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Abstract—The emergence and rapid development of the 
Internet of Medical Things (IoMT), an application of the 
Internet of Things into the medical and healthcare systems, 
have brought many changes and challenges to modern medical 
and healthcare systems. Particularly, machine learning 
technology can be used to process the data involved in IoMT for 
medical analysis and disease diagnosis. However, in this process, 
the disclosure of personal privacy information must receive 
considerable attentions especially for sensitive medical data. 
Cluster analysis is an important technique for medical analysis 
and disease diagnosis. To enable privacy-preserving cluster 
analysis in IoMT, this paper proposed an Efficient Differentially 
Private Data Clustering scheme (EDPDCS) based on 
MapReduce framework. In EDPDCS, we optimize the 
allocation of privacy budgets and the selection of initial 
centroids to improve the accuracy of differentially private K-
means clustering algorithm. Specifically, the number of 
iterations of the K-means algorithm is set to a fixed value 
according to the total privacy budget and the minimal privacy 
budget of each iteration. In addition, an improved initial 
centroids selection method is proposed to increase the accuracy 
and efficiency of the clustering algorithm. Finally, we prove that 
the proposed EDPDCS can improve the accuracy of the 
differentially private k-means algorithm by comparing the 
Normalized Intra-Cluster Variance (NICV) produced by our 
algorithm on two datasets with two other algorithms. 

Keywords—Differential privacy, K-Means clustering, Internet 
of Medical Things, Machine learning, MapReduce. 

I. INTRODUCTION  

In the past few years, the emergence of the Internet of 
Medical Things (IoMT) has attracted researchers from both 
the IT industry and the healthcare field [1]. There have been 
many IoMT-based platforms, applications, and services for 
remote health monitoring, fitness programs, chronic diseases, 
and elderly care [2] [3]. IoMT also provides alternative 
solutions to the problems faced by traditional medical systems, 
such as the lack of doctors, healthcare resources and research 
data. 

Specifically, the rapid development of IoMT has improved 
the traditional medical systems in various aspects, such as 
disease diagnosis and analysis [4] [5]. The health data 
collected in IoMT can be used by researchers to diagnose and 
predict diseases. With the popularity of IoMT system as well 
as its terminal devices, the volume of data collected is also 

vastly growing. Therefore, the big data technologies have 
been applied to IoMT to process and analyze the health data, 
so that medical researchers can better conduct disease risk 
assessment and prediction [6] [7]. Cluster analysis is a typical 
unsupervised learning data mining method, which can be 
applied in disease diagnosis [8]. The main idea is to divide the 
data into several clusters so that the distances among data 
items of the same cluster are as small as possible while the 
distances among data items of different clusters are as large as 
possible. Medical researchers can obtain general distribution 
and clinical phenotypes of a disease by performing cluster 
analysis of medical big data [9][10]. Doctors or medical 
researchers can not only better diagnose diseases and treat 
patients through information obtained from clustering results, 
but also better study the causes of diseases and thus promote 
the development of medical services. 

However, the health data is very sensitive when linked 
with individual users. If not properly handled, the collection 
and analysis of the health data may leak users’ privacy 
information. Therefore, it is critical to achieve privacy-
preserving data analysis in IoMT. Existing privacy-preserving 
methods on data analysis include k-anonymity [11], l-
diversity [12], differential privacy [13], and so on. Cluster 
analysis also faces same challenge. Although the clustering 
results of health data can provide valuable information, it may 
also leak private information regarding a single record in the 
dataset, posing a threat to personal privacy. Moreover, privacy 
preserving cluster algorithms usually face the challenge to 
achieve the tradeoff between privacy and accuracy. 

In addition, in this Big Data era, the size of the dataset is 
getting larger and larger. As a consequence, the computing 
capability of a single computer is difficult to meet the needs. 
Therefore, developing privacy-preserving cluster analysis 
techniques and increasing the computational speed of cluster 
analysis are the two important and urgent tasks in IoMT [14]. 

In order to address the privacy preservation as well as the 
decreasing accuracy caused by privacy preserving techniques 
and the computational efficiency issues of cluster analysis in 
IoMT, we proposed an Efficient and Differentially Private 
Data Clustering scheme (EDPDCS) with high accuracy and 
efficiency while preserving privacy of data contributors. The 
main contributions of our paper are as follows: 



1. We proposed an efficient privacy-preserving data 
clustering algorithm EDPDCS over the MapReduce 
framework for IoMT. The number of iterations of 
the K-means algorithm is set to a fixed value 
according to the total privacy budget and the 
minimal privacy budget allocated to each iteration 
calculated by analyzing the mean squared error 
(MSE) between noisy centroids and true centroids in 
one iteration. 

2. We deployed an improved initial centroids selection 
algorithm in the MapReduce framework by selecting 
a small portion of the dataset and performing rough 
clustering in advance to select the initial centroids to 
improve the accuracy of differentially private K-
means algorithm. And we developed a method for 
selecting the initial centroid for a specified number 
of clusters k to solve the problem that the number of 
points outputs by the canopy algorithm is uncertain.  

3. By experimenting with two datasets containing 
personal information in the medical and health filed, 
we verified that our proposed algorithm EDPDCS 
can reduce the Normalized Intra-Cluster Variance 
(NICV) and improve the accuracy of the clustering 
results while preserving personal privacy. 

The rest of our paper is arranged in the following order. In 
section 2, we discuss the related work. Our model and design 
goals are introduced in section 3. In section 4, we introduce 
the differential privacy and two major algorithms, including 
the K-means algorithm and canopy algorithm. Our proposed 
efficient and differentially private K-means algorithm based 
on MapReduce is described in section 5. Section 6 presents 
the privacy analysis of our proposed algorithm. In section 7, 
we evaluate the accuracy and efficiency of the proposed 
algorithm. In section 8, we conclude the paper. 

II. RELATED WORK 

The emergence and rapid development of IoMT has 
brought many changes to the medical and health field. It has 
attracted the attention of many researchers. 

There have been many research work on IoMT-based 
platforms, applications, and services, such as remote health 
monitoring, fitness programs, chronic diseases, and elderly 
care [15] [16] [17] [18] [19]. In [15], a novel joint IoMT and 
Product Lifecycle Management (PLM) based framework is 
proposed for medical healthcare applications to regulate the 
information transfer from one entity to another and between 
devices in an efficient and accurate way, while managing the 
battery lifecycle and energy of the resource-constrained tiny 
wearable devices. 

The health data of users involved in IoMT also has great 
research value. Big data technologies can be used to analyze 
health data to assist medical personnel in disease diagnosis 
and analysis. There have been many studies in this area [7] [9] 
[20] [21]. Reference [7] studied the analysis and management 
issue of the large-scale data in the health field, the main 
purpose of their proposal is to first collect the medical (e-

health) big data in real time, then process and analyze the data 
in the cloud. Among big data technologies, cluster analysis 
can be used to analyze not only the general distribution of a 
disease in case of some factors, such as gender and age, but 
also the clinical phenotypes. Reference [9] studied clinical 
phenotypes of Nasal Polyps and Comorbid Asthma based on 
cluster analysis of disease history. 

However, sensitive health data relevant to users’ privacy 
information may be involved when applying big data 
technologies to analyze the collected users’ health data. There 
are some existing solutions to the security and privacy issues 
in IoMT [22] [23] [24] [25] [26]. Reference [26] introduced	
a	 clustering-based K-anonymity method as the building 
block of privacy preserving for data collected by medical 
wearable devices.  

In the research on data privacy preservation, traditional 
methods, like k-anonymity [11] and l-diversity [12], can only 
deal with attacks under specific background knowledge while 
practical attacks can be mounted against all these techniques 
[27] [28]. The differential privacy technique proposed in [10] 
can preserve privacy for all individual contributors in a 
dataset. Differential privacy is a privacy protection method in 
which random noise following a specific distribution is added 
to distort the data [29]. It has been increasingly adopted in 
data analysis to preserve individual privacy [30] [31].  

Various privacy-preserving K-means clustering methods 
have been proposed [32] [33]. The clustering under 
differential privacy has also been studied. Two important 
issues of differentially private K-means are the allocation of 
privacy budget and the initial centroids selection. There are 
generally two different methods for the allocation of privacy 
budgets in each iteration of the clustering algorithm, which 
correspond to two ways to determine the number of iterations 
including fixed iterations and unfixed iterations. [34] 
proposed an improved K-means clustering algorithm which 
satisfies differential privacy. The authors developed 
techniques to analyze MSE between the noisy centroids and 
the true centroids in one iteration and used this technique to 
determine the number of iterations and the budget allocation. 
As for the initial centroid selection, there are some methods 
including random selection, dividing dataset into subsets of 
equal size and finding the center points. [35] proposed a 
DPLK-means algorithm based on differential privacy, which 
improved the selection of the initial center points through 
performing the differential privacy K-means algorithm to each 
subset divided by the original dataset. 

To increase the computational speed of cluster analysis, 
many studies have proposed to conduct cluster analysis on 
distributed computing platforms. Reference [36] developed a 
parallel K-means clustering algorithm based on MapReduce, 
which is a simple yet powerful parallel programming 
technique. In [36], Map function is used to perform the 
procedure of assigning each sample to the closest centroid 
while reduce function is used to update the new centroids. 
Several papers (e.g., [37-42]) have studied related issues. 



III. PRELIMINARIES 

In this section, the differential privacy and two main 
algorithms are introduced which are used for differentially 
private K-means algorithm in MapReduce framework. 

A. Differential Privacy 

Differential privacy protects individual privacy by adding 
noise to the query results, while maintaining the statistical 
characteristics and accuracy of the query results in an 
acceptable range. 

Definition 1  -differential privacy： 
 A randomized mechanism M satisfies  -differential 

privacy if for any pair of neighboring datasets ,D D  
differing in at most one data record and for any set of 
possible output ( )S Range M , 

Pr( ( ) ) Pr( ( ) ).M D S e M D S      

The privacy budget   represents the level of privacy 
guarantee - a lower privacy budget provides a stronger 
privacy guarantee. 

B. K-means Clustering Algorithm 

Cluster analysis is a very important topic in data analysis. 
The purpose of clustering is to classify the data into different 
classes. The k-means clustering algorithm is the simplest and 
most commonly used clustering algorithm. The fundamental 
principle is to divide the data into k clusters on the basis of 
minimizing the error function, with distance as the rating 
index of similarity. That is, the shorter the distance is 
between two objects, the greater of similarity they have. 
Given a d-dimensional dataset 1 2{ , , , }ND x x x  (N is the 

total number of data points), the k-means algorithm divides 
the data points in D into k sets 1 2{ , , , }kO O O    so that 

MSE within the cluster is minimized: 
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C. Canopy Clustering Algorithm 

Canopy [43] is a fast, simple, but less accurate clustering 
algorithm. Canopy algorithm classifies a bunch of data into n 
data piles under certain rules, using two artificially 
determined thresholds 1t  and 2t . Unlike traditional clustering 

algorithms, such as K-means, the biggest feature of the 
Canopy algorithm is that it does not need to specify the 
number of clusters k in advance. Although it has lower 
precision, Canopy algorithm can speed up the clustering 
calculation. Therefore, it is usually used to perform a "rough" 
clustering of dataset to obtain k and the set of centroids. 

IV. MODEL ANG DESIGN GOALS 

A. An Overview 

IoMT is composed of a collection of terminal devices 
connected to the Internet, to provide medical and healthcare 
services. The analysis of health data for disease diagnosis and 
prediction is an important application in IoMT. As shown in 
Fig.1, four major entities are involved in Internet of Medical 
Things: Data Owner (DO), Cloud Service Provider (CSP), 
Data Processing Center (DPC) and Data User (DU). 

1) DO: DO wears terminal devices equipped with 
health sensors, which will transport their health data 
to the cloud service provider. DO are assumed to be 
honest in the system. 

2) CSP: The cloud stores all data uploaded by DO. 
CSP is assumed to be honest. 

3) DPC: The data processing center processes the data 
and sends the results to the data users. DPC is 
assumed to be honest in the system. 

4) DU: The data user receives the data processing 
results from the data processing center and performs 
tasks like disease diagnosis and prediction based on 
the results. DU is assumed untrusted. 

However, the analysis process and the release of the 
analysis results may lead to the leakage of users’ privacy 
information. In order to preserve privacy in the k-means 
clustering algorithm, we design a clustering algorithm 
satisfying the differential privacy. For computational 
efficiency, we deploy our algorithm in a distributed 
environment – MapReduce framework. And it is feasible to 
deploy a clustering algorithm that satisfies the differential 
privacy in the distributed environment. The differential 
privacy can be satisfied by adding Laplace noise to the 
centroid in Reduce task when calculating new centroids. 
Taking all these into considerations, we proposed an efficient 
differentially private data clustering scheme on the 
MapReduce framework to implement privacy-preserving 

 

Fig. 1 Overview of data collection, transmission and processing



cluster analysis in IoMT. We use MSE to determine the 
number of iterations. Additionally, we use an improved 
initial centroids selection algorithm based on canopy 
algorithm to initialize the centroids for K-means algorithm. 

B. Design Goals 

In order to solve the above issues, the design goal of our 
algorithm can be roughly divided into two aspects: 

1) Privacy preservation: the change of cluster result in 
the centroids and the number of points in the clusters 
caused by the modification of the dataset will not 
reveal personal sensitive information. In other words, 
a malicious analyst cannot obtain any private 
information of a single record by mining a similar 
dataset, compared with original dataset. 

2) Accuracy: achieve a tradeoff between accuracy of 
cluster results and privacy preservation. 

3) Effectiveness: We conduct cluster analysis on a 
distributed computing platform-MapReduce 
framework to improve the computational speed for 
large-scale data.  

C. Security Model 

In this subsection, we introduce the security model of our 
system. We assume that DO, CSP and DPC are trusted, and 
that DU is untrusted. In particular, DU may be a malicious 
analyst who try to explore sensitive information of DO by 
analyzing results from DPC. Differential privacy guarantees 
a strong privacy that deleting or adding a particular record in 
a dataset will not significantly change the output of any 
function on a dataset. Therefore, a malicious analyst or an 
adversary will just obtain approximate information about any 
individual record rather than specific information. 

V. DESCRIPTION OF OUR SCHEME 

The EDPDCS proposed in this paper is designed to 
ensure that the change of the centroid and the number of 
records of each cluster does not reveal private information 
when data is changed in the MapReduce distributed 
environment. A malicious analyst cannot obtain any private 
information of a single record by mining the data set. 

The basic idea of the algorithm is to use the Mapper task 
on the distributed computing node to determine the cluster to 
which each record belongs. The Reducer task is employed to 
calculate the sum of the number of records in the cluster and 
the corresponding attributes. Then, Laplace noise is added to 
ensure that the results of the cluster analysis satisfy ε-
differential privacy. Fig. 2 shows the whole idea of our 
proposed algorithm. Before performing the clustering 
algorithm, we calculate the minimum privacy budget that 
makes the algorithm satisfies differential privacy and achieve 
maximal accuracy of cluster result in case of total privacy 
budget and accuracy requirement, and then determine the 
number of iterations according to the minimum privacy 
budget. We developed an improved initial centroids selection 
algorithm derived from canopy algorithm to increase the 
accuracy of clustering results and developed a method for 
selecting the initial centroid for a specified number of 
clusters k to solve the problem that the number of points 
outputs by the canopy algorithm is uncertain. 

The proposed differentially private K-means algorithm 
mainly consists of three core parts. The first part is to deploy 
the K-means algorithm into the MapReduce framework. The 
second part is to add noise to the distributed k-means 
algorithm to satisfy the differential privacy and determine the 
condition of the algorithm iterations. Finally, the selection of 
the initial centroids will affect the results of the algorithm. 

 

Fig. 2 Differentially Private K-means Algorithm in MapReduce Framework 



Therefore, how to select the initial centroids is also a part of 
the algorithm’s considerations. 

Let the total number of points in the data set be N, the 
number of iterations is T and each point is recorded as ix (1 
≤ i ≤ N), the dimension of each point is d, the centroids are 
recorded as jo (1 ≤j≤k) . Each dimension of a point in D is 

normalized to  0,1
d

. 

A. K-means Algorithm in MapReduce 

MapReduce is a parallel programming framework for 
large-scale data sets that abstracts parallel computing 
processes into two functions: Map and Reduce. Both the Map 
function and the Reduce function take a <key, value> pair as 
input, and after processing, convert it to another batch of 
<key, value> as output. In the MapReduce Framework, the 
data set is split into many small data blocks which are first 
passed to the Map function for processing, then its result is 
used as the input of the Reduce function. 

The core of the K-means clustering algorithm is to 
determine the cluster to which a data point belongs, by 
calculating the distance between that point and the centroids. 
In MapReduce, firstly use the Map function to calculate the 
distance between each point and the centroids, and select the 
centroid with the smallest distance as its cluster. Each point 
is represented in the format of <key, value> as <the cluster 
center identifier to which the point belongs, and the attribute 
vector of the point>. The Reduce function will receive points 
with the same key value, namely points belonging to the 
same cluster, and calculate new centroids based on these 
points. The specific calculation process of the K-means 
algorithm in the MapReduce framework is shown in 
Algorithm 1. 

Algorithm 1: PK-Means Clustering 

Input: dataset D, number of clusters k and iteration stop 
condition 

Output: k clusters 

(1) Randomly select k points in the dataset D as the initial 
centroid; 

(2) Divide the dataset D into n disjoint subsets 

1 2, , , nD D D   in n Map tasks; 

(3) In each Map task iMap , calculate the distance between 

each point in iD and the centroids, then select the 
centroid with the smallest distance as its cluster; 

(4) Each Map task iMap  produces a list of <key, value> 

pairs from iD  which is sent to the Reduce function. 

(5) Each Reduce task accepts <key, value> pairs with the 
same key value and calculates a new centroid io . 

(6) Determine whether the iteration continues by testing the 
stop condition. If continue, repeat steps (3)(4)(5); 
otherwise, go to (7); 

(7) Stop the clustering process and output the clustering 
result. 

B. Adding Noise 

In order to achieve the differential privacy, so that the 
points in the data set change without revealing the 
information of a single point, we use Laplace mechanism to 
add noises in the process of calculating the centroid. The 
Laplace mechanism compute a noisy result of function f  on 

the dataset D by adding to ( )f D  a random noise, as shown 

in the following equation: 

( ) ( ) ( ),


  f
f

GS
A D f D Lap (2) 

Where 

1
Pr[ ( ) ]

2

x

Lap x e 



   . 

And fGS  is the global sensitivity of function  f , given as 

the following equation: 

max ( ) ( )fGS f D f D  ， 

where D and D´differ in at most one data record.  

The Reduce task first calculates the number of points 
included in task C and the sum of the coordinates of the data 
points in the i’th dimension iS . The noise is added to C 

and iS  respectively, and get the obfuscated C and iS  . Then, 

a new centroid is obtained by /j
io S C  . 

Another important issue is the allocation of privacy 
budgets. The choice of the number of iterations directly 
affects the allocation of the privacy budget. There are 
generally two ways to determine the number of iterations, 
which correspond to two different methods for the allocation 
of privacy budgets in each iteration of the clustering 
algorithm. One way is to fix the number of iterations. In 
some literature such as [44], the number of iterations is 
artificially determined with equal privacy budget allocation 
for each round. Another way is proposed in [45], in which 
the number of iterations is uncertain, each iteration consumes 
half of the remaining privacy budget. Considering that as the 
iterations proceed, the harm to the accuracy of results will 
increase with the privacy budget decreasing, we adopt the 
former method in which the number of iterations is fixed and 
the privacy budget to each iteration is equally allocated to 
improve the accuracy of the clustering results. 

Based on the two ways of determining the number of 
iterations as described above, there are two main methods for 
the allocation of privacy budget. One is that the number of 
iterations is uncertain and the privacy budget for iteration t 
is 12t  ; the other method is first to determine the number of 

iterations T, then the privacy budget for each iteration is 
T .The first method can greatly reduce the accuracy of the 

result as the round number increases and the privacy budget 
decreases. Therefore, in terms of budget allocation, we 
choose the second method. The number of iterations is 
determined by the method introduced in [34], which 
considers MSE between the noisy centroids and the true 



centroids in one iteration. The MSE of a noisy centroid ô  is 
calculated as: 
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Where C is the number of data points in the cluster, iS  is the 
sum of the coordinates of data points in the i’th dimension, 

C is the noise added to C and iS is the noise added to iS . 
On the i-th dimension, 
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In this paper, we set the range of each dimension to be 
[0,1]. We suppose that on average iS C   and /C N K . 

Hence, ( )iMSE o


can be approximated as follows: 

 
2

2
2

( ) ( ) ( ) .i i

k
MSE o Var S Var C

N
   

(3) 

As the Laplace noise added to each dimension is 
independent, from Equation 3 we know  
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Where i  is the privacy budget allocated to the i-th 

dimension, 0  is the privacy budget allocated to C and 

01

d

i ti
  


  . The global sensitivity of iS  and C are both 

1. Therefore, ( )iVar S is 22 i  and ( C)Var  is 2
02  . 

Because the range of each dimension is [0,1], we can get 
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Then we can obtain the MSE of all the centroids  
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Let the sum of MSE of all the centroids be no more than 
0.01, we can get the minimal privacy budget m  allocated to 

one iteration. It follows the Equation 4 that  
3 2

2
2 2

(1 )
2(1 ) 0.01.

t

k d d

N





  (4) 

We can find that  
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Then we can determine the number of iterations based on 

m . We use the method proposed in [34]. For 2 m  ,we set 

the number of iterations T to be 2, and the privacy budget 
allocated to each iteration is 2 . For 2 m  , T is 

determined by the following equation: 

min 7, .
m

T



 
  

 
(4) 

The privacy budget allocated to each iteration is / T . 

C. Selecting the Initial Centroids 

An important issue in the k-means clustering algorithm is 
the choice of the initial centroids. The clustering results will 
fluctuate with the initial centroids. In the traditional k-means 
algorithm, the initial centroids are randomly selected in the 
data set. Starting with different initial cluster centers will 
result in different clustering results, and it is easy to fall into 
the local optimal solution. Selecting a suitable set of initial 
centroids can be very helpful in improving the accuracy and 
stability of the results. 

In this paper, we use an improved canopy algorithm, 
Algorithm 2, to select the initial centroids for K-means 
algorithm and implement it in the MapReduce framework. 
We set two thresholds 1t  (the loose distance) and 2t  (the 

tight distance) for the canopy algorithm. Considering that the 
calculation time of the canopy algorithm is too long when the 
volume of the data is large, we first randomly select a subset 

CD  of the dataset D as the input of the canopy algorithm. We 

set 20cD k . Then, in the MapReduce, we use n Map tasks 

to decide the canopy to which each data point in CD  belongs 

and use a Reduce task to compute the final canopies. In this 
way, we obtain the canopies and the data point set in each 
canopy. Since the number of canopies may be more than the 
number of clusters in the k-means algorithm, we select the 
first k canopies  1 2, , , kC C C with the largest number of 

data points to calculate k initial centroids and add noise to the 
centroids using the following equation: 
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Where 1, 2, , 1, 2, , ,i d j k  ， 2t
jC  stands for a set of 

points in the j-th canopy that the distance from the center of 
j-th canopy is less than 2t . And j

io


 is the i-th dimension of 
the j-th centroid. 

We take the selection of initial centroids as the first 
iteration. So, in this process, the total privacy budget equals 
to T , which is the same as the other iterations in K-means 

process. Additionally, considering that this process does not 
involve the same points since we use 2t

jC  to calculate the 

centroids, the noise added in equation 4 is the same as the 
noise added in K-means iterations. 

Algorithm 2: Selecting Initial Centroids 

Input: dataset D, the number of centroids k, two thresholds 

1t  (the loose distance) and 2t  (the tight distance) where 

1 2t t   

Output: k centroids 

1.Begin with the dataset D to be clustered.  

2.Randomly select a subset CD  of D as the input. 

3.Remove a point from CD and begin a new ‘canopy’.  

4.For each point left in CD , assign it to the new canopy if 

the distance is less than 1t .  

5.If the distance of the point is also less than the tight 
distance 2t , remove it from the original set CD .  

6.Repeat step 2-5 until there are no more data points in the 
set CD .  

7.Select the first k canopies  1 2, , , kC C C with the largest 

number of points. 

8.Calculate the centroids and add noise. 

9.Output the k centroids. 

VI. PRIVACY ANALYSIS 

Differential privacy has two characteristics: sequence 
combination and parallel combination, both play an 
important role in the allocation of privacy budget. If there are 
m random algorithms 1 2, , , mA A A , and iA (1 ≤ i ≤ m) 

satisfies i -differential privacy, then for the same data set D, 

the sequence combination algorithm 1 2{ , , , }mA A A  also 

satisfies  -differential privacy, in which 
1

 


 m

ii
. If 

there is a random algorithm M and a dataset D, in which D is 
divided into disjoint subsets 1 2, , , nD D D . If algorithm M 

satisfies ε-differential privacy, then the algorithm composed 
of the combination operation of M on  1 2, , , nD D D  also 

satisfies  -differential privacy. 

As described in section III, the privacy of the k-means 
algorithm that satisfies differential privacy in the MapReduce 
framework is achieved by adding Laplace noise to the results 
of count and sum operations in each Reduce task. Since the 

process of selecting initial centroids and each iteration of k-
means algorithm are equivalent to the sequence combination 
of the random algorithm, the privacy budget of the entire 
algorithm is 

1

.
T

t
t

 



 

Where T is the total number of iterations and t is the privacy 
budget for the t-th iteration. The privacy budget for each 
iteration is T . In each iteration of K-means algorithm, 
since Reduce tasks are performed independently, the results 
of each iteration are equivalent to the parallel combination of 
the Reduce tasks. Therefore, in order to satisfy the t -
differential privacy in the t-th iteration, it is necessary to 
make each Reduce task in the distributed environment satisfy 

t -differential privacy. That is to say, in one iteration, the 
privacy budget of each Reduce task is the same. 

In the Reduce task of one iteration, d+1 noise will be 
added, including C and iS  of d dimensions. Since one point 

is added or deleted to the data set, the maximum change of C 
is 1, the global sensitivity of count query is 1CGS  . If 

dataset D is normalized to [0, 1], when adding or deleting a 
point from the dataset, the maximum change of each attribute 

iS  is 1. The global sensitivity of iS  is 
iSGS . According to 

equation 2, in each iteration, adding noise 0(1 )Lap  to C and 

adding noise i(1 )Lap   to iS  can make the algorithm satisfy 

differential privacy, where 01

d

i ti
  


  . Considering 

that when the range of each dimension is [0,1], the privacy 
budget allocated to iS  and C satisfy 0: 1:1i   . So  

0 1
t

i d


  


， 

and the noise added to C and iS  is 1
( )

( 1)t

Lap
d 

. 

VII. PERFORMANCE EVALUATION 

The main function of the scheme proposed in this paper is 
to use Laplace mechanism and an improved initial point 
selecting method to preserve data privacy and increase the 
accuracy of the algorithm. The MapReduce distributed 
computing framework is used to improve the efficiency of K-
means clustering algorithm. The privacy of the algorithm has 
been demonstrated in section 6. In this section, we conduct 
experiments to measure NICV and the efficiency of the 
algorithm for performance evaluation. 

TABLE I.  Description of Dataset 
Dataset tuples dimension clusters 

Blood 748 4 2 

Adult 48842 6 5 

We experimented with two datasets Blood and Adult 
from the UCI Knowledge Discovery Archive database. The 
dataset Blood contains individual information of blood 



donation and the dataset Adult contains the identity of the 
individuals and other general information. Table 1 
summarizes the two datasets. For the dataset Blood, the 
number of records is 748, the dimension of records is 4 and 
the number of clusters is 2. We set k=2 for this dataset. And 
we create a new attribute representing the classification result 
to evaluate the accuracy of our algorithm. For the dataset 
Adult, the number of records is 48842. We choose 6 
continuous variables as the attributes in records. We set k=5 
for this dataset according to variable “race” in the original 
dataset. And we set =0.225 [34]. 

In the experiment, the cloud computing platform consists 
of a computer as the master node and two other computers as 
the worker nodes. The Hadoop is deployed into our cloud 
computing platform. The experimental environment with one 
master node and two node nodes is set up as follows. CPU: 
Intel Core i7-6700 3.40GHz; RAM: 8GB; System: Linux. 
The clustering algorithm is developed in Java. 

 
Fig. 3. NICV of our proposed EDPDCS, RFDPKM and RUDPKM on dataset 

Blood with different privacy budget 

 
Fig. 4. NICV of our proposed EDPDCS, RFDPKM and RUDPKM on dataset 

Adult with different privacy budget 

A. Accuracy 

In this subsection, we compare the NICV of three 
clustering algorithms through experimental testing. The 
research direction of improving the accuracy of clustering 
algorithms satisfying differential privacy mainly focuses on 

two aspects. The first is to improve the selection method of 
the initial centroids. The other is to optimize the allocation of 
privacy budgets in the iterative process of the algorithm. We 
compare our proposed algorithms in these two aspects with 
other two algorithms. The first algorithm is called RU DP K-
means, in which the initial point is selected randomly, and 
the number of iterations is uncertain. The second algorithm is 
called RF DP K-means, in which the initial point is selected 
randomly, and the number of iterations is fixed. 

TABLE II.  The Number of Iterations 
 ε=0.5 ε=1 ε=1.5 ε=2 ε=3

Blood 2 2 2 3 4 

Adult 7 7 7 7 7 

According to the algorithm proposed above, we can 
calculate the minimal privacy budget allocated for each 
iteration. For the dataset Blood, =0.65508m . And for the 

dataset Adult, =0.06799m . In order to observe the impact of 

privacy budget on the availability of clustering result, we test 
with several different total privacy budget 0.5, 1, 1.5, 2, 3. 
The number of iterations determined by equation 4 for 
datasets Blood and Adult are shown in Table II. And results 
are shown in Fig.3 and Fig.4. It can be seen from the 
experimental results that the NICV values of our algorithm 
are smaller than the other two algorithms, proving that our 
algorithm outperforms the other two clustering algorithms. In 
addition, when the privacy budget is small, that is, the degree 
of privacy preservation is strong, the accuracy of the 
clustering results of our scheme is significantly higher than 
the other two algorithms. 

B. Efficiency 

In this subsection, we compare the efficiency of the 
algorithms implemented in MapReduce. In order to evaluate 
the impact of the number of distributed computing nodes to 
the efficiency of the algorithm, we conduct experiments with 
1 and 3 nodes respectively, and measure the running time of 
our proposed algorithm under different size of data points. 

Fig.5. Comparison of running time with different number of nodes and 
different size of data volume 



This can also evaluate the influence of the data volume on 
the efficiency. Additionally, we conduct another set of 
experiments to compare the running time of our proposed 
algorithm with RFDPKM, with 1 up to 3 nodes. The 
experimental results are shown in Fig.3 and Fig.4 The 
running time of our algorithm decreases when more nodes 
are used. That is to say, the MapReduce framework has 
improved the efficiency of our algorithm. Besides, from the 
second set of experiments, we demonstrate that our proposed 
algorithm is as efficient as RFDPKM. 

VIII. CONCLUSION 

In this paper, we propose an efficient differentially 
private data clustering scheme for IoMT. In the proposed 
scheme, we optimize the allocation of privacy budgets and 
the selection of initial centroids to improve the accuracy of 
differentially private K-means clustering algorithm. 
Specifically, the number of iterations of the K-means 
algorithm is set to a fixed value determined by the total 
privacy budget and the minimal privacy budget allocated to 
each iteration calculated by analyzing the mean squared error 
(MSE) between noisy centroids and true centroids in one 
iteration. In addition, an improved initial centroids selection 
method, selecting a small portion of the dataset and 
performing rough clustering in advance to select the initial 
centroids, is proposed to increase the accuracy and efficiency 
of the clustering algorithm. We deploy this algorithm in the 
MapReduce framework. Experiments are conducted to 
compare the NICV in the clustering results of our method 
with another two methods. The evaluation results show that 
our proposed algorithm can improve the accuracy of the 
differentially private k-means algorithm while preserving 
privacy for data contributors in IoMT. 
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