
BIGSEA: A Big Data analytics platform for public transportation

information

Andy S Alic1, Jussara Almeida1, Giovanni Aloisio1, Nazareno Andrade1, Nuno Antunes1, Danilo
Ardagna1, Rosa M. Badia1,1, Tania Basso1, Ignacio Blanquer1,, Tarciso Braz1, Andrey Brito1,
Donatello Elia1, Sandro Fiore1, Dorgival Guedes1, Marco Lattuada1, Daniele Lezzi1, Matheus

Maciel1, Wagner Meira Jr.1, Demetrio Mestre1, Regina Moraes1, Fabio Morais1, Carlos Eduardo
Pires1, Nadia Puchalski Kozievitch1, Walter dos Santos1, Paulo Silva1, Marco Vieira1

aInstitute of Instrumentation for Molecular Imaging (I3M), Universitat Politècnica de València - CSIC
bUniversidade Federal de Minas Gerais (UFMG), Brazil

cFondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy
dUniversidade Federal de Campina Grande (UFCG), Brazil

eCISUC, Department of Informatics Engineering, University of Coimbra, Portugal
fPolitecnico di Milano, Milan, Italy

gBarcelona Supercomputing Center (BSC)
hUniversity of Campinas (UNICAMP), Brazil

iUniversidade Tecnológica Federal do Paraná (UTFPR), Brazil
jArti�cial Intelligence Research Institute - Spanish National Research Council (IIIA-CSIC)

Abstract

Data analysis of public transportation data in large cities is a challenging problem. Managing
data ingestion, data storage, data quality enhancement, modelling and analysis requires intensive
computing and a non-trivial amount of resources. In EUBra-BIGSEA (Europe-Brazil Collaboration
of Big Data Scienti�c Research Through Cloud-Centric Applications), we address such problems
in a comprehensive and integrated way. EUBra-BIGSEA provides a platform for building up
data analytic work�ows on top of elastic cloud services without requiring skills related to either
programming or cloud services. The approach combines cloud orchestration, Quality of Service
and automatic parallelisation on a platform that includes a toolbox for implementing privacy
guarantees and data quality enhancement as well as advanced services for sentiment analysis, tra�c
jam estimation and trip recommendation based on estimated crowdedness. All developments are
available under Open Source licenses (http://github.org/eubr-bigsea, https://hub.docker.
com/u/eubrabigsea/).

1. Introduction

Public transportation in large cities is a major source of high-valuable data to understand and
improve the citizens' lifestyle and to dynamically react to unplanned events. Multiple heteroge-
neous datasources are available, and di�erent data analytics tools do exist. However, processing
such data requires downloading the data, installing processing tools, managing the resources and
developing processing software.

EUBra-BIGSEA1 (Europe - Brazil Collaboration of Big Data Scienti�c Research Through
Cloud-Centric Applications) is a collaboration aimed at developing convenient data analytic ser-
vices based on the cloud mainly tailored for public transportation data, able to process data under
several restrictions, such as Quality of Service constraints and Privacy-awareness, by means of
convenient and auto-parallelisable programming models. EUBra-BIGSEA has developed and im-
plemented a software architecture that addresses a major number of software requirements for
three main use cases on Public transportation data analysis.

∗Corresponding author with email: iblanque@dsic.upv.es
1EUBra-BIGSEA is a project funded by the European Commission under the Cooperation Programme, Horizon

2020 grant agreement No 690116. Este projeto é resultante da 3a Chamada Coordenada BR-UE em Tecnologias da
Informação e Comunicação (TIC), anunciada pelo Ministério de Ciência, Tecnologia e Inovação (MCTI)

Preprint submitted to Elsevier February 27, 2019

© 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

http://github.org/eubr-bigsea
https://hub.docker.com/u/eubrabigsea/
https://hub.docker.com/u/eubrabigsea/
iblanque@dsic.upv.es

1.1. Requirements

Three main global use cases have been identi�ed in public transportation data management.
These three use cases refer to main issues: 1) Data Acquisition - ingesting heterogeneous and
medium-quality time-varying data; 2) Creation and execution of Descriptive models - models that
derive additional information and knowledge from raw data; and 3) Creation and execution of
Predictive Models - to anticipate future events on a variety and diversity of scenarios.

Each use case imposes a set of requirements:

• Data Acquisition:

� Integration of GIS, public transportation and meteorological/climate data sources, sup-
porting CSV, XLS, JSON, Shape�le and NetCDF at least.

� Integrating and dealing with Metadata from those sources.

� Data quality improvement by cross correlation.

� Supporting di�erent Access Control level for the data and Metadata.

• Descriptive Models. A fundamental abstraction of the descriptive models are trajectories,
that is, the path traversed by each end user while using public transportation:

� Developing models to extract and characterize trajectories from vehicle movement data.
Trajectories comprise not only dynamic spatial data, but also the other types of data
that enrich the trajectory information.

� Determining correlations and cluster trajectories to improve quality by integrating mul-
tiple sources.

� De�ning areas of interest to limit the processing data.

• Predictive Models, involving the whole life-cycle and focusing on trip analysis and trip selec-
tion.

� Training, validating and building Predictive Models based on geographic (static and
dynamic), social, and meteorological data.

� Recomputing Predictive Models periodically and with a predictable performance.

� Project Predictive Models as a service.

� Specifying data sources and regions of interest for any of the above-mentioned opera-
tions.

One of the goals of EUBra-BIGSEA is to provide a simple interface through which data scientists
can describe their processing tasks. This is achieved through the integration of a visual data �ow
tool with the programming models and the underlying architecture. Many data mining tools
support the creation of data �ows visually by using building blocks on Graphical User Interface
(e.g., RapidMiner [?], Orange [?] and KNIME [?]). Most of these platforms do not include
distributed execution features. Others, such as Microsoft Azure Machine Learning (ML) Studio [?
] and ClowdFlows [?] allow tasks to be executed in distributed fashion, but do not include
functionalities to exploit parallelism, manage a coherent authentication and authorization model
or provide data privacy annotation and enhancement tools. Moreover, they are bound to speci�c
cloud deployments and providers.

1.2. Platform architecture

According to the requirement enactment and the analysis of the state of the art, EUBra-
BIGSEA has proposed an infrastructure (see Figure ??) that addresses the following needs:

• E�cient and convenient development of data analytic applications addressing di�erent access
levels (application building based on graphical interfaces, use of general purpose programming
languages, use of data-analytic speci�c APIs and use of data-analytic speci�c languages such
as Spark).

2

Figure 1: EUBra-BIGSEA software architecture.

• Application characterization and performance prediction under di�erent scenarios (larger or
smaller number of resources) in parallel data analytic applications. This is achieved by means
of a log analyzer, a performance prediction service and an optimizer module, which learns,
projects and backsolves the problem of �nding the resource requirements for reaching a given
deadline.

• Horizontal and vertical elasticity at the level of the cloud resources that run the data analytic
applications by means of a �ne-grain monitoring, which triggers the deployment, power-on,
contextualization of computing resources and the dynamic allocation of resources to the jobs
executed.

• Being able to characterize sensitive data thanks to policies at the level of �elds in a dataset,
by means of a framework that annotates parts of the dataset and implements privacy en-
hancement policies.

Each component is described in the following sections.

2. Programming Models

The programming abstraction layer o�ers developers the functionalities needed to satisfy the
requirements for the implementation of the applications scenarios on top of the Big Data layer of
the BISGEA platform. In the next sections, we focus on the description of the components that
enable the development of modules and libraries (building blocks) which abstract the data layer
intricacies to the applications. EUBra-BIGSEA provides two programming models by means of
two frameworks (COMPSs and Apache Spark) that provide the developers with complementary
functionalities. The implementation can be done from scratch by adopting the most appropriate
model, or through the Lemonade (Live Exploration and Mining Of Non-trivial Amount of Data
from Everywhere) platform, by composing existing building blocks to generate the code.

2.1. Lemonade

Visual work�ows tools provide a higher level of abstraction than general-purpose programming
languages,even those speci�cally created for data processing, such as the �R� language. Currently,
the increased capacity and reduced price of existing processing infrastructures, as well as the avail-
ability of large amounts of data, has democratized the development of new applications, previously
restricted to very large companies and organizations. However, to fully exploit such opportunity,
a team should deal with di�erent expertise, such as business domain, programming skills and in-
frastructure maintenance. Sometimes, researchers just want to test a hypothesis about the data.
If they require a complex learning process to use a speci�c technical solution, this will not be used.

3

Lemonade is a visual platform for distributed computing, aimed at enabling the implementation,
experimentation, testing and deployment of data processing and machine learning applications. It
provides high-level abstractions, called operations, for developers to build processing work�ows
using a graphical web interface. Lemonade uses high-performance and scalable technologies for
discovering inherent concurrency (such as COMPSs for automatic parallelisation of work�ows and
Ophidia, providing parallel data analytic functions) to enhance Spark code. Lemonade can process
very large amounts of data, hiding all back-end complexity to the users and allowing them to focus
mainly on the construction of the solution.

The Lemonade architecture is composed of seven components, built as micro-services, which
handle tasks including the user interface, the data management, the security, and the execution of
processing jobs. Data sources meta-data (location, permissions, formats) are stored in Limonero,
while meta-data of the available processing operations are kept in Tahiti. Operations are the small-
est processing units and include Extract, Transform and Load (ETL) operations, data mining and
machine learning algorithms, input/output, and visualization abstractions. The information stored
in Tahiti includes con�guration parameters for the algorithms, privacy and security constraints,
visualization and QoS requirements. New operations can be easily created by adding the appropri-
ate meta-data to Tahiti. The users web interface is managed by Citron, where �ows can be built,
instantiated and inspected. The actual execution of �ows is controlled by Juicer, which generates
COMPSs [?] or Spark code for the operations selected by the user and instantiates it in the cloud
execution environment observing the user con�guration parameters. The communication between
Citron and Juicer is controlled by Stand, which ensures their independence and facilitates the use
of di�erent programming frameworks. The visualization of results through di�erent metaphors is
provided by Caipirinha. Finally, all the security, privacy and access control solutions developed in
EUBra-BIGSEA are the responsibility of Thorn. The interaction of the components is illustrated
in Figure ??.

juicer

Figure 2: Communication between Lemonade components.

During operation, Citron determines the available operations, their parameters and the already
created �ows by accessing Tahiti (1). It also accesses Stand to deliver the description of the �ows to
be executed, and to receive feedback information about their execution (2). Stand, in turn, feeds
the �ow descriptions to Juicer, which is responsible for generating the actual COMPSs/Spark
code that will be executed and starting it by means of the available cloud services (3), as well as
returning the execution information that will be displayed by Stand (2). Juicer uses information
from Limonero to locate and access the available data sources, as well as to register new data
sets that are created as a result of a �ow execution (4). Limonero also interacts with Caipirinha
to enable data visualization (5) and back with Citron to make the new data sets available to the
user. Visualizations can also be requested by the user directly from Citron (7). Finally, Thorn
encapsulates all security control, regulating user access, providing API security keys, etc (8).

2.2. COMPSs

COMPSs [?][?] is a framework composed of a programming model and a runtime system,
which aims to ease the development and deployment of distributed applications and web services.
The core of the framework is its programming model, which allows the programmer to write
applications in a sequential way and execute them on top of heterogeneous infrastructures by
exploiting the inherent parallelism of the applications. The COMPSs programming model is task-
based, allowing the programmer to select the methods of the sequential application to be executed
remotely. This selection is done by means of an annotated interface where all the methods to be
considered as tasks are de�ned with annotations describing their data accesses and constraints on
the execution of resources. At execution time this information is used by the runtime system to
build a dependency graph and orchestrate the tasks on the available resources, which can be nodes
in a cluster, cloud or containers in a Mesos cluster.

4

One important feature of the COMPSs runtime is the ability to elastically adapt the amount of
resources to the current workload. When the number of tasks is higher than the available cores, the
runtime turns to the cloud looking for a provider which o�ers the type of resources that better meet
the requirements of the application and are most cost-e�ective. Similarly, when the runtime detects
an excess of resources for the actual workload, it will power o� unused instances in a cost-e�cient
way. Such decisions are based on the information about the type of resources, that contains the
details of the software images and instance templates available for every cloud provider. In the
EUBra-BIGSEA project, this elasticity has been extended to support Mesos clusters. As depicted
in Figure ??, the implementation includes a scheduler for the COMPSs Runtime that receives the
o�ers from the Mesos master and an Executor that runs on the slave nodes to execute the COMPSs
tasks. Both components are executed in Docker containers and automatically deployed by Mesos.
The black lines in the �gure represent the communication amongst COMPSs and the Mesos Master
to receive the updates on the o�ers, and also among the Mesos Master and the slaves to deploy
the containers. Once the resources are o�ered to COMPSs, the runtime deploys its workers and
establishes a direct connection (blue arrows) to send the tasks.

Figure 3: Integration of COMPSs in the EUBra-BIGSEA Platform

The deployment of COMPSs in EUBra-BIGSEA is complemented by the PMES service, which is
a tool that eases the management of COMPSs applications. PMES is a service that takes care of the
deployment, con�guration and execution of COMPSs applications on distributed infrastructures.
PMES has also been extended with a Mesos connector and acts as bridge between COMPSs and the
rest of the QoS platform. To this aim, a set of speci�c methods has been added to the PMES REST
interface to monitor the execution of the applications in Mesos. In the �gure, the interactions of
PMES with COMPSs and Mesos are depicted as black and blue lines, respectively; the interactions
of PMES and COMPSs with the QoS services are depicted as dotted lines. When the monitoring
system detects a need for additional resources in Mesos, it adds new nodes that are eventually
o�ered to COMPSs, leaving to runtime the decision to pro�t from this change depending on the
parallelism and the actual number of tasks (horizontal elasticity). On the other hand, vertical
elasticity is completely transparent to the COMPSs execution because a change in the size (be it
speed or capacity) of the virtual resource does not a�ect the scheduling policies but improves the
performance of the execution of the single task on a given node.

2.3. Ophidia

Ophidia [?][?][?] is one of the main Big Data technologies involved in the EUBra-BIGSEA
project to address the issues related to the data processing applications (e.g. descriptive models
for routes from the raw data of public transportation) built on top of the project platform. It
represents a framework that provides a complete environment for the execution of scienti�c data-
intensive analysis, exploiting parallel computing techniques, data distribution methods, jointly with
a native in-memory engine to perform parallel I/O operations. Ophidia provides an array-based
storage model designed to handle multi-dimensional scienti�c datasets, implementing the data cube
abstraction typical of On-Line Analytical Processing (OLAP) systems. From an architectural point
of view, an Ophidia instance consists of the following components:

• some client modules, like the CLI Ophidia Terminal and PyOphidia, the Ophidia Python
bindings [?];

5

• the Ophidia Server, a front-end server to submit the execution of analytics tasks or work�ows.
It also manages jobs scheduling and monitoring, as well as user authentication and autho-
rization, integrating several AuthN/AuthZ methods as the one developed in the project, the
token-based AAA as a Service (AAAaaS);

• the Analytics framework, providing a wide set of parallel MPI-based operators (both for data
and metadata) executed over the computational resources (i.e., multiple compute nodes);

• a set of I/O servers performing operations over the data partitioned on the storage layer.

More details regarding the overall architecture and the single components are provided in [?
]. In the context of the EUBra-BIGSEA project, an Ophidia cluster is composed of: (i) a single
server node dedicated to the front-end and (ii) multiple I/O & compute nodes used to host both
the framework and the I/O servers (the so called super-node con�guration). The storage resources
are shared among the various I/O nodes. This deployment schema is shown in Figure ?? and
guarantees a good balance between the scalability of the cluster and deployment simplicity.

Figure 4: Ophidia deployment schema

In the context of the project, Ophidia is mainly used to extract statistical aggregate informa-
tion for public transportation data and to provide a Dashboard for a better planning (the City
Administration Dashboard). Moreover, it has been strongly integrated with the other services and
technologies provided by the EUBra-BIGSEA platform to tackle data processing in QoS-based
scenarios on cloud IaaS infrastructure, as well as security and data privacy. Additionally, Ophidia
has been integrated with the COMPSs programming framework into Python-based applications
through the combination of PyOphidia and PyCOMPSs (COMPSs Python bindings) modules.
This integration allows exploiting the features provided by Ophidia and COMPSs for concurrent
data processing, o�ering, at the same time, an increased programmability to the end-users.

To address QoS-based scenarios, the framework has been extended from several points of views,
i.e. to support the elastic deployment of the cluster, monitor the job and instance status, ease the
scaling of the resources through a better decoupling of the I/O from the storage layer and provide
a more balanced scheduling of the jobs at the level of the resource manager. Additionally, Ophidia
has been integrated into the cloud services provided by the project to fully support QoS guarantees.
To this end, an Ansible role has been developed [?] to automate the dynamic deployment of an
Ophidia cluster. Such role is managed by the EC3 and the IM (see section ??). The initial
deployment of the cluster starts from a request issued to the pro-active policies services (i.e., the
broker API), while the optimization service provides the initial con�guration size.

6

3. Security and Privacy Model

Static and dynamic data analytics require complex infrastructures, which are always a challenge
in terms of security. The type of applications to be supported in this work is also a challenge in
itself, as they deal with large amounts of heterogeneous and complex data produced very quickly by
a high number of diverse sources. Traditional treatment of data, from security to transformation,
may be ine�cient and inadequate. Thus, the system requires e�cient mechanisms to ensure privacy
and security, in a scalable fashion.

It is well known that the security concerns of a large and complex system should not be
addressed individually or in an ad-hoc manner, as this may result in insu�cient solutions.

The de�ned solution is based on three key pillars: (1) An Authentication, Authorization and
Accounting (AAA) solution, �exible enough to provide functionalities both at the infrastructure
management level and to serve the end users of hosted applications; 2) a security assessment of key
infrastructure components, leading to the development of solutions for the uncovered issues, and
the characterization of the trustworthiness of the system; and (3) two distinct privacy control

barriers, which are responsible for protecting the anonymity of both the raw data to be used and
the data resulting from the predictive and descriptive models built.

The trustworthiness characterization supports security measurement and includes the as-
sessment and improvement of infrastructure components [?], the benchmarking and improvement
of intrusion detection systems, and the proposal of metrics to characterize the trustworthiness of
the system. The techniques of �eld measurement, robustness and security testing, vulnerability and
attack injection were applied in the assessment of the components of the architecture shown in
Figure ??, that are most exposed to attacks and faults, namely: COMPSs, OpenStack, Docker,
virtualization layer, Intrusion Detection Systems (IDSs), and NoSQL databases.

The results showed that COMPSs mostly provides a robust interface, except for very rare
situations; OpenStack has most of its concerns related to insider threats. Docker is still prone
to issues of privilege escalation and bypass, while the virtualization layer is mature and secure
nowadays, but some problems still arise when users have complete control over one machine. The
analysis of IDSs showed the continuous need for evaluation, comparison and improvement of the
adopted solutions. Most of the experiments NoSQL databases revealed integrity issues in the
data. These results supported the identi�cation of better con�gurations in terms of security, the
potential mitigation of some of the identi�ed vulnerabilities, and the estimation of the level of
trustworthiness of the assessed components. The key risks behind the observed weaknesses have
been identi�ed, and the respective mitigation strategies have been de�ned and put in place. The
obtained information also allows the adjustment of the quality of protection established from the
provider point of view, thus obtaining a realistic measure of what level of security can be promised.
The evaluation of the �nal solution showed an estimation of a high level of trustworthiness.

The techniques developed towards achieving the goals of AAA and privacy resulted in two
speci�c tools, which have been named AAA-as-a-Service (presented in Section ??) and Privacy-
as-a-Service (presented in Section ??) respectively.

3.1. Authentication, Authorization and Accounting as a Service (AAAaaS)

AAAaaS (Authentication, Authorization and Accounting as a Service) provides the general
functionalities of traditional AAA and Identity and Access Management (IAM) services. Addi-
tionally, it is possible to include interfacing with external identity providers. The software is
deployable and manageable according to three fundamental cloud principles: scalability, elasticity
and resilience.

The solution is based on a RESTful service developed in Python and uses MongoDB database
because it is open source, document oriented and provides fast performance. It does not use schema
and therefore it provides more �exibility than relational databases. CloudFlare SSL (CFSSL)

is the tool selected to generate and manage the certi�cates that can be used for communication
between the RESTful service and the database. This way, all internal communication is encrypted.

Through the Application Programming Interface (API) or the web pages (for authentication)
the solution provides the following functionalities:

• Authentication � sign in, token veri�cation, read user information, sign up, sign out, up-
date user information, delete user account, change password, reset password, resend account
con�rmation email.

7

• Authorization � create rules, update rule, show rule, delete rule, use resource.

• Accounting and other features � traditional accounting (i.e. read accounting of a user) and
also other available actions such as creating email associations, reading email associations,
deleting email associations.

Figure ?? presents an overview of the de�ned AAA architecture. It has been designed in such a
way that is suitable to be maintained or further developed (due to its Open Source characteristics)
in a DevOps fashion if necessary. This web application handles all the HTTP(S) requests made to
the service. Every request is then validated using secure methodologies. For instance, passwords
are encrypted with SALT functions. Passwords must ful�ll three out of four conditions (e.g.
minimum length, letters, numbers, capital), they cannot be the same as the user name, as well as
other criteria. As mentioned before, the validation process which queries the database can also
be secured with SSL certi�cates. The service is based on tokens, which are randomly issued at
each sign-in session and have an expiry date that can be up to seven days (when the "stay signed
in" option is checked). After the expiry date, tokens are no longer valid. Thus, a new sign in is
required.

Figure 5: AAAaaS Architecture Overview

As we can observe, the front-end layer is based on an Nginx web server, acting as a reverse proxy
redirecting all communications to the web application. With Nginx, we introduce an additional
layer to the service, that provides load balancing and resilience capabilities. It is possible to load
SSL certi�cates to ensure secure communications with all clients through HTTPS. By providing
the location of the web application instances, the requests can be redirected according to the
introduced settings (e.g. instance weights, least-connected or other settings).

EUBra-BIGSEA provides all services as containerized solutions. In the case of the AAA, this
implies the three main components: web server, web application container and database containers.
The architecture of our service (Figure ??) represents the interaction between the containers in the
Cloud. The Front-End block includes a Docker container with Nginx acting as a reverse proxy and
redirecting all the tra�c to the web application container Back-End. In turn, the web application
container queries the database container represented by Data Storage. The use of containers allows
several instances of our components (e.g. web application) to provide a scalable solution. Also,
the possibility to perform health checks internally (through Nginx) or externally (e.g. Marathon)
allows us to provide a resilient solution capable of monitoring the components.

AAAaaS also provides the iAA (infrastructure Authentication and Authorization). iAA deals
with the authentication and authorization of infrastructure accesses instead of applications, services
or end-users. It also provides a graphical user interface, as well as a RESTful API. The iAA
module provides an end-point so Mesos agents or frameworks can authenticate themselves and gain
clearance to access certain resources. The module is working as a middleware between Mesos agents
or frameworks and the Mesos Master. It can be easily adapted to support di�erent frameworks

8

executed from the Command Line Interface (CLI) and it allows changes (e.g. updates) to be made
to the Mesos system without having a disruptive e�ect on the iAA process.

The iAA control is carried out in accordance with the authorization mechanisms (i.e. credentials
and Access Control Lists (ACLs)) available on the Mesos Master. In order to achieve this scenario,
a mapping between the credentials created by the user and a set of credentials previously loaded
on the Mesos Master is provided. This means that each registered user is assigned a pair of Mesos
credentials (principal and secret in the Mesos terminology). This action is completely transparent
to the user.

3.2. Privacy as a Service (PRIVAaaS)

Privacy management is a key issue when dealing with citizens' data. Privacy preservation
and knowledge extraction is typically a trade-o�, so it is important to understand the risk of
privacy leakage when processing data. In this context, PRIVAaaS (PRIVAcy as a Service) [?]
is a software toolkit that allows controlling and reducing data leakage in the context of Big Data
processing and, consequently, protecting sensitive information that is processed by data analytics
algorithms. PRIVAaaS is based on anonymization policies, i.e. it performs data anonymization
by enforcing the rules speci�ed in the prede�ned policies. This allows improving, throughout
the anonymization process, the privacy laws compliance as well as the compliance of the privacy
requirements provided by the data source owners.

PRIVAaaS provides multiple anonymization phases and its integration in big data analytics
platforms allows performing data anonymization at the several stages of data processing, properly
targeting data privacy regulations and policies during the whole data life-cycle and smoothing
the trade-o� between data privacy and data utility. Figure ?? shows the PRIVAaaS general
architecture.

Data Analytics & Mining

Anonymization Operation

Anonymization 2
Output
Data

Anonymization 3
Re-identification risk

Anonymization models

Conjunction
(∧)

Disjunction
(V)

Anonymization 1

Anonymization Operation

Data
visualizatio

n

Anonymization
Policies

Raw
Data

Figure 6: PRIVAaaS general architecture

In Figure ??, anonymization policies surround what type of data �elds must be anonymized and
how. These policies may be based on privacy principles and laws (e.g., General Data Protection
Regulation - GDPR), as well as speci�cations by data source owners.

Anonymization 1 is the phase where raw data is anonymized. Before anonymization, a
conjunction of the anonymization policies is determined. The conjunction consists in verifying
the set of policies �eld by �eld and sorting out those requiring anonymization. Then, an AND
operation is applied to group similar �elds that require anonymisation as a whole. This operation
is applied only if all the �elds require anonymization. This conjunctive process results in the less
restrictive anonymization, maximizing the data utility in this phase.

Anonymization 2 is the phase where anonymization is applied during the data analytics and
mining processes on intermediate results. Before anonymization, a disjunction of the policies is
performed. The disjunction also consists in verifying the set of policies �eld by �eld, sorting out
those requiring anonymization. However, at this time an OR operation is performed, which implies
that all the �elds must be anonymized according to the policies even if a single policy has done
this con�guration. This disjunction process results in most restrictive anonymization, guaranteeing
that the protection established by the policies is accomplished in this phase. Data re-identi�cation
is the practice of matching anonymized data with publicly available information, or auxiliary data,
in order to discover the person the data belongs to. Even when data is anonymized, some privacy
attacks (e.g., background knowledge attack) can lead to data re-identi�cation.

9

In the Anonymization 3 phase, the �nal output data produced by the data analytics is
evaluated regarding the re-identi�cation risk and, if necessary, its anonymity level is increased
in order to reduce this risk. This is done through the application of anonymization models (k-
anonymity, l-diversity, etc.) before data is available for visualization.

PRIVAaaS provides a library and a REST service to perform data anonymization. When
implemented as a service, it may be adapted to di�erent platforms with less e�ort, addressing
interoperability issues, and it may take advantage of the EUBra-BIGSEA infrastructure to scale.

In the case of Anonymization 1 and Anonymization 2, the two phases are similar from an
implementation standpoint, so the same tool is used in both cases. The library/service receives
two �les as input: the data set to be anonymized and the anonymization policy (which can be the
result of conjunction or disjunction process, for each respective phase). The policy must specify the
�elds to be anonymized and the anonymization technique that must be applied to each �eld. Then
the library/service applies the anonymization techniques according to the policy and provides, as
output, the �le with the anonymized data set. The techniques that have been implemented in
PRIVAaaS are generalization (attributes are replaced by some more generic ones, that are faithful
to the original); suppression (attributes are completely removed to form the anonymized dataset);
encryption (cryptographic schemes are applied to replace attributes with encrypted data) and
perturbation/masking (attributes are replaced by dummy data).

The Anonymization 3 phase implementation also receives, as input, a data set to be anonymized
(resulting from data mining and analytics, which would be released from the platform) and the
anonymization policy. In this case, the policy must also de�ne a re-identi�cation risk threshold.
The re-identi�cation risk means the highest risk (in percentage) that a record can present among
all records in the data set; in this work, it is calculated based on ARX tool functionalities [?].
So, the threshold will be used to decide whether the re-identi�cation risk of the input data is
acceptable or not.

After receiving the inputs, the re-identi�cation risk of the data set is calculated. Then, a
veri�cation is performed: if this risk is higher than the threshold established in the policy, the
value of k, from k-anonymity algorithm [?], initially set as k = 2, is increased and k-anonymity is
applied with this new value of k. This is performed successively, until the re-identi�cation risk is
equal to or lower than the threshold (the higher the k, the lower the risk). When the threshold is
reached, the data is made available for visualization outside the platform.

4. Cloud services

4.1. Elasticity

The EUBra-BIGSEA architecture implies a large set of components that interact together in
a distributed infrastructure. For the convenience of the deployment, it has been automated using
Ansible[?] recipes as Ansible roles and using the Infrastructure Manager[?] to interact with
the cloud IaaS. The Infrastructure Manager is a TOSCA[?]-compliant platform-agnostic cloud
orchestrator. By means of the Elastic Compute Clusters in the Cloud (EC3) tool [?], a complete
cluster can be set up with minimal intervention. The client and the recipes are available as a
Docker image 2 and in a GitHub 3 repository.

The EUBra-BIGSEA platform provides o�-the-shelf automatic horizontal elasticity based on
Cluster Energy Savings (CLUES) [?]. CLUES powers on and o� resources as requested by an agent
that polls the resource manager queues (Mesos4 in the case of EUBra-BIGSEA). This elasticity is
combined with the vertical elasticity provided by an actuator at the level of the hypervisor and a
similar actuator at the level of the Marathon and Chronos frameworks [?]. In these cases, a �ne-
grain monitoring evaluates the progress of the application (which can be automatically obtained
from Spark runtime) and changes the allocation of resources at the level of the CPU CAP or the
framework request, speeding-up or down the jobs to optimize resources and �t the deadline.

4.2. Performance Prediction and Optimization Services

The Performance Prediction Service (PPS) is a key component in the EUBra-BIGSEA archi-
tecture both for planning and managing purposes. Indeed, the PPS is used by the optimization

2Docker Hub reference
3github repo of ec3client
4http://mesos.apache.org

10

http://mesos.apache.org

service to identify the minimum number of nodes or cores to run an application within a speci�ed
deadline and it is also triggered by the proactive policies module to estimate the residual execution
time of running jobs. This way, proactive policies can drive the automatic system recon�guration
to meet the applications dynamic needs, avoiding Service Level Agreement (SLA) violations.

The PPS goal is to e�ciently estimate the average execution time of a target application (im-
plemented on COMPSs, Spark, Tez or MapReduce), given the available resources. Given a target
application, speci�ed by a directed acyclic graph representing the individual tasks and their paral-
lelism and dependencies, the purpose is to predict how long it will take for the application to run
(on average) on a given resource deployment (described in terms of numbers of cores or nodes for
instance).

PPS is based on an analytical queuing network (QN) model originally proposed in [?] for per-
formance prediction of parallel application, which extends an Approximated Mean Value Analysis
(AMVA) technique by modeling the precedence relationships and parallelism between individual
tasks of the same job. This model explicitly captures the overlap in execution times of di�erent
tasks of the same job to estimate the average application execution time.

In [?], we demonstrated that the PPS is very accurate (the average absolute percentage error
is around 2-8%) and can provide estimates in the order of milliseconds.

The Optimization Service of EUBra-BIGSEA is aimed at pursuing the respect of QoS guaran-
tees and reducing the resource usage costs (e.g., due to energy).

Given an application, we characterize its deadline as hard or soft. Hard deadlines must be
ful�lled. Soft deadlines have an associated priority and can be violated if the system does not
have enough capacity. The Optimization Service implements two main functionalities: (i) it is
able to provide the initial minimum capacity con�guration for an application in a way that its
QoS objectives can be achieved, (ii) under heavy load, it can determine how to re-balance the
applications capacities (by reallocating the cluster nodes) by minimizing the weighted tardiness
(i.e. the weighted sum of application exceeding time wrt. deadlines) of soft-deadline applications.
In both cases, the optimization service implements a hill-climbing-like parallel local search, which
adds/removes capacity or moves capacity from one application to another in the minimum tardiness
scenario; it also evaluates the impact on the total application execution cost/tardiness by relying
on PPS to estimate the performance impact.

The preliminary analyses on the EUBra-BIGSEA case study demonstrated that the optimiza-
tion Service is e�ective to identify the optimal application capacity and can e�ciently support the
Proactive Policies module (heuristics algorithms run in few minutes on an eight cores commodity
server).

4.3. Proactive Policies

As ensuring QoS is one of the major goals of the EUBra-BIGSEA architecture, the services
that estimate the resources needed to complete a job by a desired deadline (described in the
previous section) are orchestrated by a system that monitors progress and can trigger immediate
adjustments when jobs are running late. The main components of the system are the Broker, the
Monitor and the Controller. The components are described below.

The Broker component receives requests from a command-line interface or from the Lemonade
GUI and interacts with other services to request an estimate of the necessary infrastructure re-
sources and to check authorization levels. It also triggers the start of the application, for example,
in a new or preexisting Spark cluster, as well as also two internal components that monitor and
react to delays in the execution. The Broker is con�gured with the execution plug-in, which indi-
cates the type of Big Data framework and the underlying infrastructure. Examples of Big Data
frameworks in the scope of EUBra-BIGSEA are Spark and COMPSs. The supported underlying
cloud infrastructures are OpenStack and OpenNebula.

Next, the Monitor component is responsible for mapping application-speci�c progress to a
normalized progress metric. The Monitor is triggered by the Broker, receiving an endpoint for
collecting application metrics in a generic (e.g., using Spark progress interface) or custom (e.g.,
querying an application-speci�c log or API) fashion. The progress is then published in a stan-
dardized form in the cloud monitoring system (Monasca5). The formatting of the progress metrics
is de�ned, for example, through the plug-in speci�ed in the job description in the case of a CLI
submission.

5http://monasca.io/

11

http://monasca.io/

Finally, the Controller consumes publications disseminated by the monitoring system referring
to its application (according to information received from the associated instance of the Bro-
ker). The Controller will then react when the application progress is deviating from the expected
progress. By default, the Controller will use a hysteresis control that triggers a vertical scaling
to the next instance size (considering IO capability and CPU speed). Nevertheless, the Controller
can be customized through three plugins: the Controller plugin, which de�nes the actual control
algorithm, such as the Hysteresis control mentioned above; the Actuator plugin, which de�nes
how the scaling actions will be implemented in the infrastructure; and the Metric Source plugin,
de�ning the source for the monitoring information. The default Metric Source plugin is Monasca.
Two di�erent actuator plug-ins are available: the actuator that works at the platform level (ad-
justing the resource allocation at the framework) and the actuator that works at the level of the
infrastructure (adjusting the CPU CAP of the Virtual Machine). Examples of Actuator plug-ins
are the following: Chronos (framework level), for repeatable tasks; Marathon (framework level),
for long-living tasks; and KVM-over-OpenStack and KVM-over-OpenNebula (infrastructure level),
when the adjustment of application performance will be done by adjusting the performance of the
underlying VMs (e.g., disk IO per second and CPU speed cap).

5. Applications

The increasing urban population sets new demands for mobility solutions. The impacts of
tra�c congestions or ine�cient transit connectivity directly a�ect public health (emissions, stress,
for example) and the city economy (deaths in road accidents, productivity, commuting etc.). In
parallel, the advances of technology have made it easier to obtain data about the systems which
make up the city information systems. The result of this scenario is a large amount of data, growing
every day and requiring e�ective handling in order to be transformed into integrated and useful
information. Related applications may include speed limit enforcement, wheelchair route planning,
tra�c accident diagnosis, noise studies, among others.

Consider, for example, that it is necessary to plan the speed limit around a city. The Brazilian
tra�c enforcement legislation 6 7 states that before and after installing the devices, technical
studies involving the accident history should be carried out to assess their necessity and e�ciency
on site. For speed humps, a minimum distance between them is also foreseen, as well as restrictions
to their installation on turns and pathways of the regular lines of collective transport (buses, for
example). Similar regulations8 can be found in other countries as well[? ?].

Figure ??-A shows the location of speed cameras by neighborhood in Curitiba. Dark colors
indicate a larger number of cameras. Figure ??-B shows the result of the in-situ study along with
the route of the bus line and the map of the city by the OpenStreetMap. The Downtown district
(the darkest in the �gure) has the highest number of speed cameras (26), followed by six districts
in the south with less than half of the cameras (10 radars). By including the date of installation of
the equipment in the existing data and an integration with accident data, the use of a GIS similar
to the one developed here may facilitate the technical studies or allow these legal conditions to be
veri�ed.

As a second example, consider that the mobility data is integrated with tra�c accident diagno-
sis, in order to understand which region in a city has the majority of historical record of accidents.
Figure ?? presents the heatmap of accidents in the CIC neighborhood in Curitiba. The same �gure
presents the locations with the highest number of injuries, along with the locations of hospitals
and health care units. Figure ?? presents another important issue: the post-cash care is impacted,
since one out of the three hospitals located in the area, one was already closed, the other manages
neurology specialties and the third is a small-sized hospital.

The computation of this information in a city (using historical data) may prevent accidents.
Several other considerations might be suggested in order to reduce tra�c accidents (not only in
CIC, but in general):

1. Building a trustable database of injuries;

6 http://www.denatran.gov.br/images/Resolucoes/Resolucao6002016_new - Last accessed on Jan. 7th, 2017.
7 http://www.denatran.gov.br/download/Resolucoes/RESOLUCAO_CONTRAN_396_11 - Last accessed on Jan. 7th,

2017.
8 http://www.state.nj.us/transportation/eng/documents/speedhumps/ � Last accessed on Nov. 27th, 2017

12

http://www.denatran.gov.br/images/Resolucoes/Resolucao6002016_new
http://www.denatran.gov.br/download/Resolucoes/RESOLUCAO_CONTRAN_396_11
http://www.state.nj.us/transportation/eng/documents/speedhumps/

Figure 7: Location of speed cameras by district in Curitiba (A); and distribution of speed cameras (blue) and speed
humps (red) in Interbairros II bus line (B).

2. Implementing the same methodology of approach by the entities responsible for collecting
data, so that homogeneous information can be generated;

3. Including road signs where they are missing, and building and improving the infrastructure
available to pedestrians;

4. Providing regular inspections so that the regulations are followed; and

5. Promoting population awareness.

Figure 8: The heatmap of accidents in CIC, zooming in on an interest area.

The results unveil challenges to overcome regarding �le formats, reference systems, precision,
accuracy and data quality, among others, that still need e�ective approaches to ease open data
exploitation for new services.

5.1. End-user applications

On top of the EUBra-BIGSEA platform, several applications have been developed to process
city transportation data.

13

5.1.1. Routes4People

The Routes for People Web application demonstrates the capabilities of our jointly developed
infrastructure by directly or indirectly using the work done in other parts of the project. It
consists of multiple services embedded in containers that communicate with each other through a
Load Balancer proxy. Figure ?? displays the general architecture of the Routes for People Web
application that runs on EUBra-BIGSEA infrastructure, along with its dependencies. We only
present direct dependencies to simplify the schema.

Figure 9: General architecture of the Routes for People Web and dependencies

The Routes for People web application runs on the user's browser. It connects our infrastructure
to multiple services:

• The authentication service responsible for managing user identities;

• The tra�c jam and sentiment analysis services that can be invoked on supported cities,
showing a layer of intensities;

• The Java webserver responsible for everything else.

The Java web server retrieves information like the transportation stops, the actual routes, and
their schedule from PostgreSQL GTFS database instances. These instances are load balanced by
Marathon-LB, a utility that connect HAProxy with Marathon.

The web application contains four tabs (Figure ??). The Trips tab shows an OpenStreetMap
(entered on a city we support in the project) on top of which the local transportation stops are
drawn in clusters. This tab o�ers additional functionalities by means of the buttons in the top-left
corner: user's geolocation, creating trips between two stops, viewing layers on the map, re-centering
the map, sentiment analysis layer, and tra�c jam layer. The Routes tab lists the transportation
routes available for the selected city. Our users can also draw the route on the map or view the
schedule for each route, using the buttons on the right side. The third tab, Favorites, becomes
available once the user logs in. This tab contains the user's selected routes and trips for a city,
along with the option to eliminate them. Finally, the More tab holds some additional features like
city selector, language switch, log in, help, contact, and feedback. The last two features are only
available after the user has successfully authenticated.

14

Figure 10: The �rst tab of the Routes for People Web application

5.1.2. Municipality Dashboard

The City Administration Dashboard application is aimed at identifying aggregate statistical
trends in the bus usage that can be potentially exploited by the municipality for urban manage-
ment and planning purposes (the application focuses on the city of Curitiba, in Brazil). Several
components from the EUBra-BIGSEA platform are used to process the raw input data and cre-
ate aggregate statistics by taking security, data privacy and QoS constraints into consideration.
Figure ?? shows an overview of the system architecture related to the City Administration Dash-
board application, the core building blocks and how they interact with each other, the security
and privacy big data services extensions as well as the links both to the QoS and AAAaaS in-
frastructures. Given its complexity and the high number of components involved, this application
represents a comprehensive example to demonstrate the data platform features and the level of
integration among the di�erent modules. In particular, the components exploited by this applica-
tion are: Ophidia, Spark, HDFS, COMPSs, the EUBra-BIGSEA QoS infrastructure (e.g. Broker
API, EC3/IM, etc.) and the security and data privacy services (i.e. AAAaaS and PRIVAaaS).

Figure 11: City Administration Dashboard - system architecture overview

The input data of the City Administration Dashboard application are related to the city of

15

Curitiba. More in detail, they are: bus cards database, bus GPS position database, General Transit
Feed Speci�cation (GTFS) shape �les and GTFS bus stops �les. The application performs several
steps; a �rst anonymization stage on the bus cards input data (so called level-0 data) is carried out
through the PRIVAaaS tool; the output of this step, along with the remaining level-0 data, are used
for the execution of the DQaaS and EMaaS to produce intermediate data (hereafter level-1 data).
The storage layer used by this application is provided by HDFS, which stores a heterogeneous (e.g.
in terms of data format, data model) set of level-0 data sources.

Various types of intermediate data (level-1) are produced before the execution of the descriptive
analytics model in the �rst stages (like pre-processing or ETL steps) of the application. The
DQaaS produces data quality-enriched bus card data by adding additional �elds to the original data
sources to annotate the quality of the data. This information is used by Ophidia, in subsequent
steps, to �lter out, from the statistics computation, records which do not comply with the quality
requirements. The data quality information annotated by the application includes: timeliness
(the extent to which data are temporally valid), completeness (the degree to which all values
are registered in the dataset), and consistency (highlights if the data dependencies are satis�ed).
The EMaaS produces Enriched Historical Bus GPS Data instead, by applying entity matching
algorithms to the input data (to identify the bus trips) and enriching them with the bus stops
as well as with the number of passengers boarding at each stop. These data provide, among
others, information about the bus routes, their position and the number of passengers per bus
stop along the route. After an additional ETL stage, the intermediate data are used as input for
the descriptive analytics component developed with COMPSs and the Ophidia framework, which
in turn produces the aggregate statistics (so called level-2 data). Finally, these data are subject
to an additional anonymization step through, once again, the PRIVAaaS tool (re-identi�cation
risk component) before being made available to the web application of the City Administration
Dashboard for visualization purposes. Various types of output (level-2 data) can be produced
according to the type of aggregation and metrics of interest:

• Bus line-aggregate statistics include aggregate information about the bus lines usage. For
each bus line and time range, the minimum, maximum, mean and total number of passengers
are computed. Statistics can be computed over di�erent time ranges, such as the whole
month, week, weekday (i.e., Monday, Tuesday, etc.), day or hour, or with di�erent level of
aggregations, such as for each bus line or over all bus lines (to get an aggregate view of the
entire bus transportation system).

• Bus user-aggregate statistics include aggregate information about the bus users' usage. For
each bus user, the minimum, maximum and total number of times the passenger took the bus
and the number of days he/she took a bus in the given time range are computed. Statistics
can be computed on a weekly or monthly basis.

As stated before, data privacy has been addressed at multiple levels using the policy-based PRI-
VAaaS component. More in detail:

• some anonymization techniques (e.g. encryption) are applied to those level-0 data (i.e. bus
card data) that expose sensitive information, in order to remove the direct reference to the
actual bus card user;

• the k-anonymity algorithm is applied to the output data produced by some types of statistical
aggregation to reduce the re-identi�cation risk; these data can actually include �elds that
might be used (even in combination) to re-identify the original user.

In terms of user authentication and authorization, all the data components and services used by this
application (i.e. Ophidia, EMaaS and DQaaS) verify the validity of the token and the authorization
rules through the AAAaaS module, before granting permission for the actual requested processing.
Before running the application, the QoS infrastructure services are contacted, to perform the initial
cluster deployment and setup, as well as during the application execution for the monitoring and,
eventually, the dynamic resource adjustment to �t the QoS deadlines. In particular, in the case
of Ophidia, the request is managed by a speci�c plugin for the Broker, which deploys the cluster
through EC3 and IM based on the feedback coming from the Optimization service.

The output of the descriptive analytics component is produced by applying a sequence of
multiple and parallel Ophidia operators. In particular, the key exploited operators are related to:
data subsetting, time aggregation (for statistics computations), dimensionality reduction and data

16

1

31

d1

2

32

d2

3

33

d3

4

34

d4

5

35

d5

6

36

d6

7

37

d7

8

38

d8

9

39

d9

10

40

d10

11

41

d11

12

42

d12

13

43

d13

14

44

d14

15

45

d15

16

46

d16

17

47

d17

18

48

d18

19

49

d19

20

50

d20

21

51

d21

22

52

d22

23

53

d23

24

54

d24

25

55

d25

26

56

d26

27

57

d27

28

58

d28

29

59

d29

30

60

d30

sync

d31 d32 d33 d34 d35 d36 d37 d38 d39 d40 d41 d42 d43 d44 d45 d46 d47 d48 d49 d50 d51 d52 d53 d54 d55 d56 d57 d58 d59 d60

61

d61 d62 d63 d64 d65 d66

62

d68 d69 d70 d64 d65 d66

63

d72 d73 d74 d64 d65 d66

64

d76 d77 d78 d64 d65 d66

65

d80 d81 d82 d64 d65 d66

66

d84 d85 d86 d64 d65 d66

67

d88 d89 d90 d64 d65 d66

68

d92 d93 d94 d64 d65 d66

69

d96 d97 d98 d64 d65 d66

70

d100 d101 d102 d64 d65 d66

71

d104 d105 d106 d64 d65 d66

72

d108 d109 d110 d64 d65 d66

sync

d67 d71 d75 d79 d83 d87 d91 d95 d99 d103 d107 d111

73

d112

74

d112

75

d112

76

d112

77

d117

78

d117

79

d117

80

d117

81

d122

82

d122

83

d122

84

d122

sync

d113 d114 d115 d116 d118 d119 d120 d121 d123 d124 d125 d126

85

d127

86

d127

87

d127

88

d127

89

d132

90

d132

91

d132

92

d132

93

d137

94

d137

95

d137

96

d137

sync

d128 d129 d130 d131 d133 d134 d135 d136 d138 d139 d140 d141

97

d142

98

d142

99

d142

100

d142

101

d147

102

d147

103

d147

104

d147

105

d152

106

d152

107

d152

108

d152

109

d157

110

d157

111

d157

112

d157

113

d162

114

d162

115

d162

116

d162

117

d167

118

d167

119

d167

120

d167

121

d172

122

d172

123

d172

124

d172

sync

d143 d144 d145 d146 d148 d149 d150 d151 d153 d154 d155 d156 d158 d159 d160 d161 d163 d164 d165 d166 d168 d169 d170 d171 d173 d174 d175 d176

125

d177

126

d177

127

d177

128

d177

129

d182

130

d182

131

d182

132

d182

133

d187

134

d187

135

d187

136

d187

137

d192

138

d192

139

d192

140

d192

141

d197

142

d197

143

d197

144

d197

145

d202

146

d202

147

d202

148

d202

149

d207

150

d207

151

d207

152

d207

sync

d178 d179 d180 d181 d183 d184 d185 d186 d188 d189 d190 d191 d193 d194 d195 d196 d198 d199 d200 d201 d203 d204 d205 d206 d208 d209 d210 d211

153

d212

154

d212

155

d212

156

d212

157

d217

158

d217

159

d217

160

d217

161

d222

162

d222

163

d222

164

d222

165

d227

166

d227

167

d227

168

d227

169

d232

170

d232

171

d232

172

d232

173

d237

174

d237

175

d237

176

d237

177

d242

178

d242

179

d242

180

d242

sync

d213 d214 d215 d216 d218 d219 d220 d221 d223 d224 d225 d226 d228 d229 d230 d231 d233 d234 d235 d236 d238 d239 d240 d241 d243 d244 d245 d246

181

d247

182

d247

183

d247

184

d247

185

d252

186

d252

187

d252

188

d252

189

d257

190

d257

191

d257

192

d257

sync

d248 d249 d250 d251 d253 d254 d255 d256 d258 d259 d260 d261

193

d262

194

d262

195

d262

196

d262

sync

d263 d264 d265 d266

197

d267

198

d267

199

d267

200

d267

sync

d268 d269 d270 d271

201

d272

202

d272

203

d272

204

d272

sync

d273 d274 d275 d276

205

d277

206

d277

207

d277

208

d277

sync

d278 d279 d280 d281

Figure 12: COMPSs simpli�ed execution graph example (set of statistics computed by the application)

import/export. At the level of the programming models, the COMPSs parallel runtime engine
is used to concurrently run the code calling the Ophidia operators. The descriptive analytics
component is developed in Python using the PyOphidia and PyCOMPSs modules. In terms
of bene�ts, COMPSs transparently parallelizes applications exploiting their inherent parallelism
without the burden of parallel code implementation, while Ophidia provides support for a wide
set of e�cient parallel data analytics operations. Their integration into the QoS framework allows
addressing QoS-based scenarios.

Figure ?? shows an example of a simpli�ed execution graph (from the COMPSs perspective)
of a set of statistics computed by the application (i.e. bus line-aggregate statistics). Each circle
represents a COMPSs task executing a block of code with one or several instructions. The �rst
phase relates to the application of data anonymization to the input data (blue circles), followed
by the extraction (yellow circles) and the transformation (orange circles) steps of the ETL phase,
whereas the following 10 stages refer to blocks of Ophidia operators (green circles). Each of these
set of circles represents the computation of a di�erent type of aggregation (both temporal or
based on the bus line), while each circle represents a speci�c statistics computation (e.g. average
for Monday, Tuesday, etc.). A more comprehensive benchmark and experimental results on the
application are out of the scope of this paper.

5.1.3. Melhor Busão

Melhor Busão (a Portuguese expression for Best Bus) is an application designed to present
the results of the Transportation Data Processing and Analysis performed by the EUBra-BIGSEA
infrastructure to transit users. It is implemented as a mobile application so as to simplify access
and noti�cations when relevant information is available.

In its essence, Melhor Busão is an Advanced Traveler Information System, helping passengers
to make a better use of the city Public Transportation System by providing both static information,
such as routes and bus schedules, and � most interestingly � dynamic information about predicted
trip duration and crowdedness for a planned trip. By predicting such trip features, the app allows
users to make a more informed decision on which itinerary to take according to their priorities.
Ultimately, forecasting multiple criteria about trips aims to help users increase their degree of
satisfaction during the trip, a trend which has received increasing attention in the literature [?],[?
].

In order to provide the user with these trip feature predictions, Melhor Busão relies on sev-
eral applications and high-level services developed throughout the project. Such services have

17

been implemented on top of the above mentioned data analytic services of EUBra-BIGSEA. The
application sends a request with user trip plan information to a Web Service named Best Trip
Recommender (BTR) API. This Web Service has the most up-to-date version of the prediction
models and runs the model with the received user info, returning the prediction results to the app
in order for the user to visualize them. BTR API is also responsible for updating the models on
a regular basis. For that purpose, it dispatches Spark jobs to the cloud data processing services
of EUBra-BIGSEA with a deadline to be met in order to attend the model update frequency re-
quirements. The models are trained with features built on top of the result of the Entity Matching
service which processes the raw GPS and Ticketing data.

Figure ?? shows some screenshots which depict login, route map, nearby stops, top bus, and
bus trip features prediction.

Login Screen Route Map Nearby Stops Top Bus Screen Trip Planning

Figure 13: MelhorBusão App Screenshots

The application is available in Portuguese language for the Brazilian cities of Campina Grande
and Curitiba, and displays information obtained from several data sources, including: Bus GPS
streaming data, City GTFS �le and Ticketing Records from city buses. GTFS is the main source
for the static data presented in the application (e.g. routes, shapes, bus stops, etc.). The GPS
and Ticketing data is processed by back-end applications which run in the cloud using a parallel
architecture to achieve faster processing.

Melhor Busão is, thus, highly integrated into the whole project architecture. It uses the security
solutions to perform authentication in the app and provide security to users transactions; the Entity
Matching algorithms to match bus GPS records to GTFS route shapes and thus to estimate when
a bus passed by each stop during the day, and to match passenger boarding to bus GPS records,
identifying which bus each passenger boarded on; it uses the data analysis solutions to provide
the passenger with estimated trip duration and bus crowdedness for a given trip plan, by calling
the Best Trip Recommender API; and the cloud infrastructure and services, on top of which all
back-end services run.

5.2. High-level services

The applications described in the previous section rely on a set of services implemented on top
of EUBra-BIGSEA services that provide a higher-level functionality for application building, such
as static and dynamic route matching, route extraction, crowdedness estimation, etc. The most
relevant services are described along this section.

5.2.1. Entity Matching as a Service

Geographical coordinates and maps (digital or paper-based) are a common feature of our daily
life in order to provide a two-dimensional representation of geographic features in the real world,
such as parks, bus stops, roads, rivers, buildings, and places. Such information is often referred
to as geospatial or geographical data and plays an essential role in many governmental, economic
and social domains, such as disaster response, urban planning and tourism [?]. Since the qual-
ity of life in a city greatly depends on the well-being of its citizens, the municipalities invest in
information systems that assist the citizens (e.g., regarding urban mobility or the identi�cation of
points of interest) directly or indirectly [?]. In this sense, the large amount of data collected by

18

municipalities and map projects (e.g, OpenStreetMap) may be used to improve the e�ciency of
public transportation and infrastructure investments taking into account the proposition of new
solutions or modi�cations to the current infrastructure. However, since geospatial data are prone
to inconsistencies and quality issues, it is important to apply sophisticated Data Quality (DQ) ap-
proaches, such as Entity Matching, before using them in order to take valuable strategic decisions.
In fact, an analysis based on incorrect information can lead to wrong decisions [?].

In the context of EUBra-BIGSEA services and resources, an Entity Matching as a Service
(EMaaS) has been developed to address important problems of the data acquisition and descriptive
models of geo-spatial trajectories use cases. The data acquisition problems tackled by EMaaS
refer to the lack of accuracy and precision of o�cial and non-o�cial municipality data sources,
which causes incoherences and unalignment of buildings, streets, and bus stops. EMaaS can
support the detection and measurement of matching problems presented in the linkage of these
data sources. Regarding the descriptive models, a fundamental abstraction are trajectories, i.e. the
path traversed by each end user while using public transportation. Trajectories comprise not only
dynamic spatial data, but also other types of data that enrich the trajectory information. Building
such trajectories is a challenge by itself, since matching the various types of data to a speci�c end
user trajectory may be tricky and demand advanced and complex techniques. Thus, some EMaaS
approaches have also been developed to deal with trajectories matching and provide high-quality
integrated geospatial-temporal training data to support the predictive machine learning algorithms
for the predictive models utilized by the Melhor Busão application.

The Entity Matching as a Service (EMaaS) is capable of performing e�cient (data-intensive)
matching tasks using the programming models (described in Section ??) and includes the imple-
mentation of the following main approaches:

• BULMA (BUs Line MAtching)

Brie�y, BULMA has been developed to address the task of identifying bus trajectories from
the sequences of noisy geospatial-temporal data sources. It consists in performing the linkage
between the bus GPS trajectories and their corresponding road segments on a digital map
(i.e., prede�ned trajectories or shapes). In this sense, BULMA is a novel unsupervised
technique capable of matching a bus trajectory with the "correct" shape, considering the
cases in which there may exist multiple shapes for the same route (usual cases in many
Brazilian cities, e.g., Curitiba and São Paulo). Furthermore, BULMA is able to detect bus
trajectory deviations and mark them in its output.

• BUSTE (BUs Stop Ticketing Estimation)

In order to enrich the BULMA output, BUSTE (BUs Stop Ticketing Estimation) is used
to perform a time interpolation over the shapes (based on the BULMA output). Further-
more, BUSTE positions the bus stops over the interpolated shape and groups the passengers
boarding according to each bus stop. In other words, the idea of BUSTE is to provide an
estimate of the number of passengers boarding at each bus stop. BUSTE also provides rich
and high-quality integrated geospatial-temporal data to support the City Municipality Dash-
board application and predictive machine learning algorithms. Note that BUSTE receives
anonymized ticketing data as input and produces enriched Historical Bus GPS data. This
means that the BUSTE computation is not in�uenced by the presence of anonymized values
in ticketing data.

• MATCH-UP (MATCHing of Urban Places)

Regarding polygons (for instance, buildings, residential regions, parks, and forests) and points
records (for instance, bus stops, points of interest, vehicle coordinates) matching, the sim-
ilarities between the geospatial records can be measured through linguistic and geographic
matchers. In this sense,MATCH-UP provides alternatives to execute e�ciently the matching
of polygons and points between o�cial and non-o�cial data sources.

The EMaaS architecture is depicted in Figure ??. As we can see, the execution of all the
approaches can be made through a Spark or COMPSs job (through the COMPSs interface). The
BULMA output �les are partitioned into n �les assigned to COMPSs workers to be computed
in parallel. The �rst step of BUSTE enriches the historical bus trips (generated by BULMA) by
positioning the bus stops over the interpolated shape selected by BULMA. Afterwards, BUSTE
groups the passengers boarding at each bus stop. Regarding the crowdedness prediction, i.e., a

19

feature of the Bus Trip Recommender application, it is also generated based on historical bus GPS
data (generated by the EMaaS approaches BULMA and BUSTE). The prediction model is trained
using a state-of-the-art machine learning technique based on Spark over the BUSTE output. Thus,
the trained predictive model is used to predict future trip duration and crowdedness. MATCH-UP
is used to address the problems of geospatial polygons and points matching.

Figure 14: EMaaS Architecture

5.2.2. Trip duration and crowdedness estimation

Trip duration is a fundamental aspect of the user experience and it is often used as main goal
when choosing how to use the transportation system. In other words, most people will try to get to
the desired destination as fast as possible. Therefore, known applications like Google Maps9 and
Here10, already provide trip duration information in order to support the user decision. Although
this information can be helpful, in some cases the provided information is based on scheduled
timetables which may not represent the true state of the system given its dynamic nature. In
order to improve the quality of the information that is provided to the user, machine learning
techniques were used to predict the duration and crowdedness of future trips based on past system
performance.

The information used to build the predictive models is from Curitiba, Brazil. The data can be
classi�ed into three categories: (i) transit routes and schedules, (ii) real time vehicle location and
(iii) passenger boarding data. The �rst one is available in GTFS format11 and contains speci�cation
on how the service is expected to work under normal circumstances. The other two are collected
on a daily basis while the system is working and can be used to assess the service performance.
Real time vehicle location is available in GPS format and comprises the location of all buses every
few seconds. Passenger boarding data contains information about every time a user boarded using
a smart card.

All data goes through two preprocessing steps, where the �rst one is an entity matching process
that is performed by BULMA and BUSTE, described in section ??. The second step focuses on
feature engineering and data formatting that builds the datasets used to create the predictive
models. These datasets include categorical information such as trip route, shape, vehicle id, period
of the day, weekday, week of the year, day of the month, month and also contains numerical
information such as distance and number of passengers that boarded at the origin stop.

9https://maps.google.com
10https://wego.here.com/
11https://developers.google.com/transit/gtfs/reference/

20

Three machine learning algorithms have been tested and compared in order to choose the one
with best results. The tested algorithms have been Lasso regression, random forests and gradient
boosted trees. The best result has been achieved by the model built using gradient boosted trees
with mean absolute error (MAE) of approximately 40 seconds for trip duration and almost 70
passengers for trip crowdedness.

5.2.3. Tra�c congestion estimation

Tra�c congestion is a frequent event in urban centers nowadays. It is often a consequence of
the urban infrastructure not being able to keep up with the growth of the number of vehicles.
Thus, it causes many drawbacks, such as stress, delays, and excessive fuel consumption. This
application aims to identify tra�c jams using data provided by Waze, an application widely used
by drivers to obtain trajectories to destination or noti�cations regarding unusual tra�c behavior,
such as tra�c jams, accidents or closed roads. To that end, we formulate a probabilistic graphical
model equipped with Gaussian latent nodes.

In order to exploit spatio-temporal patterns associated with tra�c congestion, we �rst discretize
spatial and temporal dimensions. For the spatial dimension, we split the area of interest into an
NxN grid. The temporal dimension, on the other hand, is discretized hourly. Here, we denote our
variable of interest as Ys,t = −1,+1, identi�ed by the spatial grid cell s and the temporal index
t, with s = 1, 2, ..., N2 and t = 1, 2, ..., T , where T is the total number of hours from the dataset
available for training. As indicated, Ys,t can assume two values: a negative value denotes that
there is no tra�c jam at cell s during time t, while a positive value denotes the opposite scenario.
With each variable Ys,t, we associate a latent (unobserved) variable Zs,t. Letting xt denote the
proportion of neighboring cells experiencing some tra�c jam at time t observed and latent variables
are related as follows:

P (Ys,t|Zs,t = z) =
1

1 + e−z
(1)

Zs,∗ GP(′, ‖local(t,t′) + kperiodic(t, t
′) + kadj(xt, x

′
t′)) (2)

klocal(τ = t− t′) = θ2A ∗ exp(
τ2

2θ2B
) (3)

kperiodic(τ = t− t′) = θ2A ∗ exp(−2
sin(π|τ |/θD

θ2E
) (4)

kadj(xt,x′
t′
= θ2F ∗ xt ∗ x1t′ (5)

The model above indicates that Ys,t is modeled as a logistic regression over latent values Zs,t.
Latent values from each grid cell, on the other hand, are modeled as a zero-mean Gaussian process
equipped with a covariance function that may be expressed as the sum of three components: a local,
a periodic and an adjacency component. The �rst component is expressed as a Matérn covariance
function and is used to enforce some smoothness over the time dimension. The second component is
expressed as a periodic covariance function, which exploits the periodicity over the time dimension
observed within data. Finally, the third component is used to enforce spatial dependencies between
neighboring cells, by assuming a linear association between the proportion of neighboring cells
experiencing tra�c jams and the probability of observing a tra�c jam at a given cell. For more
information regarding covariance functions, see [?], Chapter 4. The covariance functions used by
the proposed model require the speci�cation of hyperparameters = θA, θB, θC, θD, θE, θF . Here,
we obtain them via likelihood maximization using a Laplace approximation for the likelihood
function. For a complete description of this process, see [?], Chapter 3. Note that, in order
to estimate the probability of experiencing a tra�c jam at time t, the proposed model requires
knowing which neighboring cells are experiencing tra�c congestions at the same time t, since we
are interested in forecasting tra�c jams within one hour. However, we are not allowed access to
this information. Therefore, we estimate xt exploiting the daily periodicity in data, as shown in
the expression:

x̂t =
1

D

D∑
j=1

xt − 24j (6)

where D denotes the number of days available for training.

21

5.2.4. Sentiment analysis

Sentiment analysis deals with the computational detection and extraction of opinions, beliefs
and emotions in written text. It combines theories and methodologies from a diverse set of scienti�c
domains, such as psychology, natural language processing and machine learning.

In the context of the EUBra-BIGSEA project and smart cities, sentiment analysis is used
to transform social media data (textual) into a quantitative estimation of the citizens expressed
sentiment. Such analysis may target a speci�c subject, for example, tra�c situation or city services,
or a population of a region.

To obtain the data, a Twitter account is required and API access and a Twitter application
must be created. In the site http://apps.twitter.com, as soon as an application is created,
Twitter will generate a set of credentials (keys and access tokens).

The sentiment analysis problem has been addressed through two di�erent but complementary
strategies: lexicon-based (using sentiment dictionaries where expressions have sentiment scores)
and machine learning techniques.

When using lexicons, a semi-supervised model is built from a list of previously created ex-
pressions, targeting, in general, a speci�c language. It is interesting to note that a particular
characteristic of today's online communication may be explored in order to create language inde-
pendent models: emojis and emoticons.

Emojis are ideograms used in electronic messages and Web pages. Emojis are used like emoti-
cons and exist in various types, including facial expressions, common objects, places and types of
weather, and animals. An emoticon is a pictorial representation of a facial expression using punc-
tuation marks, numbers and letters, usually written to express a person's feelings or mood. Being
a smaller set when compared to the entire language vocabulary and language independent, emojis
and emoticons may be used in the sentiment analysis task without requiring great e�ort. On the
other hand, they are subject to misinterpretation in di�erent cultures. There are approximately
1139 emojis, disregarding their variations. Most of them are rarely used.

Classi�cation, a machine learning technique, may be used to perform sentiment analysis. Clas-
si�cation is a supervised technique and, as such, it requires a labeled input data set for training
and model construction. In order to build the training data, a human must evaluate and label a
set of examples. In this case, the human must evaluate whether the text is positive, negative or
neutral. In some cases, more than one evaluation is performed for each text. For example, three
or more people may evaluate each tweet and after that, a �nal evaluation emerges.

There are di�erent classi�cation algorithms implemented through di�erent learning methods.
For example, it can use random forests, vector machines, gradient boost trees and others. Their
performance and accuracy vary in each case and none of them achieves the best results in every
scenario. An alternative is to combine di�erent classi�ers into ensembles of classi�ers. The goal
of the ensemble is to integrate algorithms and generate more robust, precise and accurate system
results. On the other hand, ensembles require more space, processing time and are less compre-
hensible. Training data consists of a lexicon list with 118 emojis with score varying from -4 (most
negative) to +4 (most positive). A manually classi�ed data set is available, formed by texts of 4000
tweets in Portuguese, randomly selected from those collected with geospatial information. These
tweets were read by users and classi�ed as positive, neutral or negative. We are not using any
special context information or target entity. Thus, for example, a tweet with a positive sentiment
for an entity and a negative one for another, could be classi�ed as neutral.

The sentiment analysis for online social data is built as an ensemble of classi�ers. We are using
both approaches, lexicon with emojis and emoticons, and machine learning with 3 (three) di�erent
algorithms. Even though the use of ensemble of classi�ers increases the storage and processing
time requirements, this is a good strategy under the project perspective. The di�erent classi�ers
may be executed in parallel, followed by a �nal ensemble synchronization step, which is a good
test for infrastructure scalability.

6. Experimental results

This section shows some experimental results of the cloud services described in section ??,
covering platform deployment and horizontal and vertical elasticity.

6.1. Platform deployment
Platform deployment is based on Ansible roles and con�guration recipes. Details are given in

section ??. The system �rst deploys the static nodes (a front-end with the master services for

22

http://apps.twitter.com

Job Start Job Start Job Start Job Start
1 19:18:31 6 19:53:51 11 20:21:34 16 20:55:06
2 19:28:02 7 20:10:31 12 20:46:31 17 20:58:08
3 19:28:03 8 20:11:11 13 20:47:11 18 21:23:12
4 19:39:15 9 20:20:28 14 20:47:51 19 21:39:51
5 19:39:45 10 20:20:29 15 20:48:32 20 21:56:31

Table 1: Scheduling of the jobs to be executed.

Mesos, Marathon, Chronos, Wave overlay network and Hadoop namenode), a user-de�ned number
of data nodes (including OpenStack Monasca agents) and a Monasca master node. Then, working
nodes are dynamically deployed as frameworks request resources.

New nodes are deployed and con�gured from scratch. There is no need to build neither pre-
existing virtual machine images nor Docker containers. As this process may take several minutes,
EUBra-BIGSEA provides two alternatives to speed-up the deployment:

• On the �y creation of a reference virtual machine image (golden image) with the �rst working
node, to be used for the next working nodes to be deployed. This reduces the contextualiza-
tion phase, and it can even take less by tailoring the con�guration recipes.

• Stopping the VMs rather than destroying them. This is especially interesting if rapid elas-
ticity is required, although it implies a higher consumption of resources than powering o�
them.

Scalability is a main issue in the con�guration of large infrastructures. Figure ?? shows the
deployment time requested for a large-scale cluster with 100 cores and 50 Working Nodes.

Figure 15: Deployment time for 50 Working Nodes

6.2. Horizontal elasticity

The experiment consisted in submitting 20 parallel jobs to an infrastructure that initially had
only two nodes powered on. These jobs were submitted at di�erent time steps as shown in table
10. The infrastructure had to detect the registration of a Spark framework, realize that there are
not enough resources and power on one additional node per queued job. Jobs were prepared to
run for approximately 11 minutes and were able to use up to 4 cores each. If Mesos o�ered them
2 cores, jobs will anyway start.

Figure ?? shows the evolution of the status of the WN along time. IDLE indicates powered on
nodes with no allocated job. USED means nodes running jobs. POWON means nodes that are
being powered on and they have not yet become eligible for running jobs (the contextualization
process has not been completed). POWOFF refers to nodes that are being powered o� as they
have been idle longer than a prede�ned threshold. Finally, OFF nodes are those that have not
been powered on yet. The maximum capacity of this experimental cluster is 20 nodes of 2 vCPUs
each.

23

Figure 16: Evolution of the status of the WN over time

6.3. Vertical elasticity

Figure ?? depicts how the CPU adjustment and disk performance limitation can be used to
control the performance of applications. By adjusting the performance of both CPU and IO
operations, a large range of applications will react with an improvement in performance. The
default initial values of 50% capacity are selected and it is dynamically adjusted as the application
progresses.

Figure 17: Examples of the usage of CPU and disk IO scaling

7. Conclusions

The partners in the EUBra-BIGSEA collaboration have developed cloud-based services mainly
focused on data analytics for public transportation data. These services, employing auto-parallelizable

24

programming models, process the data under restrictions such as Quality of Service constraints
and Privacy-awareness.

The partners addressed a major number of software requirements for three use cases on public
transportation data management through their solution at di�erent levels of the collaboration.

The �rst use case, Data Acquisition, dealt with the integration of multiple datasets types and
formats (like GTFS from Google and Open Street Maps raw data used to create trips). It also
sports support for access control level (in the case of the actual data and metadata) similar to
we have implemented inside Lemonade using Thorn. Finally, in the context of the same use case,
we have improved the data quality by enriching the existing data like the City Administration
Dashboard application, which generates data quality-enriched bus card data.

The next use case, creation end execution of Descriptive Models, included models supposed
to extract and characterize trajectories from vehicle movement data. We have also improved the
quality of the models by determining correlations and cluster trajectories, as explained for the
Entity Matching as a Service (EMaaS) case with its approaches (BULMA, BUSTE, and MATCH-
UP). Finally, we have de�ned the areas of interest in such a way that the models still made sense
and were useful but we have reduced the burden of data acquisition and processing. This last case
is best evidenced in the Tra�c Congestion Estimation and Sentiment Analysis, where we split our
data on a grid above the selected cities.

The �nal selected use case, the creation and execution of Predictive Models, included the train-
ing, validation, and building of the models based on multiple sources of data (geographic, social,
and meteorological data). For instance, in the case of trip duration and crowdedness predictions,
we created a model based on historical bus trips information, passenger boarding information, and
points of interest. Due to the continuous modi�cation and evolution of the environment, the mod-
els are continuously updated on our infrastructure, taking advantage of predictable execution time
from earlier builds and data information. These models would be useless on their own, therefore
we expose them to external access. Two demo applications developed in the context of the project,
Melhor Busão and Routes for People exploit these models by (for example) proposing a list of
three best trips between two stops using predictive models in the supported cities. Finally, this
use case also includes the speci�cation of the data sources and regions of interest, like the GTFS
data which is considered for a certain number of cities (not the whole planet) from both the EU
and Brazil.

In the frame of the EUBra-BIGSEA collaboration, we o�er a simple interface for data scientist
to describe their processing tasks. Our advantages against the competition include functionalities to
exploit parallelism, a coherent authentication and authorization model, and tools for data privacy
annotation and enhancement, all in one package.

In order to satisfy the use cases and achieve our goals, we have proposed the infrastructure
detailed in Figure ??. We address the need of e�cient and convenient development of data ana-
lytic applications by allowing application building based on graphical interfaces, using both general
purpose and data-analytic speci�c programming languages. Furthermore, we o�er the capability
to predict the performance and characterize parallel data analytic applications by leveraging a log
analyzer, a performance prediction service, and an optimizer module. Additionally, our infrastruc-
ture possesses the ability to scale elastically both horizontally and vertically (cloud resources level
dealing with the data analytic applications). Finally, we o�er the means to characterize sensitive
data using a framework that permits annotations of parts of datasets and also implements privacy
enhancement policies.

We managed to address all our use cases, with a result consisting of an infrastructure capable
of running services in a scalable way, and that o�ers a value for the scientist, the normal citizen,
and municipality entities.

25

