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Abstract

This paper analyses the economic feasibility of a market for data-based services, which is a scenario envisioned
in sectors that are adopting Internet of Things and/or Big Data technologies. A business model for the
provision of a data-based service is proposed. In this model, service providers build services from data that
is collected and sold by data providers in a market, and provide services to final users. Service providers
compete strategically against each other in the data market and in the service market. The strategic
interaction between the service providers is analyzed by means of non-cooperative game theory. A thorough
mathematical analysis of the Nash equilibria is carried out and existence and uniqueness conditions are
proved and discussed.

We conclude that if the sensitivity of users to the data-rate-to-price ratio is above the unity and the
number of service provider does not exceed a given limit, a unique and meaningful equilibrium exists. We also
conclude that the intensity of competition is beneficial for the users and detrimental for the service providers,
while for the data providers, maximum surplus is obtained in an intermediate intensity of competition.
Finally, an increase in the users’ sensitivity to the data-rate-to-price ratio causes a shift on the surplus from
both the service providers and data providers to the users.

Keywords: Game theory, Nash equilibrium, service provision, data providers, competition

1. Introduction

According to a report commissioned by the European Commission [1], the European (EU28) data market
was estimated at EUR59,539 million in 2016 exhibiting a solid year-on-year growth (YoY) of 9.5%. This
report also estimated the US data market (EUR129,173 million; 11.8% YoY), the Brazilian data market
(EUR6,049 million and 14.7% YoY) and the Japanese data market (EUR25,5 million and 6.2% YoY). This
positive trend would continue throughout the next four years. This optimistic forecasting allows us to
envision the emergence of a market for data-based services, specially in sectors that are adopting Internet
of Things (IoT) and/or Big Data technologies. Those companies that drive the growth for IoT devices
will have the greatest potential to monetize and will likely be the first adopters of IoT data marketplaces.
Examples of such industries are industrial devices (24.4% revenue CAGR), medical devices (20.8% revenue
CAGR) and automotive/transportation devices (21.4% revenue CAGR) [2].

Currently, many companies underutilize most of the data that they collect for internal operation pur-
poses [3]. It is then advocated that these companies offer the data on data marketplaces as a way to monetize
it [4]. However, new players that buy the data and add value to the data are needed in order to provide
useful services to users. There is also interest from the institutions in removing the hurdles that hinder
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an efficient provision of data-intensive services. For example, the European Commission has put forward
legislative measures that help realize a common data space in the EU [5].

Our work focuses on the analysis of the profitability for such new players, which provide added-value
services based on data. For this purpose we propose and analyze a model of the relations between all
relevant players that intervene in a market with the above characteristics. The analysis applies concepts
from microeconomics in the formulation of the model for the data providers, and from discrete-choice
analysis in modeling the users. Game theory is thoroughly used in the paper and specifically in modeling
and analyzing the competition between the service providers.

The main contributions of this paper are the following:

• A business model for the provision of a data-based service is proposed and the interaction between the
different actors (data providers, service providers and users) is analyzed.

• A thorough mathematical analysis of the Nash equilibria is carried out and existence and uniqueness
conditions are proved.

• It is proven that if the sensitivity of users to the data-rate-to-price ratio is above 1 and the number of
service providers does not exceed a given limit, a unique and meaningful equilibrium exists.

• The surpluses at the equilibrium for the different actors are computed and discussed.

Game theory is a well-known discipline of mathematics, and its application to the modeling and analysis
of the interactions in microeconomics is long-standing (see, e.g., the classical work by Von Neumann and
Morgenstern [6], and the more recent book by Vives [7]). There is, however, a relatively recent trend
in computer networks engineering to incorporate game theory-based models in order to take into account
either the selfish behavior of the devices, either terminals or servers (see, e.g., the work on selfish behavior in
CSMA/CA by Cagalj et al. [8], and the work on strategic sharing of resources by Johari and Tsitsiklis [9]) or
the economic incentives of the agents, either users or providers (see, e.g., the work on internet interconnection
by Laffont et al. [10], and the work on competition between Internet Service Providers by Shakkottai and
Srikant [11]). Our work belongs to this trend, and it shares this feature with some of the works referred in
the next subsection.

The structure of this paper is as follows. Next subsection reviews the related work. The model is described
in Section 2. In Section 3, the existence and uniqueness conditions of Nash equilibria are determined and
the equilibrium strategies are found. Numerical results are discussed in Section 4 to illustrate the analysis.
Finally, conclusions are drawn in Section 5.

1.1. Related work

Reference [12] proposes a sensing-as-a-service model for smart cities supported by the Internet of Things.
Specifically, it describes the role of an “extended service provider” that intermediates between sensor owners/
publishers and sensor data consumers in three different scenarios: waste management, smart agriculture and
environmental management. The extended service provider builds value added services from data procured
from sensors/ sensor owners/ publishers and provides them to the sensor data consumers. These roles are
also modeled in our work. This sensing-as-a-service model evolves beyond other service models [13] that
assume that sensing data is available per se and no incentive is required for the data providers to supply
the data needed for enhanced service provision.

A business model related to ours is studied in [14], where the authors analyze a spectrum sensing service
that is built using spectrum monitoring data in a cognitive radio network and that is provided to secondary
users, i.e., unlicensed users that dynamically access the spectrum. Our model, however, is more general and
is not dependent on technology-specific choices.

Data-based services are, however, not necessarily linked to IoT, as the emergence of Data-as-a-Service
(DAAS) shows [15]. There are commercial data marketplaces already in operation, e.g. BDEX (bigdataex-
change.com) for consumer data. Still, as pointed above, in order that the whole ecosystem becomes eco-
nomically feasible, service providers should leverage these marketplaces for service building and provision.
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Within the scope of data-based services, there are few papers that address a formal analysis. A
subscription-based big data market model is considered in [16]. An auction-based intermediation model
for big data markets is modeled and analyzed in [17]. In both works, a service provider operates monopo-
listically in the market, and the data collector/source is modeled as an individual agent. In our work, we
consider a more realistic scenario which incorporates: (i) several service providers competing strategically
against each other, and (ii) a large number of data providers.

There are also some economical analyses of service provision that rely on other types of resources.
Reference [18] proposes and analyses a business model for service provisioning in cloud systems. There
exists competition between service providers for attracting users and also for procuring themselves with
virtual resources from data centers. There are some similarities between this setting and ours, but there is
not a direct equivalence between storage/computing resources and data. Within the same context of cloud
services, there is a coherent and interesting set of previous works, namely [19] [20] [21] [22], which applies
game theory for the analysis of the economic incentives of the different agents and the strategic interaction
between the agents. Specifically, in [19], [20], and [21], the cloud users request service in advance for a set
of future time slots and the service is modeled by means of M/M/m queues. In all of them, the proof of
the existence of the Nash equilibrium is provided, as in our work, and additionally iterative algorithms are
proposed to compute the equilibria with minimum information exchange between the players, an issue that
is not covered in our work. Reference [19] analyses the competition between n cloud users for the service
of one cloud provider. The users are the players and their strategy is the demand rate, and the provider
charges according to a polynomial request price model. Reference [20] analyses a similar scenario, but the
cloud provider is now an active player, specifically the leader in a Stackelberg game, and it selects a subset
of heterogeneous servers for providing service. An energy cost model is proposed for the cloud provider.
And a generalized Nash equilibrium problem is stated and solved. Finally, Reference [21] analyses again the
competition between n cloud users for the service of one cloud provider, but each user bids now strategically
for the reserved time slots. The provider allocates a number of servers following a proportional fairness
criterion. There are interesting similarities and differences between [19], [20], and [21] and our work. In
all these three references, the game is formulated for the cloud users, whereas in our work it is done for
the service providers. While the cloud users try to maximize their own utility, the service providers try to
maximize their respective profit through simultaneously competing for providing service to final users; these
final users are absent in the three references. Additionally, the one cloud provider is a player in [20], but
not in [19] and [21], whereas in our work the data providers are many and they are not players. Still, we
provide a rationale for a cost model for the data providers, as it is done in [20].

Finally, we discussed an intermediation-based business model in a competition scenario in [23], where
service providers intermediate between Wireless Sensor Networks and users. The present paper generalizes
the applicability of the model beyond this specific technology setup and it provides a more detailed analytical
derivation. Specifically, the equilibrium existence and uniqueness conditions of the game between the service
providers are derived and discussed in this paper.

2. Model description

We consider a scenario where the following stakeholders act (a summary of this paper notation is given
in Appendix A):

• N data providers (DPs);

• K service providers (SPs);

• M users (Us).

These stakeholders interact through both data relationships and commercial relationships: data relation-
ships describe how data is transferred between the different stakeholders, from the data originators (DPs)
to the final data consumers (Us); and the commercial relationships describe how money is exchanged as a
remuneration for transferring and processing the data. A schematic of the relationships between each class

3



U

SP

DP

U

SP

DP

Commercial relationships

Data relationships

Fig. 1: Relationships between the stakeholders in service provisioning

of stakeholders is shown in Fig. 1, where the data relationships represent a transfer of data (either raw data,
from the DPs to the SPs, or processed data, from the SPs to the users). As specified above, there are several
instances of each class in our model.

2.1. The data path

Each DP may supply information of any kind that in general terms we will call ‘data’. The DPs collect
data as a result of their operations. DP j generates data at a rate rj , which is measured in net bits per
second (nbps); this rate measures the useful data only, regardless of its physical rate or its format. Each DP
can only decide whether to confer its data to the SPs or not. The specifics of the data delivery between the
DPs and the SPs are not relevant to the model. Anyway, the data shall not be reused or shared by more
than one SP.

The data are then bundled by the SPs. Each SP processes the data collected from the DPs to compose
a service with added value and to deliver these service to the users through the network. SP i uses data
at the aggregate rate Ri. Each user may decide to choose the services of one SP; if it does, it will not join
the other SPs; its choice is represented by the SP’s index i = 1, . . . ,K, while the value i = 0 represents the
“no-provider” option.

2.2. The commercial path

The commercial relationships among the stakeholders are described in the bottom plane of Fig. 1. The
arrows indicate the direction of money (i.e., the reverse direction of services).

We assume that payments for services are carried out according to the following payment scheme: linear
pricing for the DPs-SPs relationship, where the price driver is the data rate and the unit price is a, and a
flat rate pricing for the SPs-users relationship.

DPs may decide whether to confer their data to the SPs or not, so that the actual number of DPs joining
the SPs’ platform (i.e., the number of connected DPs) is n ≤ N . Similarly, users may decide whether to
subscribe to the service. We indicate the number of user who subscribe to the services of SP i as mi ≤M .
Overall, we have

∑K
i=0mi = M and hence

∑K
i=1mi = M −m0 ≤M .
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The decisions taken by the DPs and the users are driven respectively by their profit and their utility:
the DPs will deliver their data if it is profitable, and the users will join the SP (if any) delivering the highest
utility.

Pricing has therefore an impact on both the penetration ratios (i.e., the number of stakeholders joining
the market) and the profits obtained by the stakeholders. We consider first the penetration ratios and then
the profits.

2.3. Penetration ratios

Let us examine first the decision taken by the DPs. We recall that each DP obtains a profit from the
sale of its data to the SPs, and has a cost for accessing the network, so that the profit of a generic DP is

Πj = a · rj − f, (1)

where the constant a is the price per data-rate unit, which is assumed to be common to all DPs, while f is
the cost borne by the DP (e.g., for network payments). Both payments are expressed in a generic currency
unit, which we denote by cu.

The number of DPs is assumed to be sufficiently high, and this allows us to assume that each one operates
as a price-taker—the unit price a and the fee f are therefore given. A DP cannot influence the price a, either
individually or as a whole, through any mechanism (e.g., bargaining, provider selection, . . . ). Actually, each
DP is invested with a limited decision power, which is to accept the price set by the market for data (where
the SPs are the buyers and the DPs are the sellers) or to refuse them. And each DP’s decision is made on
the basis of the profit. A generic DP j enters the market only if its would-be profit is non negative, i.e.
Πj ≥ 0.

Though data supplied by the DPs is a homogeneous product, each DP supplies the data with a different
data rate (e.g., it could be constrained by technological reasons). In order to model the individual differences
in the data rate, we assume that the rates rj (j = 1, . . . , N) form a set of i.i.d. random variables following
a uniform distribution over the interval [0, rmax].

DP j will enter the market if Πj ≥ 0. This event has a probability

P(ari − f ≥ 0) = 1−Ψ
( f

armax

)
= 1−Ψ

(fm
a

)
, (2)

where we have defined a normalized fee fm ≡ f/rmax, and Ψ(·) is the CDF of the uniform distribution in
[0, 1].

As a result of the decision process, the number of connected DPs turns out to be a random variable. Let
N be this random variable and n its expected value

n ≡ E[N ] = N

(
1−Ψ

(fm
a

))
, (3)

which is linearly decreasing with the fee fm in (0, a).
All connected DPs will then supply an expected aggregate data rate rT equal to

rT ≡
n∑
i=1

E
[
ri

∣∣∣ri ≥ f

a

]
= n

rmax

2

(
1 + Ψ

(fm
a

))
=
Nrmax

2

(
1−Ψ2

(
fm
a

))
= roff

(
1−Ψ2

(
fm
a

))
,

(4)

where we have defined the maximum offered data rate as

roff ≡ Nrmax/2. (5)
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By inverting (4) in rT ∈ (0, roff), we can express the unit price a as a function of the aggregate data rate
rT :

a =
fm√

1− rT
roff

. (6)

This expression gives the unit price that should be paid to the DPs to deliver an aggregate data rate rT .
Let us examine now the users’ decisions. The user consumption that is expected is a discrete choice,

i.e. that the user subscribes service from the SP that provides him/her with the highest utility. This is an
appropriate model for services that share a basic set of characteristics, so that the services provided by the
different SPs cannot be regarded as complementary; therefore, there is no incentive for a user to bundle a
combined service offer from more than one SP. Despite this similarity, the services are not identical, since
they are differentiated by an additional service feature apart from the price; this feature is the data rate
acquired by the SPs for the service provision. We adopt the discrete-choice model described in [24]. In this
model, a user u may choose an option in a discrete set; its utility when choosing option i is vi + κu,i. This
utility is made up of two terms, representing respectively the objective characteristics of option i (vi) and
the unobserved user-specific part (κu,i), which is considered to be a random variable. The probability of a
user choosing option i can be obtained from the distribution of the variables κu,i, and this can be taken as
the fraction of the users that make that choice, as the user population size M gets larger.

Each SP i’s subscriber is charged a flat-rate price pi and receives a service composed from an aggregate
data rate Ri. In this case, the objective part vi is proposed to be [25]

vi = µ log

(
Ri
pi

)
, (7)

for which we can observe what follows:

1. the user’s utility grows with the service data rate;

2. the dependence on Ri is logarithmic, since user experience and satisfaction in resource-based services
follow logarithmic laws [26];

3. a similar reasoning can be applied to 1/pi, which lead us to the proposition that the ratio Ri/pi should
be the relevant magnitude;

4. µ > 0 acts as a sensitivity parameter;

5. the ratio R0/p0 corresponds the “no-provider” option, and its value describes the appeal of such option
to the user.

As regards the unobserved user-specific part of the utility, each κu,i is proposed to be independently and
identically Gumbel-distributed with mean 0 and parameter ν.

Besides, for sufficiently high M , the users can be realistically assumed to be price-takers.
Each user may therefore choose either to subscribe to any of the K providers or give up the service (the

“no-provider” option). For the generic ith SP we can therefore introduce the penetration ratio ρi, i.e. the
ratio of the number mi of users who subscribe to the ith service to the total number of users M . Under the
above assumptions, it can be shown [27] that

ρi =
mi

M
=

(Ri/pi)
α∑K

l=0(Rl/pl)α
, i = 1, . . . ,K, (8)

where α = µ/ν is a parameter that represents the sensitivity of users to the data-rate-to-price ratio. The
higher the value of α the more attractive to users will be those with a high ratio. In the limit, if the
sensitivity was infinite, all users will subscribe to the SP with the highest ratio. Conversely, with a null
sensitivity users will distribute equally among the K SPs plus the “no-provider”.
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2.4. Competition game

In this subsection, the competition between the SPs is described and its modeling as a game is justified.
There is a competition among the SPs to get the data from the DPs. The DPs are considered as price-

takers and are described by the inverse supply function (6). Each SP can instead influence the data price
both directly, through its own choice of Ri, and strategically, through each competitor’s choice Rl, l 6= i.
The interaction between the SPs can be studied as a non-cooperative simultaneous game, where each SP
chooses the data rate Ri to be procured, getting a payoff −a ·Ri, where a is given by (6). We assume that
the data procured from the DPs cannot be reused or shared among the SPs. Then, the aggregate data rate
rT will match the sum of the SPs’ requests, that is, rT =

∑K
j=1Rj , and therefore, this provides the basis

for hereafter specifying a as a function of
∑K
j=1Rj .

Note that the assumption that each unit of data can only be sold once and that the data purchased by
an SP cannot be shared with the other SPs corresponds to a situation in which each unit of data is sold to
an SP, and hence this SP holds the exclusive rights to exploit it. In a sense, this may be regarded as if the
SPs were leasing from the DPs a fraction of the data acquisition capability. This is an appropriate model
where the data supplied by the DPs are considered a raw material that is procured by the SPs, and each SP
purchases a certain amount of that raw material to process it and produce a service with an added value.

The K SPs not only compete for the DPs’ data, but also for the users, whose demand is modeled as
described above. The two competitions are proposed to be executed simultaneously rather than sequentially.
The logic is that the selection of Ri should be seen as an operational expense, and not an investment choice.
As an operational expense, the choices of Ri and of the price take place at the same time scale.

Thus, in the combined game, the players are the k SPs. SP i’s strategy is the pair pi and Ri; and SP i’s
payoff is given by

Πi = piMρi − a
( K∑
j=1

Rj

)
Ri, i = 1, . . . ,K, (9)

where ρi and a(·) are given by (8) and (6), respectively.

2.5. Profits

As stated before, the decisions taken by the DPs to release their data and by the users to subscribe
to the service are respectively driven by their profit and their utility. At the same time the SPs acquire
their resources and price their services so as to maximize their profit. Profits (and utilities) are therefore
essential to define the actual configuration of the market, represented by the actual number of users, DPs,
and SPs that make up the market. In this subsection we compute the aggregated profits of each group of
stakeholders.

We start with the aggregate profit of the DPs, defined as the sum of all (connected) DPs’ profits

ΠDPs = E

 N∑
j=1

Πj

 =

N∑
i=1

E
[
Π|ri ≥

f

a

]
P

(
ri ≥

f

a

)
= roffa

(
1− fm

a

)2

, (10)

where the unit price a is related to the aggregate data rate rT through Equation (6).
As to the users, we can similarly define their surplus as their aggregate utility, i.e., the sum of all

subscribers’ utilities. Following [27], we have

Πusers =

M∑
u=1

E
[
max
i
{vi + κu,i}

]
. (11)

When all SPs provide the same data rate and charge the same price (Ri = R and pi = p for i = 1, 2, . . .K),
which we will refer to as the symmetric case, the user surplus is

Π(s)
users = M log

[(
R0

p0

)α
+K

(
R

p

)α]
, (12)
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and the overall profit of the SPs is

Π
(s)
SPs = K

pM
(
R
p

)α
(
R0

p0

)α
+K

(
R
p

)α − a(KR)R

 . (13)

3. Analysis

In the previous section, a non-cooperative game between the the SPs was defined. Here we analyze the
game using the solution concept of Nash equilibrium.

We establish conditions for existence and uniqueness of equilibria and find the corresponding strategic
profiles. We show that all equilibrium points are symmetric in the sense that all SPs that enter the market
play the same strategy. In particular, it is proven that if the users’ sensitivity is below the unity (α < 1) no
equilibrium exists; and that if it is above the unity (α > 1) and the total number of SPs does not exceed a
given limit (K < ηM ) there is a unique equilibrium.

Next we introduce some additional notation and definitions, and then the analysis is presented through
a number of propositions and corollaries. Besides, auxiliary lemmas that are used in the proofs of the
propositions are included in Appendix B.

3.1. Introductory remarks

From (8) and (9), the profit of SP i can be written as

Πi(pi, Ri;p−i,R−i) = Mpi
(Ri/pi)

α∑K
j=0(Rj/pj)α

− a(

K∑
j=1

Rj)Ri, i = 1, . . . ,K, (14)

where p−i = (p1, . . . , pi−1, pi+1, . . . , pK) and R−i = (R1, . . . , Ri−1, Ri+1, . . . , RK). If it does not lead to
ambiguity, we will also use the simpler notation Πi(pi, Ri) or Πi to refer to Πi(pi, Ri;p−i,R−i).

It can be observed that the profits Πi’s depend on R0/p0, but not on the individual values of p0 and R0.
Hence the number of parameters can be reduced by one by setting R0 = 1. Additionally, we can normalize
by p0 all prices, profits and utilities, which boils down to setting p0 = 1.

We use the strategy (pl, Rl) = (0, 0) to capture the situation where SP l does not enter the market. This
convention requires some technical changes in the definition of Πl (see (14)) to include the cases in which
there are some pl = 0, l = 1, . . . ,K. These changes take into account the following:

• When an SP l does not enter the market its profit is zero, that is Πl(0, 0) = 0, and for the profit of
the rest of SPs it is as if SP l did not exist.

• According to (14), Πl(pl, 0) = 0 for all pl > 0. Moreover, from (8), if Rl = 0 no users will subscribe to
SP l and, hence, the actual price pl is not relevant. Thus, we can take all the strategies of the form
(pl, 0), with pl > 0, out of the domain of Πl(pl, 0) and consider all of them to be represented by the
strategy (0, 0).

• The strategies of the form (0, Rl) with Rl > 0 yield a lower profit that the strategy (0, 0) to SP l.
Therefore, a strategy of that form could not constitute an equilibrium point.

Based on these observations, we propose the following definition and proposition, where the latter pro-
vides necessary conditions for an equilibrium point. The equilibrium concept used in this paper is the
Nash equilibrium, which is a strategy profile where each player has no incentive to deviate from its strategy
provided that the other players use their respective equilibrium strategies.

Let (p−l,R−l) denote a pair of (K − 1)-tuples such that

(pi, Ri) ∈
{

(0,∞)× (0,∞)
}
∪ {(0, 0)}, i = 1, . . . , l − 1, l + 1, . . . ,K, (15)
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and R1+· · ·+Rl−1+Rl+1+· · ·+RK < roff. We define the function for the profit of SP l, Πl(pl, Rl;p−l,R−l),
as follows

Πi(pi, Ri;p−i,R−i) =



0 if pi = 0,

Mpi
(Ri/pi)

α

1+

K∑
j=1
pj 6=0

(Rj/pj)
α

− a(
∑K
j=1Rj)Ri otherwise,

(16)

in the domain

Di(R−i) = {(0, 0)} ∪

(0,∞)× (0, roff −
∑
j 6=i

Rj)

 . (17)

Proposition 1. Let (p∗,R∗) = ((p∗1, . . . , p
∗
K), (R∗1, . . . , R

∗
K)) be a Nash equilibrium. Then, the strategy of

each SP l (with l = 1, . . . ,K) must satisfy one of the following:

1. SP l will not join the market: (p∗l , R
∗
l ) = (0, 0);

2. The profit of SP l has a maximum at (p∗l , R
∗
l ) and, hence,

∂Πl

∂pl
(p∗l , R

∗
l ;p−l,R−l) =

∂Πl

∂Rl
(p∗l , R

∗
l ;p−l,R−l) = 0. (18)

3.2. Nash equilibrium with no SPs entering the market

The next proposition gives necessary and sufficient conditions for (0,0) to be a Nash equilibrium1. The
strategic profile corresponds to the case in which none of the K SPs enter the market.

Proposition 2. 1. When 0 ≤ α < 1, (0,0) cannot be an equilibrium.

2. When α = 1, (0,0) is an equilibrium if and only if fm/M ≥ 1.

3. When α > 1, (0,0) is an equilibrium if and only if fm/M ≥ (α−1)1−1/α

α .

(a) If fm/M < 1/2, (0,0) is not an equilibrium.
(b) If 1/2 ≤ fm/M < 1, (0,0) is an equilibrium if, and only if, α ∈ [α1, α2], where 1 < α1 ≤ 2 ≤ α2.
(c) If fm/M ≥ 1, (0,0) is an equilibrium.

Proof. For (0,0) to be an equilibrium it is required that

Πi(pi, Ri;0,0) = Mpi
(Ri/pi)

α

1 + (Ri/pi)α
− fm

Ri√
1−Ri/roff

≤ Πi(0, 0;0,0) = 0, (19)

for all (pi, Ri) ∈ Di(R−i). A simple algebraic manipulation of (19) leads to the equivalent condition

(Ri/pi)
α−1

1 + (Ri/pi)α
≤ fm/M√

1−Ri/roff

, ∀(pi, Ri) ∈ Di(R−i), (20)

which is equivalent to

sup
Ri/pi>0

(Ri/pi)
α−1

1 + (Ri/pi)α
≤ inf
Ri/roff>0

fm/M√
1−Ri/roff

=
fm
M
, (21)

where the equality follows by application of Lemma 1 in Appendix B.
The proof is now completed by obtaining the value of the supremum on the left hand side of (21). For

this we need to consider the three cases in the statement of the proposition.

10 (respectively, 1) denotes a vector of the appropriate dimension whose entries are all zero (respectively, one).
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Fig. 2: Minimum value of fm/M for which (0,0) is an equilibrium.

1. If 0 ≤ α < 1,

sup
Ri/pi>0

1

(1 + (Ri/pi)α) (Ri/pi)1−α =∞. (22)

2. If α = 1,

sup
Ri/pi>0

1

1 +Ri/pi
= 1. (23)

3. If α > 1, by application of Lemma 2 in Appendix B,

sup
Ri/pi>0

(Ri/pi)
α−1

1 + (Ri/pi)α
=

1

α
(α− 1)1−1/α. (24)

Now the three subcases in case 3 follow as an immediate application of Lemma 3 in Appendix B.

The results of Proposition 2 are illustrated in Fig. 2, the minimum value of fm/M for which (0,0) is an
equilibrium is plotted as a function of α > 1.

For each value of α, if the fee paid by the DPs to the network access provider (normalized by the maximum
information rate rmax and by the market size M) is at least (fm/M)min, there will be an equilibrium in
which no SPs enter the market. Furthermore, it is worth noting that the value of (fm/M)min only depend
on the sensitivity parameter α.

3.3. Nash equilibria where some SPs enter the market

Now, equilibrium points where at least an SP enters the market are considered. To this end, we first
seek strategies (pi, Ri) 6= (0, 0) that satisfy the second condition of Proposition 1.

The derivatives of ρi in (8) are given as

∂ρi
∂pi

= − α
pi
ρi(1− ρi), (25)

∂ρi
∂Ri

=
α

Ri
ρi(1− ρi), (26)

10



and using these we obtain the partial derivatives of Πi

∂Πi

∂pi
= Mρi (1− α(1− ρi)) , (27)

∂Πi

∂Ri
= Mpi

α

Ri
ρi(1− ρi)− a(

K∑
j=1

Rj)− a′(
K∑
j=1

Rj)Ri, (28)

where a(·) is the function defined in (6).
Now we address separately the cases where 0 ≤ α ≤ 1 and α > 1. As it will be seen, the second is more

complex and leads to a richer scenario.

Proposition 3. When 0 ≤ α ≤ 1 the only possible equilibrium is (0,0).

Proof. Let (p∗,R∗) 6= (0,0) be an equilibrium point. Then, there must exist an i = 1, . . . ,K such that
p∗i 6= 0, R∗i 6= 0 and, by Proposition 1, the equality (18) must hold.

Now we examine three different cases according to the value of α, and show that in none of them it is
possible to meet (18).

α = 0:
Clearly

∂Πi

∂pi
=

M

1 +K
> 0. (29)

0 < α < 1:
If ρi > 0

∂Πi

∂pi
= Mρi (1− α(1− ρi)) > Mρi(1− α) > 0. (30)

Therefore, ∂Πi
∂pi

= 0 implies that ρi = 0, and hence R∗i = 0, which contradicts the initial assumption.

α = 1:
In this case

∂Πi

∂pi
= Mρ2

i . (31)

Thus, ∂Πi
∂pi

= 0 again leads to the same contradiction as in the previous case (R∗i = 0).

A summary about the existence and characteristics of equilibria when 0 ≤ α ≤ 1 is provided in the
following corollary, which is an immediate consequence of Proposition 2 and Proposition 3.

Corollary 1. 1. When 0 ≤ α < 1, no equilibrium exists.

2. When α = 1, if fm/M ≥ 1 then (0,0) is the unique equilibrium, and if fm/M < 1 then no equilibrium
exists.

In contrast to the case where α ≤ 1, when α > 1 there can exist equilibrium points different from (0,0).
In Proposition 4 necessary conditions for the existence and some structural properties of such equilibrium
points are provided. Before formulating this proposition, some new definitions and notations need to be
introduced.

Let κ(p,R) denote the number of SPs that enter the market at the point (p,R) 6= (0,0), and let I(p,R)
be the set of their indices, that is,

I(p,R) = { i ∈ {1, . . . ,K} | (pi, Ri) 6= (0, 0) } , (32)

κ(p,R) = |I(p,R)|. (33)

11



Moreover, define A(k) by

A(k) =

(
fm
M

α

α− 1

)−2(
α

α− 1
− k
)2/α

. (34)

Now, when A(k) > 1 we define z0(k) as the solution in (0, 1) of

A(k)(1− x)3 −
(

1− x

β

)2

= 0, (35)

where

β =
k

k − 1/2
> 1. (36)

Lemma 4 in Appendix B shows that (35) has exactly one solution in (0, 1) if A(k) > 1. Therefore, z0(k) is
well defined.

Proposition 4. If (p∗,R∗) is an equilibrium different from (0,0) and α > 1, then

1. κ ≡ κ(p∗,R∗) < ηM , with ηM defined by

ηM ≡
α

α− 1
−
(
fm
M

α

α− 1

)α
<

α

α− 1
. (37)

2. The strategy of all SPs joining the market is the same

(p∗i , R
∗
i ) = (p∗(κ), R∗(κ)) ∀i ∈ I(p∗,R∗),

with

R∗(κ) =
z0(κ)

κ
roff, (38)

p∗(κ) =

(
α

α− 1
− κ
)1/α

R∗(κ), (39)

and attract the same fraction of users

ρi = 1− 1

α
∀i ∈ I(p∗,R∗). (40)

Proof. On account of Proposition 1, for each i = 1, . . . ,K, we have either (p∗i , R
∗
i ) = (0, 0) or

∂Πi

∂pi
(p∗i , R

∗
i ) =

∂Πi

∂Ri
(p∗i , R

∗
i ) = 0.

From these and (27) it follows that if (p∗i , R
∗
i ) 6= (0, 0), then necessarily ρi = 1− 1/α.

We assume, without any loss of generality, that the SPs are numbered in such a way that

ρi = 1− 1

α
, i = 1, 2, . . . , κ (41)

(p∗i , R
∗
i ) = (0, 0), i = κ+ 1, κ+ 2, . . . ,K. (42)

In other words, we are saying that I(p,R) = {1, 2, . . . , κ}, where I(p,R) is as defined in (32). From the
above it easily follows that

R∗i
p∗i

=

(
α

α− 1
− κ
)−1/α

, i = 1, 2, . . . , κ. (43)
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Combining ∂Πi
∂Ri

= 0 with (28) and (41) we obtain1− 1

roff

 κ∑
j=1

R∗j −R∗i /2

2

= A(κ)

1− 1

roff

κ∑
j=1

R∗j

3

, i = 1, 2, . . . , κ, (44)

being A(κ) as defined in (34). We note that the right hand side of the above equality does not depend on i.
Hence ∣∣∣∣∣∣1− 1

roff

 κ∑
j=1

R∗j −R∗i /2

∣∣∣∣∣∣ =

∣∣∣∣∣∣1− 1

roff

 κ∑
j=1

R∗j −R∗l /2

∣∣∣∣∣∣ , i, l = 1, 2, . . . , κ.

From this, since
∑κ
j=1R

∗
j < roff, we can deduce that

p∗i = p∗l i, l = 1, 2, . . . , κ,

and, by recalling (43), that
R∗i = R∗l i, l = 1, 2, . . . , κ.

Therefore, we have shown that all the SPs entering the market play a common strategy

(p∗i , R
∗
i ) = (p∗(κ), R∗(κ)) i = 1, 2, . . . , κ. (45)

Let us define

z(κ) =
R∗(κ)

roff/κ
.

By substituting R∗(κ) = z(κ)roff/κ into (44) we obtain

A(κ)
(
(1− z(κ)

)3 − (1− z(κ)

β

)2

= 0, (46)

where β = κ/(κ− 1/2), as defined in (36).
From the hypothesis of the proposition, a value R∗(κ) such that

∑κ
i=1R

∗
i = κR∗(κ) < roff must exist.

Consequently, we must have that A(κ) > 1 (see Lemma 4), which yields

κ <
α

α− 1
−
(

α

α− 1

fm
M

)α
.

Under this condition there exists a unique solution to (46) in (0, 1), which is denoted as z0(κ). Hence

R∗(κ) =
z0(κ)

κ
roff,

and (39) follows immediately from (43).

Proposition 4 gives necessary conditions for the existence of equilibria where some SPs join the market.
It also characterizes the strategic profiles of such equilibria. However, nothing has been said about sufficient
conditions that will guarantee the existence of this type of equilibria. Similarly, this proposition does not
exclude the possibility that this type of equilibria could coexist with the equilibrium where no SPs join the
market. This possibility is ruled out by the following corollary.

Corollary 2. If (0,0) is an equilibrium then it is the only one.

Proof. When 0 ≤ α ≤ 1 the result is trivial on account of Corollary 1.
We now turn to the case α > 1. Assume that (0,0) is an equilibrium. Then, from Proposition 2 we have

fm
M
≥ α− 1

α

1

(α− 1)1/α
,

which is easily seen to be equivalent to ηM ≤ 1. Therefore, there cannot exist an equilibrium meeting the
conditions of Proposition 4.

13



The following two propositions establish sufficient conditions for the existence of equilibria in which some
SPs enter the market. The first proposition considers the case where all the SPs join the market and the
second one the case some SPs, but not all, join the market.

Proposition 5. Suppose that α > 1. Then, if K < ηM the strategic profile in which all the K SPs play the
strategy

(
p∗(K), R∗(K)

)
given by (39) and (38) is an equilibrium.

Proof. Let Π̂i(p,R) be a function defined in Di(R∗(K) · 1) given as

Π̂i(p,R) = Πi(p,R; p∗(K) · 1, R∗(K) · 1
)
.

We need to prove that

Π̂i(p,R) ≤ Π̂i(p
∗(K), R∗(K)) = Πi(p

∗(K) · 1, R∗(K) · 1
)
, ∀(p,R) ∈ Di(R∗(K) · 1).

The point (p∗(K), R∗(K)) is, by definition, a critical point of Π̂i(p,R). Next, we show that the Hessian of
Π̂i(p,R), at (p∗(K), R∗(K)), is definite negative and, in consequence, (p∗(K), R∗(K)) is a local maximum.
Then, we show that Π̂i(p

∗(K), R∗(K)) > 0 = Π̂i(0, 0). Finally, by studying the value of Π̂i(p,R) as (p,R)
approaches the borders of Di(R∗(K) · 1) we will prove that (p∗(K), R∗(K)) is indeed a global maximum.

From (27) and (28), and by the same procedure used to derive them, we obtain

∂2Π̂

∂p2
i

(p∗(K), R∗(K)) = − (α− 1)2

α

M

p∗(K)

∂2Π̂

∂pi∂Ri
(p∗(K), R∗(K)) =

(α− 1)2

α

M

R∗(K)

∂2Π̂

∂R2
i

(p∗(K), R∗(K)) = − (α− 1)2

α

Mp∗(K)

(R∗(K))
2 − 2a′

(
roffz0(K)

)
−Ria′′

(
roffz0(K)

)
,

where we have used that ρi(p
∗(K), R∗(K)) = 1− 1/α and KR∗(K) = roffz0(K). From the above it follows

immediately that
∂2Π̂

∂p2
i

(p∗(K), R∗(K)) < 0,

and

∂2Π̂

∂p2
i

(p∗(K), R∗(K)) · ∂
2Π̂

∂R2
i

(p∗(K), R∗(K))−

(
∂2Π̂

∂pi∂Ri
(p∗(K), R∗(K))

)2

=

(α− 1)2

α

M

p∗(K)

(
2a′
(
roffz0(K)

)
+Ria

′′(roffz0(K)
))

=

(α− 1)2

α

M

p∗(K)

fm
roff

1(
1− z0(K)

)3/2 (1 +
3

4K

z0(K)

1− z0(K)

)
> 0.

Thus, we have shown that (p∗(K), R∗(K)) is a local maximum. Actually, we have proved more, namely
that it is the only local maximum over the points of Di(R∗(K) ·1) at which the second partial derivatives of
Π̂i(p,R) exist: all but (0, 0), i.e., Di(R∗(K) ·1)r(0, 0) = (0,∞)×(0, R′m), where R′m = roff−(K−1)R∗(K).

We now show that the value of Π̂i at the local maximum, (p∗(K), R∗(K)), is positive and, in particular,
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greater than the value at (0, 0). Indeed,

Π̂i(p
∗(K),R∗(K)) =

M
roff

K
z0(K)

(
α

α− 1
−K

)1/α
1

α
α−1 −K +K

− roff

K
z0(K)a

(
roffz0(K)

)
=

roff

K
fmz0(K)

√
A(K)

1− 1√
A(K)

(
1− z0(K)

)
 =

roff

K
fmz

2
0(K)

√
A(K)

1− 1/β

1− z0(K)/β
> 0 = Π̂i(0, 0),

where the second equality follows from the fact that

A(K)
(
1− z0(K)

)3
=

(
1− z0(K)

β

)2

.

Now, by observing that

lim
p→0

Π̂i(p,R) = −Ra
(
R+ (K − 1)R∗(K)

)
< 0

lim
p→∞

Π̂i(p,R) = −Ra
(
R+ (K − 1)R∗(K)

)
< 0

lim
R→0

Π̂i(p,R) = 0

lim
R→R′m

Π̂i(p,R) = Mp lim
R→R′m

ρi −R′m lim
R→R′m

a(R) ≤Mp−R′m lim
R→R′m

a(R) = −∞,

we conclude that (p∗(K), R∗(K)) is a global maximum in Di(R∗(K) · 1), which completes the proof.

Figures 3 and 4 show a characterization of the symmetrical equilibrium where all SPs (K) join the
market. The existence of this equilibrium is guaranteed, since K < ηM , by Proposition 5, and the values of
prices and data rates in the equilibrium are given in Proposition 4. The results in these figures have been
obtained for M = 1000, fm = 1, and several values of K. Figure 3 shows the aggregate data rate received
by all the providers in the equilibrium as a fraction of the offered rate (KR∗(K)/roff) and Fig. 4 shows the
data-rate-to-price ratio (R∗(K)/p∗(K)) in equilibrium for each provider.

Proposition 6. Under the hypotheses of Proposition 4 and with the necessary conditions derived therein,
with κ(p∗,R∗) < K (i.e., some SPs stay outside the market), the strategic profile (p∗,R∗) is an equilibrium
if, and only if,

α1/α ≥
√
A(κ)

(
1− z0(κ)

)
. (47)

Proof. Let us assume, without any loss of generality, that the SPs are numbered in such a way that

(p∗i , R
∗
i ) = (p∗(κ), R∗(κ)), i = 1, 2, . . . , κ

(p∗i , R
∗
i ) = (0, 0), i = κ+ 1, κ+ 2, . . . ,K.

We need to prove that

Πi(p,R;p∗−i,R
∗
−i) ≤ Πi(p

∗,R∗) ∀(p,R) ∈ Di(R∗−i), i = 1, . . . , κ, κ+ 1, . . . ,K. (48)

When i = 1, . . . , κ the proof of (48) is exactly analogous to that of Proposition 5.
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Fig. 3: Aggregate data rate received by the SPs
(KR∗(K)/roff).
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Fig. 4: Data-rate-to-price ratio (R∗(K)/p∗(K)) for each SP.

Next we give the proof for the case i = κ+ 1, κ+ 2, . . . ,K. In this case (48) can be rewritten as

Πi(p,R;p∗−i,R
∗
−i) = Mp

(R/p)α

1 + (R/p)α + κ(R∗(κ)/p∗(κ))α
− a
(
R+ κR∗(κ)

)
≤ Πi(p

∗,R∗) = 0, ∀(p,R) ∈ Di(R∗−i),

which can be simplified to

(R/p)α−1

(R/p)α + α
α−1

(
α
α−1 − κ

)−1 ≤
fm/M√

1− z0(κ)−R/roff

∀(p,R) ∈ Di(R∗−i).

The above is equivalent to

sup
R/p>0

(R/p)α−1

(R/p)α + α
α−1

(
α
α−1 − κ

)−1 ≤ inf
R>0

fm/M√
1− z0(κ)−R/roff

.

From this, by application of Lemmas 2 and 1, we obtain the following equivalent condition

fm
M

√
A(κ)

α1/α
≤ fm/M√

1− z0(κ)
,

which completes the proof.

Figure 5 illustrates the condition (47) (given in Proposition 6) for M = 1000, fm = 1 and several values of

k. We have plotted the left-hand side of the inequality (α1/α), and the right-hand side (
√
A(k)

(
1− z0(k)

)
)

for k = 4, 5, 6, 7. For a given value of k < K , the equilibrium exists if, and only if, the curve of√
A(k)

(
1− z0(k)

)
is below the curve of α1/α and the condition k < ηM is fulfilled.

Using the definition of z0(k) we can write√
A(k)

(
1− z0(k)

)
=

1− z0(k)/β

1− z0(k)
> 1, (49)
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Fig. 5: Condition for the existence of an equilibrium with k SPs (out of K) entering the market.

the last inequality being a consequence of the fact that z0(k) > 0. Besides, it easy to check that when
α approaches the value at which ηM = k, A(k) approaches 1, z0(k) approaches 0 and, consequently,√
A(k)

(
1− z0(k)

)
approaches 1. Therefore, for each k < K, the equilibrium only exists if value of α is

in the extremely narrow interval in which the curve
√
A(k)

(
1− z0(k)

)
is between α1/α and 1. To further

illustrate this, let αm(k) and αM (k) be, respectively, the lower and upper limits of the interval, that is,√
A(k)

(
1− z0(k)

)
= α1/α, if α = αm(k) (50)

lim
α→αM (k)

√
A(k)

(
1− z0(k)

)
= 1. (51)

Thus, for a given k < K, if α ∈ [αm(k), αM (k)) the two conditions hold and there exist equilibria in which
k out of K SPs join the market.

Figure 6 shows the upper limit of the interval, αM (k), as a function of k for different values of fm/M .
Similarly, the length of the interval, αM (k)− αM (k), is shown in Fig. 7. The results in Fig. 7 confirm that
this type of equilibrium can only exist for a very narrow range of the sensitivity parameter α. As shown in
Fig. 6 the position of the interval is rather insensitive to the value of fm/M and it approaches 1 as k grows.
The observation of both graphs also reveals that, for a given value of fm/M , there is no overlap between the
intervals corresponding to different values of k. This means that in those infrequent cases where the value
of the sensitivity is such that there is an equilibrium with only a part of the SPs joining the market, the
number of SPs that join the market takes a definite and unique value: k = bηM (α)c < ηM (α) ≤ K.

3.4. Summary

If users’ sensitivity to the data-rate-to-price ratio is not above the unity (α ≤ 1) there is no Nash
equilibrium (α < 1) or the only possible equilibrium is one with no practical interest (α = 1), where there
would really not be any business since no SPs participate in the market.

When the users’ sensitivity is above the unity and the number of competing SPs is less that ηM , there
exists a unique Nash equilibrium. In this equilibrium all SPs join the market and utilize the same strategy.
If the number of SPs is not below ηM , there might exist some equilibria where only a subset of k SPs (with
1 ≤ k = bηMc < ηM ≤ K) join the market and utilize the same strategy, but this is only possible for a very
narrow range values of the sensitivity parameter α.
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Fig. 6: Upper limit of the interval of α where equilibria with k < K SPs join the market.
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Fig. 7: Length of the interval of α where equilibria with k < K SPs join the market.
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4. Results and discussion

In this section, we explore the characteristics of the competition game Nash equilibria when the equi-
librium is different from (0,0). First, we analyze the effect of the size of the market, represented by the
number of SPs (or, equivalently, by the indicator of competition level) and the number of users. Next, we
explore the strategic decision taken by SPs, concerning the data rate and the price. Finally, we discuss the
profits of the stakeholders in symmetric equilibrium.

All the results in this section have been obtained considering the following parameter values: fm = 1 cu,
rmax = 1 nbps, R0 = 1 nbps, and p0 = 1 cu.

4.1. Intensity of competition

In order to describe the resulting intensity of competition, we adopt the most widespread indicator: the
Hirschman-Herfindahl Index, or HHI for short (see [28] for its definition and [29] for its sensitivity analysis
that claims its superiority over other indices). The HHI is a numerical index taking values in the interval
(0, 1], with large values corresponding to a low intensity of competition (i.e., close to a monopoly, which is
represented by the value HHI=1), and vice versa. In the special case of symmetry among SPs, the HHI boils
down to the inverse of the number of SPs joining the market (1/κ).

Let us first see what the condition is so that at least one SP joins the market. If we impose the condition
ηM > 1 in the expression of the upper bound on the number of SPs given by (37), we obtain

fm
M

<
(α− 1)

α−1
α

α
. (52)

When α varies in [1,∞) the minimum value of the right hand side of (52) is 0.5 (see Lemma 3). Thus, if
fm/M < 0.5 the condition is satisfied for all values of α ≥ 1.

With regard to the intensity of competition, the maximum number of SPs that join the market in
equilibrium is reached when K = bηMc, in which case κ = K, and

HHI =
1⌊

α
α−1 −

(
α
α−1

fm
M

)α⌋ . (53)

We see that the maximum intensity of competition depends on both α and fm/M , but their importance
is far from being equal. In Fig. 8, we see that the intensity of competition is driven mainly by the users’
sensitivity α, with a very small impact of fm/M . In a large interval (roughly for 1.5 < α < 2), we have a
duopoly (HHI=0.5), while a significant competition arises when α < 1.3. This can be interpreted as follows.
The higher the sensitivity α, the more difficult the competition between the SPs is. As a consequence, for
high values of α, only equilibria with a reduced number of competitors are possible, while for values of α
slightly above 1, the number of SPs that can compete in equilibrium increases.

4.2. Penetration ratios

It may be expected that different intensities of competition among SPs have an impact on the number
of subscribers.

When an SP operates as a monopoly, the penetration ratio, defined as the ratio between the number
of subscribers and the number of users, is generally low, and it approaches zero when α approaches 1 [30].
When there is competition between more than one SP, the total penetration ratio is instead equal to K
times the penetration ratio of any single SP. From (40), and assuming K = bηMc,

ρtot = K

(
1− 1

α

)
=

⌊
α

α− 1
−
(

α

α− 1

fm
M

)α⌋(
1− 1

α

)
. (54)

In Fig. 9, where M = 1000, we show that the limitation on the penetration ratio can be transcended
by allowing competition: the penetration ratio is always higher in competition than in a monopoly, and the
difference increases as α approaches 1.
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Fig. 10: pi in equilibrium as a function of M for different α values

4.3. Data rate and price

Each SP’s strategy consists of a price pi and a data rate Ri. In this section we discuss the results obtained
in the symmetric equilibrium for both values and for the ratio p∗i /R

∗
i , which is the price that each user pays

for each unit of processed data. These values are given by (39), (38) and the inverse of (43). All results
presented in this subsection have been obtained for a number of DPs N = 10.

The three parameters that define the market size are the number M of users, the number N of DPs, and
the number K of SPs, and each one impacts differently on the price.

The impact of the number M of users on the price is negligible as seen in Fig. 10, where K = 9 and
α = 1.1, 1.01, 1.001, and an equilibrium exists for k = K, i.e., it can be checked that for these values of α
and of K an equilibrium for k = K exists. The impact of M on R∗i is also negligible, as seen in Fig. 11,
except for very low values of M . Therefore, the influence of M on (R∗i , p

∗
i ) is negligible as long as M is

above a critical amount. In the case discussed here this critical amount is less than M = 100. Note that
values lower than 100 are unrealistic.

Regarding the influence of the number N of DPs on the price and on the data rate, both values grow
proportionally with N . In fact, from (38) and (5), R∗i is proportional to N because z0(k) does not depend
on N , and from (39), p∗i is proportional to R∗i . As a consequence, p∗i /R

∗
i does not depend on N .

In Figs. 12, 13 and 14, we can see that p∗i , R
∗
i and p∗i /R

∗
i decrease non linearly with the the number K

of SPs. Now, M = 1000 and again it can be checked that an equilibrium for k = K exists for all α and K
plotted in the curves.

As expected, Fig. 12 shows that an increased intensity of competition results in a falling price p∗i . The
effect is similar for the different values of α. Nevertheless, α itself has a strong influence on the price, since,
for a given K, a slight increase of α results in a strong decrease in p∗i .

The data rate also decreases with K (Fig. 13) because the data supplied by the DPs is not reused among
the SPs, but instead it must be split among the K SPs. Note that R∗i is very close to roff/K—for the current
parameters values, roff = 5.

Finally, in Fig. 14, we see that the influence of K on p∗i /R
∗
i becomes sharper as the number of competitors

approaches the maximum allowed by α. When the number of competitors is low, as when α = 1.001 and
α = 1.01, p∗i /R

∗
i decreases almost negligibly—in these cases the maximum value of K is much greater than 9.

When the number of competitors is high, as when α = 1.1, p∗i /R
∗
i drops clearly as the number of competitors

approaches 9—which is the maximum value of K.
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4.4. Profits

Next we examine the surplus of each agent in the equilibrium. All results presented in this subsection
have been obtained for M = 1000 users, N = 10 DPs and K = 9 SPs.

Fig. 15 shows the aggregate profit of all SPs, ΠSPs, given by (13), as a function of K for three values of
α for which an equilibrium for k = K exists. We see that the profit decreases as the number of competitors
K increases. This is because, as explained in the previous section, a more intense competition translates
into lower prices for users, while the total amount of data acquired by the SPs (KR∗i ) remains practically
constant. Again we see that the influence of K on the aggregate profit becomes sharper when α = 1.1, since
here K approaches the maximum number of competitors allowed.

This result can be generalized for any number of DPs N , since from (13), (38), (39), (40) and (6),

ΠSPs =

[
M

(
α

α− 1
− k
)1/α(

1− 1

α

)
− fm√

1− z0(k)

]
rmaxz0(k)

2
N, (55)

so ΠSPs is proportional to N . Therefore the curves of ΠSPs for values of N 6= 10 would have the same
shape as those of Fig. 15, but with a vertical offset.

Fig. 16 shows the aggregate surplus of all users as a function of K for three values of α. We see that
the users’ surplus increases as the number of competitors K increases, bearing in mind that, as discussed
above, p∗i /R

∗
i decreases with competition. The variation is again sharper when K is closer to the maximum

allowed by α (see the curve for α = 1.1). Besides, the influence of α on the price translates into a strong
influence in the users’ surplus, so that more sensitive users will be able to extract more surplus from the
service.

In Fig. 17, the DPs’ surplus ΠDPs, given by (10), is represented as a function of K for the three values
of α. In this case, the effect of competition is not straightforward. The overall effect can be observed in
the shape of the curve for α = 1.1, since for this α value the plot contains all the K values for which
an equilibrium exists (1 ≤ K ≤ 9). We can see that, for a low intensity of competition, the DPs’ surplus
increases with the competition, while for a high intensity, it decreases with K, reaching a maximum at about
half the range of possible K values. In the same way as with the SPs’ surplus, the DPs’ surplus is seriously
affected by the value of the sensitivity α. As α increases, ΠDPs decreases, since a more intense competition
translates into a lower unit price a paid at the DPs’ side. Additionally, ΠDPs increases as N increases,
since the offered rate roff increases and also the total rate requested by the SPs. Like ΠSPs, DPs’ surplus
increases proportionally to N , since, from (6) and (10), the expression of DPs’ surplus can be written as

ΠDPs =
fm√

1− z0(k)

(
1−

√
1− z0(k)

)2 rmax
2

N. (56)

Taking the overall effect of α, we can conclude that a high users’ sensitivity to the data-rate-to-price
ratio causes a surplus shift from both the SPs and DPs to the users.

5. Conclusions

We have applied game theory to analyze the business model of a scenario made up of data providers,
service providers and users. A thorough mathematical analysis of the Nash equilibria is carried out and the
following results have been proved:

• Equilibria can only exist when the users’ sensitivity to the data-rate-to-price ratio is greater than the
unity.

• When equilibria exist, two mutually exclusive equilibrium types are possible: a trivial equilibrium in
which no service provider enters the market, and a symmetric equilibrium in which a number of service
providers enter the market and choose the same strategy (data rate and price).

• The non-trivial symmetric equilibrium type is only possible if the number of users is large enough.
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• In a symmetric equilibrium, the number of active service providers is limited by a value that depends
on the number of users and on the sensitivity. If the number of service providers is not greater than
this bound, the most feasible equilibrium is the one in which all the service providers enter the market.

• Symmetric equilibria where not all the active service providers enter the market may also exist, al-
though this is only possible under very specific conditions that are very unlikely in most real settings.

• The intensity of competition is beneficial for the users and detrimental for the service providers, as
expected. For the data providers, the maximum surplus is obtained at an intermediate intensity of
competition.

• An increase in the users’ sensitivity to the data-rate-to-price ratio causes a shift on the surplus from
both the service providers and data providers to the users.
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Appendix A. Notation

Introduced in

Equation page

DPs
Number of DPs N 3
Number of connected DPs (random variable) N 5
Information data generated by DP j rj 4
Price per unit of data rate charged by DPs a 5
Network access fee payed by each DP to a network access provider f 5
Profit of DP j Πj (1) 5
Expected number of connected DPs n (3) 5
Maximum data rate delivered by a data provider rmax 5
Average aggregate data rate offered by data providers roff 4 5
Expected aggregate data rate provided by all connected DPs rT (4) 5
Inverse supply function a(rT ) (6) 6
DPs surplus ΠDPs (13) 8

Service providers (SPs)
Number of SPs K 3
aggregate data rate that SP i obtains from the DPs Ri 6
Priced charged by SP i to each of its subscribers pi 6
Profit of SP i Πi (9) 7

Aggregate profit of all SPs in the symmetric case Π
(s)
SPs (13) 8

Users
Number of users M 3
Objective part of the utility that a user obtains from SP i vi (7) 6
Sensitivity parameter µ 6
Subjective part of the utility that user u obtains from SP i κu,i 6
Users’ sensitivity parameter α 6

Number of subscribers to the ith service provider mi 6

Penetration ratio of the ith service provider among users ρi (8) 6
Users’ surplus Πusers (11) 7

Users’ surplus in the symmetric case Π
(s)
users (12) 7

Analysis, results and auxiliary notation
Vector of zeros (ones) of the appropriate dimension 0 / (1) 9
CDF of the continuous uniform distribution in [0, 1] Ψ(·) 5
Upper bound of k that appears in certain conditions ηM (37) 12

p−i,R−i 5
Di(R−i) (17) 9

Nash equilibrium point (p∗,R∗) 9
Indices of the SPs entering the market I(p,R) (32) 11
Number of SPs entering the market k ≡ k(p,R) (33) 11

A(k) (34) 12
β (36) 12

Unique solution in (0, 1) to A(k)(1− x)3 −
(

1− x
β

)2

= 0 z0(k) 12

Appendix B. Lemmas

Lemma 1. Let B > 0, then

inf
x>0

1√
B − x

=
1√
B
. (B.1)

Proof. The proof is immediate by noting that f(x) = 1/
√
B − x is increasing in (0,∞).
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Lemma 2. Let α > 1 and B > 0, then

max
x>0

xα−1

xα +B
=

1

α
(α− 1)1−1/αB−1/α. (B.2)

Proof. Let

f(x) =
xα−1

xα +B
, (B.3)

which is continuous and differentiable for x > 0.
Clearly, f(0) = 0, limx→∞ f(x) = 0 and

f ′(x) =
xα−2

(xα +B)2
((α− 1)B − xα) . (B.4)

It is easily seen that f ′(x) > 0 if x < x0 = ((α− 1)B)
1/α

and f ′(x) < 0 if x > x0.
Therefore,

max
x>0

f(x) = f(x0) =
1

α
(α− 1)1−1/αB−1/α. (B.5)

Lemma 3. Let f : (1,∞)→ R+ be the function defined by

f(x) =
(x− 1)1− 1

x

x
, (B.6)

then

lim
x→1+

f(x) = lim
x→∞

f(x) = 1 (B.7)

f ′(x) =
f(x)

x2
log(x− 1) (B.8)

f(x) is decreasing in (1, 2) and increasing in (2,∞)

Im f = [
1

2
, 1).

Proof. The proof (B.7) and (B.8) is straightforward, and the rest follows immediately from these two.

Lemma 4. Let A > 0, β > 1 and

P (x) = A(1− x)3 −
(

1− x

β

)2

. (B.9)

Then,

• if A ≤ 1, P (x) has no zeros in (0, 1),

• if A > 1, P (x) has exactly one zero in (0, 1).

Proof. If 0 < A ≤ 1 and x ∈ (0, 1), then 0 < 1− x < 1− x/β < 1, and from this

(1− x)2 <

(
1− x

β

)2

. (B.10)

Also,
0 < A(1− x) < 1. (B.11)
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Multiplying (B.10) and (B.11) we obtain

A(1− x)3 <

(
1− x

β

)2

, (B.12)

and from this we have P (x) < 0.
We now turn to the case A > 1.
Since P (0) = A − 1 > 0 and P (1) = −(1 − 1/β)2 < 0 we conclude that P (x) has at least one zero in

(0, 1).
Let z′1, z

′
2 (z′1 < z′2) denote the two zeros of

P ′(x) =
2

β

(
1− x

β

)
− 3A(1− x)2. (B.13)

We observe that

P ′(0) =
2

β
− 3A < 2− 3 < 0,

P ′(1) =
2

β

(
1− 1

β

)
> 0,

P ′(β) = −3A(1− β)2 < 0.

Consequently,
0 < z′1 < 1 < z′2 < β. (B.14)

Summarizing, we have

• P (0) > 0.

• P ′(x) ≤ 0, if x ∈ [0, z′1].

• P ′(x) ≥ 0 if x ∈ [z′1, 1].

• P (1) < 0.

Combining the inequalities above we deduce that P (x) has a unique zero in (0, z′1), and that P (x) < 0 if
x ∈ [z′1, 1).

Note that this result is slightly stronger than the second statement of the lemma, since we have proved
that the unique zero in (0, 1) is actually in (0, z′1) ⊂ (0, 1).
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