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Abstract. Improving datacenter energy efficiency becomes increasingly important due
to energy supply problems, fuel costs and global warming. Virtualisation can help to
improve datacenter energy efficiency through server consolidation which involves migra-
tions that can be expensive in terms of extra energy consumption and performance loss.
This is because, in clouds, Virtual Machines (VMs) of the same instance class running on
different hosts may perform quite differently due to resource heterogeneity. As a result of
variations in performance, different runtimes will exist for a given workload, with longer
runtimes potentially leading to higher energy consumption. For a large datacenter, this
would both reduce the overall throughput, and increase overall energy consumption and
costs. In this paper, we demonstrate how the performance of workloads across different
CPU models leads to variability in energy efficiencies, and therefore costs. We investigate
through a number of experiments, using the Google workload traces for 12,583 hosts and
492,309 tasks, the impact of migration decisions on energy efficiency when performance
variations of workloads are taken into account. We discuss several findings, including (i)
the existence of a trade-off between overall energy consumption and performance (hence
cost), (ii) that higher utilization decreases the energy efficiency as it offers fewer chances
to CPU management tools for energy savings, and (iii) how our migration approach
could save up to 3.66% energy, and could improve VMs performance up to 1.87% com-
pared with no migration. Similarly, compared with migrate all, the proposed migration
approach could save up to 2.69% energy, and improve VMs performance up to 1.01%.
We discuss these results for different combinations of VM allocation, migration policies
and different benchmark workloads®.

Keywords: Datacenters, Clouds, Energy efficiency, Resource management, Server con-
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1 Introduction

Datacenters are the principal electricity consumers in cloud computing, reportedly consuming
~T70 billion kWh in 2014, equivalent to 1.8% of the US total energy consumption, and are
projected to account for ~73 billion kWh by 2020 [1]. It has been suggested that due to tech-
niques like virtualization and consolidation of VMs [2] this figure (~70 billion kWh) increased
by only 4% from 2010 to 2014, which is a significant improvement over the 24% increase from
2005 to 2010. Energy consumption of Information & Communication Technology (ICT) equip-
ment and servers has a negative impact on our environment as they produce Greenhouse gases
(GHGs) due to energy usage, which result in increased global warming. Currently, the share
of ICT equipment in global GHG emissions is around 1.6%, and it is estimated to be around
2% by 2020 [3]. It has also been reported that for large service providers datacenter energy
consumption accounts for more than 12% of monthly operational expenditures (OpEx) and is
the fastest rising cost? due to increased quantity of equipment, and higher energy prices. For
large companies like Google, a 3% reduction in energy cost could translate to over a million

1a part of this work is accepted for publication at 13th International Conference on Economics of Grids, Cloud, Systems and Services
(GECON-2016), and should appear in Lecture Notes in Computer Science (LNCS), Springer. [this paper used that part as one approach
to demonstrate the findings]

2 http://www.gartner.com/newsroom/id/1442113
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dollars in cost savings over a year [4]. National energy supply problems, fuel costs, and global
warming all bring the need for green computing into sharper focus. The closure of all nuclear
power plants in Germany® and France? will put pressure on supply in those countries, and the
reduction in coal-based power plants in the UK, will result in an expected energy safety mar-
gin of just 0.1% in 2017, bringing a very real risk of power outages [5]. If we assume a similar
consumption rate to the 1.8% of total energy consumption seen in the US [1], a 6% increase in
datacenter efficiency (UK datacenters consume 2 — 3 TWh per year [6]) could represent a dou-
bling of such an energy safety margin in the UK. [1] also suggests that datacenter energy use
will remain constant to 2020 due to the move from internal systems to cloud computing. These
environmental and economic reasons motivate scholars and industrialists to explore effective
methods for saving energy in datacenters, with cloud service providers having the greater need
due to having large numbers of such datacenters.

In infrastructure clouds, datacenters comprise large numbers of heterogeneous hosts (virtual-
ized) that cloud customers can use in the amounts they require for as long as they are willing
to pay. When a cloud customer makes a request for (part of) a host, a VM is launched on a
host selected by the cloud service provider. The user decides how long to run the VM for. This
brings two, related, problems: (a) due to resource heterogeneity and co-location [7], [8] the
performance of VMs varies, and with it, runtimes and costs [9], and (b) the unpredictability
of users in these on-demand environments can lead to a number of hosts either being idle or
running a minimal VM loading, in principle wasting energy as an idle host [i.e. dual-processor
450 W 2U server]® may consume up to 60% of its peak energy usage [10], [11], although for
modern servers this would be less than 55% [12]. In datacenters, (b) in terms of idle hosts can be
addressed, in part, through approaches such as efficient scheduling and consolidation [2], [13].
However, consolidation involves migrations that can be expensive in terms of both (a) and (b):
In respect to (a), if the VM is migrated to a host which performs worse than the source, the in-
creased runtime can decrease datacenter throughput and energy efficiency, and increase agreed
(pay per use) user cost. Contradictorily, if the VM is migrated to a host which performs better,
then it is also possible that more energy is consumed but for a shorter time, and so costs less.
However, in respect to (b), there would be additional energy usage due to migration [14]. There
is, therefore, a trade-off between energy and performance, and hence cost, which is largely not
accounted for in many published models of VM migration. In fact, it can be more costly in
terms of energy, performance and hence cost to consolidate (migrate) some VMs.

In this paper, we investigate how migration decisions can be made such that the VM per-
formance improves in a way that the expected performance level is achieved at the agreed
cost (pay per use), and energy is saved through consolidation. We extend our previous work
that accounts for energy costs involved in the migration, such that VMs are only migrated to
more energy efficient hosts in order to recover their migration cost [14]. We explore the im-
pact of various VM allocation policies when combined with different approaches to migration
[as described in Sec. 6], on energy efficiency, performance and hence cost. Key to this explo-
ration is to investigate the trade-off amongst performance, energy, and cost. This exploration
is conducted through extensive simulations that use the Google workload traces (mapped to
three real benchmark workloads) for 12,583 hosts and 492,309 tasks [15] in combination with
CloudSim [16]. Following are the novel contributions of the work presented in this article:

1. model resource and workload heterogeneities in the context of a cloud platform [Sec. 4];
2. an approach/metric to balance/measure the trade-off involved in energy consumption and
performance (hence cost);

an energy-performance-cost (EPC-AWARE) consolidation approach [Sec. 5.1];

large-scale simulations using a real dataset from a cloud provider — Google [Sec. 6]; and

a review of state-of-the-art energy-performance-cost efficient scheduling techniques in in-
frastructure clouds [Sec. 2].

o

The rest of the paper is organized as follows. We offer an overview of the related work in Sec.
2. In Sec. 3, we discuss the VM allocation process as a multi-objective optimization problem

3 http://www.bbc.co.uk/news/world-europe-13592208
4 http://www.bbc.co.uk/news/magazine-25674581
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to: (i) reduce the energy usage; (ii) increase or maintain performance level; and (iii) minimize
costs through (i) and (ii). We call this approach the Energy-Performance-Cost (EPC) model.
In Sec. 4, we briefly explain the focus of this work and establish how to map the Google data
to real workload benchmarks from [9], to afford use of the performance parameters for different
types of hosts. We elaborate the methodology of our work in Sec. 5. In Sec. 5.1, we extend our
previously proposed allocation and migration technique [14], that avoids migrating VMs that
would not perform better on the target host. Sec. 5.2 is devoted to experimental methodology.
Moreover, Sec. 5.3 describes various performance evaluation metrics. Performance evaluation
and the results obtained are explored in Sec. 6. The experimental setup for several plausible
assumptions is explained in Sec. 6.1. We validate the proposed migration technique with real
benchmarks (mapped to Google workload traces) in Sec. 6.2 and show that our approach can
reduce energy consumption, and that the majority of migrated VMs now perform better and
continue to save energy and therefore cost. We further discuss and generalize the findings of
this study in Sec. 6.3. Finally, Sec. 7 concludes the paper along with several directions for
future research.

2 Related Work

Understanding platform (hardware architecture) variation for a specific workload type, initially,
is important because the performance of a VM running the workload is primarily determined
by the platform, where it is accommodated/baked. The time taken to run a given workload
(heterogeneous) will depend on the hardware platform (heterogeneity of the resources and in-
stance classes), and therefore the cost of completing the workload also differs. Xu et al. [17]
have discussed several other causes for VMs performance issues such as migration and resource
contention when different kinds of workload are taken into account. Furthermore, a systematic
review of state-of-the-art is presented that can mitigate VMs performance issues in a: single
virtualised host, single datacenter and geo-distributed datacenters. Heterogeneity of computa-
tional resources and applications workload is the major cause of such compute performance
variation in public clouds. Several studies including [7], [9], [18], on compute performance of
EC2 suggests that cloud applications experience significant performance variation, and that
can be unpredictable [19]. The authors also observed that similar instances of same instance
class on EC2 perform differently for different types of benchmark workload. Generally, there
is no ‘best-performing CPU model’ for all benchmarks workload, neither it is possible to guess
performance from CPU age. Typically, in public clouds, compute performance is positively
skewed, which indicate the existence of instances with worse performance i.e. higher execution
times [7].

The emergence of clouds imposes a significant challenge for applications and service providers.
Applications that are running inside VMs are affected by many factors including virtualisation
and co-allocation [17]. In the literature [20], [21], [22], [23], different approaches have been sug-
gested to manage datacenter resources in an energy, performance and cost-efficient way. These
can be categorized as: (i) resource provisioning; (ii) consolidation with migration; and (iii)
methods that describe the trade-off between energy, performance and cost. In the remaining
part of this section, we discuss some of these techniques.

(i) Resource Provisioning: Kousiouris et al. [24], investigated the effects of allocation deci-
sions for different kinds of workload and found that the performance overhead can reach up to
150%. The authors suggest that careful selection of the co-allocated VMs and VM placement
policies can minimize or even cancel this effect. Furthermore, an experimental study is con-
ducted to investigate the effect of placement decisions, when several VMs are placed on same
core/host or neighbouring hosts. In [25], the authors investigated several scheduling policies
combined with a consolidation technique to reduce the energy cost which is based on VMs per-
formance level. The authors proposed a performance-based pricing model to increase service
revenue and decrease the system energy consumption that can be up to 32%. Hao et al. [26]
studied the impact of resource allocation and instance seeking strategies on the system per-
formance and cost, however, energy consumption is not addressed. Furthermore, they suggest
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that “resources allocation strategies in the cloud exert a strong influence on the effectiveness
of seeking strategies”.

The demand on managing the datacenter’s TCO (Total Cost of Ownership) is driving re-
searchers to study both energy and performance issues. Lim [27] addressed the cost, energy
and performance issues in datacenters and developed a model to estimate the slow-down of
applications (workloads) based on the job expected completion time. A similar approach is also
suggested in [20] for Hadoop applications. To increase energy efficiency, the authors [27] used
a hybrid approach consisting of dynamic provisioning, frequency scaling and Dynamic Power
Management (DPM) techniques while meeting the customer SLA’s. Although, the proposed
hybrid approach could save up to 50% energy as compared to static provisioning with no fre-
quency scaling and DPM, the authors ignored migration and reconfiguration costs. Similarly,
the resource and workload heterogeneity is not addressed. Zhang et al. [28] demonstrated that
seemingly equivalent platform choices (instance types) for Hadoop cluster in Amazon EC2 re-
sults in different application performance (completion time) that leads to various provisioning
costs. They considered two types of applications (TERASORT and KMEANS) and found that
the performance of TERASORT is better on small instances (40 ml.small), while the perfor-
mance of KMEANS is better on large instances (10 mi.large).

Xu et al. [20] suggested that the application performance on A1 VM instances [Microsoft Azure
TaaS cloud] can vary by 92.1%, and can even reach up to 280% for the m1 class instances [Ama-
zon EC2] due to resource heterogeneity. Furthermore, the performance interference across VM
instances also brings substantial performance variation to applications. To address this issue,
the authors presented “Heifer” [20], a hardware heterogeneity and interference aware VM provi-
sioning framework, in order to deliver predictable performance to applications in TaaS clouds.
Heifer provisions an appropriate number of VM instances of the good-performing hardware
type to applications, and then increases or decreases the number of instances to meet the ap-
plication performance goals. Heifer achieves an increase of over 16.7% in the provider’s revenue,
and up to 55.2% decrease in provisioning costs as compared to state-of-the-art techniques. This
framework can be extended to use VM resizing and then migrating the resized VM to a good
performance host, instead of adding or removing VMs. Moreover, energy consumption is not
addressed.

(ii) Consolidation with Migration: Verma et al. proposed PMAPPER [22], a migration-
aware workload placement framework to optimize energy consumption and performance of
the application in datacenters. However, it does not consider the cost of turning on and off
hosts. The work in [21] suggests “TAWARE” which migrate VMs, such that both migration and
co-location interference can be mitigated holistically, to avoid breaching SLAs. Migration in-
terference occurs when the migrated and other VMs accommodated on source and destination
hosts undergo performance degradation. Co-location interference occurs when a migrated VM
and other co-located VMs at the destination host suffer from performance losses due to re-
source contention. The authors suggested that the co-location interference is highly correlated
with the number of VMs running on a host. Furthermore, they have proposed two models
(demand-supply) to estimate the migration and co-location interference. The proposed ap-
proach “TAWARE” [21] can identify a pair of host (target) and VM with the least performance
interference. Experimental results on a real cloud test-bed (for mixed workload) demonstrate
that TAWARE is approximately 16% — 28% more performance efficient than SANDPIPER [29]
and PMAPPER — First Fit Decreasing (FFD) [22]. However, migrations are not discussed w.r.t
resource heterogeneity and energy consumption. Similar to CMCR, the migration interference
can also be offset if the VM is migrated to a good performance guaranteed host.

In [30], an allocation policy is proposed for consolidated platforms which proportionally scale
the provisioned resources according to the workload energy consumption and performance. A
feedback mechanism is used to set the performance levels for each application, and if the per-
formance drops a certain threshold, more resources are added to avoid SLA’s.

Existing work on VM migration aims to minimize energy consumption without significant
impact on workload performance. It is necessary to quantitatively determine the balance be-
tween energy savings and workload performance to find the optimal number of VM migrations.
Current work has explored the hardware heterogeneity and performance variation of different
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instance classes, however, the effect of scheduling techniques and VM migrations is not ad-
dressed, when different applications are taken into account — and with the notable exception
of [24], [25], [26], this is rarely addressed.

(iii) Trade-off between energy, performance and cost: Jung et al. proposed Mistral [31],
a framework that dynamically adjusts VM placement to find a trade-off between application
performance (response time), energy consumption, and hosts reconfiguration cost. However, it
does not consider the arrival rate of VM requests in its formulation. Production datacenters
like Google and Amazon often consist of several generations of hosts with variable capaci-
ties, capabilities, and energy consumption characteristics. Meanwhile, the workloads running
in these datacenters typically consist of a wide variety of applications with different priorities,
performance objectives, and resource requirements [15]. To address this challenge for optimal
energy savings and SLA’s, Zhang et al. extended their own work in [4] with HARMONY [32].
HARMONY is a heterogeneity-aware framework that dynamically adjusts the number of hosts
to strike a balance between energy savings and scheduling delays (SLA’s) while considering the
host’s reconfiguration cost.

Djemame et al. [33] also studied three different VM allocation policies (energy-aware, cost-aware
and consolidation) for energy-performance-cost evaluation. The energy-aware policy predicts
the VM energy use and places it on a host that will consume less energy. Their results suggest
that energy-aware policy consumes 21% less energy than consolidation technique. The findings
also demonstrate a trade-off in combination by showing that although energy consumption can
be reduced, there is an associated loss in performance. Their experiments do not consider the
host’s reconfiguration and migration costs. Furthermore, different kinds of workload are not
discussed.

Imes et al. [34] demonstrated that different hardware platforms have fundamentally different
performance and energy trade-off spaces. As a result, minimizing energy on these platforms
requires substantially different resource allocation strategies. Their investigations reveal unex-
pected differences, that one class of systems requires a race-to-idle® heuristic to achieve optimal
energy consumption, while another requires a never-idle” heuristic to achieve the same [34], [35].
These consolidation techniques (race-to-idle, never-idle) have focused on the improvement of
resource utilization, particularly CPU utilization and consider little about the performance of
workloads. Note that with extensive simulations in this paper, we observed that increase in
resource utilization does not always guarantee energy efficiency [Sec. 6.3]. The work in [36] is
a notable exception in addressing degradation to workload performance due to the VM co-
location and migration. However, it has also ignored how scheduling, resource allocation and
migration (consolidation) techniques would affect the energy efficiency, performance and hence
cost.

3 Problem Description

In general, the performance of a computing host is not only determined by its processing ca-
pabilities measured in terms of core count or clock speed (GHz) but also by all the associated
hardware resources such as cache, memory and disk, as well as the network speed. Cloud com-
puting tends to incorporate resource virtualisation in which a host’s hardware resources are
placed in a resource pool and later shared among multiple VMs through VM sizing [37]. There-
fore, in a virtualised environment, the performance® of a VM measured in terms of execution
time may (or may not) be influenced by the VMs which utilize the same hosts’ resources. As an
example, when VMs are running similar workloads and competing for similar resources, VM
performance can be degraded by up to 67% [7]. It is important to place VMs in the optimal
processing host in order to maximize the overall VM performance. However, this would not
necessarily be the best approach, since adding more to the same (host) could be bad for it in
terms of co-location and performance loss [based on the business paradox]? as similar workloads

6
7

makes all resources available until the task completes and then idles until the next task arrives
attempts to keep the system busy (perhaps not fully utilized) to complete the work just at the deadline
8 http://www.apmdigest.com/best-practices-to-resolve-resource-contention-in-the-cloud

9 https://blog.kissmetrics.com/too-many-choices/
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will compete for similar resources — referred to as contention. From a service provider’s (busi-
ness) perspective, energy consumption of the processing nodes (hosts) is equally important to
the VMs performance due to the existing trade-off between energy and performance [38] and
contention will be detrimental to these. Increasing energy and performance efficiency brings at
least 3 benefits to service providers: (i) increase profit which allows the providers to invest more
money in infrastructure; (ii) decrease C'O2 to get a reputation for datacenters (environmental
friendly); and (iii) decrease prices to attract more users that would be to the detriment of
profits (i).

Furthermore, in production clouds (e.g., Google and Amazon EC2) the users are charged for
the provisioned VM resources and the duration of the service (i.e., job execution time (that
does depend on VM performance) — VM runtime). As a consequence of increased VM runtime
which may happen due to poor performance of the hosts, the energy consumption of the hosts
itself will increase (even if the host consumes less energy). Similarly, this might lead to situa-
tions where the service provider has to pay penalties for breaching Service Level Agreements
(SLASs). These SLAs are more important in applications (with strict deadlines) where the jobs
are required to be completed within a short period. Greenberg et al. [39] suggest that perfor-
mance directly impacts providers’ revenue. For example, Google reported approximately 20%
revenue loss in an experiment that increased the time to display search results only by 500ms.
Amazon also reported a 1% sales decrease for an additional delay of 100ms [39]. Therefore,
it is important to make sure that a VM meets its expected performance level (i.e. achieves a
service level), and if not, it should be reallocated (i.e. migrated) to a better performing host
(at least not reducing the current performance if it is advantageous to do so). The migration
decision will be desirable if the newly allocated host is not only a better performing one but
also an energy efficient host.

Considering the above diverse opportunities (i.e. increased runtime, decreased performance and
increased energy consumption), our work is aimed at developing a model (consolidation) to:
(i) predict the energy and performance of a VM; (ii) derive a correlation among the predicted
quantities to decide migration; and (iii) finally migrate the VM to achieve better results in
terms of the energy consumption and the VM performance. The proposed approach is an at-
tempt to minimize datacenter energy consumption (w.r.t service providers) without reducing
the VM performance, even if migrated (w.r.t users). We can express the VM migration as a
multi-objective optimization problem which comprises three nominal cost types namely energy
consumption cost (Ecc), monetary cost (Mc), and VM performance cost (VPC). Three entities
(i.e., service providers, VMs, and consumers) are involved in the overall process and based on
their characteristics each is mapped to a unique objective criterion as described below;

1. Service providers — minimize the amount of energy consumed — ECc,

2. VMs — achieve their desirable performance level at the agreed costs (to meet SLAs) — in
terms of runtime (R), with performance being defined as the inverse of R and the objective
here, is to minimize or maintain R — VPcC, and

3. Users — are billed accordingly i.e. minimize cost or maintain the agreed cost — Mc.

It can be intuitively understood that Mc is proportional to R (user is billed according to VM
runtime), and therefore, if objective (ii) is satisfied then objective (iii) is also automatically
satisfied; hence objective (iii) is ignored in our current work. Consequently, the objectives of
our bi-objective optimization problem become to minimize both energy (E) and runtime (R).
Mathematically, this can be expressed as Eq. 1:
min(E) where E = Y 1% B,
f = (1)

max(Per formance) <= min(R) where R = Z;/:Afs Runtime;

The constraints are: (i) each VM is mapped to only one host at a time; and (ii) the number of
VMs on a host cannot exceed the host capacity [2].

Gupta et al. [40] used ERP (Energy Response time Product) to capture the trade-off among
energy, performance and hence cost, which is widely accepted as a suitable metric to capture
similar trade-offs [41]. Minimizing ERP can be seen as maximizing the “performance-per-watt”
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— with performance being defined as the inverse of mean response time. In our case, performance
is determined through R that can be assumed similar to response time (based on time factor).
Hence, we revise the name of this metric to the Energy Runtime Product (ERP). The ERP is
given by Eq. 2:

ERP=FEXR (2)

We assume both E and R are of a comparable magnitude. However, in more complex scenarios,
if one dominates the other, then ERP can be expressed as FRP = a.F X 3.R (where « and
are the domination factors for E and R respectively) [40], [41]. Theoretically, the objective of
the above bi-objective optimization problem is to minimize and evaluate the behaviour of ERP
for different scheduling and consolidation approaches with migration techniques, given by Eq.
3:

min(ERP) (3)

Due to the efforts involved in predicting R, it is impractical to calculate ERP at runtime for each
VM that is to be migrated. Therefore, we adopt the above approach to study the behaviour
of ERP. Note that, in our previous work [14], the focus of the proposed Fill Up (FILLUP)
VM allocation policy combined with CMCR (Consolidation with Migration Cost Recovery)
approach was to assign the incoming VM request to a more energy efficient host (based on
the host efficiency factor Ey), and continue to allocate requests to the same host unless it is
filled. In this case, the approach guaranteed minimum energy consumption and fewer hosts in
use, and this creates much greater potential for contention. However, in our current problem,
we initially allocate each VM to a particular type of host (according to the information given
in Google’s data [42]), that might keep more hosts switched on in the datacenter. Hence, the
datacenter’s total energy use will be high unless we know that a particular type of host is
similar or more energy efficient and performs similar or better than another. We investigate
through plausible assumptions and event driven simulations in CloudSim [16], how different
scheduling and consolidation with migration techniques in a heterogeneous cloud platform,
would affect the energy usage, performance, and cost when different kinds of workload are
taken into account.

4 Background

In a typical datacenter, sharing a host amongst different kinds of workload would certainly
enhance the utilization, thus lowering the economic and environmental impact [27]. Server Vir-
tualisation creates more opportunities for such sharing as it allows multiple VMs of different
capacities to share a host resources [43]. However, sharing a host can come at a price, of con-
tention for the available resources that can be higher if workloads are competing for similar
resources. Contention could lead to high variation in performance [27], and the problem is
widely studied both in theory and in practice [8], [9], [17], [19], [20], [27], [43].

In clouds with heterogeneous resources, which become increasingly likely with scale and longevity
of providers, it is common that similar instances will be running on different CPU models with
different performance scores (in terms of runtime). Several performance studies like [8], [9], [19],
conducted on Amazon Elastic Compute Cloud (EC2), demonstrate that VM runtimes on dif-
ferent CPU models backing a single instance class will have consistent, i.e. largely predictable,
performance variations w.r.t the CPU model. The runtimes of an application benchmark within
VMs running on a single CPU model shows a lognormal distribution with positive skewness as
demonstrated in [8], [9]. However, when running one benchmark across several CPU models it
would be possible to imply a distribution but likely not a single lognormal. Several benchmarks
across several CPU models would not make much sense to consider a single distribution, as
performance across benchmarks does not produce a single ordering on performance. Further-
more, performance variations among similar instance classes in public clouds like Google and
Amazon are also observed and compared by several benchmarking (performance) teams, includ-
ing cloudlook and VPS!C. There are at least two benefits in understanding such performance
variation for different CPU models in a cloud platform:

10 http://www.vpsbenchmarks.com
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1. knowing the relationship between CPU model and runtime means decisions over scheduling
can be made to optimize overall energy efficiency;

2. in server consolidation, migration of a VM to a host which leads to an increase in runtime
would increase costs for the customer, and as a consequence may violate SLAs.

In respect to (1), if a VM can be migrated to a better performing host, for its workloads,
better energy efficiencies may be achieved. But, in respect to (2) if migration would make
performance worse, not migrating may be better. Hence, it is important to study the variation
in energy efliciencies in heterogeneous clouds. Ideally, a cloud provider should look to the best
trade-off between performance, cost and energy requirements; and a user would prefer the best
performance (hence cost) for the provisioned amount of resources. However, an appropriate
migration approach for resource provisioning and consolidation is needed such that the energy
requirements to run the service and the expected performance/price goals can be met.

To evaluate performance variations in large heterogeneous clouds, and their impact on energy
efficiency, we need a realistic and representative heterogeneous workload. In the absence of such
a workload, we use the Google cluster dataset [15] which contains approximately 25 million
tasks over a period of 29 days on a cluster of 12,583 hosts. The cluster machines are hetero-
geneous and consist of three different platforms (micro architecture and memory technology
combinations) and a variety of normalized to maximum compute/memory ratios as shown in
Table 1 [44]. A task runs in a Linux container/VM as explained in [44], its CPU requirements
are measured in core seconds per second, and the values are normalized with respect to the
host with the highest number of cores available in the Google’s cluster. Unfortunately, the
dataset does not provide exact details of machine specifications. However, we expect that such
heterogeneity will translate into variations in energy consumption and performance. We use
the VMs runtime as a metric to represent performance variations among different machine
types; lower runtimes mean good performance as explained in Sec. 5.3. The dataset still does
not have what we need (i.e. different kinds of workload); however each task has a priority and
we can use this as a proxy for kind of workload. As the trace providers point out that each task
priority affects billing [42], thus we believe that it will accurately reflect the workload type.
There are at most 12 different types of priorities that have been grouped by Reiss et al. [44]
into three different types of workload: GRATIS (free services) (0-1), middle (BATCH jobs) (2-8)
and PRODUCTION (monitoring workload) (9-11).

PLATFORM|NUMBER|GCEUs|MEMORY (GB)
A 126 0.25 0.25
B 5 0.5 0.03

1 0.5 0.06

52 0.5 0.12

3863 0.5 0.25

6732 0.5 0.5

1001 0.5 0.75

5 0.5 0.97

C 3 1.0 0.5
795 1.0 1.0

Table 1: Machines of different architectures in Google’s cluster [44]

To simplify concerns initially, we consider only one priority group in each workload type. We
can use the other priority workloads later to validate findings. The GRATIS, BATCH and PRo-
DUCTION workload includes tasks which have priority 0, 2 and 9 respectively. Each task within
a certain workload type can be considered a VM running on one of the aforementioned host
types. The machine and platform ID’s (in Google data) can be used to get the type of each host
on which the resources were provisioned for the VM. We further assume the execution time of
each VM as a metric for performance as it is more useful to a user [7]. We selected 492,309 tasks
(156,886 tasks from GRATIS, 282,464 tasks from BATCH and 52,959 tasks from PRODUCTION)
after ignoring those tasks where machine information is missing. Upon visual inspection, the
runtime distribution appears to follow essentially a multi-modal lognormal distribution!!, and
11 A multimodal distribution is a continuous probability distribution with two or more modes (peaks). A single distribution having a

mixture of more than one lognormal distributions is called multi-modal lognormal distribution, and the authors in [7], [9] suggest
these to model performance variations within the heterogeneous cloud resources.
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this may indicate that there are multiple architectures for the same machine class as shown in
Fig. 1. Tt is suggested in [8], [45] that multi-modality relates to CPU architectures and perfor-
mance is largely determined by CPU model.

Frequency

o
0 o 2 4 5 0 12

Execution time (log)

s

4 o
Execution time (log) Execution time (log)

6

Fig. 1: Workload and execution time (seconds) for machine types A, B & C [from left to right
- GRATIS (0), BATCH(2), PRODUCTION(9)]

The performance of all three types of machines is variable and can be fit to at least 2 different
architectures for GRATIS and PRODUCTION workloads, based on the number of peaks (local
maxima) observed in Fig. 1. However, the runtime distribution of BATCH workload seems to
be a uni-modal (single peak) and can be best modelled as a single machine platform. To sim-
plify, each machine type is mapped to 1 — 4 different architectures based on the best fit results
(likelihood, as explained later) for all three types of workload. By visualizing the distribution,
it is easy to identify it as multi-modal. However, there would be several other appropriate ways
such as classification and frequency tail (which uses modal value — mvalue compared with a
threshold)'? to study distribution modes and decide the number of suggested platform types
for each machine class.

We use a multi-modal (lognormal) distribution for each machine class and the goodness of fit
(based on likelihood) for such decisions. With more than one peak apparent in the distribu-
tion, a Gaussian mixture model is appropriate to estimate the parameters for each multi-modal
distribution. The number of suggested architecture types, and fitness parameters, are given in
Table 2. The values for mean (u) and covariance (cov) are given in log because the Gaussian
model was used over the log values to represent lognormal distribution. Similarly, the likelihood
for each model is calculated through applying Gaussian distribution over the log values of the
original data points. We use these parameters (p and cov) and the number of architectures for
each machine class to represent the performance of each machine in our experiments, which
are further explained in Sec. 6.1.

Machine Gratis(0) Batch(2) Production(9)
Class Type| p cov likelihood| pu  cov likelihood| p cov likelihood
A T | 5429 0.683 6.614 3.395 -5.36105 | 2.853 0.018
I [ 8581 1.2 -1.68e+05 8.74 0.038 1.243e405
11 [11.295 0.0001 10.465 0.175
v 11.295 0.0001
B I |5.628 0.631 6.757 2.351 -3.52¢403| 7.01 12.489
II | 8.773 0.848 -566.055 11.295 0.0001 1.14e+03
1T |11.295 0.0001
c I |5.408 0.483 6.578 3.245 -3.9e+04 | 3.171 0.085
11 | 8.434 1.133 -1.34e404 5.388 0.517 2.434c+04
11 [11.295 0.0001 9.425 0.99
v 11.293 0.0001

Table 2: Parameters for lognormal distributions of hosts performance (suggesting different CPU
models) in Google cluster [15]

Fig. 1 (left) shows the distribution of execution time for GRATIS workload on three different
machine types (based on local maxima), and each machine can be modelled as though there

12 http://www.brendangregg.com/FrequencyTrails/modes.html
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are three different CPU models. We do not rule out the existence of natural computational
variation, however as the data fits to prior findings on performance we can relate these data to
heterogeneous infrastructure clouds. These three different architectures perform differently and
the performance parameters are explained in Table 2 (Gaussian mixture model is generating
the number of distributions). The BATCH workload as shown in Fig. 1 (middle), is a uni-modal
lognormal distribution (single peak). However, this can also be represented as multi-modal
which is explained in Sec. 4.1. In PRODUCTION workload, machine types A and C can be rep-
resented by four different platforms based on the peaks observed visually. However, machine
type B is a bi-modal distribution as shown in Fig. 1 (right). Perhaps surprisingly, these ten
different machine platforms in terms of different performance behaviour also coincide with the
fact that there are ten types of machines in Google cluster dataset [15].

4.1 Relating Google data to Benchmarks

In [7], [8], [9], the authors investigated the performance of different instance types (e.g. m1.small
and second generation instances) in AWS EC2 (Elastic Compute Cloud). The authors demon-
strated that similar instances running similar or different kinds of workload (Bzip2, POVRAY,
NaAMD and STREAM) perform differently — dependent on the CPU model hosting the instance.
A specific CPU model may perform best for one kind of workload, but worst for another.
The results and the parameters to represent performance variation of different CPU models in
the previous section were obtained on using several assumptions based on the Google cluster
dataset [15]. However, it does not really represent workload dependent performance of hosts
in real cloud datacenters. It might be more practical if: (i) we are able to create a mapping
between the data we extracted from Google dataset and those benchmark results which are
demonstrated in [7], [8], [9], and (ii) we then use the real benchmarks values to represent host
performance.

Given knowledge of benchmark runtimes from [7], [8], and [9], we can investigate how to relate
and map this with Google data, to determine whether the duration multiples implied from
Google cluster data are consistent with such findings. After simulating (monte carlo) the run-
times using the given parameters for different types of workload in [7], [8], and [9], we map
it to the Google cluster data on the same scale. Based on similarities between the distribu-
tions in terms of the mean (u) and the standard deviation (o) of both data (real benchmarks
and Google data) as shown in Fig. 2, we are able to create a mapping between the GRATIS (0)
workload and the POVRAY benchmark workload running on m1.small instances backed by three
different CPU models: E5430, E5-2650 and E5645. The BATCH (2) workload can be mapped
to Bzip2 benchmark workload which runs on second generation standard instances (including
m3.xlarge and m3.2xlarge) over a single CPU model i.e. E5-2670. If we consider overlapping
histograms, then the BATCH (2) workload can be mapped to the NAMD benchmark workload
running general purpose m1 class spot instances on 5 different CPU models i.e. E5-2651, E5-
2650, E5645, E5430 and E5507. For the PRODUCTION (9) workload, which is mapped to 5
different CPU models, we assume the STREAM workload throughput (data copied in MB/s) as
a proxy of instance runtime; and the order of hosts performance is adjusted to MB/s. as lower
MB/s means longer runtime to transfer data, therefore the graph in Fig 3 (right) is shown
reversed. The PRODUCTION (9) workload is similar to STREAM benchmark workload which
runs for longer durations on m1.small instances over four different CPU models: E5430, E5507,
E5645 and E5-2650. Different CPU models for each kind of workload which are mapped to the
real workload benchmarks (as explained in [7], [8], [9], [18]) are shown in Fig. 3. Note that the
CPU models mentioned above are in decreasing order of their performance score i.e. the first
one performs better than the second, second one performs better than the third and so on. By
mapping these workloads to CPU models, we are able to suggest a preference ordering in terms
of performance and performance improvement through migration: a workload landing on an
E5-2650 will be best for NAMD, but not as good as E5430 for POVRAY, which would itself be
worse for NAMD.

The parameters of runtime distribution for these workloads on these CPU models are extracted
from [8], [9] and are explained in Table 3. The distribution of each kind of Google workload
is divided to form a multi-modal (lognormal) distribution in such a way (based on the VMs
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Fig.3: Google data mapping to real benchmark workload GRATIS (0)-POVRAY, BATCH (2)-
NaMD and PRODUCTION (9)-STREAM (to be interpreted from left to right so E5-2650 is best)

runtime) that it can be closely mapped to the benchmarks. The p and o of real benchmark
workloads are closely related to the p and o of Google cluster data. The Coeflicient of Variation
(CoV) of each host is calculated with CoV = % to represent the host performance variations

as given in [7], [9].

In Table 3, P is the log value (as lognormal is equivalent to normal distribution over log values)
of VMs runtime in Google cluster data, that gives an opportunity to distribute the workload
among different types of hosts — to represent performance variations. Certainly, there could be
other appropriate ways to identify the number of peaks and to divide the runtime distributions
(to represent variations in performance) such as the idea of modal value — mvalue'® which is

13 http://www.brendangregg.com/FrequencyTrails/modes.html
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Workload |Benchmark] CPU Real benchmarks Google data
Model | (1) (o) Min Max CoV | (u) (0) Min Max CoV P
Gratis POVRAY E5430 | 439 11 421 467 0.025| 438.06 9.42 421 467 0.022 P < 7.65
E5-2650| 468 12 451 500 0.026| 473.87 11.93 451 500 0.025 9.75 > P > 7.65
E5645 | 507 10 490 535 0.02 | 498.55 10.44 490 535 0.021 P >9.75
Batch NAMD E5-2651[1994 41.9 1952 2036 0.021| 1991 39.51 1800 2040 0.02 P < 3.8

E5-2650(2007 28.5 1978 2036 0.014( 1963.4 28.41 1900 2015 0.015 7.5 > P > 3.8
E5645 [2043 96.4 1946 2140 0.047| 1931.4 93.43 1800 2170 0.048 9 > P > 7.5
E5430 |2160 20.7 2135 2189 0.01 | 2103.6 22.1 2080 2150 0.011 10.5 > P > 9
E5507 [2187 18.1 2162 2217 0.008(2191.81 15.69 2150 2200 0.007 P > 10.5
Production STREAM E5430 [1446 66 1328 1572 0.045| 1404.4 44.33 1328 1572 0.032 P <5
E5507 |2348 104 2078 2448 0.044| 2346.7 107.21 2078 2448 0.046 6.3 > P > 5
E5645 [3395 287 2995 4008 0.085| 3388.7 238.22 2995 4008 0.07 11> P > 6.3
E5-2650(5294 191 4935 5860 0.036| 5294.5 197.52 4935 5860 0.037 P > 11

Table 3: Different benchmarks runtime parameters for lognormal distribution [8], [9]

compared to a predefined threshold. However, to make it simple, we use visualization and rely
on the division points (P), p and o as shown in Table 3 for data mapping and integration.
Note that the Gaussian mixture model is used to find the number of architectures as shown in
Fig. 1. Based on the number of visible peaks, we choose values for P, in such a way that the
difference between p and o between the datasets (real benchmarks and Google data) is small:
the smaller the differences, the more accurate mapping will be.

5 Methodology

In this section, we describe the proposed solution and explain our experimental methodology
along with several resource allocation algorithms. Moreover, numerous metrics are discussed
to evaluate the performance of various algorithms.

5.1 Proposed Technique

In [14], we proposed an approach to migrate relatively long-running VMs to more energy
efficient target hosts. We derived a host (virtualized) efficiency mechanism and a migration cost
recovery technique; however, performance variation of VMs due to heterogeneity of resources
and workload was not explored. If we migrate a VM to an energy efficient target host, but the
VM performance is lower on the target host than the source host, then the energy efficiency
effort might be wasted and this could cost the customer more. Hence, in this paper, we extend
our previous work and consider the host’s performance variations in migration decisions. For
two hosts [source (S) and target (T)], where p and o are the mean and standard deviation of S;
and p; and o7 are the mean and standard deviation of T, we can say that an instance backed
on T could perform better than S, iff:

< p (4)

In terms of ERP [as explained in Sec. 3], if for a particular VM, the target host ERP (ERPr)
is less than the source host ERP (ERPs), then both energy efficiency and better performance
is guaranteed. Both o and o1 have a key role and would affect the above condition. However,
for simplicity, we assume that with given mean values for S and T, we can differentiate between
their performance levels. Theoretically, migration of some workload (VM) from S to T [if S and
T are of different platforms] can be modelled with z-score normalization (normal distribution),
and then converted back to an equivalent lognormal distribution. The z-score (standard score)
as given by Eq. 5, can be used to calculate the probability of a score (x) occurring within a
normal distribution. Furthermore, it also provides a way to compare two scores that are from
different normal distributions.

e (5)

For lognormal distribution,  must be replaced with log(z) according to the definitions of
normal and lognormal distributions. The following Eq. 6 can be used to find runtime of the
migrated VM (estimated) on T with given p and o [lognormal distribution)].

log(x) —p _ log(z1) — (6)
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where x and z; are the expected runtimes of the migrated VM on S and T respectively. The
left and right sides of Eq. 6 relate to the z-scores of source and target hosts, respectively. This
formulation allows us to calculate the probability of a score (expected increase or decrease in
runtime of the VM on target host) occurring within a lognormal distribution of the performance
variations due to resource heterogeneity. The above Eq. 6 can be rewritten to find the expected
runtime of the migrated VM on T, as Eq. 7:

= eap(on x {1202 1) M

If 1 < z, the VM would perform better on T, and migration can proceed. Otherwise, the
migration would not be cost effective and the decision is not to migrate. We combine this with
the host efficiency factor proposed in our previous paper [14] into the migration decision. So,
if T is more energy efficient and the performance of the migrated VM is better than on S,
then there are more chances for the VM to recover its migration cost and be more energy-
performance-cost (EpC) efficient. The steps are described in Alg. 1. Moreover, if there are
several VMs suitable for the migration, then the VM, which runs for longer duration (previous
runtime), is migrated first. The list of all migratable VMs is sorted in decreasing order of their
previous runtimes [as described in Alg. 2].

Algorithm 1: ENERGY-PERFORMANCE-COST (EPC-AWARE) MIGRATION

Input: vm (that is to be migrated), Hsource and Higrget
Output: return migration decision d
1 Note: In our implementation, we use Rpqs¢, instead of Ryemaining, Which is already
known — [as discussed in [14] (Rremainimg = Rtotai — Rpast));
2 d < FALSE;
3 Estimate the remaining runtime R, cmaining 0f vm [assuming it is possible];
4 ERPsource = Emzmrcc X Rremaining
(B3 is the energy consumed by vm on host Hgourcel;
5 ERPtarget = E}]{nget X Rremaining
[EYT.... and EF - are calculated using the power model presented in [14]];
6 if ERPigrget < ERPiyrger then
d <— TRUE [i.e. migrate the VM using the migration model in [14]]
[the migration model in [14] accounts for migration costs in terms of energy
consumption, migration duration and performance degradation];
8 end if
9 return d

Empirical evidence has shown [27], [34], that configuring and executing workload across mul-
tiple resources (i.e. segregation and/or parallelism) provides greater energy efficiency than
working with only a single resource. However, as shown in [34], scheduling heterogeneous ap-
plications on heterogeneous hosts would provide different energy efficiency and performance
trade-offs, so each will need a different scheduling strategy to minimize energy while meeting
performance objectives. The migration process also introduces performance degradation that
can be up to 10% of CPU utilization (of the host overall), according to the empirical evaluation
of real benchmarks demonstrated in [46], [47]. The downtime and performance degradation is
dependent on the application behaviour and resource utilization that can be approximated by
the dirtying rate of the VM memory pages [14] in shared-disk based systems. The average per-
formance degradation as given above (~10%), which also includes the downtime, is estimated
for web applications with dynamic workloads. The performance degradation experienced by a
VM (vm) is estimated with Eq. 8:

t0+Tmr'u7n
PERFjugrate.,, = 0.1 x / () dt (8)

to
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where PERFycgrade,,, 15 the total performance degradation by vm, ty is the time when the
migration starts, T, is the time taken to complete the migration that can be easily estimated
using Eq. 9; and ., (t) is the CPU utilization by vm.

Ty, = o L (9)
VMpandwidth

Note that degradation of performance increases the VM (workload) execution time, as ex-
plained later in Sec. 6.1. Several other papers like [21], [48], [49] have demonstrated that the
migration of a VM has a negative impact (workload dependant) on the performance of the
migrated VM, on both source and target hosts, which in turn affects the performance of all
hosted VMs!4. This impact could be worse if a single host is experiencing the migration of
several VMs at the same time. Therefore, well-known resource management tools like Hyper-
V' do not support migrating more than one VM from a single host at the same time. In this
paper, we only migrate VMs from underutilized hosts. Therefore, it is reasonable to assume
that except the migrated VM itself, these migrations will not affect the performance of other
co-located VMs.

5.2 Experimental Methodology

The consolidation (migration) process is considered an optimization problem with the objective
to minimize the number of hosts in use. Every 5 minute, the optimization is performed based on
the current utilization level of all hosts, in three steps; (i) VMs selection: Every host is observed
and if its current utilization is less than a predefined lower threshold value (Thresholdey ), for
example 20%, all VMs accommodated on this host are selected for migration. If there is more
than one VM for migration from this host, then the proposed VM selection algorithm [Alg. 2]
gives priority to the one which is running for longer (migrate one VM at a time from a single
host to minimize performance loss). Alg. 2 can be assumed as the core optimization module
in resource consolidation [46]. (ii) hosts selection: The migration policy selects a most suitable
host from a list of all available hosts that can accommodate these VMs. However, to minimize
the number of hosts in use, it excludes: (a) those hosts which are not in use (switched off);
and (b) hosts which are intended to go into the idle/switched off state (running but with no
work on them). (iii) placement: The list of selected VMs is arranged in increasing order of their
past runtime (R,,s;) to migrate long-running VM first. Finally, a VM allocation policy is used
to reallocate all VMs, because VM placement is a sub problem of the migration process [46].
However, it could be of interest to service providers to know whether a single heuristic for both
placement decisions is more efficient or if two different heuristics are more economical and
energy efficient. In Sec. 6.3, we discuss more about policies for initial allocation and migration
placement. The following scheduling heuristics are examined in this paper, both for initial VM
allocation and migration placement.

(i) Round Robin (RR): The RR policy places each VM on the next available host based on
the concept of a circular queue. In a circular queue (linked list), the last node is connected back
to the first node to make a circle. RR records the last position (hostjgstvisited) the scheduler
visited and places a new incoming VM on the subsequent host. Therefore, RR seeks to use the
fullest extent of available hosts, irrespective of utilization. If more hosts are underutilized, it
will create more migration opportunities during consolidation, and increasing the number of
possible migrations could lead to higher energy consumption.

(ii) Random (R): A typical R approach picks a random host in the datacenter and checks
if the host can accommodate the VM or not (suitable). If not, then it picks another one and
the process continues until a suitable host is selected. An improved variant of R in [52] finds
a list of all suitable hosts first, and then selects a random host from the list to place the VM.
To compare the output of different allocation and migration techniques, it is important that

14 https://blog.zhaw.ch/icclab/an-analysis-of-the-performance-of-live-migration-in-openstack/

15 http://kevingreeneitblog.blogspot.co.uk/2010/12/automatically-live-migrate-multiple.html
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Algorithm 2: VM SELECTION ALGORITHM

Input: hosts list (hostsList)
Output: migration list (migrationList)
for each host € hostsList do
vmList < host.getVmList() [vmList is a list of all migratable VMs];
vmList.sortDecreasingPreviousRuntime() [sort vmList in decreasing order of their
previous rutimes|;

hostUtil + host.getUtilization();
while hostUtil < Threshold;,, do

for vm € vmList do

| migrationList.add(vm);
end for

[V

[

© 0 N O s

end while

10 end for
11 return migrationlList

during each experiment, R allocates similar hosts (class) to run VMs that can be implemented
using seed.

(iii) Best Resource Selection (BRS): The BRs algorithm [50] finds the host(s) with the
least available slots (more utilized) and allocates them first. BRs technique ensures minimum
number of migrations, so should save energy if low utilized hosts could be switched off later. BRS
places a VM on a host with the least free capacity which also maximizes resource utilization.

(iv) Minimum Power Difference (MPD): In MPD [51], every VM is allocated to the host
which will consume the least energy to run the VM. MPD is based on the concept of Best Fit
Decreasing (BFD) heuristic and is used as the primary model of energy savings in the well-
known cloud simulator CloudSim [53]. MPD is a modified BFD off-line heuristic!® that sorts all
VMs in decreasing order of CPU utilization and allocates each VM to a host that increases its
energy usage the least, selecting the most energy efficient host first, based on the linear power
model. However, this off-line heuristic is suitable only for those VM requests whose resource
usage are known in advance. LAGO et al. [50] demonstrated different VM allocation policies
including RR, BrS and LAGO and found MPD one of the more competent energy efficient
techniques in heterogeneous clouds.

(v) First Fit (FF): This heuristic considers the available hosts in a sequential order for
placement i.e. for n number of hosts the getOrder() procedure always returns the sequence
{0,1,2,...,n}. Effectively, this tries to place the VM onto the first host in the list that has
enough space to accommodate it. First, this ensures that a lower number of hosts is utilized,
which minimizes migrations and saves energy. Secondly, more energy can be saved through
consolidation if idle hosts can be switched off [14].

(vi) LAGO (LAG): LaGo allocator [50] combines the BRs, MPD algorithms and uses the
power after allocation (paa) technique to select a more energy efficient host for the VM. If
there are several energy efficient hosts, then the host with the highest CPU utilization is
selected. Host with the lowest utilization is not selected because of the possibility that it
can be switched off later to save more energy. The authors evaluated the hypothetical results
of this approach and compared it to several other heuristics like RR, BrRS and MPD. Their
results shows improvement in almost all scenarios compared to the MPD and other algorithms.
However, for small homogeneous datacenters there is not a clear significant improvement. For
large heterogeneous datacenters, this improvement can reach up to 6.1%, which suggests that
the larger the datacenter, the larger the difference between LAGO and MPD.

16 although it can be considered as an on-line heuristic at 1 second interval
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(vii) CARLO (CAR): Mastroianni et al. [52] proposed ecoCloud, where each host takes a
decision either to accept or reject an incoming VM placement request, based on the Bernoulli
trial against its available resources (CPU and memory). The datacenter manager broadcasts!”
the VM placement request to all available hosts, and then each host responds to the datacenter
manager if it can accommodate the VM (Bernoulli trail is successful) [54]. The datacenter
manager then places the VM on one of the hosts (those which responded positively) randomly.
The authors demonstrated that their proposed algorithm performs better that BFD (hence
MPD), especially when the resource demand is high.

(viii) Fill Up (FU): The FiLLUP approach finds the host(s) with the least available slots
(more utilized) first, and then uses the host efficiency factor (Ey) as proposed in [14], to ensure
that more energy efficient hosts get used first. The on-line behaviour of FILLUP heuristic differ-
entiates it from other approaches like LAGO, BRs and MPD. In [14], we evaluated the efficiency
of FILLUP approach in terms of least energy consumption and number of migrations.

Algorithm 3: INSTANCE TYPE SELECTION ALGORITHM

Input: Instance request (R), available instance types (INSTANCES)
Output: Return a suitable and cheap instance (Instancesyitapic)

1 Instancegyitaple < INSTANCES mazCores |aSsume that the larger instance is suitable];
2 price < Price.INSTANCESqzCores |0n-demand price per hour];

3 minPrice «— Price.INSTANCES ,inCores [0n-demand price per hour];

4 for VM in INSTANCES do

5 if VM can finish R within time (is suitable) then

6 if VMpyice < price then

7 Instancegyitapie < VM;

8 price <~ Price.Instancesyitapie [0n-demand price per hour];
9 end if

10 end if

11 if Price.Instancegsy;tapie = minPrice then

12 ‘ break for loop;

13 end if

14 end for
15 return Instancegsy;table

Initially, every VM request goes through Alg. 3, and a suitable instance type is selected [steps
1 - 5]. A suitable instance is defined as the one that could execute a particular workload within
the deadline. If there is more than one suitable instance available, then a cheaper one is se-
lected from the list (price per hour) [steps 6 — 10]. We assume that an instance having the
highest number of cores (INSTANCES,qzCores) 18 always suitable to run a particular workload.
Moreover, an instance having the fewest number of cores (INSTANCES,incores) 1S, comparably,
cheaper than the other instances. We then search for other suitable instances whose prices are
less than Price. INSTANCES,,qzCores (the price of instance having the highest number of cores
i.e. INSTANCES, azCores ). In order to increase the efficiency of Alg. 3, when an instance with the
lowest cost is observed, it is selected immediately and the search process is terminated [steps
11 — 15]. Note that the runtime of Alg. 3 is dependent on the number of instance types offered
by the cloud providers — which are fixed and limited (possibly few) e.g. Amazon AWS instance
and Google machine types. The instance is then placed on the appropriate host type (per VM
request) by one of the allocation policies. Although this work does not focus on instance cost
or propose any price model, we do use simple prices to demonstrate the effects of performance
variation. We use Amazon’s prices for each VM type based on the reserved prices i.e. for one
year with no upfront in US East region (N. Virginia)'4 as of September 2016; given in dollars

17 in large datacenter, servers may be distributed among several groups of hosts, and the request may be broadcast only to one group,

which minimizes the broadcast overhead
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per hour — as shown in Table 5.

In order to implement our proposed technique in Sec. 5.1 and the above policies, we made
several changes to CloudSim. To represent performance variation (runtime) of host(s), we ex-
tended the abstract migration class to calculate the increase or decrease in VMs runtime after
migration. An extended class of VM scheduler considers the performance degradation due to
migration (~ 10%) both on source and target hosts. Similarly, each VM allocation policy ex-
tends the abstract VM and VM allocation policy class as described in [14]. Additionally, we
extend the host class to account for: (i) the host reconfiguration (switching on/off) costs (energy
consumption) and (ii) associate each host with a type (platform) so that each VM is initially
accommodated on a known host type (when reading VM request from Google dataset). To
compare the efficiencies of various VM allocation and migration techniques, in terms of energy
consumption and performance, we use various evaluation metrics as described in Sec. 5.3.

5.3 Metrics

The metrics of interest are: the number of migrations, average number of hosts used to run
the VMs, total datacenter energy consumed and the average VM execution time Rg,q (per-
formance). An overall calculation of datacenter efficiency, D [14] measures the efficiency of a
scheduling approach at datacenter level (overall). This accounts for the occupancy rate (%
slots filled i.e. VM density), the number of hosts ‘switched on’, the number of ‘idle’ hosts (idle
energy consumption), and a factor of energy efficiency Ey in respect to the efficiency of hosts
in use.

VMSonHost
VMiensity = —+—"— 10
density HOStcapacity ( )
D= Zhosts VMdens’Lty * Ef + Zhosts Hostsunused * Ef (11)
Hostsyseq HostsunUsed

The first part of Eq. 11 determines how many efficient/inefficient hosts are utilized and to what
levels they are used. The second part represents how many efficient /inefficient hosts are idle
and consume their idle power. The host efficiency model presented in [14], is used to calculate
Ey for each host, which represents its energy efficiency. Lower values for D represent a more
efficient datacenter with VMs running on a minimum number of most energy efficient hosts,
and hence also offers potential for hosts to be powered off. Unfortunately, D is not relevant to
the system performance, and we need other metrics to measure performance.

We assume each workload type as a single job and use its execution time (wall clock time -
R) as a proxy to denote the system performance score. And we use Rg,q to compare different
allocation and migration policies w.r.t performance. Better performance implies being able
to execute the given workload more quickly and thus reduces costs for customers. A popular
metric for system energy efficiency against performance is performance per watt (PPW) which
is used by green500'® list to rank supercomputers. “PPW measures the rate of computation
that can be delivered by a computer for every watt of power consumed”. PPW is given by Eq.

12.
MIPS/GigaFlop

Watt

where Flop stands for floating-point operations per second which is a standard measure of com-
puting power. A higher value for PPW represents better energy efficiency in performance, and
hence lower cost. A similar metric, performance to power ratio (PPR), is used in SPECpower!?
benchmarks to measure the system energy efficiency against performance, based on the sys-
tem throughput (SSJ_OPS). SSJ_OPS is defined as total number of workload operations (in
Flops or MIPS) performed in one second, given by the following Eq. 13.

PPW =

(12)

557 Ops — Workloadoperations

13
Runtimeioraqr (13)

18 https://www.top500.org/green500/

19 https://www.spec.org/power_ssj2008/
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PPR is given by the following Eq. 14.

ppp— _297OPS (14)

Powerconsumed

In this paper, we use PPR to measure the energy efficiency against performance and hence
cost. Note that there are other performance metrics that also demonstrate the existing trade-off
between energy consumption and performance (hence cost). For example, Gupta [40] proposed
Energy, Response time Product (ERP), also known as the Energy Delay Product (EDP): (i)
to capture the trade-off between performance (response time) and energy, and (ii) to compare
different consolidation policies. However, ERP does not take the VM runtime, which represents
performance (hence cost), into account.
Furthermore, to assert what is best, we need a combined (single) value or metric for the above
bi-objective measure of energy consumption and performance. Therefore, we use H as a single
measure of both energy consumption and performance. First, we put both numbers on the
same scale against the maximum (normalized using min-max technique) [Eq. 15]. Then, the
harmonic mean (H) of both normalised values produces a single value allowing for the best to
be determined [Eq. 16].

Enorm = EEﬂ and  Rporm = M (15)

max Emzn Rmax - Rmzn

_ 2 X Enorm X Rnorm

H= 16
Enorm + Rnorm ( )

where E and R represents energy consumption and performance (runtime), respectively. Lower
H is preferable, as a combination of low energy use and low runtime (high performance). With
that, interpreting results is straightforward: the smaller the H, the better the approach. It is
also readily possible to weight one number’s importance over another (preference) and then
use weighted harmonic mean instead of H, but we do not address this in this paper.

6 Performance Evaluation

As explained in [14], VM allocation (in server consolidation) is a type of bin-packing problem
which can be solved using various heuristics that may not ensure optimal results but are fast
enough to deal with large problems [2]. It is possible to consider an analogous VM packing
problem as moving from a given datacenter state to an ideal state, which should be one using
the fewest hosts. We achieve a datacenter state by implementing scheduling heuristics such as
Round Robin (RR), Random (R), Best Resource Selection (Brs) [50], Minimum Power Dif-
ference (MpD) [51], Laco [50], CARLO [52], First Fit (FF) [46] and Fill Up (FiLLUp) [14],
with VM packing then needing to guarantee energy through this, cost efficiency is assured (as
explained in Sec. 5.1) and the performance is improved or maintained. To evaluate the effect
of scheduling policies on VM performance, energy and user cost, we consider the following mi-
gration strategies: (i) no migration - NoO; (ii) dynamic consolidation (all possible migrations)
- ALL; (iii) migrate for better performance - PERF; (iv) CMCR (runtime-based consolidation
technique that migrates relatively long-running VMs to better demonstrate the trade-off be-
tween runtime (hence cost) and energy [14]); and (v) migrate for both better performance and
CMCR - PERF4CMCR.

6.1 Experimental Set-up

A cluster (simulated) of 12,583 heterogeneous hosts, which consists of different types of archi-
tecture (varying performance) and hardware specifications — as shown in Table 4 - is available
to execute three different types of benchmark workload. These hosts are subdivided by architec-
ture based on the workload type they execute as mentioned in Table 3. The hosts (simulated)
are configured based on assumptions that Amazon had certain kinds of commonly available



Zakarya M. and Gillam L. 19

machines in their infrastructure cloud (EC2), when the experiments in [7], [8] and [9] were per-
formed. The hardware specification and energy consumption values for these hosts are taken
from SPECpower?’ benchmarks. The hosts are created based on decreasing order of their per-
formance. For example, if there are three hosts (with different platforms) of a single type,
then the first one performs better than the second; second performs better than the third;
and so on. We are aware that such an order would affect the results obtained here; however,
this is not within the scope of this paper. Our simulation consists of six types from Amazon’s
instance classes as shown in Table 5. These are ranked (in terms of performance and resource
requirements) according to Amazon’s description of their VM performance rating - ECU (EC2
Compute Unit), which is described as: “equivalent CPU capacity of a 1.0 — 1.2 GHz 2007
Opteron or 2007 Xeon processor”; its performance variation is about 20% (1.0 — 1.2 GHz) [26].
The ECU rating is per core, so the total rating is given by the number of cores multiplied
by ECU rating [8]. These are arranged in increasing order of memory size (as shown in Table
5), which makes it possible to provision enough resources requested by the user with instance
selection Alg. 3. Such a setup decreases the user cost and increases the availability of resources
for sudden increases in demand.

CPU |[SPEED|NO OF [NO OF |[MEMORY|P; 5.5 | Parax | TOTAL
MODEL| (MHz) | CORES| ECUs (GB) (Wh) | (Wh) |AMOUNT
E5430 | 2830 8 22.4 16 166 265
E5507 | 2533 8 20 8 67 218
E5645 | 2400 12 28.8 16 63.1 200 12583
E5-2650| 2000 16 32 24 52.9 215
E5-2651| 1800 12 21.6 32 57.5 178
E5-2670 | 2600 16 41.6 24 54.1 243

Table 4: Host characteristics for Amazon’s cloud [7], [9] [idle (PrprE) and maximum power
consumption (Pysax) of hosts are taken from SPECpower benchmarks]'®

To address a cloud context, each task is assigned a single, notional, VM that maps to Ama-
zon’s instance types. We assume that hosts are comparable by a single measure which allows
for performance ranking, for which we adopt CloudSim’s use of Million of Instructions Per
Second (MIPS) as a proxy; we would not endorse this as a good performance indicator for real
systems for a number of CPU architecture and workload comparability reasons. One approach
to VM sizing is to assign a VM as a single core for the maximum value 1, half a core (hy-
perthread) for 0.5, and assume that higher VM gearing leads to a quarter of a core for 0.25.
But to address allocation more flexibly, along lines of certain cloud providers, we map CPU
frequency for the hosts given to Amazon’s ECUs as: 1 GHz CPU, 1.7GB RAM, giving different
types of instances?!. The ECU then maps MIPS for consistency with CloudSim (Table 5), and
we assume that every instance needs at least 1 ECU and 1 vCPU (core), as shown in Table 5.
The speed of each instance (in terms of MIPS) is the product of number of ECUs (1 ECU =
1GHz) and vCPUs (cores). For example, the speed of a m3.medium instance in Table 5 is 3
(ECUs) X 1 (vCPU) = 3 (GHz).

Instance No of [No of|[Speed/MIPS|[Memory|Storage Reserved price (1 yr)
type vCPUs |ECUs (MHz) (GB) (GB) [($/hour US East - N. Virginia)
t2.nano 1 1 1000 0.5 1 0.006
tl.micro 1 1 1000 0.613 1 0.02
t2.micro 1 1 1000 1 1 0.013
m1l.small 1 1 1000 1.7 160 0.044
ml.medium 1 2 2000 3.75 410 0.087
m3.medium 1 3 3000 3.75 4 0.067

Table 5: Amazon different instance types and their characteristics!'®

Different allocation policies including RR, R, Brs [50], MpD [51], Laco [50], CARLO [52],
FF [46] and FILLUP [14] [as described in Sec. 5] combined with different migration approaches

20 https://www.spec.org/power_ssj2008/

21 http://www.ec2instances.info
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are used to study the effects (trade-off) of energy and performance (hence cost) when different
types of workload are taken into account. The migration policies are: (i) NO - no migration;
(ii) ALL - migrate all VMs without considering hosts efficiencies or performance; (iii) PERF -
migrate for performance only; (iv) CMCR - migrate relatively long-running VMs to most effi-
cient hosts for energy efficiency [14]; and (v) PERF+CMCR - migrate relatively long-running
VMs to most efficient hosts if and only if better performance is guaranteed.

6.2 Experimental Results

The simulated infrastructure is composed of 12,583 hosts with configuration shown in Table
4. We run the simulation with three types of workload (POVRAY, NAMD, STREAM) mapped
from the Google trace. The hosts are heterogeneous, and one consequence of this is that the
workload could run faster or slower on a different host. Every 5 minute, the migration policy
checks for consolidation opportunities, and selects VMs suitable for migration according to
the migration policy. For example, CMCR looks to migrate VMs running for longer times from
a list of migration possibilities. Each experiment was performed with five different values for
past VM runtime given in minutes [0, 15, 30, 45, and 60], where 0 means migrate all, 15 means
migrate only those VMs which are running for 15 minutes or longer, 30 means running for 30
minutes, and so on. CMCR migrates VMs if the target host is more energy efficient than the
source host. However, this ignores performance, and so we add a performance aware migration
approach “PERF” to migrate VMs to target hosts only if this will guarantee better, or at least,
the expected level of performance.

We simulated three different kinds of workload on a cluster of heterogeneous hosts as discussed
in the start of this section. The experiments were performed (repeatedly) using different VM
allocation and migration policies with five different values for VMs past runtime (Rp.st) at
the time when they were considered for migration. Note that all the results discussed here are
the best (minimal) that we achieved. The results for different VM allocation and migration
approaches are shown in Table 6 (POVRAY), Table 7 (NAMD) and Table 8 (STREAM). The most
important columns i.e. energy, performance and ERP are coloured (cyan) to make them more
visible. Furthermore, the best approaches are shown in bold face. Similarly, migration statistics
and cost recovery details are given in Table 9. The cost savings (%) are calculated based on
the amount of energy consumed and service providers’ revenue (user cost) with respect to the
baseline “no migration” approach. In next sections, we characterize the results for each kind
of workload.

GRATIS (0) Workload: In Google data, the GRATIS workload runs on 156,886 VMs of
five different types [t2.nano = 31,265, t1.micro = 8,777, t2.micro = 30,777, m1l.small = 54,873,
ml.medium = 31,194], and the results obtained are shown in Table 6. The execution time (per-
formance) varies between 292.73 and 324.86 minutes, and energy consumption varies between
46,461.1 and 50,441.78 kWh, for all allocation and migration policies. The H value corre-
sponds to a combined (single) value of both energy consumption and performance (the inverse
of runtime). Note that all execution times are averages. As the RR approach creates more op-
portunities for consolidation, VMs are fortunate enough to be migrated to better performance
hosts, and so jobs will finish faster. Note that the ALL migration approach is not necessarily
energy efficient, and nor does it guarantee good performance. However, PERF migration ap-
proach guarantees good performance at the cost of a small increase in energy consumption
(less energy efficiency). When there are no migrations, the GRATIS workload would complete,
on average, in 315.48 minutes. With random (R) allocation policy, although performance is
better than the RR approach i.e. 292.73 minutes, however, the energy consumption (49,485.43
kWh) is not the lowest (minimal). The RR approach runs the workload with minimum en-
ergy consumption (46,461.1 kWh), and completes the job in 296.58 minutes. If there are no
migrations, the FILLUP approach beats all other scheduling algorithms (as expected) because
it utilizes more energy efficient hosts first.

For CMCR, the energy usage could be increased if the target host performs worse as the extra
time needed may offset any perceived (host) energy efficiency. The other scheduling techniques
with exemption of RR, R and CARLO, migrate VMs occasionally (as they initially pack VMs
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Scheduling | Consolidation| Rpast |Hused|DPCutil| D |Enersy| Ravg |Migrations| ERP [(%) Cost] H
approach technique (minutes)| (avg) (%) (MWh) [(MWh) | (hours) (W X h)| savings
No - 5,656 18.93 | 40.015 | 48.02 | 315.48 0 3.507 0 0.504
ALL - 1,665 59.34 | 40.952 | 49.14 | 314.45 137,395 3.577 -2.34 0.675
RR PERF - 2,654 40.02 38.913 46.7 300.91 83,751 3.253 2.75 0.096
CMCR 30 2,868 37.7 38.718 | 46.46 | 296.58 62,276 3.19 3.24 0.001
PERF+CMCR 30 3,574 28.91 38.945 | 46.73 | 297.83 41,112 3.222 2.67 0.096
NO - 5,424 19.51 39.95 47.94 | 315.48 0 3.501 0 0.488
ALL - 1,628 57.61 | 42.035| 50.44 | 311.34 140,437 3.635 -5.22 0.735
R PERF - 2,479 42.28 | 38.875 | 46.65 | 300.22 101,978 3.242 2.69 0.079
CMCR 60 3,340 30.58 38.84 49.49 |292.73 51,538 3.158 2.78 0.006
PERF+CMCR 15 3,027 34.27 38.966 | 46.75 | 301.73 53,136 3.266 2.46 0.119
NO - 3,180 34.02 39.293 | 47.15 | 315.48 0 3.443 0 0.279
ALL - 1,377 T7.67 38.8 46.56 | 314.43 8,697 3.389 1.25 0.049
Brs PERF - 1,383 77.05 | 38.783 | 46.54 314.7 2,753 3.39 1.3 0.039
CMCR 60 1,376 77.49 | 38.781 | 46.56 | 314.47 4,061 3.388 1.3 0.037
PERF+CMCR 30 1,384 77.04 | 38.783 | 46.54 | 314.73 2,526 3.391 1.3 0.039
NO - 4,312 24.36 39.522 | 47.43 | 315.48 0 3.463 0 0.362
ALL - 1,476 68.92 40.554 | 48.67 | 317.72 56,898 3.579 -2.61 0.647
MpD PERF - 1,694 64.03 38.763 | 46.52 | 312.93 22,024 3.37 1.92 0.028
CMCR 9] 2,115 49.94 39.168 | 49.26 | 309.34 15,738 3.366 0.9 0.216
PERF+CMCR 15 2,245 48.98 | 38.779 | 46.54 | 307.15 16,736 3.309 1.88 0.036
NO - 3,189 33.94 39.296 | 47.16 | 315.48 0 3.444 0 0.328
ALL - 1,282 75.91 41.562 | 49.88 | 314.56 7,355 3.632 -5.77 0.759
FF PERF - 1,285 75.74 | 41.555 | 49.87 | 314.63 4,542 3.632 -5.75 0.759
CMCR 45 1,385 77.24 38.786 | 46.56 | 314.61 3,242 3.39 1.3 0.04
PERF+CMCR 60 1,388 76.92 38.786 | 46.55 | 314.67 2,503 3.39 1.3 0.041
NO - 3,179 34.02 | 39.292 | 47.15 | 315.48 0 3.443 0 0.279
ALL - 1,375 77.8 38.797 | 46.56 | 314.38 8,732 3.388 1.26 0.047
FiLLUp PERF - 1,381 77.22 38.782 | 46.54 | 314.58 3,012 3.389 1.3 0.038
CMCR 45 1,376 77.49 38.78 46.56 | 314.44 4,097 3.387 1.3 0.037
PERF+CMCR 30 1,381 77.22 |38.782| 46.54 |314.58 3,012 3.389 1.3 0.038
NO - 5,423 19.52 | 39.951 | 47.94 | 315.48 0 3.501 0 0.488
ALL - 1,739 56.8 40.655 | 48.79 | 311.13 141,483 3.514 -1.76 0.579
CARLO PERF - 2,542 41.39 | 38.899 | 46.68 | 300.82 101,660 3.25 2.63 0.09
CMCR 30 2,824 36.78 38.904 | 48.65 | 297.73 67,401 3.217 2.62 0.083
PERF+CMCR 0 2,853 37.46 38.971 | 46.77 | 305.23 61,052 3.304 2.46 0.128
NO - 3,794 28.27 39.413 47.3 315.48 0 3.454 0 0.324
ALL - 1,518 67.43 |[40.184| 48.22 |324.86 59,298 3.626 -1.95 0.613
Laco PERF - 1,775 60.93 38.79 46.55 | 313.36 16,446 3.376 1.58 0.043
CMCR 60 1,745 59.86 | 40.377 | 48.48 | 313.32 12,338 3.514 0.09 0.562
PERF-+CMCR 30 1,896 56.49 | 38.796 | 46.57 | 312.24 12,952 3.365 1.57 0.046

Table 6: Experimental results (minimal based on R,,s:) for different scheduling and consolida-
tion approaches with GRATIS (0) workload - POVRAY — number of used hosts and datacenter
utilization are averaged at 5 minute intervals [H is the harmonic mean of energy and perfor-
mance: closest to zero represents better approach]

into a host until it is filled and always attempt to fill gaps created by terminated VMs), and
could produce minimal results with PERF+CMCR approach if relatively long-running VMs are
migrated only. For GRATIS workload, CMCR produces minimal results (energy consumed) by
migrating VMs that are running for 30 - 45 minutes (for different VM allocation policies) or
longer. Migration of VMs running for less than 30 minutes were found costly as they were
unable to recover their migration cost. If performance of hosts is taken into account, then the
more VMs (relatively long-running) we migrate to performance guaranteed hosts, the more
efficient allocation and the lower the value for D. If the workload executes faster, then users
should pay less for their provisioned resources and thus the system is more energy and cost-
efficient both for providers (energy bills) and for users.

Migration of VMs ensures that workloads (VMs) perform better on target hosts, which also
increases the probability that migrated VMs will be able to recover their migration cost. The
migration statistics in Table 9 show that with performance aware migration, the majority of
the migrated VMs (54.25%) run for a sufficient additional duration to be able to recover their
migration cost. However, allocation heuristics like FILLUP achieve optimal results by migrat-
ing only about 0.02% of the VMs. Overall, performance aware migration is up to 3.24% more
cost-efficient than no migration, but other approaches can increase costs by up to 6%. Fig. 4
(left) shows the PPR values of different allocation and migration policies for GRATIS workload
— where maximum energy efficiency of 289.43 (performance to power ratio) is achievable with
the proposed PERF+CMCR technique. Compared to other scheduling and migration heuristics,
the PPR value for our proposed VM allocation and consolidation approach shows a balanced
trade-off amongst energy, performance and hence cost.

BATCH (2) Workload: For BATCH workload, which runs 282,464 VMs of four different
types [t2.nano = 56,199, t1.micro = 16,137, t2.micro = 116,582, m1.small = 93,546], our find-
ings are almost similar to the GRATIS workload, and efficient heuristics like FF and FiLLUP
obtain minimal results as shown in Table 7. For BATCH workload, the execution time (per-



22 Managing energy, performance and cost in heterogeneous datacenters using migrations

formance) varies between 71.57 and 85.49 minutes, and energy consumption varies between
39,181.97 and 69,104.78 kWh, for all allocation and migration policies. For such short running
workloads, migrations could be even more expensive (due to migration cost that could lead to
wasted migration efforts [14]), and PERF4+CMCR produces good results with minimum energy
consumption (39,181.97 kWh) and average VM runtimes (77.2 minutes). Similar to GRATIS
workload, if we migrate more VMs, then the performance (execution time) of the system might
improve from 85.49 minutes to 71.57 minutes, however, the energy consumption is increased
by ~ 8.33% i.e. from 39,181.97 kWh to 44,749.58 kWh. Similar trade-off between performance
and energy was observed for GRATIS workload as well. For BATCH workload, CMCR produces
minimal results (energy consumption) by migrating VMs that are running for 15 minutes or
longer. The H metric shows the efficiency of the proposed technique “PERF+CMCR”.

Scheduling|Consolidation| Rpgst |Hygsed|PCutil D Energy | Rqug |Migrations| ERP [(%) Cost| H
approach technique (minutes)| (avg) (%) (MWh) [ (MWh) | (hours) (W X h)| savings
NO - 5,301 10.28 | 34.816 | 41.78 84.76 0 0.82 0 0.159
ALL - 1,032 31.72 | 57.098 | 68.52 80.27 232,782 1.273 -64 0.765
RR PERF - 3,308 17.32 | 33.232 | 39.88 77.85 67,143 0.719 4.55 0.045
CMCR 60 3,169 18.13 |37.291| 44.75 71.57 37,845 0.708 -2.31 0.013
PERF-+CMCR 0 3,347 16.31 33.542 | 40.25 77.9 47,389 0.726 3.66 0.067
NO - 4,804 11.19 34.652 | 41.58 84.76 0 0.816 0 0.148
ALL - 1,017 36.1 57.587 | 69.11 81.83 232,288 1.309 -66.19 0.85
R PERF - 2,744 22.12 32.652 | 39.18 77.2 99,765 0.7 5.77 0.001
CMCR 60 2,792 21.08 35.87 68.85 74.57 41,889 0.743 -3.52 0.163
PERF+CMCR 15 3,054 17.31 33.396 | 40.54 78.23 40,523 0.726 3.63 0.057
NO - 1,502 37.66 33.738 | 40.49 84.76 0 0.794 0 0.084
ALL - 809 60.3 37.423 | 44.91 84.21 12,402 0.875 -10.92 |0.316
Brs PERF - 912 59.77 33.526 | 40.23 84.3 4,105 0.785 0.63 0.068
CMCR 30 868 61.16 34.457 | 41.51 84.17 5,991 0.806 -2.13 0.135
PERF+CMCR 15 912 59.28 | 33.515 | 40.23 84.31 2,476 0.785 0.66 0.067
NO - 4,522 12.24 34.246 41.1 84.76 0 0.806 0 0.12
ALL - 1,200 46.17 33.297 | 39.96 84.89 89,641 0.785 2.77 0.051
MpD PERF - 1,798 31.28 33.591 | 40.31 80.87 47,336 0.755 1.91 0.072
CMCR 0 1,386 39.58 33.227 | 39.87 82.36 90,680 0.76 2.97 0.045
PERF+CMCR 0 2,042 28.46 33.34 40.01 80.19 46,537 0.743 2.65 0.053
NO - 1,484 38.92 | 33.736 | 40.48 84.76 0 0.794 0 0.084
ALL - 896 63.63 33.557 | 40.27 84.33 11,490 0.786 0.53 0.07
FF PERF - 897 61.51 33.524 | 40.23 84.4 5,758 0.786 0.63 0.068
CMCR 15 891 61.78 33.514 | 43.13 84.4 4,384 0.786 0.66 0.067
PERF+CMCR 15 898 60.65 33.51 40.23 84.42 2,728 0.786 0.67 0.067
NO - 1,484 38.92 | 33.736 | 40.48 84.76 0 0.794 0 0.084
ALL - 893 63.17 | 33.551 | 40.26 84.3 11,397 0.786 0.55 0.07
FiLLUp PERF - 903 61.41 33.541 | 40.25 84.43 7,020 0.787 0.58 0.069
CMCR 30 891 61.44 33.552 | 40.26 84.37 3,814 0.785 0.67 0.067
PERF+CMCR 15 899 60.38 33.54 | 40.25 | 84.46 2,789 0.786 0.66 0.067
NO - 4,813 11.17 34.659 | 41.59 84.76 0 0.816 0 0.149
ALL - 1,017 36.74 57.501 69.0 82.35 232,550 1.315 -65.91 |0.873
CARLO PERF - 2,664 22.98 | 33.589 | 40.31 77.19 99,352 0.72 3.09 0.069
CMCR 60 2,804 20.52 | 57.401 | 68.88 74.31 41,886 0.735 -2.72 0.15
PERF+CMCR 45 3,311 16.3 37.448| 44.94 77.67 28,725 0.712 4.79 0.028
NO - 3,366 16.46 33.996 40.8 84.76 0 0.8 0 0.103
ALL - 989 48.39 33.381 | 40.06 85.49 72,208 0.793 1.81 0.057
LaGo PERF - 1,976 31.48 33.495 | 40.19 79.08 53,119 0.736 1.47 0.064
CMCR 9] 1,000 48.24 33.277 | 39.93 85.22 69,629 0.788 2.11 0.049
PERF+CMCR 30 2,295 27.09 | 33.537 | 40.24 79.13 19,286 0.734 1.74 0.058

Table 7: Experimental results (minimal based on R,.s:) for different scheduling and consoli-
dation approaches with BATCH (2) workload - NAMD — number of used hosts and datacenter
utilization are averaged at 5 minute intervals [H is the harmonic mean of energy and perfor-
mance: closest to zero represents better approach]

As shown in Table 9, migration of VMs to better-performance hosts also increases the prob-
ability that they will recover their migration cost and subsequently run more efficiently to
save energy. The PERF-+CMCR migration approach could save approximately 5.77% in costs
compared to the baseline, no migration, approach. The H value of PERF4+CMCR is between
the H values of PERF and CMCR approaches which shows a balanced trade-off between energy
consumption and performance. Fig. 4 (middle) shows the PPR values of different allocation and
migration policies for BATCH workload — where maximum energy efficiency of 568.41 (perfor-
mance to power ratio) is achievable with PERF+CMCR. Note that the “migrate all” approach
consolidates VMs on fewer hosts, which increases the resource utilization and also improves the
performance. However, there is a 39.02% increase in total energy consumption. Therefore, it is
not necessary that increase in resource utilization will always decrease the system energy con-
sumption. These findings contradict what researchers [55], [56] are trying to achieve in terms of
greater energy efficiency in datacenters through increased resource utilization. More research
is required to establish the levels of resource utilization that would increase energy efficiency
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without any performance loss when different kinds of workload are taken into account. It seems
like this would vary significantly, depending on workload mixtures and how each utilizes the
system.

PRODUCTION (9) Workload: An unexpected behaviour is observed for PRODUCTION
workload which runs 52,959 VMs of five different types [t2.nano = 10,596, t1.micro = 2,767,
t2.micro = 10,305, m1l.small = 18,677, ml.medium = 10,614], as shown in Table 8. For PRO-
DUCTION workload, the average runtime (performance) varies between 963.59 and 1,107.42
minutes, and energy consumption varies between 61,957.91 and 63,054.65 kWh, for all al-
location and migration policies. Previously, we demonstrated [14], that migrating relatively
long-running VMs is more economical and energy efficient. Therefore, we were expecting sim-
ilar findings for long-running VMs for the PRODUCTION workload. However, we observed that
although performance is improved, energy consumption is worse than “no migration” approach.
For example, with FILLUP combined with PERF+CMCR approach, performance is improved
from 1,107.42 minutes to 1,086.74 minutes. However, energy consumption is increased from
61,957.91 kWh to 63.046.62 kWh. Note the behaviour of H for efficient heuristics like BRS,
LAaco, MpD, FF and FIiLLUP where no migration approach is more energy and performance
efficient.

Scheduling|Consolidation| Rpast |Hysed|DPCutit| D |Encrgy| Raug |Migrations| ERP [(%) Cost| H
approach technique |(minutes)| (avg) (%) | (MWh)|(MWh)| (hours) (W x h)| savings
NO - 3,359 22.85 |52.297| 62.76 |1,107.42 0 16.087 0 0.841
ALL - 1,075 64.6 52.052 | 62.46 | 1,014.44 57,678 14.668 0.47 0.4
RR PERF - 1,203 55.21 [51.809| 62.17 963.59 55,167 13.868 0.93 0.001
CMCR 60 1,762 40.61 52.06 62.77 | 1,035.49 41,106 14.974 0.45 0.483
PERF+CMCR 45 1,856 38.47 51.96 62.57 | 1,035.44 37,392 14.945 0.64 0.417
NO - 3,238 23.27 52.254 62.7 1,107.42 0 16.074 0 0.808
ALL - 1,072 65.94 52.259 | 62.71 | 1,047.18 63,170 15.201 -0.01 0.629
R PERF - 1,187 56.14 51.95 62.34 985.23 64,180 14.217 0.58 0.211
CMCR 60 1,783 38.57 52.019 | 62.86 | 1,027.54 48,810 14.848 0.45 0.434
PERF+CMCR 60 1,931 35.16 51.937 | 62.64 | 1,009.74 45,450 14.567 0.61 0.327
NO - 1,763 | 44.98 | 51.634 | 61.96 | 1,107.42 0 15.883 0 0.005
ALL - 937 80.89 52.546 | 63.06 1,086.9 3,262 15.864 -1.77 0.922
Brs PERF - 942 80.53 52.543 | 63.05 | 1,087.18 2,612 15.868 -1.77 0.922
CMCR 60 937 80.87 52.542 | 63.06 | 1,086.78 3,123 15.862 -1.76 0.919
PERF+CMCR 45 946 80.24 52.549 | 63.05 | 1,087.92 2,520 15.88 -1.78 0.927
NO - 2,163 | 34.66 |[51.749 | 62.1 1,107.42 0 15.919 0 0.228
ALL - 1,117 66 51.967 | 62.36 | 1,052.55 20,944 15.194 -0.42 0.46
MpD PERF - 1,116 | 64.99 |51.913 | 62.3 | 1,034.07 17,581 14.912 -0.32 ]0.378
CMCR 60 1,223 61.34 52.021 | 62.51 | 1,076.32 12,868 15.553 -0.52 0.551
PERF+CMCR 60 1,300 55.77 52.036 | 62.48 | 1,074.26 11,149 15.528 -0.56 0.561
NO - 1,766 44.91 51.632 | 61.96 | 1,107.42 0 15.883 0 0.002
ALL - 938 81.02 52.537 | 63.04 1,085.6 2,989 15.843 -1.75 0.912
FF PERF - 939 80.88 | 52.535 | 63.04 | 1,085.98 2,711 15.848 -1.75 ]0.913
CMCR 15 937 80.88 | 52.534 | 63.04 | 1,085.38 2,724 15.839 -1.75 0.91
PERF+CMCR 15 938 80.78 | 52.533 | 63.04 | 1,085.45 2,694 15.84 -1.75 0.91
NO - 1,766 44.91 51.632 | 61.96 | 1,107.42 0 15.883 0 0.002
ALL - 939 81.06 52.542 | 63.05 1,086.8 3,072 15.862 -1.76 0.92
FiLUp PERF - 940 80.46 52.538 | 63.05 | 1,086.68 2,522 15.859 -1.75 0.917
CMCR 60 939 80.93 52.542 | 63.05 | 1,086.62 2,663 15.858 -1.75 0.917
PERF+CMCR 60 941 80.43 |52.539| 63.05 [1,086.74 2,423 15.86 -1.76 0.918
NO - 3,234 23.28 52.25 62.7 1,107.42 0 16.073 0 0.806
ALL - 1,123 62.99 52.067 | 62.48 | 1,045.82 64,443 15.126 0.35 0.519
CARLO PERF - 1,229 54.54 51.834 62.2 991.71 65,209 14.279 0.8 0.208
CMCR 60 11,815 | 37.82 51.867 | 62.61 | 1,024.31 49,647 14.758 0.73 0.32
PERF+CMCR 60 1,968 34.4 51.819 | 62.43 | 1,006.29 46,405 14.485 0.82 0.243
NO - 2,117 35.32 51.737 | 62.09 | 1,107.42 0 15.915 0 0.208
ALL - 1,109 68.48 52.029 | 62.44 | 1,079.64 18,363 15.604 -0.56 0.564
Laco PERF - 1,183 61.28 52.048 | 62.46 | 1,076.94 13,381 15.57 -0.6 0.576
CMCR 60 1,205 62.02 52.025 | 62.48 | 1,075.24 12,477 15.539 -0.56 0.553
PERF+CMCR 30 1,246 58.11 52.028 | 62.49 | 1,073.76 11,403 15.518 -0.56 0.553

Table 8: Experimental results (minimal based on Rjqs) for different scheduling and consol-
idation approaches with PRODUCTION (9) workload - STREAM — number of used hosts and
datacenter utilization are averaged at 5 minute intervals [H is the harmonic mean of energy
and performance: closest to zero represents better approach]

The results repeat similar findings (as discussed above for GRATIS and BATCH workloads) that
“migrate all” approach is more expensive in terms of improved performance and decreased
energy efficiency. The PRODUCTION workload runs for longer and, for randomized allocation
heuristics, significant energy could be saved that can be up to ~0.93% as compared to the
“no migration” approach, if the workload is migrated to better performing hosts. Performance
can be improved from 1,107.42 minutes to 963.59 minutes when performance aware migrations
are combined with inefficient RR and R allocation policies. We were expecting similar sav-



24 Managing energy, performance and cost in heterogeneous datacenters using migrations

ings using PERF+CMCR which migrate relatively long-running VMs to more energy efficient
hosts. However, we observed that PERF+CMCR approach is less energy and cost-efficient for
PropuCTION workload. There are three possible reasons for this unexpected behaviour: (i)
energy efficient hosts do not always guarantee better performance; (i) if performance is worse
on an energy efficient host, the savings earned by host efficiency, are less than the additional
energy consumption due to increase in runtime (slow performance); and (%ii) if (%) happens
for a longer time, more energy is consumed.

Scheduling RR R Brs MpD Workload
approach dc perf cmecr p-4c dc perf cmecr p-+c dc perf cmcr p+c dc perf cmecr p-4c type
Migratable 0.88 0.53 0.4 0.26 | 0.9 0.65 0.33 0.340.06 0.02 0.03 0.02|0.36 0.14 0.1 0.11
VMs (%) GRATIS
VMs recovered|35.07 46.08 39.24 49.63|35.03 44.47 38.38 48.81(11.89 7.95 11.25 8.14 [34.01 46.59 50.27 54.25
Costm (%)
0.82 0.24 0.13 0.17|0.82 0.35 0.15 0.14 | 0.04 0.01 0.02 0.01|0.32 0.17 0.32 0.16
Barcu
14.58 39.33 26.24 33.89(15.57 34.58 21.26 25.82|12.47 8.6 9 7.05 [19.84 21.96 27.09 30.71
1.09 1.04 0.78 0.71|1.19 1.21 0.92 0.86 | 0.06 0.05 0.06 0.05 0.4 0.33 0.24 0.21
PRODUCTION
70.43 67.59 68.04 67.44(74.14 72.26 70.11 69.09|18.61 10.18 15.89 9.1 [62.19 64.31 54.9 51.34
Scheduling FF FiLLUp CARLO Laco ‘Workload
approach dc perf cmecr p-Hc dc perf cmer p-+c dc perf cmcr p+c dc perf cmecr p-4c type
Migratable 0.05 0.03 0.02 0.02|0.06 0.02 0.03 0.02| 0.9 0.65 0.43 0.39|0.38 0.1 0.08 0.08
VMs (%) GRATIS
VMs recovered| 5.64 5.77 4.24 4.5 6.83 4.26 10.99 10.17[35.49 44.68 38.48 48.22135.09 39.56 39.41 25.32
Costm (%)
0.04 0.02 0.02 0.01|0.04 0.02 0.01 0.01|0.82 0.35 0.15 0.1 0.26 0.19 0.25 0.07
Barcu
7.67 5.42 6.34 3.8 8.11 9.33 9.98 8.21 (15.45 34.13 20.84 26.06(22.12 14.5 23.53 9.21
0.06 0.05 0.05 0.05|0.06 0.05 0.05 0.05]|1.22 1.23 0.94 0.88 | 0.35 0.25 0.24 0.22
PRODUCTION
6.79 6.49 3.3 4.1 [12.37 6.98 15.55 9.02 [74.27 72.77 70.09 69.58|60.59 63.48 54.1 50.92

Table 9: Cost recovery and proportion (%) of migratable VMs using different scheduling and
consolidation techniques for GRATIS (0), BATCH (2) and PRODUCTION (9) workloads [using
PERF with CMCR (p+c) enables more VMs to recover their migration cost]

Largely, unlike GRATIS and BATCH workload, the migrated VMs recovered their migration cost
due to their long-running behaviour, as shown in Table 9. However, the extra energy cost as
observed for the PRODUCTION workload is due to the long-running behaviour of VMs. If VMs
runs for longer on a less energy efficient and/or low performance host, there will be more energy
usage due to increase in execution time (performance). Fig. 4 (right) shows the PPR values
of different allocation and migration policies for PRODUCTION workload — where maximum
energy efficiency of 78.2 (performance to power ratio) is achievable with performance-aware
consolidation technique.
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Fig.4: Performance to power ratio (PPR) for different allocation & migration policies and
workloads — GRATIS, BATCH and PRODUCTION (from left to right) [PERF+CMCR balances
the trade-off between energy, performance and cost]

For BATCH workload, the maximum energy efficiency was achieved by migrating VMs that
have run for 15 minutes or longer. Similarly, for GRATIS workload, this value was observed
as either 30 or 45 (for different heuristics). For long-running VMs (PRODUCTION workload),
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migrating VMs running for 1 hour or longer is more cost-energy efficient. For PRODUCTION
workload, we have only considered migration of those VMs that were running for one hour or
shorter. However, it is possible that more energy could be saved if VMs running for longer than
1 hour, are migrated, particularly, to target hosts that offer better performance and energy
efficiency than the source hosts [14].

6.3 Results Discussion

For each scheduling approach, each VM requests cloud resources (CPU, memory) and comes
with a host ID to accommodate the VM on that host (according to Google data as explained
in Sec. 3). Therefore, for each policy, when migrations are not considered, execution time is
similar (or same). However, the number of average hosts in use (5 minute intervals) and dat-
acenter utilization (%) confirms the efficiency of the FILLUP VM allocation approach — which
provides consistency with our previous findings [14]. For GRATIS workload, the RR approach
creates more opportunities for the migration, hence, if more VMs are migrated to better per-
forming hosts, performance can be improved. The other scheduling techniques, except RR,
R and CARLO, migrate VMs occasionally and might produce minimal results if each VM is
allocated to a host that performs better. If performance of hosts is taken into account, then
the more VMs (relatively long-running) we migrate to performance guaranteed hosts, the more
efficient allocation and the lower the value for D.

Similar behaviour is also observed for BATCH workload where efficient allocation heuristics
like FF and FiLLUP obtain the minimal results in terms of energy used and number of mi-
grations. For such short running workloads, migrations could be expensive, and PERF+CMCR
produces good results with minimum energy consumption and average per VM runtime dura-
tion. However, for the PRODUCTION workload, which runs for longer durations, we observed
an unexpected behaviour. The per VM average runtime duration is proportional to the user
monetary cost — the longer the VM runs, the more it will cost. For different allocation heuristics
and different kinds of workload, the performance-aware migration technique could save up-to
2.65% energy as compared to “no migration” approach. These savings can be up to 3.66% if
CMCR is also considered combined with performance-aware migration as shown in Table 8.
Considering a PUE of 1.2 and energy price at $0.08 per kWh, the proposed performance-aware
migration technique would save $260 per day, which is approximately a $0.1m saving over a
year. Similar numbers for energy and cost savings are also achievable for BATCH workload.
The BATCH workload runs for shorter duration and the savings could be up to $1988.96 per
day, making a total savings of ~$0.73m annually — for similar datacenter configurations. The
ProbpucTION workload runs for longer durations and for similar datacenter set-up, a monthly
savings of ~$0.02m are achievable at the rate of $44.26 per day. These saving for GRATIS (0),
BarcH (2) and PrRoODUCTION (9) workloads compare favourably to a maximum projected
usage of the same 12,583 hosts cluster of approximately $2.4m/year.

The results suggest that reducing the system energy usage affects the compute performance.
CMCR [14] tries to migrate only relatively long-running VMs to more energy efficient hosts,
that might not perform better for a particular workload type. In such situations the VMs
run for a longer duration, and result in more energy consumption. Similar trade-offs between
system energy consumption and performance variations are also observed in [57]. For GRATIS
workload, CMCR produces minimal results by migrating VMs that run for 15 to 30 minutes
or longer. Similar long-running VMs were also most efficient for BATCH workload, however,
in PRODUCTION workload, the past runtime Rp,s: of migrated VMs is 45 minutes to 1 hour.
For these long-running VMs, the results show that there are further opportunities for greater
energy efficiency and performance, therefore, user cost, if VMs of Rp4s > 1.5 hours are only
migrated. In all results, as shown in Tables 6, 7, 8, a column group is shown for each of the
examined metrics -— energy and cost used by hosts, average number of hosts used (Hysed)s
average datacenter utilization (%), VM average runtime (Ry,4), the service revenue obtained
from hosting the VMs (user cost %), total cost savings in US dollars (%) and H (combined
single value for energy and performance) for each kind of workload. Further, we categorize our
observations in the remaining part of this section.
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Generalization: Based on our findings, we generalize the three different types of workload
benchmarks w.r.t the continuing trade-off between overall system energy consumption, per-
formance and total cost, that we observed for different allocation and migration policies. We
validated and verified our findings through running the experiments several times, with dif-
ferent experimental assumptions and parameters; and determined whether the generalization
is correct or not. We observed a consistency among the major findings, with variability in
energy consumption and performance (hence cost). Migration of VMs to better performance
guaranteed hosts increases the performance (that reduces user per hour cost), however, it is
also possible that energy consumption is increased. Thus, a host may guarantee better perfor-
mance for a specific kind of workload, but may be at cost of more energy usage. We observed
that the proposed performance-aware migration technique improves the workload performance
(runtime), and efficient allocation heuristics (FILLUP) reduces the energy consumption. Note
that performance and cost gives almost the same values when migrations are not considered
because initially all VMs are placed on similar hosts.

Resource Utilization: Another interesting point that we observed is about the resource uti-
lization. Largely, the literature [Sec. 2] asserts that increasing resource utilization could decrease
energy consumption. However, higher resource utilization could increase energy consumption.
This affect can be related either to Jevons Paradox®? (the easier you make it to consume the
product the greater the consumption will be), race-to-idle and/or never-idle heuristics [34].
When peak performance is not needed then operating the CPU at lower utilization level en-
ables the resource/energy management technique to save more energy by dynamically ratch-
eting down the CPU power states through DVFS (Dynamic Voltage and Frequency Scaling).
However, if the CPU operates near maximum capacity (higher utilization) most of the time,
this technique would offer little advantage?®. Therefore, several techniques like [58], demon-
strated greater energy efficiency with two utilization thresholds for a resource (CPU); (i) a
lower threshold and (ii) an upper threshold.

Initial Placement vs. Migration Placement: Lastly, we repeatedly performed the exper-
iments [Sec. 6.1] to demonstrate that how two different policies; one for initial VM placement
and one for migration placement - would affect the energy consumption for different kinds of
workload. This will help providers to know either a single policy or two different policies for
both placement decisions are more economical and energy efficient. Table 10 shows the eight
possibilities for every initial allocation policy combined with all eight migration placement
policies. The three kinds of workload i.e. GRATIS, BATCH and PRODUCTION are represented
by G, B and P respectively. The FILLUP migration placement policy tries to accommodate
the migrated VM on a more energy efficient host and produces minimal results (energy usage)
when combined with all scheduling approaches, dependent on the workload type.

MIGRATION PLACEMENT TECHNIQUES
ALroc. RR R Brs MprD FF FrLup CARLO Laco
POLICY
RR P B
R G,B P
Brs G P B
MpD B,P G
FF B G,P
FiLLUp G,B,P
CARLO B P G
Laco G P B

Table 10: Initial scheduling policies vs migration placement policies for GRATIS-G, BATCH-
B and PRODUCTION-P workloads - [left side denotes initial placement policies and top row
represents migration placement policies]

22 https://en.wikipedia.org/wiki/Jevons_paradox

23 http://www.buildings.com/article-details/articleid /6000/title/10-ways-to-save-energy-in-your-data-center
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Comparison to other approaches: We compare the EPC-AWARE migration technique
to three well-known migration techniques i.e. KHANNA [23], SANDPIPER [29] and PMAPPER
(FFD) [22] in terms of energy consumption and performance. We made slight modification
to the implementation of these policies in order to account for the migration energy cost [14].
The experiments, that run for 12 hours, were performed on the PRODUCTION workload with
the same performance parameters and datacenter set-up (which consists of 3,000 hosts) as
discussed in Sec. 6.1 and Sec. 6.2. SANDPIPER performs better and EPC-AWARE is more energy
efficient than other approaches, as shown in Table. 11. Note that the “tasks completed” is the
total number of VMs that were able to finish their execution during the experiment. Further-
more, FILLUP allocation, which is used in EPC-AWARE migration technique, is more energy
efficient than the FFD allocation, which is used in PMAPPER.

Policy Energy |Avg. runtime Tasks Number of [ Max. hosts
(kWh) (minutes) |completed|migrations used
KHANNA 3,860.26 426.57 1,282 10,376 1,147
SANDPIPER 4,011.54 384.97 1,589 7,812 1,249
EPC-AWARE 3,858.41 417.02 1,336 0 1,070
pMaPPER [FFD]|3,918.83 417.02 1,336 0 1,240

Table 11: Comparing EPC-AWARE with KHANNA, SANDPIPER and PMAPPER [FFD]

Analysis of the proposed algorithm: The proposed EPC-AWARE migration approach is
based on the “FILLUP” approach presented in [14]. The “FILLUP” allocation policy is based
on the First Fit (FF) approach that is demonstrated to be not using more than twice bins
(hosts) as used by an optimal (OPT) solution [59]. It means that only after the bin fills with
more than % items or if an item (VM) with a size larger than % arrives, the algorithm may
start (switched on) a new host. Thus, if we have a set of H hosts, then, at least, (H — 1) hosts
can be more than half full. Now, if we consider an improved version of the FF heuristic i.e.
FFD (First Fit decreasing), where hosts are sorted in decreasing order of their sizes and which
is guaranteed to be not using more than 1.22xOPT hosts [59]. In “FILLUP” heuristic, hosts
are sorted based on their sizes and energy consumption, therefore, the total number of hosts
used by the “FILLUP” approach are given by:

1.22 x OPT < FiLLUP < 2 x OPT (17)

If a VM is allocated to a suitable host in the first iteration (i.e. the best case), the “FILLUP”
approach time complexity is O(1). In the worst case, it is possible that all (n) hosts are scanned,
therefore, the time taken in allocation can be up to O(n). For the migration policies, this (worst
case) can be up to O(mn) and O(1) in the best case; where m is the total number of VMs
selected for migration.

7 Conclusions and Future Work

Variable performance of similar instances (VMs) results in a different amount of work that
these instances can complete per unit of billable time [18]. Hence, for some fixed amount of
work, variability in performance would produce different workload execution time, and so po-
tentially increase costs. This led the researchers to propose various strategies to exploit such
performance variation in clouds and find instances that would perform better at the same price.
In this paper, we discussed the performance, cost and energy implications for different kinds
of workload, along with suggesting a VM allocation and reallocation technique for improving
performance and energy (hence cost) conservation in a datacenter. Based on our extensive
simulations we generalized three different types of workload benchmark for a similar trade-off
among performance, energy and cost. We observed that the performance of different scheduling
and migration strategies differ widely.

For heterogeneous workloads and clouds, this paper evaluates different scheduling and migra-
tion techniques that demonstrate a diversity in energy efficiency and performance (hence cost)
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trade-off spaces. Some policies improve energy efficiency as it migrates (VMs) to higher per-
formance guaranteed hosts while the other experiences a reduction in energy efficiency as the
system performance increases. Applying the proposed Energy-Performance-Cost (EpC) aware
migration heuristic achieves near minimal (balanced) energy consumption, improves perfor-
mance and reduces the user cost. Different resource allocation and migration strategies are
clearly necessary for cloud platforms exhibiting variation in performance in order to attain
higher energy efficiency while meeting performance targets. It is also reasonable to expect
that, even on a single platform, different kinds of workload may have different energy and per-
formance trade-off spaces [34]. Therefore, a single allocation heuristic may not be suitable for
all applications (workloads) on that platform to achieve greater energy efficiency and perfor-
mance improvements. Furthermore, adding more of the best (VMs) to the same (host) in order
to maximize overall performance would be bad for it in terms of co-location and performance
loss [Sec. 3]. And, indeed, this is a flaw of the present work that future work would have to
address.

Note that different cases simulated in this work does not include the networking cost as well
as latencies (delays) which can be a constraint for the overall performance. Furthermore, SLA
violations and the SLA penalties, are also not considered in the cost model which could im-
pact the overall cost of scheduling and migration techniques. A future implementation of this
work may consider these costs as well as performance-aware VM allocation policies — instance
seeking algorithms.
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