMs.
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Figure 10: Monitoring Infrastructure.

6.3. Design of Experiments

The aim of the experiments is to demonstrate that: 1) the energy-aware
model is capable of fairly attributing the PMs energy consumption to ho-
mogeneous and heterogeneous VMs, and 2) the energy-aware cost prediction
framework is capable of predicting the workload and power consumption as
well as estimating the total cost of the VMs at service operation based on
historical static and periodic workload patterns.

The size of the VM is identified by its capacity in terms of the num-
ber of vCPUs and memory size. For example, if two VMs have the same
number of vCPUs on each, then they are considered homogeneous VMs.
If one has one vCPU and the other has two or more vCPUs, then they
are considered heterogeneous VMs. Rackspace [29] is used as a reference
for the VMs configurations. The experiments consider three sizes of VMs,
VM A(small), VM B(medium) and VM C(large) are provided with different
capacities. The VMs are allocated with 1, 2 and 3 vCPUs, 1, 2 and 3 GB
RAM, 10 GB disk and 1 GB network, respectively. The cost of the virtual
resources are set according to ElasticHosts [30] and VMware [31] prices are
followed: where 1 vCPU = £0.008/hr, 1 GB Memory = £0.016/hr, 1 GB
Storage = £0.0001/hr, 1 GB Network = £0.0001/hr; and the cost of energy
= £0.14/kWh [32].

In terms of evaluating the energy-aware model, the first experiment is
designed to run VM A(small), VM B(medium) and VM C(large) on a PM
(Host A), and to run the same types of these three VMs on a different PM
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(Host B). The aim of this experiment is also to explore how the energy
consumption is attributed to the same types of VMs when being run on
different PMs. The software tool Stress-ng is used along with cpulimit to
generate synthetic workload on the VMs at any level of CPU utilisation. All
the VMs used in this experiment are designed to be idle for 15 minutes at
the first stage, and then actively run at 80% of CPU utilisation for another
15 minutes at the second stage. This way can help to explore how the idle
and active power consumption of the PM are attributed to the VMs over
time. All the experiments are repeated five times and the statistical analysis
is performed to consider the mean values of the results and eliminate any
anomalies.

To evaluate the energy-aware cost prediction framework, a number of
experiments have been conducted on the testbed to synthetically generate
historical workload data. The historical data has been generated to represent
real workload patterns of cloud applications, including static and periodic,
by stressing all the resources (CPU, memory, disk and network) on different
types of VMs with the Stress-ng tool. The generated workload of each VM
type has four-time intervals of 30 minutes each. The first three intervals
will be used as the historical data set for prediction, and the last interval
will be used as the testing data set to evaluate the predicted results. The
prediction process works offline by firstly predicting the VM workload using
the auto.arima function in R package [22] to automatically select the best
fit model of ARIMA based on AIC or BIC value. Once the VM workload is
predicted, the process is then completed by going through the steps of the
introduced framework to consider the correlation between the physical and
virtual resources and consequently predict the power consumption and then
estimate the total cost of the VMs running on different PMs

7. Evaluation and Discussion

This section presents the evaluation of the energy-aware model and the
energy-aware cost prediction framework. The figures below show the pre-
dicted results for three types of VMs, VM A(small), VM B(medium) and
VM C(large), each instance running on two different PMs based on a histori-
cal periodic workload pattern. Because of space limitation, only VM A(small)
and VM C(large) results are shown.
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7.1. Energy-Aware Virtual Machine Model

The conducted experiment shows the results of energy consumption attri-
bution to heterogeneous VMs running on a PM (Host A). Additionally, this
experiment also presents the results of attributing the same types of VMs on
another PM (Host B).

7.1.1. Host A

The mean power consumption and CPU utilisation for VM A(small) and
VM C(large) running on Host A are shown in Figures 11 and 12, respectively.
As designed, all the VMs are idling for the first 15 minutes and actively
running with 80% of CPU utilisation for the remaining 15 minutes.

Figure 11: Mean Power Consumption
and CPU Utilisation for VM A(small).

Figure 12: Mean Power Consumption
and CPU Utilisation for VM C(large).

Figure 13: PM Mean Power Consump-
tion Attributed to each VM.

Figure 14: Mean Energy Consumption
per VM (for 30 minutes).

Figure 13 shows the distribution of the PMs mean power consumption to
all these three VMs over time, and Figure 14 shows the mean energy con-
sumption per VM in terms of their idle, active and total energy. As the VMs
are heterogeneous, therefore have different attribution of the idle and active
energy consumption, which fairly corresponds to their size. The energy con-
sumption of VM A(small) is about two times smaller than VM B(medium)
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and three times smaller than VM C(large), which is fairly based on their
CPU utilisation and sizes defined by the number of vCPUs each VM has.

7.1.2. Host B

The mean power consumption and CPU utilisation for VM A(small), and
VM C(large) running on Host B are shown in Figures 15 and 16, respectively.
Recall, all of the VMs are idle in the first 15 minutes and actively running
with 80% of CPU utilisation for the remaining 15 minutes. Figure 17 shows
the distribution of the PMs mean power consumption to all three VMs, and
Figure 18 shows the mean energy consumption per VM in terms of their idle,
active and total energy. As the VMs are heterogeneous in terms of the size,
they consequently have different attribution of the idle and active energy
consumption. The energy consumption of VM A(small) is about two times
smaller than VM B(medium) and three times smaller than VM C(large),
which is fairly based on their CPU utilisation and sizes defined by the number
of vCPUs each VM has.

Figure 15: Mean Power Consumption
and CPU Utilisation for VM A(small).

Figure 16: Mean Power Consumption
and CPU Utilisation for VM C(large).

Figure 17: PM Mean Power Consump-
tion Attributed to each VM.

Figure 18: Mean Energy Consumption
per VM (for 30 minutes).

The conducted experiment has shown the energy consumption attribution
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for three heterogeneous VMs running on Host A and Host B and revealed
that they can have different attribution of energy consumption based on the
power characteristics of the underlying PM. Host B has less idle and active
power consumption than Host A; therefore, when these three types of VMs
are running on Host A, they have more energy consumption as compared to
when running on Host B, as shown in Figures 14 and 18. Hence, enabling
energy-awareness at the VM level can help the cloud service providers to
monitor the energy consumption of the VMs and, if necessary, migrate the
VMs to another host to maintain their energy goals.

Further, the conducted experiment has revealed that a considerably large
portion of the VMs total energy resides on their idle energy, which is being
attributed from the idle energy of the underlying PM. Thus, attributing the
PMs idle energy to the VMs, which is already considered in the proposed
model, is very important, especially to alleviate the idle energy costs for the
PMs, as will be discussed next.

7.2. Energy-Aware Cost Prediction Framework

The conducted experiment shows the prediction results for three types
of VMs, VM A(small), VM B(medium) and VM C(large), based on static
and periodic workload patterns on two different PMs, (Host A and Host B),
having different characteristics. The aim of this experiment is to evaluate
the capability of the proposed framework to predict the workload, power
consumption and estimate the total cost for a mix of VMs with a mix of
workload patterns when being run on different PMs.

In terms of the historical and testing data sets, Figures 19 and 21 depict
the results of the predicted versus the actual VMs workload, including CPU,
RAM, disk and network usage for the VMs. Despite the periodic utilisation
peaks, the predicted VMs CPU and RAM workload results closely match the
actual results, which shows the strength of the ARIMA model for predicting
based on historical seasonal data, repeated patterns of the static and periodic
workload and give a very accurate prediction accordingly. The predicted VMs
disk and network workload are also matching the actual workload, but with
less accuracy as compared to the CPU and RAM prediction results. This
can be justified because of the high variations in the generated historical
periodic workload pattern of the disk and network not closely matching in
each interval, whereas the generated historical periodic workload pattern for
the RAM and CPU usage are closely matched in each interval. Beside the
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predicted mean values, the figures also show the high and low 95% and 80%
confidence intervals.

Table 1: Prediction Accuracy for VM A(small).

Parameters ME RMSE MAE MPE MAPE

CPU Utilisation 0.057922 0.638338 0.282995 0.176069 1.324204
RAM Usage 0.000060 0.000115 0.000072 0.015359 0.018484
Disk Usage 0.1188962 0.975295 0.841385 -1.49987 12.05513

Network Usage -0.015988 0.167085 0.089504 -2.02527 5.942
Power Consumption Host A 0.010496 0.10504 0.045515 0.029576 0.11785
Power Consumption Host B 0.010079 0.11109 0.049255 0.017091 0.07599

Based on the predicted workload for each VM, their power consumption
is predicted via the remaining steps within the framework. Figures 20 and
22 show the predicted versus the actual results of the power consumption for
VM A(small), VM B(medium), and VM C(large) when being run on Host
A and Host B, noting that the Host B is more energy efficient compared to
Host A. Also, the predicted power consumption attribution for each VM is
affected by the variation in the predicted CPU utilisation of all the VMs,
hence the predicted power consumption of all the VMs is closely matched
the pattern of the predicted VMs CPU utilisation, as shown in Figures 19
and 21.

In terms of prediction accuracy, a number of metrics have been used to
evaluate the predicted workload (CPU, RAM, disk, network) and power con-
sumption for the VM A(small), and VM C(large) based static and periodic
workload pattern as presented on Tables 1 and 2 respectively. These metrics
include, Absolute Percentage Error (APE) which measures the absolute value
of the ratio of the error to the actual observed value; Mean Error (ME) which
measures the average error of the predicted values; Root Mean Squared Error
(RMSE) which depicts the square root of the variance measured by the mean
absolute error; Mean Absolute Error (MAE) is the average of the absolute
value of the difference between predicted value and the actual value; Mean

Table 2: Prediction Accuracy for VM C(large).

Parameters ME RMSE MAE MPE MAPE

CPU Utilisation 0.03765 0.299769 0.137823 0.309809 6.615192
RAM Usage 0.000004 0.008671 0.002587 -0.00675 0.107601
Disk Usage 0.1838898 1.116114 0.733408 0.924781 12.64005

Network Usage 0.0657477 0.225631 0.132185 -6.13982 17.56377
Power Consumption Host A 0.026211 0.20869 0.095949 0.010313 0.11750
Power Consumption Host B 0.000131 0.16633 0.062928 -0.03101 0.13774
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(a) (b)

(c) (d)

Figure 19: The prediction Results for VM A(small) (for 30 minutes).

Host A Host B

Figure 20: The prediction Power Consumptionfor VM A(small) (for 30 minutes).
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(a) (b)

(c) (d)

Figure 21: The prediction Results for VM C(large) (for 30 minutes).

Host A Host B

Figure 22: The prediction Power Consumptionfor VM C(large) (for 30 minutes).
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Percentage Error (MPE) is the computed average of percentage errors by
which the predicted values vary from the actual values; and Mean Absolute
Percent Error (MAPE) is the average of the absolute value of the difference
between the predicted value and the actual value explained as a percentage
of the actual value [33].

Figure 23: The predicted VMs total cost
on Host A and Host B.

Figure 24: The VMs Cost Saving on
Host B.

This framework is also capable of estimating the total cost for three types
of VMs hosted/running on two different PMs as shown in Figure 23, which
presents the estimated total cost of the VM A(small), VM B(medium), and
VM C(large) running on different PMs (Host A and Host B). As the VMs
are heterogeneous, therefore the costs of VMs are different. The cost of
VM A(small) is about two times smaller than VM B(medium) and three
times smaller than VM C(large) when there are running on Host B, which
is fairly based on their resource usage and energy consumption by each VM.
The energy efficiency of Host B plays an important role to reduce the total
cost (Cost Saving) of the VMs comparing to Host A as shown in Figure 24.

Despite the combination of different types of VMs with different workload
patterns running on the different PMs, the accuracy metrics indicate that the
predicted VMs workload and power consumption achieve good prediction
accuracy along with the estimated total cost.

7.3. Pricing Schemes Evaluation

The goal of this analysis is to compare the economic implications of the
choice of pricing scheme by a service provider. In particular, the static and
energy-based pricing schemes presented in the previous section are compared.
To do this, models of cloud service providers sharing the same capabilities
and the same cost structure are considered, their only difference being the
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pricing scheme adopted by each. The basic model assumptions are briefly
presented. The detailed assumptions of our model are presented in [24].

IaaS/PaaS provider: it is assumed that the PaaS layer is offered by the
same economic entity, which offers the IaaS. Thus, whenever the reference to
IaaS means the combination of IaaS/PaaS. Each IaaS/PaaS provider has an
infinite number of physical servers at his disposal. Each server is populated
by VMs belonging to possibly different applications and the CPU speed is
split equally among the VMs. The provider is able to freely scale, i.e., the
server consolidation policy is such that the number of active physical servers
scales in proportion to the number of VMs in the infrastructure. A two-part
tariff adopted by the provider if further considered.

User demand for application requests: Each application has a dif-
ferent throughput demand (rate of instructions or requests to be executed at
the VMs of this application), which decreases to zero if the average process-
ing delay of each instruction/request becomes too high. It is assumed that
the benefit decreases as response delay increases. If the delay becomes too
high, the benefit will become negative and requests will start balking at this
point.

Applications: It is assumed that each application is employing a num-
ber of VMs. The cost for the SaaS provider of this application depends on
the parameters of the two-part tariff employed by the IaaS/PaaS provider,
while its revenue is based on the number of the completed requests (e.g.,
euros/request). The application decides how many VMs to buy from a par-
ticular IaaS provider such that its profit is maximised.

Hence, the economic quantities considered are:

• The level of profits for each type of provider.

• The level of payments made by the customers of each provider type.

• The level of overall satisfaction of the customers of each provider type.
Since the comparison depends on the market structure; the actions of
service providers under two extreme cases are considered, which are i)
monopoly, and ii) perfect competition.

The main outcomes of the analysis are summarised below:
Incentive to adopt energy-aware IaaS/PaaS layers under monopoly: The

profit of IaaS providers in a monopoly increases if a two-part tariff incor-
porating energy costs is used, compared to a static pricing scheme. Thus,
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IaaS/PaaS providers have the incentive of adopting energy-aware IaaS layer
regardless if the upper layers exist or not.

Incentive to adopt energy-aware IaaS/PaaS layers under competition:
The two-part pricing scheme incorporating energy costs is a viable strategy
under competition: the IaaS/PaaS providers obtain a share in a compet-
itive market. This is not true under the static pricing scheme, where an
IaaS/PaaS provider cannot have a non-zero market share and cover his costs
at the same time. This result implies that SaaS providers are more profitable
using IaaS/PaaS providers which charge according to energy consumption.
Thus, SaaS providers will be attracted to energy-aware IaaS/PaaS providers
even though the former are not aware of the energy used by their components;
their sole criterion being the resulting price.

Incentive to adopt energy-aware SaaS layer: SaaS providers obtain greater
profits when they become energy-aware in a market of competitive energy-
aware IaaS/PaaS. This is done through application-level scheduling of more
energy consuming requests on VMs residing in more power efficient hosts.
As a result, IaaS providers continue to be better off using the two-part tariff
even after SaaS providers start being energy-aware.

The first part of our analysis considers whether energy-awareness
of IaaS/PaaS providers is profitable for IaaS/PaaS and non-energy-
aware SaaS providers . A non-energy-aware SaaS provider means that
decisions are not taken on the basis of energy consumption. For example, a
SaaS provider is not able to decide which tasks to schedule on which VMs.
However, it decides which IaaS/PaaS provider to use on the basis of total
price charged.

In our first scenario, it is assumed that the IaaS/PaaS provider operates
in a monopolistic market, where two different applications (in terms of
quality of service characteristics) request for IaaS/PaaS services. The profits
of a monopolistic IaaS/PaaS provider employing: i) a two-part tariff, which
incorporates energy consumption, and ii) a static price are numerically eval-
uated. Figure 25 depicts the profits as a function of the maximum average
request response delay tolerated by the users of application 1 (normalised by
the maximum tolerated delay for application 2). The profits brought by the
two-part tariff are always greater than those brought by the static pricing
scheme. They coincide only if the QoS characteristics of the two applications
are the same. The greater the diversity between the applications, the greater
the difference in profits.

The second scenario considers the case of perfect competition among
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two IaaS/PaaS providers. Under perfect competition without entry costs, no
IaaS/PaaS provider is able to make strictly positive profits because in that
case no demand will be available. This is because the demand is attracted
by other providers, which choose to operate at a smaller albeit non-zero
profit margin by slightly reducing their prices. Thus at market equilibrium,
competitive IaaS/PaaS providers obtain zero profits and barely cover their
costs. Since the interest is the comparison of the effect of the pricing scheme
on competition, IaaS/PaaS providers are compared under the same charac-
terising parameters (including maintenance and energy costs) except those
concerning their pricing scheme.

As an exposition of the competition between IaaS/PaaS providers and
the effect of the pricing scheme, consider an example which examines the
profits of two applications as a function of their diversity. The users of
the applications are assumed not to tolerate average request response delays
above some value, which is specific to each application. Figure 26 depicts
the payments per time unit incurred by each application under two different
pricing schemes: i) a two-part tariff, which incorporates energy consumption,
and ii) a static price. The horizontal axis represents the maximum tolerable
delay by users of application 1 (normalised to that of application 2).

For stringent delay requirements (max tolerable delay is less than 0.3),
application 1 does not at all use the IaaS/PaaS provider with static pricing
since the high costs outweigh benefits. The latter hosts application 2 only,
at a competitive price. When the delay requirements of application 1 are
not so stringent, the demand rises and application 1 starts using the static
IaaS/PaaS provider, but at a cost which is not competitive: application
1 payments exceed the ones offered by the IaaS/PaaS provider employing
a two-part tariff. For values of the max tolerable delay above 1, the less
tolerable users belong to application 2 now, and they bare most of the costs
in both IaaS/PaaS providers. Nevertheless, the static IaaS/PaaS provider
continues not to be competitive as the payments resulting for application 2
exceed those by the IaaS/PaaS provider employing the two-part tariff.

The second part of the analysis considers whether energy-awareness
of SaaS providers is economically sensible. In order to make the effects of
energy-awareness clearly visible, the model is refined to allow for i) phys-
ical hosts with different power efficiency, ii) requests with different energy
consumption.

Two types of hosts are considered. Both host types consume the same
power while their CPU idles. While active, type 1 host is more power efficient.
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Figure 25: IaaS/PaaS provider profits in
a monopoly using a two-part tariff in-
corporating energy charges (solid curve)
and a static price (dashed).

Figure 26: Comparison of payments by
two applications to IaaS/PaaS providers
as a function of application QoS diver-
sity.

The fact that type 1 hosts are more power efficient has an implication for the
VM scheduling policy of the IaaS/PaaS provider. Since the latter strives to
have minimal energy costs, more power efficient hosts are preferred to less
efficient ones. Thus, the VM scheduling will try to allocate type 1 hosts first
to meet demand; type 2 hosts will be used only if it is not possible to meet
demand only by utilising type 1 hosts. This is under the assumption that
the VM scheduling algorithm is allowed to freely reallocate all VMs on the
available hosts. It is further assumed a unit rate of type 1 requests consumes
w1 > 1 times the one of type 2. The precise power consumption depends on
the host type the request is executed.

As a next step, the implications in power consumption due to the applica-
tion being energy-aware or not is considered. First the ”legacy” case is looked
at, where an application has no information about the power consumption
of its components. In this case, the application cannot differentiate between
the more and less energy consuming request types. Moreover, it cannot have
information about the energy efficiency of its VMs. Thus the requests are
scheduled on VMs independently of their type. Let us now consider how an
energy-aware application allocates requests on its VMs. Since type 1 hosts
are more power efficient and type 1 requests are more energy consuming (as
w1 > w2), an energy-minimising scheduling policy ought to place type 1 re-
quests on type 1 hosts and use type 2 hosts only if necessary or for serving
(the less consuming) type 2 requests. In the monopoly scenario, the SaaS
provider intends to optimise the number of VMs requested by the applica-
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tion, while the IaaS/PaaS provider chooses the optimal price to maximise
profits. In Figure 27, the above problem is numerically solved and the maxi-
mum profits for the monopolist as a function of the number of power efficient
(namely type 1) hosts H1 is depicted. πe is the energy price of the energy
provider. As the number of type 1 hosts increases, the energy-saving effect
of the scheduling of requests performed by the application becomes more
significant. The upward slopes for the energy-aware SaaS providers (the two
solid curves) decrease around H1 = 26. This is the point where type 1 hosts
serve exclusively type 1 requests. For greater values of H1, type 2 requests
are served by type 1 hosts and hence the savings effect is less pronounced.
Beyond H1 = 55 there is no profit difference as all requests are served by type
1 hosts and request scheduling does not have any effect, since VM scheduling
makes sure only the power efficient hosts are utilised. We consider different
values of πe (0.05 and 0.01 correspondingly) in order to investigate how the
profits of the cloud providers are affected by the energy price of the energy
provider.

In the perfect competition scenario, the IaaS/PaaS providers have zero
profit margin. Applications however have strictly positive profits and it is
observed that their profits increase by being energy-aware. Again, the SaaS
provider intends to maximise profits. One can move from the legacy alloca-
tion of type 1 requests, where these are distributed equally among all VMs
(irrespective of the host they are running on), to the allocation produced
by energy-awareness, by shifting small loads of type 1 requests that reside
on any VMs on type 2 hosts to VMs on type 1 hosts. Hence, application
level energy-awareness increases applications’ profits. Figure 28 presents the
profits of energy-aware (solid curve) and ”legacy” applications (dashed) in
competitive markets for IaaS/PaaS, as functions of the proportion of high
energy requests.

Based on the aforementioned analysis, it is concluded that applications
themselves would want to adopt energy-based technologies because they be-
come more profitable if IaaS/PaaS charge according to energy consumption.

8. Related Work

This section reviews existing work and categorises it into three lines of
research: VM energy modelling, prediction modelling and pricing modelling
in cloud computing.
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Figure 27: IaaS/PaaS provider profits in
the case of monopoly as a function of the
number of power efficient hosts.

Figure 28: Profits of energy-aware and
”legacy” applications as functions of the
proportion of high energy requests.

8.1. VM Energy Models

Unlike PMs, VMs energy consumption cannot be measured directly as
they do not have direct hardware interfaces to plug in any of the wall Watts
meters. Therefore, their energy information can be indirectly identified via
software tools that model the energy consumed by the PMs in which they
are hosted [34] with the use of different approaches, like resource usage-based
[35], [13], [12, 9] lookup table-based [36], and performance counters-based [8].

In terms of the PMs idle power consumption, most of the related work
does not consider it or attributes it evenly to the VMs, which would not be
fair when heterogeneous VMs are running alongside on the same PM. The
only exception is the model presented in [35] which considers attributing the
PMs idle power consumption to homogeneous and heterogeneous VMs; yet
when part of the PMs CPU and memory resources are assigned to the VMs,
it only attributes part of the PMs idle power to VMs, which is considered
unfair as that given PM is switched on to run and maintain the status of
the VMs; otherwise, that given PM could be switched off to save its idle
power consumption. In terms of the PMs active power consumption, some
of the related work models [36, 35, 12] attribute it to homogeneous VMs
only. The other models [8], [9] consider attributing the PMs active power to
homogeneous and heterogeneous VMs, but using different approaches. The
model introduced in [9] is the only model that has a similar approach to
the one introduced in this research when attributing the PMs active power
consumption to the VMs; however, their model still lacks fair attribution of
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the PMs idle power consumption to heterogeneous VMs.
The energy-aware model presented in this paper is different when com-

pared to existing models found in the literature. It considers attributing the
PMs idle power consumption to heterogeneous and homogeneous VMs based
on their size in terms of the number of vCPUs each VM has, which reflects
the actual PMs CPU resource and power usage. Also, the PMs active power
consumption is attributed to homogeneous and heterogeneous VMs based on
their CPU utilisation and size. Thus, the model introduced in this research
is the only one that considers homogeneous and heterogeneous VMs when
attributing both the idle and active power consumption.

8.2. Energy Prediction Models

As stated in [37], predicting the energy consumption of cloud applica-
tions and VMs about to be deployed and run would require understanding
the characteristics of the underlying physical resources, like idle power con-
sumption and variable power under different utilisation of workload, and the
projected virtual resources usage. Most of the existing work [20], [38, 39]
introduced different approaches to predict the workload in order to meet the
demand and efficiently provision the resources in cloud environments, yet not
considering the energy consumption and energy efficiency of the resources.
However, only the work presented in [40] considers predicting the workload
and translating it into energy consumption in a cloud environment. The
work presented in [40] is the only work that has a similar approach to the
one introduced in this research in terms of predicting the workload and then
translating it into energy consumption. Nonetheless, their approach is only
focused at the PM level, whereas the prediction approach introduced in this
paper focuses at both the VM and PM levels.

In terms of prediction based on historical data, predicting the resources
usage, energy consumption and estimating total cost of the VMs, some of the
related work [20] predict the workload only without consider the estimation of
costs or energy consumption of the VMs. The other methods presented in [41,
42] consider total cost of the VMs including the cost of energy consumption
based on (e.g. number of VMs and data size). Nonetheless, their objectives
do not consider estimating the total cost or energy consumption.

The approach of the framework presented in this paper first predicts the
workload of the VMs and then correlates the predicted VM workload with
the PM to estimate the PMs workload and power consumption, from which
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the power consumption for the VMs is predicted, then, estimated the VMs
total cost accordingly.

8.3. Pricing Models

In the pay-as-you-go scheme the customer pays for the resources made
use of. With this scheme, the customer can choose the amount of a variety
of characteristics that will compose the VMs. The basic characteristics of
the VMs are the capacity of the CPU, memory, storage, data transfer and
operating system. One other popular scheme used is the periodic payment
(e.g., monthly, semester, yearly subscriptions, etc.) or pre-payment. The
customers pay or pre-pay the use of specific resources, having a discount
on the hourly charges. Usually under these schemes, if the needs of the
customer change, the resources reserved for him cannot be returned and the
amount is not refunded. Another innovating scheme is on-demand / reserved
instances, where the customers pay for compute capacity by the hour with no
long-term commitments. The notion behind this scheme is the reservation
of the resources before their use for a specific amount of time. A similar
scheme is spot instances, where the customer buys the unused capacity and
runs it until the price of the instances bought becomes higher than the actual
bid. The spot price changes periodically based on supply and demand, and
customers whose bids meet or exceed it, gain access to the available spot
instances [43].

Pricing in cloud computing has been studied extensively in the past [44,
45, 46] and most approaches consist of a combination of a fixed or variable
price per VM instance and an additional usage charge based on the actual use
of computing resources such as CPU cycles, network bandwidth, memory and
storage space. Our work in [45] does not focus on the economic implications
of the proposed pricing scheme, while the work in [46] proposes a demand-
response mechanism which the cloud employs to cope with the variability in
electricity prices. In our recent work [24], a novel pricing scheme based on
energy consumption of cloud resources is proposed. In [47], the economic
implications of the choice of pricing schemes by an IaaS/PaaS provider are
compared, as well as the incentives of SaaS providers to adopt an energy-
aware framework.
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9. Conclusion and Future Work

This paper has introduced a cloud system architecture and evaluated an
energy-aware model that enables a fair attribution of a PMs energy con-
sumption to homogeneous and heterogeneous VMs based on their utilisation
and size, which reflect the physical resource usage by each VM. Also, it has
proposed an energy-aware cost prediction framework that can predict the
resource usage, power consumption and estimate the total cost for the VMs
during the operation of cloud services. A number of direct experiments were
conducted on a local Cloud Testbed to evaluate the capability of the pre-
diction models. Overall, the results show that the proposed approach can
fair attribution of a PMs energy consumption to the VMs and predict the
resource usage, power consumption and estimate the total cost for the VMs
with a good prediction accuracy based on Cloud workload patterns. Unlike
other existing works, this approach considers the heterogeneity of VMs with
respect to predicting the resource usage, power consumption and estimating
the total cost.

The application of the proposed work is providing energy-awareness which
can be used and incorporated by other reactive and proactive management
tools to make enhanced energy-aware decisions and efficiently manage the
Cloud resources, leading towards a reduction of energy consumption, and
therefore lowering the cost of OPEX for Cloud providers and having less
impact on the environment.

Additionally, a set of novel energy-aware pricing schemes is proposed to
enhance IaaS/PaaS providers choosing their optimal pricing strategy, reflect-
ing also our target for incentivising the customers to be energy-efficient. The
proposed pricing schemes differ in terms of aggressiveness with respect to the
charging of energy consumption bursts. To this extent, a mathematical model
of applications and IaaS/PaaS providers and show that applications which
adapt to energy-based information and the proposed energy-based pricing
schemes by appropriately scheduling requests to VMs, extract higher profits
compared to being non-adaptive. Although the model is a gross simplifica-
tion of reality, it is valuable in that it clearly shows the potential economic
benefits for applications to respond to appropriate pricing signals. Thus, it
is not only that applications become more power efficient once they utilise
an energy-aware framework but they have an economic incentive to utilise
it. The IaaS/PaaS providers are the likely first adopters of energy-aware
layers as it increases their profits even when the application providers are
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not energy-aware. Even if the aforementioned analysis shows that if SaaS
providers adopt the energy-aware SaaS layer they will also see their profits
increase, this does not mean that they will adopt an energy-aware framework
as they have no means of evaluating the benefit of doing so.

Future work includes the extension of our approach and integrate it with
performance prediction models to determine the costs of different scenarios.
Besides, further investigation will focus on VM performance prediction mod-
els, dynamic placement of VMs, and demonstration of the trade-off between
cost, power consumption and performance. Also, the scalability aspects with
different prediction algorithms will be considered to further show the capa-
bility of the proposed work. Finally, additional cloud applications workload
patterns, e.g. unpredictable, once-in-a-lifetime, and continuously changing,
can be further considered to broaden the scope of using the framework to
predict the workload, power consumption and estimate total cost of the VMs
based on different types of workload patterns.
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