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Abstract

Multi-scanner Antivirus (AV) systems are often used for detecting Android
malware since the same piece of software can be checked against multiple differ-
ent AV engines. However, in many cases the same software application is flagged
as malware by few AV engines, and often the signatures provided contradict each
other, showing a clear lack of consensus between different AV engines. This work
analyzes more than 80 thousand Android applications flagged as malware by at
least one AV engine, with a total of almost 260 thousand malware signatures. In
the analysis, we identify 41 different malware families, we study their relation-
ships and the relationships between the AV engines involved in such detections,
showing that most malware cases belong to either Adware abuse or really dan-
gerous Harmful applications, but some others are unspecified (or Unknown).
With the help of Machine Learning and Graph Community Algorithms, we can
further combine the different AV detections to classify such Unknown apps into
either Adware or Harmful risks, reaching F1-score above 0.84.

Keywords: Multi-Scan Antivirus; Android Malware; Security; Machine
Learning; Malware classification; Graph Community Algorithms.

1. Introduction

According to Kaspersky’s 2017 Security Report [1], malicious software (aka.
malware) has become a very powerful and profitable industry, capable of de-
livering up to 360,000 new or altered malware samples into the Internet daily,
making security experts having to deal with identifying and preventing thou-
sands of new undetected threats every day.

AntiVirus (AV) software has been a very powerful tool to fight against mal-
ware. There are a large number of AV software tools available in market (e.g.
Kaspersky, ESET, AVG, etc), each one has its own set of rules and expertise
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to identify threats. Multi-scanner AV tools have come into play to further im-
prove decision making on whether some piece of software is dangerous or not.
Essentially, multi-scanner systems check suspicious software against several AV
engines, thus returning the outputs for each engine.

Nevertheless, multi-scanner tools have also shown the so-called lack of con-
sensus of engines [2], in other words, AV engines do not agree about the "mal-
warish” nature of certain applications (some AV engines flag an app as danger-
ous while others do not) and, even when they agree, sometimes they disagree
on the type of threat or malware class. For instance, adware is usually consid-
ered malware although its harm is often limited to annoying users. Oppositely,
other types of threats, such as worms, trojans or spyware target their victims’
personal data, credentials or resources for theft.

In this light, this article investigates on the lack of consensus of multi-scanner
tools and, to the best of our knowledge, we advance beyond the state of the art
in the following directions:

e We analyze a large collection of Android applications (more than 80 thou-
sand) tagged as malware by at least one AV from a set of 61 different
engines, yielding almost 260 thousand malware signatures.

e Using our open-source tool for mining Android malware signatures, namely
SignatureMiner, we clean, homogenize and transform this large set of mal-
ware signatures into normalized malware family names for further data
analysis and processing.

e We perform an in-depth analysis of the resulting malware families and
their interrelations engine-wide, identifying up to 41 different malware
families which belong to three broader categories, namely Adware, Harmful
and Unknown.

o With the help of Graph Community Algorithms, we study the relation-
ships between malware families according to their detection patterns and
AV engines, showing that some malware types are indeed closely related,
besides some AV engines are clearly focused into detecting Adware or
Harmful or both, which aligns with the lack of consensus nature of multi-
scanner AV tools.

o We make use of Machine Learning classification tools, in particular Lo-
gistic Regression with Lasso regularization and Random Forest to classify
Unknown applications into Adware or Harmful, showing good performance
results (F1-score above 0.84) and shedding light into which AV engines are
specialized at each malware category.

2. Previous Work

Antivirus Software solutions provide early detection and prevention of mal-
ware infection of devices. AVs have been persistently scrutinized, even in their



mobile versions: the authors in [3] review the key points in designing AV engines
for mobile devices and how to prevent detection evasion. Similarly, Rastogi et
al [4] identify how and when do AV engines fall for obfuscation attacks, find-
ing many to be vulnerable to some kind of transformation attack. The authors
in [5] perform data analytics on multi-scanner outputs for Android Applications
to find their behavior patterns.

Actually, AV engines sometimes contain flaws and vulnerabilities that must
be addressed immediately, such as the ones discovered by the authors in [6].
Other authors even argue the impossibility of fighting against Android Malware
through anti-malware system fingerprinting and evasion techniques [7].

Furthermore, AV performance is analyzed in [8], where the authors quantify
how devices’ performance is affected by AV execution, and [9], a characteriza-
tion and evaluation of AV overhead. In addition, the authors in [10] compare
the design of 30 top AV solutions focusing on their detection and prevention
capabilities. In a similar approach, Quarta et al [11] leverage VirusTotal detec-
tions to perform a black-box analysis of its AV engines solely based on input
samples and the outcome from each AV. Furthermore, the authors in [12] raise
concerns regarding malware developers using multi-scanner tools in their loops
and propose a methodological approach to detect them from VirusTotal sub-
missions. Lately, in-cloud AV solutions are getting relevance, as they improve
performance and availability of resources at smaller on-device cost [13].

Concerning multi-scanner tools, works like [14, 15] have shown the advan-
tages of using more than one AV engine to perform malware detection. AV
performance comparison has been studied by the authors in [16], modeling AV
confidence through a hyper-exponential curve over a large set of AV engines
from the VirusTotal Multi-scanner tool. In [17], AV labels from VirusTotal
are subjected to temporal analysis using a collection of malware applications
obtained through a honeypot network.

However, the authors in [2] recall the lack of agreement between AV engines
in certain applications. To alleviate this, the authors in [18] propose a com-
bination scheme for multi-scanner detections based on a Generative Bayesian
model that provides an estimation of the probability that each sample has to
be malware. Lately, and inspired by previous authors, Du et al [19] have de-
veloped a statistical methodology to infer a Ground Truth dataset when this is
not available.

The issue of malware families has been addressed by several authors who
have proposed categorization schemes for Android malware applications. In
[20] the authors find up to 49 distinct malware families whilst the authors in
[21] propose a text mining approach to obtain and classify malware families
according to application code. Similarly, Zheng et al propose in [22] a system
for the collection and categorization of zero-day malware samples into different
families. Additionally, the authors in [23] propose a system to classify malware
samples in their families by inspecting their code and API calls.

Adware has been considered a different type of malware to the rest in the
literature. In [24] the authors consider malware and adware separately in their
Android malware detection system. Also, the authors of [25] acknowledge how



adware is not equal to other type of malware and can affect malware detection
results. Finally, Yang et al argue in their work [26] that adware should be
separated from ”truly malicious apps” to provide undisputed malware detection
results due to the controversy among AVs on whether to label an adware sample.

Despite these efforts, Maggi et al. [27] extensively review the naming incon-
sistencies that AV engines incur in when assigning a class to a malware sample.
Furthermore, the authors of [28] perform a comprehensive analysis of a large la-
beled AV dataset and indicate the necessity of considering various AV engines to
accurately detect threats. Recently, Wei et al [29] have obtained and analyzed a
nearly 25,000 sample-wide dataset through clustering and manual inspection of
each group, providing a large Ground Truth dataset following similar procedures
to AVClass [30].

Sebastidn et al [30] proposed AVClass, a system to normalize AV labels from
different vendors and determine the actual class from the different detection out-
puts for the same applications. Similarly, the authors in [31] propose Euphony,
a system that extracts family names from heuristics and previous knowledge,
homogenizes them across engines through graph analysis and provides the most
appropriate malware family per sample. Recently, we proposed our lightweight
approach to malware family classification: SignatureMiner [32].

The rest of this paper is structured as follows: Sections 3 and 4 recap the use
of SignatureMiner for data collection along with some insights on the dataset.
Section 5 inspects AV engines and signature token correlations to verify and im-
prove the categorization scheme and derive insights and relationships between
them. Section 6 details the training and usage of a Machine Learning classifier
to determine a more specific category for Unknown samples. Finally, Section 7
concludes this article by summarizing the main findings and most relevant con-
clusions.

3. Analysis of malware family classes using SignatureMiner

3.1. Dataset

In this work, we start from a dataset with 82,866 different suspicious An-
droid applications provided by TACYT! in May 2015. TACYT is a Telefonica’s
commercial project that collects Android applications from several markets, in-
cluding Google Play and stores not only the application code itself, but also
meta-information related from the Android market (number of downloads, rat-
ing stars, descriptions, comments from the users, etc). After this, TACYT uses
online multi-scanner systems (like VirusTotal, MetaScan, Jotti, etc) but also
internal scanner systems to identify malware and further investigate the output
provided by the most popular AV engines (Kaspersky, BitDefender, McAffee,
Sophos, Avast, etc), 61 in total. The engines have been anonymized for privacy
reasons throughout the paper with a name in the range AVy,..., AVg;.

1See https://www.elevenpaths.com/es/tecnologia/tacyt/index.html for further details



Although these identifiers typically contain pointers to a reduced subset
of malware types, they typically present completely heterogeneous detection
identifiers that prevent cross-engine analysis of detections. For instance, as
noted in [32], the next list shows the malware signature output by three different
AV engines for the same Android app:

e A variant of Android/AdDisplay.Startapp.B
e Adware/Startapp.A
e Adware.AndroidOS.Youmi.Startapp (v)

There seems to be a consensus between the three AV engines regarding the
malware type of this app, namely Adware. In particular, this app is Startapp
library-based. In order to homogenize such differences, we use the open-source
SignatureMiner tool? to craft a set of normalization rules from signatures and
assign them a cannonical name, such that all detections from any family have the
same name. The SignatureMiner process used to identify and unify signatures
is detailed in our previous article [32].

3.2. Identified Malware Families

After normalization, malware signatures have been inspected, defined and
categorized according their end goal based on information provided by AVs:

1. those looking into fast monetary gain through too many ads (in what
follows Adware type)

2. those looking into more aggressive and intrusive techniques (in what fol-
lows Harmful type)

3. those which engines are unable to properly identify (in what follows Un-
known).

Table 1 shows 41 malware classes (S1,...,541) provided by SignatureMiner
from raw signatures. The table contains the predicate for each rule (regular
expression syntax), family name of the malware class assigned and its associated
broader malware category (i.e. Adware, Harmful or Unknown), along with some
statistics and numbers for each class. Broad categories have been assigned to
each family according to their nature and AV detection signatures. For instance,
S1 contains all the cases of AirPush family class, which belongs to the Adware
category. The AirPush class has been found in 12,802 different Android apps
and received 35, 850 detections from 26 different AV engines.

Next sections overview such three broad malware categories identified in our
dataset.

2 Available at GitHub at: https://github.com/ignmarti/SignatureMiner



# Regexp rule Family Name Category Det. Count No. Apps AVs \
S1 Halir]*push?.* Airpush 35,850 12,802 26
S2 Hleadbolt.* Leadbolt 17,414 4,045 21
S3 Frevmob.* Revmob 38,693 13,680 18
S4 startapp.* StartApp 29,443 11,963 13
S5 [os]*apperhand.* |.*counterclank.* Apperhand 1,606 716 12
S6 Fkuguo.* Kuguo 2,127 1,893 23
S7 wapsx? WAPS 1,546 344 6
S8 Fdowgin. *|dogwin Dogwin 1,098 421 23
S9 Feauly.* Cauly Adware 1,143 626 3
S10 [os]*wooboo Wooboo 220 120 14
S11 [os]*mobwin Mobwin 1,284 249 3
S12 Jdroidkungfu.* DroidKungFu 105 54 3
S13 Jplankton.* Plankton 4,557 741 25
S14 [os]*you?mi Youmi 1,472 370 22
S15 [osoneclick]*fraud Fraud 736 382 19
S16 multiads Multiads 560 555 3
S17 Fadware.*|ad.+ Adware (gen) 33,133 24,515 46
S18 riskware Riskware 1841 1353 14
S19 spr SPR 1,789 1,789 2
20 *deng.* Deng 2,926 2,926 1
S21 Fsmsreg SMSreg 649 440 16
S22 [os]*covav? Cova 1,564 1,296 5
S23 Fdenofow.* Denofow 1,224 610 11
S24 [os]*fakeflash FakeFlash Harmful 1,381 510 15
S25 Jakeapp.™ FakeApp 518 420 14
526 Sakeinst.* Fakelnst 493 401 22
S27 Fappinventor.* Appinventor 4,025 3,113 6
28 Fgwh* SWF 4,651 4,566 10
S29 Ftroj.* Trojan (gen) 23,775 16,851 49
S30 JFmobi.* Mobidash 981 796 16
S31 Fspy.* Spy 1483 1,221 26
S32 Hgin[ger|*master Gingermaster 58 36 10
S33 unclassifiedmalware UnclassifiedMalware 857 855 1
S34 Jvirus.* Virus 959 896 15
S35 Fheur.* Heur 182 179 15
S36 Fgen.* GEN 9,827 9,118 25
S37 [osgen]*pua PUA Unknown 1,249 1,152 2
S38 [ws]*reputation Reputation 2,886 2,885 1
S39 Fapplicunwnt.* AppUnwanted 4,863 4,860 1
5S40 Fartemi.* Artemis 9,662 6,175 2
S41 # (Default Case) Other 10,778 7,880 57
TOTAL 259,608

Table 1: Malware classes, their figures and their SignatureMiner rules



3.2.1. Adware

This category includes those malware classes that abuse advertisement dis-
play for profit. There are in total 60,538 applications tagged with at least one
Adware class. The large penetration of the Adware category in this dataset sug-
gests that a majority of malicious applications within Google Play are adware-
related apps.

e Leadbolt, Revmob, Startapp, WAPSX, Dowgin/dogwin, Cauly, Modwin and
Apperhand/Counterclank are well-known advertisement networks which
are sometimes maliciously misused to perform full screen and invasive
advertising.

e Kuguo is an advertisement library known for the abuses committed by
their developers.

e Youmi and DroidKungFu are advertising services known for being involved
in data ex-filtration episodes.

e Aiurpush is another advertisement network company known for the abuse
of adbar pushing notifications committed by its developers.

e Fraud/osoneclick refers to a fraudulent malware that attempts to increase
number of ad clicks by stealthily settling advertisements in the background
of user interactive applications.

e Adware (gen) tag is a generic reference assigned to those samples that do
not contain more information in them. In addition, some AVs just mark as
Multiads applications those which contain different advertisement libraries
capable of displaying invasive ads.

It is worth remarking that adware is sometimes a controversial type of mal-
ware: advertising is an accepted activity as a way to monetize modern applica-
tions (mobile apps or webpages) and therefore not all advertising can be consid-
ered malicious. As a result, the borders between legitimate and maliciousness
in adware are unclear and different AV engines can have completely different
policies, resulting in a clear lack of consensus between AV engines concerning
Adware.

3.2.2. Harmful

This category includes more dangerous threats, such as enrolling users in
premium services or ex-filtrating data through permission overload or exploits.
29,675 applications have been assigned at least one signature to this category.

e Deng, SPR (Security and Privacy Risk) and Riskware are generic names
given to flag apps that may unjustifiably require potentially harmful per-
missions or include malicious code threatening user privacy.

e Denofow and Cova are generic references to trojan programs which at-
tempt to subscribe users in premium SMS services.



e SMSReg is a generic way to flag applications that request SMS-related
permissions for data exfiltration or premium subscriptions.

o FukeFlash, Fakelnst or Fakeapp are names for applications that replicate
the functionalities of other popular apps adding to their malicious code or
actions.

e Appinventor is a developer platform used to build and generate applica-
tions extensively preferred by malware developers.

o SWEF stands for different versions of Shockwave Flash Player Exploits.
e Trojan (gen) is the generic reference of engines to trojan applications.
e GingerMaster is a well-known family of rooting exploits.

e Spy is a generic reference to applications incurring in spyware threats.

3.2.3. Unknown

This category includes AV detections which do not include class-related in-
formation, either due to generic signatures from AVs or signatures not matching
any rule in the dataset. There are 23,915 applications within this group.

o UnclassifiedMalware, Virus, Heur (from heuristics), GEN (Generic Mal-
ware), PUA (Potentially Unwanted Application), Reputation, AppUn-
wanted (Application Unwanted) and Artemis are generic tags given by
different engines in order to flag applications that are detected as unspec-
ified threats.

e Other includes the applications which have not been classified due to the
lack of signature patterns.

Table 1 clearly displays a certain preeminence of Adware apps over the rest.
In particular Revmob, Airpush and Adware are the most popular signatures
involving many AV engines. Trojan detections are also very popular in the
Harmful category, as it is used by up to 49 different engines. Generally, many
malware family classes are spotted by more than a single engine, with some
exceptions, specially within the Unknown category, where family classes like
Reputation or AppUnwanted are flagged by only one AV engine.

4. Exploratory data analysis

Let A denote the application-AV indicator matrix of size 82,866 x 61 whose
elements A;; € {0,1} are set to 1 if the ¢-th Android app has been flagged by
the j-th engine or 0 otherwise. This matrix indicates which AVs label each
application as malware, i.e. the rows in matrix A are the detection vectors
of each application sample. Matrix A is very sparse with only 5% of all the
entries set to one. On average, each application is detected by 3.1+ 3.4 engines,
suggesting a very large variability.



Indeed Fig. 1 depicts a histogram of application detection counts. As shown,
the histogram follows a heavy-tailed like pattern where most malware applica-
tions are flagged by only one AV engine whilst some few applications get much
higher detection rates. Single-detection applications represent the majority of
cases with a total of 38,933 (46.9% of the total). In fact, no single application
has been flagged by all 61 AV engines, being the highest detection count for
application no. 78,692 with 53 different AV hits.
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Figure 1: AV detection count per application

Fig. 2 shows the activity of each AV engine. As shown, the most active AV
engines are AV27, AV58, AV7, AV2, AV30 and AV32, each one accounting for
more than 10,000 malware app detections.

Fig. 3 represents the popularity of each malware family class (third last
column of Table 1). As previously observed, Adware-related signatures are the
most common cases of flagged malware, in particular some specific libraries like
Airpush, Leadbolt, Revmob and StartApp are very popular. Regarding Harmful
applications, generic Trojan signatures are the most popular ones.

Now, let B denote application-Family indicator matrix of size 82,866 x 41
whose elements B;; are set to the number of times the i-th Android app has
been flagged in the j-th malware category. Scanning matrix B, we observe that
single-detection applications account for 38,933 applications, while the rest (i.e.
43,933 apps) represent apps with multiple AV detections. From these, 27, 781
apps (i.e. 63.26% of them) are assigned to more than one malware family. In
particular, these 27,781 applications receive between 2 and 12 different family
labels (see histogram of Fig. 4). This is another proof for the lack of consensus
between AV engines referred in the literature.
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5. Analysis and insights of malware family classes and categories

As previously stated, we have detected 38,933 Android apps flagged by a
single AV engine. Of the rest (those with two AV detections or more), all AV
detections agree on the exact same malware class in 16,152 cases whereas the
remaining 27,781 apps show some sort of disagreement between at least two
engines. These findings are in line with [27] and [2]: one third of applications
have no clearly defined malware class due to uncertain decisions from some
engines. Sometimes, two engines use different names for the same malware class
but most often it happens that AV engines disagree on the malware type of a
piece of software.

5.1. Correlation of malware categories

Recall that each of the 41 malware classes have been assigned to one of
the three categories defined above, namely Adware, Harmful and Unknown. To
analyze categories, let D, the application category matrix, refer to an 82, 866 x 3
matrix where D;; accounts for the number of times the i-th application has
received a detection in category Adware (j = 1), Harmful (j = 2) or Unknown
(j = 3). The correlation of the columns of matrix D specifies how frequently
each pair of categories occur on the same application. Table 2 illustrates the
correlation matrix of D.

In the table, the Harmful and Adware categories show very weak correlation
(0.06), indicating that, in general, AV engines often do not make many contro-

11



Adware Harmful Unknown
Adware 1 0.06 0.3
Harmful 0.06 1 0.44
Unknown 0.3 0.44 1

Table 2: Correlation of matrix D (Malware Categories)

versial detections involving them both. Hence, it seems that AV engines have a
very strong opinion on whether some app is Adware or Harmful.

However, the Unknown category is confirmed to contain samples from the
other categories whereby AV engines are unable to specify. Actually, the larger
correlation value for Harmful applications (0.44) suggest that these detections
are probably more often Harmful than Adware applications (0.3). In the next
subsections, we further examine the relationships between malware families and
AV engines using graph community algorithms.

5.2. Graph Community Search for Class Redundancies

Graph theory provides algorithms to study member relationships within a
network of entities including distances within the network and inference of look-
alike communities. When using the correlation matrix of any of the aforemen-
tioned matrices A, B or D as the adjacency matrix of a graph, we can leverage
existing graph-theory algorithms to gain insights into both malware families and
AVs.

Hence, starting from matrix B defined in Section 4 we compute its correlation
matrix, i.e. Corr(B) and define a Graph G = (N, E) whose adjacency matrix
is Corr(B). Then, graph G has 41 nodes (malware classes) and the weights of
the edges are equal to the correlation values between malware classes.

Using node edge betweenness [33], we can group together nodes according
to their correlation values to find which malware classes are close together. In
order to avoid generating communities out of noise, we force all correlation
values below some Corr,,;, threshold to be equal to zero.

Fig. 5 illustrates two graphs of the communities formed by different malware
families and the distance dendrogram used to group nodes in their communities.
The case of Fig. 5(a) depicts a noisy graph where the communities displayed are
weakly correlated (correlation thresholds of 0.2 and 0.35 respectively). Essen-
tially, most malware families are isolated unless a sufficiently small correlation
threshold is allowed.

Then, in Fig. 5(b), with a higher Corr,;,, the previous noise disappears
leaving a graph mostly independent, supporting the observations and signature
schemes in Section 3. Nonetheless, there are three relevant communities in the
graph: one larger community formed by three Unknown signatures (AppUn-
wanted, Artemis and Other) and one Harmful threat (the generic token) and
two smaller communities, FakeFlash-FakeApp and Plankton-Apperhand.

The dendrogram of Fig. 5(c) further illustrates the pairwise relationships
between each family class, showing some level of similarity degrees between

12
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certain classes of Adware and Harmful with others from the Unknown category.
There are two very close communities obtained, namely FakeFlash-FakeApp and
Plankton-Apperhand, having moderate-high correlation values of 0.61 and 0.72
respectively.

In conclusion, we observe that low correlation values exist between most
malware family classes except for the above two communities, but still there are
some interesting relationships between certain Harmful and Unknown families
that can be used by the ML classification algorithms of Section 6.
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5.83. Grouping AVs by their detection schemes

We now focus our attention to investigating whether or not some AV engines
potentially detect different malware families and categories. Thus, it is inter-
esting to categorize AVs according to the different detections they perform and
their frequencies. To do that, we rely again on graph-based clustering, using as
adjacency matrix the correlation of BT, which is the transpose of matrix B.

Fig. 6(a) shows the resulting graph containing nodes colored according to
their group (correlation threshold set to 0.35). In general, we observe that most
AV engines belong to certain communities, while a few others (in brown) are
isolated and not correlated with the rest. These isolated AVs are: AV39, AV40
and AV22.

We observe four main communities of AV engines: an Adware related group
(blue), whose most frequent detections are Revmob, Adware, Airpush or star-
tApp; a second Harmful-oriented group of AVs (red), whose main family detec-
tions are Trojan, Airpush, Gen or Kuguo and two broader mixed AV groups
with detections in both categories. The first mixed group (green) shows detec-
tions mainly in Plankton, Adware or Trojan whereas the second mixed group
(orange) show detections in Other, Deng, Airpush or Leadbolt.

These groups illustrate that some engines often incur in similar detection
patterns, either by focusing on specific families (the broader categories afore-
mentioned) or, by making more varied detections. It is worth noting that the
mixed yellow group includes more families from the Unknown broad category
as well as slightly more families from the Harmful categories. On the other
side, the darkgreen cluster seems to include detections from both Adware and
Harmful categories.

Oppositely, the isolated AV engines tend to aggregate all families from the
Unknown category which are more specific to just one or very few AV engines.
As a result, these isolated AV engines are unable to produce accurate detection
information and have to stick to very generic detection names, such as Heur,
GEN or PUA.

Finally, Fig. 6(b) depicts the dendrogram after applying hierarchical cluster-
ing to matrix B, showing pairwise comparisons between AVs. Again, the above
isolated AVs are indeed separated from the rest while other AVs are very close
together, like AV61 and AV60. The colors used in the groups are consistent
with the graph communities.

6. Identifying Unknown Category malware

As shown in previous sections, the malware families within the generic Un-
known category are often closer to Harmful than to Adware cases. This section
aims at further analyzing the malware families within the Unknown category,
making use of Machine Learning (ML) algorithms.

Essentially, the idea is to train an ML classifier to identify the malware
category for each data sample (i.e. each app), and provide a binary decision
(Adware or Harmful) using as features only the decisions made by the 61 AV

14
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engines. This classifier has a twofold objective: (i) To provide a fast categorical
assignment system based on each AV decision, and (ii) to further identify which
AV engines are more powerful at detecting each malware family (Adware vs
Harmful). To this end, we consider two ML classification algorithms: (i) Logistic
Regression (LR) due to its ability for probability estimation and interpretability
and (ii) Random Forest (RF) aiming at maximizing prediction accuracy and F1-
score metrics.

Starting from the hypothesis that all apps in our dataset represent some
type of danger to the user or malware (soft Adware or dangerous Harmful)
since they have been flagged by at least one AV engine, we construct a Ground
Truth labeled dataset using the following methodology: First of all, in the vast
majority of cases (46.9% apps as shown in Fig. 1), apps are flagged by only one
AV engine, so in these cases such apps are directly assigned to either Adware or
Harmful class accordingly. In cases with more than one AV engine label, we use
majority voting to assign the Adware or Harmful label to each Android app to
generate a Ground Truth dataset; for instance, if a given app has been flagged
by three AVs where two of them say that this app belongs to Adware while
the third one says it is Harmful, we assign the Adware label to it. In case of
a draw (for instance, two AVs one indicating Adware and the other suggesting
Harmful) we consider this app as Unknown. The idea is to use an ML classifier
trained with this Ground Truth labelled dataset to identify the Unknown apps
which have very generic and meaningless signatures. Furthermore, the use of
AVs as features in the ML model allows to identify which AVs are more accurate
at detecting each family class: Adware or Harmful.

The Logistic Regression algorithm has been regularized to improve its per-
formance in the analysis of AV engine contribution: regularization performs
embedded feature selection by adding a constraint to the optimization function
that forces less-relevant AVs’ contribution to be reduced to zero, while other
engines are associated with a weight according to their relevance for harmful
detection (positive contribution) or adware (negative contribution). There are
several regularization schemes in Logistic Regression, being the two most-widely
used the lasso (¢1) and ridge (¢3), which penalize attributes according to the
norm and the norm squared of the coefficients respectively. We choose lasso reg-
ularization as it typically performs better when applied to binary feature-sets.

To train and validate both algorithms we use the samples in the Adware and
Harmful categories first, assuming as label the category they fall into. Hyper-
parameter tuning is performed using classical 10-fold cross-validation; this helps
to adjust (i) the regularization parameter (C) in Logistic Regression and the
number of trees in the case of the Random Forest.

Table 3 displays the performance results for both ML algorithms during
training and validation, showing F1l-scores above 0.75 for Logistic Regression
and 0.84 for Random Forest. The table reports accuracy (Acc) and F1 (F)
scores for both training and validation which correspond to the cross-validation
and the hold-out validation datasets respectively. After cross-validation, the LR
algorithm is optimally configured with a regularization parameter (C) of 53.204
while the RF model is optimally configured to have 166 trees. As expected, RF's

16



outperform LR in terms of accuracy showing outstanding results (0.92 accuracy
test).

Table 3: Train and validation scores over the defined categories data
‘ Algorithm ‘ AcCirain  AcCyal  Firain Foal ‘
Logistic Regression 0.895 0.894 0.758 0.757

Random Forest 0.935 0.927  0.859 0.841

T T T T T T
6 -4 -2 0 2 4

Figure 7: Computed weights after ¢1 logistic regression. Positive weights indicate more
harmful-aware AV engines and negative ones more adware-aware engines. Zero weight en-
gines are those which detections are irrelevant for classification

Let us now focus on the AV weights provided by LR. Fig. 7 displays the AV
weights marked in color to the category they contribute most, namely Adware
(blue) vs Harmful (red). At a first glance, we observe that there are slightly
more harmful-aware AVs (31) than adware-aware ones (26).
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The results of Fig. 7 are consistent with those of Section 5: AV engines like
AV50 and AV2 which appear in the adware groups of Fig. 6 have also a low
LR coefficient in Fig 7, while those AV engines in harmful groups like AV8 and
AV26 have large LR coefficients.

Furthermore, the darkgreen engines in Fig. 6(a) have weights near zero,
thus suggesting that they are specialized at both Adware and Harmful. On the
contrary, the orange group, that had the larger proportion of Unknown category
samples, contains some of the highest weighted engines in the Harmful category,
like AV54 and AV61.

Finally, we have used the trained RF model to classify the apps in the
Unknown malware category. As a result, we observe that 51.5% of the samples
are classified as Harmful while the remaining 48.5% belong to Adware. This
result is in-line with the correlation experiments of 5 which already indicated
that there is a majority of Unknown samples belonging to Harmful category.

Table 4: Amount of harmful samples detected at each family in the unknown category

’ Family \ Virus Heur GEN  PUA Reputation Artemis  Other SINGLETON‘
]Harmful \ 83.48% 47.87% 34.63%  50% 61.8% 41.66%  39.98% 38.77% ‘

Furthermore, Table 4 indicates the amount of applications of each malware
family in the Unknown category that are identified as Harmful by the classifier.
As shown, most apps tagged as Virus fall in the Harmful category, while the Gen
family class is closer to Adware. Within Reputation, there is a majority of apps
falling within the Harmful class while Artemis, SINGLETON and OTHER are
closer to Adware. There are two signatures missing: applicunwt, which is not
selected as target family in any case by majority voting and unclassifiedMalware,
which appears only once and is classified as Adware.

7. Summary and conclusions

This work has analyzed 259,608 malware signatures from 82,866 different
Android applications flagged as malware by at least one out of 61 AV engines.
The signatures have been normalized into a common namespace using the Signa-
tureMiner tool to enable cross-engine analysis. Then, malware signatures have
been inspected discovering an adware-dominated ecosystem where families can
be summarize into three categories: Adware, Harmful and Unknown according
to the risk and nature of each threat.

As shown, Adware and Harmful apps are typically independent and robust,
but generic signatures in the Unknown category do not provide further informa-
tion on the nature of the risk. Using graph-community algorithms and hierar-
chical clustering we have identified which signatures are close together belonging
to a group with similar threats, and also identified which AVs are more focused
at detecting each malware category.

18



Finally, Machine Learning classifiers have been shown to provide not only
malware categorization but also AV engine weighting and adware-harmful prob-
ability estimation. These ML models provide outstanding classification results
(F1l-score of 0.84 in test) and have shown to further identify some of the Un-
known family classes into either Harmful/Adware threats.
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