BNl ORCA - Online Research @ Cardiff

PRIFYSGOL

CARDYB

This is an Open Access document downloaded from ORCA, Cardiff University's
institutional repository:https://orca.cardiff.ac.uk/id/eprint/121960/

This is the author’s version of a work that was submitted to / accepted for
publication.

Citation for final published version:

Stefanic, Polona, Cigale, Matej, Jones, Andrew C., Knight, Louise , Taylor, Ian ,
Istrate, Cristiana, Suciu, George, Ulisses, Alexandre, Stankovski, Vlado, Taherizadeh,
Salman, Salado, Guadalupe Flores, Koulouzis, Spiros, Martin, Paul and Zhao,
Zhiming 2019. SWITCH workbench: A novel approach for the development and
deployment of time-critical microservice-based cloud-native applications. Future
Generation Computer Systems 99 , pp. 197-212. 10.1016/j.future.2019.04.008

Publishers page: http://dx.doi.org/10.1016/j.future.2019.04.008

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting
and page numbers may not be reflected in this version. For the definitive version of
this publication, please refer to the published source. You are advised to consult the
publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for
publications made available in ORCA are retained by the copyright holders.

Accepted Manuscript o

FIGICIS!
SWITCH workbench: A novel approach for the development and RSt e

deployment of time-critical microservice-based cloud-native applications

s

Polona gtefanié, Matej Cigale, Andrew C. Jones, Louise Knight, ==

Ian Taylor, Cristiana Istrate, George Suciu, Alexandre Ulisses, B
Vlado Stankovski, Salman Taherizadeh, Guadalupe Flores Salado,

Spiros Koulouzis, Paul Martin, Zhiming Zhao

PII: S0167-739X(18)31094-X
DOI: https://doi.org/10.1016/j.future.2019.04.008
Reference: FUTURE 4889

To appear in: Future Generation Computer Systems

Received date: 8 May 2018
Revised date: 2 March 2019
Accepted date: 3 April 2019

Please cite this article as: P. Stefani&, M. Cigale, A.C. Jones et al., SWITCH workbench: A novel
approach for the development and deployment of time-critical microservice-based cloud-native

applications, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.04.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.04.008

SWITCH workbench: A novel approach {~r Jhe
development and deployment of time-criical
microservice-based cloud-native aprpdcs.cioas

Polona Stefanic**, Matej Cigale®, Andrew C. Jones , Lous = Knight?, Tan
Taylor®, Cristiana Istrate®, George Suciu®, Alexan.re [Isses¢, Vlado
Stankovski?, Salman Taherizadeh?, Guadalup - Fle-~s Salado®, Spiros

Koulouzisf, Paul Martinf, Zhim. -, Zhs of

@ Cardiff University, School of Computer Science u. 1 Informatics, UK
YBEIA Consult Internation.” Roma iia
*MOG Technologies, .”~rtuy..
4 University of Ljubljana. St ~nia
¢ Wellness Teleco. ~ Spain
TUniversity of Amsterdam, . ~therlands

Abstract

Time-critical applications, such as eariy warning systems or live event broad-
casting, present particular cualic ~ges. They have hard limits on Quality of
Service constraints that n.. st be naintained, despite network fluctuations
and varying peaks of loas.. Cons. juently, such applications must adapt elas-
tically on-demand, and <0 r.ust be capable of reconfiguring themselves, along
with the underlying - 1oua ~f astructure, to satisfy their constraints. Soft-
ware engineering tc o, and methodologies currently do not support such a
paradigm. In this naper, we describe a framework that has been designed
to meet these o' jec ives, as part of the EU SWITCH project. SWITCH
offers a flexible cc rogramming architecture that provides an abstraction
layer and an nd rlying infrastructure environment, which can help to both
specify and s.»oort the life cycle of time-critical cloud native applications.
We descri’e the wochitecture, design and implementation of the SWITCH
compone 'ts anc describe how such tools are applied to three time-critical
real-world (-~ _ases.

*Cor. ~ane ding author

T il address: StefanicP@cardiff.ac.uk (Polona Stefanic*)

Preprint submitted to Special Issue of FGCS March 1, 2019

Keywords: Time-critical applications, Co-Programming moa.'
Component-based software engineering, Quality of Service, \ alit, of
Experience, Graphical service modelling

1. Introduction

Many industrial time-critical applications, such as ‘'isas’cr early warning
systems, video conferencing, online gaming or li-e ev -t broadcasting have
highly time-critical requirements for their perform. ce ar d present particular
challenges for successful development, deployme.. “ and maintenance. They
can only achieve their expected business valu~ and ot tstanding social impact
if they meet time-critical requirements, suc™ as . °7a performance, portabil-
ity, availability, resilience and responsiveness. . “rthermore, they must pre-
dict and cope with (unpredicted) peaks o. 'oad and offer rapid elasticity of
on-demand computing resources and r ~~»ficurability of underlying cloud in-
frastructure in order to meet the desire ' Juality of Service (QoS) (e.g. low
response time and jitter) and Qual. , of 'xperience (QoE) (e.g. delivery of
ultra-high definition television feeds) onstraints.

Time-critical applications otte® mvoive distributed components and in-
tensive data communication and may 1aclude remotely deployed field sensors
in various geographical locsvion.. However, the design, development and
deployment of such applic. *ions ¢ -e usually difficult and costly due to de-
manding requirements fo' the v. *aal runtime environment and sophisticated
optimisation mechanisr :s n .ede 1 for integrating the system components and
provisioning the enti'e ap, 'ication. The cloud ecosystem provides elastic,
controllable and on- .. »and services which can support complex time-critical
applications. However, the.e is a lack of software engineering tools and meth-
ods for developr.ent deployment and execution of such applications that
would include pro. ammability and controllability provided by the Clouds.
Consequently tir.e-critical applications cannot get the full potential bene-
fits from clo.-Dase 1 technologies. Therefore, it is necessary to introduce
novel soft . ace tou's and approaches able to support fully the entire life cy-
cle of tin e-critic Al applications for enhanced and optimised QoS by offering
controllabic »» | programmable features, such as (graphical) modelling of an
appli ation "ogic and workflow, infrastructure planning and provisioning, etc.

Ty = aim of our research was therefore to assure self-adaptation, scalabil-
it; ~orvice availability and resilience by devising an application-infrastructure

co-programming model and architecture that will provide a cc tr- tlable and
programmable environment for the creation of the application '~gic . 2d work-
flow, enable reconfigurability of on-demand computing res ... -ces «1d under-
lying virtual runtime infrastructure, according to applics tior necds.

The application-infrastructure co-programming model . =s a unique ar-
chitecture supported by three subsystems: SWITCH T iterac “ive development
Environment (SIDE), Dynamic Real-time Infrastructu e Plar ner (DRIP) and
Autonomous System Adaptation Platform (ASAP;. 5IDk provides a Graphi-
cal User Interface (GUI) for creation of software cc m* one 1ts and composition
of an application’s logic and workflow, and for 1. ~nit<~ag and control of ap-
plications. Furthermore, it allows mapping applica ion logic and workflow
into TOSCA (OASIS Topology and Orchesti.“ion Specification for Cloud
Applications) [1], direct manipulation of TO. A fragments, and graphical
modelling of docker compose files. The = 'w1r subsystem is responsible for
infrastructure planning, provisioning, deploy.. 2nt and execution of applica-
tions in the virtual cloud infrastructure A .>ArP provides monitoring services
and facilitates scaling of applicatio ~ ala m triggers and self-adaptation.

The rest of this paper is organi~a ~s follows. Section 2 provides an
overview of the related work. Sec ... 2 r-esents the application-infrastructure
co-programming model. In Section 4 ve introduce the general SWITCH ar-
chitecture with its subsysternr-, TOSCA orchestration standard and software
engineering workflow in SW(TCH. The example time-critical industrial cloud
applications that implem-nt .*VI,'CH are described in section 5. We reveal
the results of the evalv .tio. in Section 6 and finally, we discuss future re-
search options and conci. e t!e paper with Section 7.

2. Related Work

SWITCH is . ~t 7 a isolated project; there are several other groups working
on related pr- blems, dealing with application composition, orchestration,
deployment .nd adatation of systems and workflows. However, SWITCH
is unique since .. is focused on time-critical applications, which are arguably
the harde st to « pport in the current cloud ecosystem.

2.1. ("Cud-vused frameworks and methodologies

T e ARUCADIA methodology [2] offers deployment to multi-clouds and
automa.’ " .cal-time reconfiguration of applications. It relies on the modelling
ot =01 wa.e components in order to compose applications. Although the

framework provides orchestration, Multi-Cloud deployment a. 1 -, drag and
drop service graph manager, it does not allow additional Q. pro, rties to
be attached to the components (e.g. QoS constraints, hard-,. -e rey airements
etc.); neither does it offer TOSCA manipulation.

Two service modelling tools exist for creation of Cloua . »plications and
services. Juju [3] is a component-based graphical me telling tool for service-
oriented architectures and application deployments, ~fferir z sets of prede-
fined software assets and the relationships betweer. vwuem tnat contain knowl-
edge of how to properly deploy and configure sel. ~t- a se "vices in the Cloud.
The other tool is Fabric8!, a platform using Dc ~ker ~-—.d Kubernetes as vir-
tualisation and orchestration technologies respective’y. It supports creation,
deployment and continuous integration of micicerv'ces. However, these two
service modelling tools do not have specific pic risioning for time-critical ap-
plications, and do not offer infrastructui. nianning and provisioning.

On the other hand, the MODACIouds |4, methodology supports devel-
opment of time-critical applications in *h¢ cioud but lacks support for soft-
ware defined networking as a mear - of «'lowing programming and control-
ling the cloud infrastructure for pericri. nce optimisation; also it does not
offer TOSCA manipulation and ..., g. Finally, the CloudWave [5] and
SSICLOPS [6] methodologies focus 0. tools for runtime monitoring of appli-
cations and services wherebs “"oud services may accommodate changes in
their requirements and cor ext an ! meet their expected quality constraints.
The CloudWave methodclogy ~rcposes an architecture and implementation
of Cloud benchmarking ' veb services, however, it only measures and compares
the disk speeds of diffore. " ins ances and storage types in Amazon EC2 and
does not take into ¢ nsideravion the dynamic nature of the incoming data
streams to deployeu VM. ~r containers, which is one of the requirements of
the SWITCH prc jec .

Pegasus [7] €. ~0 apasses an architecture and a set of technologies for ex-
ecution of wo’ sflow-1L. sed applications in a variety of environments, such as
clouds and ¢ "ids, by automatically mapping pre-created high-level scientific
workflows f=om "¢ scientific domain to their execution environment. Simi-
larly, Ap che A.-avata [8] enables composition, execution and monitoring of
large-scalc appl‘cations and workflows on distributed computing resources.
It suy ports long running application workflows on distributed computational

"7 +4n-/ /fabric8.io/guide/overview. html

resources. However, in terms of flexibility Pegasus and Airava.~ d) not offer
modification of any orchestration specification standards (e.y TOGIZA) nor
do they support containerisation. The lack of support for | “ogra.amability
and controllabillity of application composition and the -~.nde.lyi.g architec-
ture mean they are not suitable for time-critical applicatio..-

The MiCADO [9] cloud orchestration framework mvest 'gates how auto-
matic orchestration can be applied to cloud applicatio. s. As un orchestration
standard TOSCA is used. However, this framewc.x does not support map-
ping QoS notations into TOSCA, e.g. compone 't-".ase . hardware require-
ments, environment variables (an important rey, “irer: .t for SWITCH).

2.2. Cloud Infrastructure related provisioning ~mpro .ches

Ensuring high QoS for real-time Cloud sy.*ems requires specialised in-
frastructure [10]. Infrastructure progra.. mapiity and advanced virtualisa-
tion technologies, such as Software Defined N *working (SDN) [11] and Net-
work Functions Virtualisation (NFV) 12 | provide good flexibility in how
infrastructure is managed and func ‘ons . ve deployed [13]. Time-critical re-
quirements may be concerned simply vi."> speed, e.g. minimising latency, or
jitter, e.g. ensuring latency is 1. -,. = sistent [14]. For custom infrastruc-
ture planning and optimisation, teci. ~iques such as multi-objective optimi-
sation [15, 16] can map appl’ . *ion requirements to infrastructure resources
more effectively. This can t'1en be 1sed to identify violations of Service Level
Agreements (SLA) [17]. For e..~mple, deadlines on the critical paths through
media application work”.ow’ can be used to select virtual machines [18], au-
tomatically provisioning ‘1em even across multiple sites [19]. Transfer of
application data car “hen be scheduled efficiently to the best sites [20, 21].

A taxonomy of (fede. ted) Cloud computing environments is provided
by Toosi et al. [72]. The semantic modelling of infrastructure and network
may be needed ..~ “aore intelligent infrastructure planning and monitoring.
For example, VMIADL [23] uses an ontology to describe infrastructure for the
storage, trar 'mo tation and display of high-definition media; INDL provides
ontologies for p. ~crammable network and infrastructure [24]. Such mod-
els migh!t be ux~d to extend cloud system specification standards such as
TOSCA |51, NDOL-OWL [26] provides a Semantic Web model for networked
cloud orchestration modelling network topologies, layers, utilities and tech-
nolog es; it € xtends the Network Description Language upon which INDL is
based awn.. uses OWL. Efficient provisioning is crucial for the enhanced QoS of
ruw Mir g applications. Therefore various optimisation approaches are highly

desired, such as Multi-criteria optimisation approach for the 1. ~n‘.gement of
Non-Functional Requirements [16].

2.3. Adaptation and monitoring related approaches

Most adaptation research has focused on finding soluv."ns for systems
that use heterogeneous infrastructure but homogen :ous ¢ 'mponents. For
instance, A. Llanes et al. [27] developed a system "o bal .nce ant colony
optimisation tasks on heterogeneous infrastructv e. P gamshidi et al. [2§]
presented a system based on fuzzy logic and the v erf(uard [29] team de-
veloped a system that can predict performance ~ased _n low-level metrics.

Cloud applications are affected by more than jus performance of the in-
frastructure. Network characteristics between s hsv tems also play a crucial
role, as noted by D. Kliazovich et al. [30] with J~eir CA-DAG model. In that
work, the authors present Communicatic Aware Directed Acyclic Graphs
(CA-DAG) used to model not only the perfor.1ance of components but also
the communications between the comp e ats.

2.4. Gap analysis

SWITCH focuses on applicat. » <. position using modelling graphs and
reconfiguration of underlying cloud 1._frastructure — by describing the func-
tional and Non-Functional R~ . ‘rements. The application-infrastructure Co-
programming concept is p edicate 1 upon rapid infrastructure provisioning,
deployment and reconfig-irabi.’*v according to network and cloud environ-
ment circumstances. Ir adcition to application composition, an application
must be monitored, acap. g i’ according to criteria specified by the software
developer. Although ~me elements of the SWITCH approach appear in prior
work and systems, SWI'L U brings these together and provides an integrated
architecture and nv -onment for application-infrastructure co-programming
of an application. v .th time-critical constraints.

3. The con.~ ¢t o’ application-infrastructure Co-Programming

Sever | part.-ipants are involved in developing modern complex systems.
The comp nent developer is the person that creates or modifies application
comp .nents. for instance a database. (S)he can add monitoring to these
comy »nents n the form of prefabricated probes or special application-level
metrics. “.ce a component has been created it can be added to the repos-
ite v e.au its requirements and functionality described in SIDE. Note that a

component developer can use a preexisting component and sii. »lIv make it a
SWITCH component by describing it in SIDE.

The application developer binds these prefabricated cor., »nen.; together
into an application while deciding different properties, s ch ¢ s w..at network
they are part of or what port they are using, and sets 1p . Jitional param-
eters such as the Alarm Trigger, etc. The applicat on us v uses the final
application. (S)he can monitor the application and t1 ~ger a (aptation, if the
system was set up in this manner.

The application-infrastructure co-programmir » r.ode (see Figure 1) pro-
vides abstractions and mechanisms to suppoi. Qof “aroughout the time-
critical cloud application life cycle, by means of p1. grammability and con-
trollability of application logic and reconfignra. itv of the underlying infras-
tructure.

Programmability Controllability
Middleware services ;‘\
. \\‘

Modeling graphs “) Monitoring the behaviour of
: S time-critical applications
Drag & drop component creation MCH T T
Drag & drop application composition Controlling the workflow of the
application composition

QoS modeling of software componer . The concept Pf
_ " S C. Programming Controlling the entire
Application composition verificatir - model application lifecycle

TOSCA verification

Figure 1: The concept " the application-infrastructure co-programming model which,
through programmability ana . ~ntrollability, considers both the creation of the application
logic and workflow # 1d . 1anipulation of the underlying (cloud) infrastructure.

Programm .bility ° a system is its ability to be changed or manipulated,
using instruc ior s (e . from the software developer) that alter its behaviour.
Controllabi’*ty 15 ~ system property that denotes measuring its state, manip-
ulating it s outp. ts and monitoring/controlling its behaviour.

In the YWIT CH workbench programmability is supported as follows: (1)
applir ation logic can be programmed using graphical modelling graphs with
the ¢onsideration of an application’s QoS parameters; (2) a virtual run-
time en...onment for executing the application can be programmed using
D1 TP aunudleware services for the manipulation and reconfigurability of the

7

underlying infrastructure (e.g. Software Defined Network) a. 1 < n-demand
resources; (3) programmable mechanisms are provided for « nloy. ent and
adaptation of time-critical cloud applications; (4) QoS pr., =rtie. to be at-
tached to components can be created programmatical'v as weii. In con-
trast, controllability is achieved by (1) monitoring the be. aviour of time-
critical cloud applications and the underlying infrast: acturc at runtime (e.g.
monitoring various metrics related to the applicatio. and ‘¢s present state
at runtime and offering possibilities to influence ‘tcconnigure infrastructure
properties if QoS is affected), and (2) controlling “h- wo1 xflow of component
creation and application logic (e.g. by applyin, veri® ation mechanisms to
verify the correctness of application logic and also t1 » correctness of TOSCA
in which application logic is mapped). SWITU™ cbecks that all constraints
the component needs are provided and that ti.> YAML description is valid.

3.1. Co-programming in comparison to Deuv*ns and Software Defined Net-
work

DevOps [31] is the combinatior ~f cu'tural philosophies, practices, and
tools that increases the speed of app.'ca.'on delivery. It automates the pro-
cesses between software develop. =.. ~* 1 I'T teams for faster building, test-
ing, and releasing of software. The ‘ypical life cycle of an application in
the DevOps process encomps .. = planning, building, continuous integration,
deployment and operation Therc are concrete tools and frameworks that
support DevOps, such as Che ? 2.1d Jenkins®. On the other hand, Software
Defined Network (SDN' off rs abstraction of the network domain, and pro-
vides programmability o1 _ e r :twork configuration. This means the network
should therefore be ~ore flexible and suitable for rapid changes. However,
neither approach oirers p. ~grammability of the application logic or workflow
throughout the e .t application life cycle.

The applicav. n mfrastructure co-programming model, however, offers
both program nabhility, and controllability in the application logic design and
development apr (in he planning and provisioning of the virtual cloud infras-
tructure ac=~ss . = entire life cycle of time-critical applications. The unique
abstracti m of t. = co-programming model, supported by the SWITCH archi-
tecture, is desicaed to provide increased productivity of application design

2hty, <:/ /w vw.chef.io/
3httns:/ /jenkins.io/

and development, improved planning and provisioning and dc lo ment effi-
ciency, and improved QoS control efficiency. Co-programming <ive. the con-
trol over the application workflow and infrastructure to t'.c deve.sper, pro-
viding the ability to specify the constraints of the contair >risr d n..croservice-
based components or system during development, thus maxs. o sure that the
developed components act in the manner they were in endec This minimises
the chance of errors during creation, provisioning anc. deple ment.

4. SWITCH architecture

In this section, the architecture of SWITCh -~nd its three subsystems
(SIDE, DRIP, ASAP) is presented (see Figui. 2). Tt 2 idea behind SWITCH
is that the SWITCH subsystems are deplo, > 1. « shared environment for
use in development of multiple applicatione

SIDE 7\
. , Bac.? Frontend
=) Luiango |
| / =

0, 'S TOSC/ N

ASAP
Information
Service

Self
Adapter
Performance
Diagnoser

kube’ etes

Deployment d(CkQ’

/ Provisioner

Agent

.&A o
Control >
Agent A
N (]
/ (f'd Application I T ‘ﬁﬁ
3 =
Catasopin OBR o [component | |\ 15 Gy iargon]
M. ring (aorm)22 —
= (2 S '
~UTrigger J<—/ Probe I\
l\‘ === 1| Application Monitori —|
~ - | t onitoring
l u : V"tua‘ : comp?ne.n Adapter I GXOGENI
A V4 Machines 1| [*pion |
| | e}

Figure ?: Ove all architecture of SWITCH. The main components of the system, SIDE,
DPTP ana aASAP are colour-coded. Technologies used are identified by their icons or logos.

4.1. SWITCH Interactive Development Environment (SIDE)

SIDE is the interactive GUI of the SWITCH workbench. ™ otices inter-
active service modelling graphs for the design of the ap ucation workflow
for containerised microservice-based cloud-native applicc “ior 3, and supports
tasks including the following: component creation, apr'icati.» composition,
application validation, infrastructure planning, provis oning, deployment and
monitoring (see Figure 3). SIDE captures the applica ion-i-.frastructure co-
programming concept by giving the developer op .ions or describing the re-
quirements, constraints and underlying infrastruc--.e of a system.

The SIDE frontend* is a GUI implementea -sing EmberJS technology
which comprises several views, such as a ccraponer § creation view and an
application composition view. For the act al c.~~"1on of modelling graphs
the JointJS library is used and the Ember moau.'s are built on top of this.

The SIDE backend® uses the Django 1. ~mework. It interacts with Ember
Models, which provide the informatir= on hcw to present the application
modelling graphs. The description of a < pplication’s logic and workflow is
mapped into TOSCA YAML form.. Th Django-based code validates the
application as well. It checks if QoS pra.aeters attached to the components
are composed correctly, i.e. if the, aic o nerated into a valid YAML file, and
if all mandatory parameters (e.g. hardware requirements, such as number of
CPUs, amount of memory, e’c., ‘or the specific component are defined. The
backend communicates wit » other SWITCH subsystems by calling the APIs
of DRIP and ASAP anc prov. <5 generated TOSCA in which application
logic and workflow are ma ypec. Furthermore, the SIDE backend receives
the returned TOSCA for lar ning and provisioning and presents it to the
software developer c. NevOps engineer.

From the software de.zloper’s perspective, SIDE supports creation of
the detailed spec rice sion of a system with dependency modelling graphs by
dragging and droy. ~'ng components (e.g. containerised software created from
images pulled from DuckerHub) onto a canvas, setting values for properties
and linking he n tr specific components (see Figure 3). Moreover, using
modelling _.aphs, reated components can be suitably linked to one another
to define she ent re application logic and workflow and therefore describe the

ht ;ps://g1 hub.com/switch-project /SWITCH-version-2/tree/master/SIDE /side-
ember
httns:/ /github.com/switch-project/SWITCH-version-2/tree/master /SIDE /side_api

10

&, SIDE % BEIA 2.1 = Properties # Composer [TOSCA oggedi’ is & CardiftAdmin »

————— | —— 7
i B | Add new Component Group | ESme & validate & g m
@ BEIA_nolify_asterisk
: ® —_—
monitoring_agent L
@ data

Voiumes M e a ——
BEIA_data_collector / BEW alester i

Ll (o I
BEIA_web @ %
- NS ; tor s
il / - o monitoring_ “ent o5 constraint
. web
Py N \ froet
L= i T »
valumes . BEIA Graphite { T —ia BE:. _web
s Ul - | " Vo[umes
~~_ . _BEIA_Graphar
i -
Monitoring._Adapter_v2 monitoring_server ‘

se>

f '\ ,—\Pon Mapping

% hw requaremen —
\ €
N\ nvironmental_vanables

'\\Qua.‘, ..ve Metadata Markers
SIDE .00 /‘ \

Figure 3: Example of an application compos. i m in the SWITCH workbench. In the
magnifying glass all properties that can b. .’ ~kea o the component and set as constraints
are shown. The entire modelling graph pres. nts “he application composition of the BETA
use case. It is made up of various cor. ... ~»ts< €0 which properties are attached.

s
-

Fw_requirement

entire cloud native applicatic u. "he specification of the system and underly-
ing infrastructure can be ac led as vell. Before mapping the application logic
into TOSCA, application comp. ~"Jion is verified and validated for errors (e.g.
missing QoS parameter . or ncenpatible components linked to one another).

An additional nov’ ity . >at goes beyond the project’s objectives is the no-
tion of Qualitative . *adata Markers (QMM). These are suitable for mod-
elling software componen.; and were integrated into SIDE as a proof-of-
concept. They r.ve nsight into which time-critical requirements have the
greatest impact . he QoS. A QMM provides probabilities, showing which
parameters h .wve “he greatest correlation with the QoS of a particular soft-
ware compo..”n’ [37,. According to this information, time-critical require-
ments car e cow «dered for further analysis since they are crucial for the
applicati n’s Qo 5. The time-critical requirements with the greatest (positive
or negative' infuence on the QoS of the entire Cloud application can be ex-
chanys ed bel veen middleware services and are sent to a Multi-criteria decision
makii moc ale. Time-critical requirements are usually mutually conflicting:
al*~ring one parameter usually has profound effects on the others. For ex-

11

ample, increasing the availability of an application requires inc ~a ed system
redundancy, which can mean high operational costs. Selecti..~ the ~ost op-
timal trade-offs between multiple application runtime pa-..etei. can be a
time-consuming and error-prone process, especially if ¢onsi eriug complex
Multi-Cloud environments. Our novel approach can helb s *ware engineers
in the decision-making process to narrow down the nu-aber ¢ virtual machine
instances to an optimal number according to definec confl’ :ting objectives
(e.g. response time, monetary cost, etc.) [16]. A~ pication components can
then be deployed to these instances.

4.2. The Dynamic Real-time Infrastructure Planne, (DRIP)

DRIPS is an open source service suite for ~uts matically planning and
provisioning networked virtual machines (Vun:-), deploying an application
components and managing the resulting -nirastructures at runtime. DRIP
provides a holistic approach to the optimisav.>n of resources and the satis-
faction of application-level constraints . 1c’. as deadlines or SLAs. DRIP can
provision a virtual infrastructure a -2ss s veral cloud providers, and can be
used to start, stop and resume execu‘io.. of application components on de-
mand. In particular, use of Oper. 1.7 “omputing Interface (OCCI) enables
provisioning on multiple clouds and 1v . 1pports various orchestration systems,
such as Docker Swarm and "Z_“ernetes. These functionalities are essential
application-infrastructure « o-prog: amming, providing application developer
with the ability to create sysv.ms that will meet their requirements.

The DRIP services /as s1own in Figure 2) include:

e An infrastruct' e planuer, e A knowledge base,

e An infrastruc ure , vovisioner, e The DRIP manager,

e A deployme .. hgent,

e Infrastruct ire -ontrol agents, e An internal message broker.

The infra tru ture planner uses an adapted partial critical path algorithm
to produce e, “ent .nfrastructure topologies based on application workflows
and const aints by selecting cost-effective VMs [18], customising the network
topology across /Ms. The infrastructure provisioner can automate the pro-

visioni» = o1 ..., astructure plans produced by the planner onto the underlying
infra; tructu. 2; it can decompose the infrastructure description and provision

‘htt s.,, github.com/switch-project /SWITCH-version-2/tree/master/DRIP

12

it across multiple data centres (possibly from different provide.) -/ith trans-
parent network configuration [19]. The deployment agent insv. s ay plication
components onto provisioned infrastructure. The deploym- ... agei.. is able to
schedule the deployment sequence taking network bottls aec’ s 1.0 account,
and to maximise the fulfilment of deployment deadlines [21,. The infrastruc-
ture control agents are sets of APIs that DRIP provides t applications to
control the scaling of containers or VMs and for adapt ng net work flows. The
DRIP manager is a Web service that allows DRIP .uactions to be invoked by
external clients. Each request is directed to the arrop iate component by
the manager, which coordinates the component.. ~nd ~~.les them up if neces-
sary. Resource information, credentials, performance profiles and application
workflows are all internally managed via ar in. *na’ knowledge base.

The provisioner’s default provisioning intei.~<e is OCCI; it currently sup-
ports the Amazon EC27, EGI FedCloud’ 'na rxoGeni® clouds. The deploy-
ment agent can deploy over Docker clusters ‘e.g. Docker Swarm, Kuber-
netes), and can deploy customised appl. “at ous based on Ansible playbooks!®.

DRIP requires an application <" ~scrij “ion from the software developer,
identifying the specific components t. Lo deployed along with their require-
ments, dependencies and constrc «w.. " his must be complemented by infor-
mation about infrastructure resource” (e.g. VM types and network band-
width) obtained from the cle=. nroviders. When a planning request arrives
from SIDE (initiated by t}e softw are developer) the infrastructure planner
generates a plan, which ‘s se.* f om DRIP to SIDE and presented to the
software developer for confi mation. A confirmed plan can then be given to
the provisioner, along wi,. nec :ssary cloud credentials on behalf of the user if
not already present i DRIP's knowledge base. DRIP provisions the planned
infrastructure via iuterta. ~s offered by the selected cloud providers. The de-
ployment agent t ien deploys all necessary application components onto the
provisioned infr. *v.cture from designated repositories and sets up control
interfaces nee .ed for . antime control of both application and infrastructure.

"https: ,aws.amezon.com/cn/ec2

8https //www.. gi.eu/federation/egi-federated-cloud/
http:/, ww.e .ogeni.net/
Ont ps://www.ansible.com/

13

4.8. Autonomous System Adaptation Platform (ASAP)

ASAP provides runtime adaptation and as such require. a su.ble and
modifiable monitoring system that can be extended wit’. ¢ dditiunal func-
tionalities enabling it to change system characteristics ¢ » th: fly, by adding
additional components, visualising system state and changi_ the infrastruc-
ture of the system. ASAP focuses on auto-scaling ar { allov s for geographic
orchestration (in multi-cloud environments), and mu.“i-instance and multi-
tenant operations. The ASAP subsystem (see Firure ?) comprises:

Monitoring Probes,
Monitoring Agents,
Monitoring Server,

K. ~wled~ Base,
Inform. tion Service,
r-forr .ance Diagnoser,

Alarm Trigger,
Time Series Database,

o f-Adapter, and
woncrol Agent.

Figure 4 shows the adaptation seq 'cu. -, from capturing the monitoring
data on probes and agents to the final u. 1ge of this information.

-—

(Control Agent (Deploy / Adapt) J[Storea . ~mponent constraints
T
LD Y
[‘M.c;\it—c 7 Thr. shold | Getadaptation Make adaptation
' Metdics bre iched strategies plan
J! /
,/" c \
[cw | *(Read metrics
\ | ’E S) ‘ =
\ - I | N
NN 22 |y o ¥
| o / :
' = §]) e
2 _WL_M/

Wi are : The dataflow of an ASAP adaptation solution.

At the first s =p, the purpose of Monitoring Probes and Agents is to collect
the data v-at re presents the current state of the application and infrastruc-
ture, .nd then aggregate and transfer the measured values to the Monitor-
ing S rver ead the Alarm Trigger. The Monitoring Probes are lightweight,
extensiu.. and inherently decentralised. They have the ability to collect un-
st1 "ctr.reu data from advanced probes, such as request process time through

14

multiple components. The Monitoring Server receives the collc te . data and
stores it in the Time Series Database (TSDB) to build a comp. ~hens e repre-
sentation of the system state. The Performance Diagnoser . es tu . informa-
tion stored in the TSDB to construct a model for assessi'.g t! e porformance.
This model is designed so that any problems that need cori. ~tive action can
be identified. Concurrently, the Alarm Trigger investi sates - -hether the mea-
sured values of monitored parameters exceed associc‘ed th esholds. When
problems are detected, the Self-Adapter is invokec o propose suitable adap-
tation strategies. This component specifies a set ¢ “ » .apt ition actions for the
Control Agent allowing the transition of the wl ale ;- cem from its current
state to the desired state. The Control Agent, which has the full control of
application configurations and infrastructure re. ~urs os (e.g. VMs/containers
and network bandwidth), finally performs the «laptation actions [33]. These
can be automated to restart a non-func.. ming component or set of compo-
nents, adding a new instance of a comnonent -r moving the component to a
different, potentially new VM.

In order to simplify developme * an adapter was created to communi-
cate the JCatascopia [34] messages tu ti.> Monitoring Server, without using
the native Monitoring Agents. L. ~<apter uses StatsD!' to collect met-
rics from the infrastructure and feea. them to the JCatascopia Server. The
infrastructure-level metrics a~_ ~allected by ASAP and processed in the same
way as application-level m crics. nformation such as CPU, disk and mem-
ory usage is collected by the srches; and published in metric groups (e.g.

L

"CPUProbe’, 'DiskStats ’ro',e’ and "MemoryProbe’).

L

4.4. TOSCA as a S™/ITCH _o-Programming language

A range of data must “e exchanged between the three SWITCH subsys-
tems (SIDE, DR’ & 1d ASAP) such as the user’s specifications, application
logic, time-critic.' ¢ mstraints during an application’s deployment, execution
and runtime, :tc. 1. refore, SWITCH needs a suitable language to define
and serialise <uc1 in‘ormation concepts. The role of the TOSCA orchestra-
tion specifi~otiorn. = andard as an application-infrastructure co-programming
language in SW TCH is to provide a format for storing programmable logic,
such as dc~ends ncy modelling graphs, along with the associated metadata,
such s infermation on the quality constraints of applications, and require-

'L tme/ /www.librato.com/docs/kb/collect /collection_agents /stastd/

15

ments and dependencies among containerised software compo. ~n’s.

TOSCA Service Template
Propert
Topology Template perty
.
Application |
Comi/(l)neAmA D e Node Type ¥ . “ovisioning plan
onitorin 1 1
prlobr; 9 " | ° - | _loud provider
@ \Com t pre | Virtual Machine
e ponen o
g | image —e rg Orchestrator
Application Application 5—0_ O/ 7 | ’ Cred;ePntlals
component component é é
Monitoring Monitoring L——V_J _:
probe probe Infrastructure

Figure 5: The TOSCA orchestration standard with i+« - nplates, application and provi-
sioning plan description as they are mapped to 1+ "SCA and used in the SWITCH work-
bench.

The core of the application log ‘= de. ~ription and workflow in TOSCA
is the Service Template, which cons."ts ~t a Topology Template and Man-
agement Plans, as can be seer. ‘.. Wictire 5. The topology template de-
fines the structure of the application, whereas the management plans define
the processes that are used *- <tore the creation and termination informa-
tion of the application dur.ng its -untime. The topology template is a di-
rected graph containing node .~m- lates (vertices) and relationship templates
(edges). Node template, co itain descriptions of all (containerised) software
components which are p.-. of che application. Links, dependencies and re-
lations between the rode teiaplates are defined by relationship templates.
Node and relationsnip v.mplates are typed by Node Types and Relation-
ship Types, resp cu. ely. Types define the semantics of the templates, as
well as their prcer tes, their available management operations, and so on.
As TOSCA is basea n YAML, its types can be refined or extended easily.
In SIDE the data is edited in a similar fashion, with the data mapping to
the TOSCA (F..ove 6 (B,C)). An example of QoS constraints that can be
monitore « and . larms set on them are presented in Figure 6 (A).

When wappiag the application logic and workflow from modelling graphs
into TUSCA, containerised software components with attached information
on Qu S para neters, such as hardware requirements (CPU, memory, ...), QoS
constra..' . (response time), port mapping, environment variables, etc. [35]
arc ms pped into Node Types. Programmable and required QoS parameters

16

1 metricil: .
: : A hw_requirement O .
ype:
3 metric_group_name: oees B
4 subid: " " 1 host:
2 " cpu_frequency: . Ghz
5 properties: disk size: 4
6 metric_name: | men szee:i2 N
= num_cpus: 1
7 data_type: os:
3 . . archite _ure: x86 f4
action: distri stion: ubumu
g Es: os_ver on: 16.84
uni sd e R
10 period: 20
1/l range:
12 minimum: ©.@ host: C
13 maximum: 100.8 ¢ 1 frequen-,:
14 alarm: disk_ ‘ze:
15 warning: mem_size
16 warning_value: 86.0 ™acpl: 1
17 warning_operator: ">=" o
18 critical: ~=- ltecture:
19 critical_value: 100.0 distribution:
20 critical_operator: ">=" s_version: 16.04

Figure 6: An example of TOSCA contairing ti. - Alarm trigger definition (A), an exam-
ple of UI describing hardware requiremeny.”). and the corresponding entry in TOSCA
(under TOSCA— Node template— Constrai.ts (C)).

linked to specific components ~nd dependencies among software components
that build cloud-native apr.catio. are stored into Relationship Types.
Furthermore, the directe. eore ph between the different node templates
represented in the topolr gy * empiate alongside the properties and constraints
(e.g. deadlines) defineu “ ¢ e ch node template, are used as input for the
DRIP planner and r covisioncr to obtain the underlying virtual infrastruc-
ture on which the appu.~tion is deployed. The specification planning and
provisioning infor .1« "ion, runtime characteristics and management of the ap-
plication throug -out its entire life cycle are defined using management plans.

4.5. Workfic v ir the SWITCH workbench

The seanenc d'agram in Figure 7 illustrates the workflow in SWITCH.
After the aser (. g. software engineer) is successfully (1) registered and logged
into the L WITC d workbench (s)he gets redirected to the dashboard where
it is p sssible to choose between two main functionalities, such as component
creat on ana application composition.

Whe - reating the component, first (2) a docker image is pulled from
Dc “keraiob and stored into an internal SIDE repository (e.g. database). In

17

— A

ued mc_co_m_,>oa mau Buikoidaq ‘5| _ ,
L »

paje|oin spjoysaiy i Buijess
sasodoud :uerdepe jjos p| |

T

I I
| |
| |
| I
| I
| 1 » |
| (suoneonnou 1abbuy wiey) J |
uonesidde ays jo a1e3s uINBY gl | |
| | | |
| _ asJ o souzew | | |
Bu Al Wb MG 7L
, N : : | | |
— 3 | | |
elep Bunoyuow buwe(joD 1| | , | |
d — L
N h spnop ay1 o, tone” dde yijoius ikojdaq oL _ ; W ”
! -
| | B ueid Buiuoisiroid Buiroiddy ¢ _ _
| | | I »
| | uonewyuod 1o} 3peq yISOL Bulpuas ‘g T
, , Y A , ,
| | . VoD Mu:_ re|d | |
| | uiuc 1n0* oulde LA 7 | |
, [L == | ,
, , , dv .1ya Buyed) ,
, , ” v O)L Bupuss ‘9 ,
		r—
		VOSO) Aul uonduosap
		uone: dde be dep g
, , , —Tr— ,
- —
, ! , J160| uoy, “ur e ,
W W W 4O onedyy |y ”
| | | I
| | | uonduosap uone.,, ' mu |
| | | I
H qnHiaP0Q woly abew saxpoq Bulng 'z g |
| | | J
, , | [3aisorubol /e siboy L
| | | | —
dVsv di¥d 3adis

pnoo

HOLIMS Ul MOJPLOA

_ Jadoje 3Q

The sequence diagram presents workflow in SWITCH workbench among all

three ubsyste 1s (SIDE, DRIP, ASAP).

Figure ..

18

order to access advanced SWITCH functionalities a certain le, ~! ¢ monitor-
ing either through the Monitoring Adaptor or by including ~ JU. %ascopia
probe must be added. Further on, (3) the application .. cripwion is cre-
ated using dynamic modelling graphs. Firstly, in the om oncat creation
phase a containerised component is taken from SIDE’s in. rnal repository
and dragged and dropped onto the canvas. A unique and d :tinctive novelty
in the SIDE workbench is the way additional prop ~rties e.g. QoS con-
straints, hardware requirements, environmental ve.1ables, volumes, etc.) can
be attached and manipulated to these containerisc 1 - omy onents using a com-
ponent creation modelling graph. As can be s.™n ir “ne magnified part of
Figure 3 the component (dark blue rectangle) and vc ious properties (circles
and diamonds), which can be dragged onto .~ csavas as well, are linked
to the component. With a right click on a sp ~cific property values can be
set manually for that property which arc mapped into TOSCA. A variety of
properties can be attached to the componen., such as (i) QoS constraints
(e.g. response time, jitter), (ii) Harcwva e iequirements (CPU frequency,
memory etc.), (iii) Volume (enable 2 co.tainer to mount parts of the disk
to persistent storage), (iv) Port map u, (v) Environmental variables, (vi)
Monitoring (monitoring compor. -, “»'uding the Monitoring Agent) [35].

The containerised component wi " linked properties is stored into the
SIDE internal repository and _ » be (re)used and modified when composing
larger multi-tier cloud nat’ve app ications, via the application composition
view [36]. After the aprlicai.~n is composed (i.e. components with their
properties are linked tc on . another and present a fully functional multi-
tier microservice-based ¢.. 1d-r ative application) (4) it is verified that all the
components are corr ~tly linked and the properties are set.

The entire applicatios. 'ogic description is then mapped into the TOSCA
orchestration sta’ da 4 that can be edited and manipulated in SIDE. Chang-
ing TOSCA dirc *I also has an effect on modelling graphs. After creating
TOSCA (5) i* is ver.”ed for its correctness and (6) passed to DRIP via a
RESTful AT (. /.cco ding to the application description and set properties
(e.g. constr~ints, JRIP calculates the size and amount of VMs needed for
the optir al rui. of the application in the multi-cloud environment and (7)
maps the nrovi ioning plan into TOSCA which is (8) sent back to SIDE
for ccanrmation. After a software engineer approves the proposed plan in
SIDE (9), D RIP negotiates the SLAs of cloud providers and starts with the
(10) depicyment and execution of the entire application in the cloud en-
vit ur.env. When the application is running the (11) monitoring metrics

19

are being collected from ASAP and (12) stored into the TSL R fr the Self
adapter to analyse the data and monitoring server for momn. oring metrics.
During application runtime, (13) the Alarm trigger is retu ...ng tu. status of
the application to SIDE. In case the thresholds for set :ons.ra..ts are vio-
lated (14) the Self adapter proposes scaling and sends the 1. plan to DRIP
that (15) calculates and deploys the new provisionin¢ plan.

5. Application to the SWITCH Use Cases

The SWITCH project was designed and tec*=d o» *aree industrial time-
critical cloud applications. Each of these is supporte ' by the SWITCH work-
bench in four ways: (1) defining the basic sei ice ¢ mponents for the plat-
form, e.g. setting up the proxy edge, the ..anagement server, the VolP
servers, the MCU Media mixer; (2) desc. iy vue application logic — sensor
data collection, data storage, processing, acu. =ation of warning services, the
properties for streaming services (inp.t o su.ibutor and proxy transcoder);
(3) describing the quality requirer ~nts 't system, network, infrastructure
and application levels, e.g. admissibl. pocentage of packet loss or maximum
latency, or defining the type of -.>~h1 es needed, etc.; (4) monitoring the
runtime infrastructure and taking ac on if failure occurs (self-adaptation) or
if additional resources are recired to support an increased number of users.
These four requirements m .p clos. ly to the co-programming paradigm.

5.1. SWITCH requirem nts

Before the SWITCh ~ chi’ecture was defined, we analysed three indus-
trial time-critical ar lications: an elastic disaster early warning system!>
(BEIA use case); a cloux <tudio for directing and broadcasting live events'?
(MOG use case); i a collaborative real-time business communication plat-
form! (WT use ~as:). These three companies would be using SWITCH to
implement thrir solu ‘ons. Based on this, we created a minimal list of re-
quirements t1at .hov'd be satisfied by SWITCH, shown in Table 1. The table
presents the cow <t 2d requirements identified by developers and researchers
in the fie d. Nu* all features are used by all the use cases, but all the use
cases have their requirements met by SWITCH.

12B1L YA Cor sult, Romania, http://www.beiaro.eu/
BMOG 1echnologies, Portugal. http://www.mog-technologies.com/
- 'We 1ess Telecom, Spain, http://www.wtelecom.es/

20

Table 1: Critical requirements that SWITCH offers within the componew.. ‘reation and
application composition phases for the WT, MOG and BEIA use cases.
Requirement WT MOG 7\ BLTA

Component definition | v
Component composition
Component configuration
Scalability settings

Network characteristics
Multicast definition
Monitoring

Response to system state
Manual reconfiguration
Setting up proxy
Management of VoIP Servers

NUSG S AS AN

AU AU A

v
ﬁ\/i

S SS

The first three requirements (Compc e it definition, composition and con-
figuration) are required by all appl. *ior. They are the pieces that enable
the description of the application. The Sculability settings enable the system
to define how each component 1> ~ou., o scale and what the requirements
are for it. For instance one of the requ.rements could be that a certain num-
ber of ports are available ¢, . » VM the component is running on. The
description of the network charac eristics is also important for all the use
case applications, as tim- -critic > applications are heavily dependant on the
network between the us r a".d the application, and between each component.
In order to meet the rhan.‘ng demands of the application and the changing
environment, monits . g capability is required by all the applications. Most
applications require some adaptation based on the monitored system state
or Manual recon wgu ation if certain services cannot be adapted on the fly
as this would dis. » o the normal functioning of the application. Addition-
ally to these r.0b~l requirements there were some special cases that also had
to be met. *1CG, iue to the specifics of the system required the ability
to Multice . the C .ta from their components. BEIA required the ability to
reconfigu e prox =s for their components. WT had requirements to manage
their Volr <er»crs to a finer granularity deciding, for each component and
deple yment which specific servers should be used.

21

5.2. Switch collaborative real-time business communication pi.*fo m

The Unified Communication (UC) platform (WT Use C.) 1, a real-
time, time-critical application for an enterprise business ewn rironinent that
embraces communication among two or more users. The lat’orm offers pres-
ence detection, an instant messaging service (chat), me-cage 'elivery service
and audio and video calls. The architecture and inter wction f SWITCH and
the use case is illustrated in Figure 8. To provide t. ~ des red system, the
developer needs control not only over the code t'.at ie »unning but also the
underlying architecture — the core of co-program. * .g.

Ea °“';§; | (oRtp J . (Asap)
Dotk A

| Use—__
[Deployn.~at Metrics
\

7{," Web Monitoring
ﬁ Ed's Web Portal
m‘ Backend

Figure 3: Arch..ecture of the real-time UC platform.

The behaviour .° the UC platform depends on the load demands of the
system. In orde’ to ~aeet QoS requirements, the system is designed to auto-
matically perf rm s ~ling if needed. Using SWITCH we can guarantee the
traffic demar d of the UC use case while maintaining the proper operation of
the system no . att.r the workload (Figure 8). The SIDE subsystem allows
developer, to d-fine the system at container level with their QoS require-
ments. 1'RIP caecks the resources needed for the service before starting
execut’ o auu deployment of the UC to different VMs. If the application
must be sca ed up, DRIP will provision new resources in a cloud environ-
ment v, “ile naintaining QoS. ASAP is responsible for monitoring and raising
al. vuw. - “hen scaling is required.

22

In Table 2 time-critical requirements for the W'T use case . ve presented.
For the normal operation of Real-Time Protocol (RTP) Engi.. - the . ~ost cru-
cial time-critical constraints that must be satisfied are de'., ana ,itter with
130ms and 100ms, respectively. Similarly, for Asterix “BY and Dubango
WebRTC the most crucial is to satisfy jitter with threshola '50ms.

Table 2: QoS time-critical requirements in Unified Commn. "nicat on platform.

Component RTP Engine Asterix PEX | Dubango WebRTC
Delay (ms) 130 10 oo

Jitter (ms) 100 150 | 150

Bandwidth (Mbps) | 2 2 2

Loss Rate (%) 1 1 2

Error rate (%) 1 >1 >1

5.8. Switch elastic disaster early w-rnin, system

An elastic disaster early warning <ys =m enables people and authorities
to save lives and property in ca. - o 2 saster. In case of floods, a warning
issued with enough time before the ¢, nt will allow for reservoir operators to
gradually reduce water level=, ~eople to reinforce their homes, hospitals to
be prepared to receive mor: patier s, and authorities to prepare and provide
help. The system uses ad ance ! sraling techniques, combining VM provision-
ing and automatic SDN def aitions to seamlessly increase the throughput of
the operations during hig! der.and and moves the location of the infrastruc-
ture in order to ma’ tain fuuctionality during cloud downtime. To do this
the component ana appu ation performance must be monitored and main-
tained. In order .o 'o this the QoS and the system requirements must be
specified.

An early v arning “ystem collects data from real-time sensors, processes
the informat on usir 4 predictive simulation tools and provides warning ser-
vices for th~ pur’~ to obtain more information. The implementation of such
a system aces s veral challenges, as the system must: (1) collect and process
the sensor data n nearly real-time; (2) respond to urgent events rapidly; (3)
predir o the increase of load peaks in the network; (4) operate robustly and
relial 'y; (5) e scalable when the amount of data increases.

A mic.. dataflow-oriented representation is included in Figure 9. The
Du'a _owector receives data from the Remote Telemetry Station through

23

OASIS 39 " -
—J
Docker 7 N2/, Usecase
) |
o Deployitent._ Metr cs PABX
Y

A

:s[Data] >[Monitoring] > 5(_ I 3 [

Collector Adapter -~ dofana

Y

s;o
[AlerterJ >[Notifie.. | >

Figure 9: Functional diagram for an elastic Jisaster early warning system.

the IP Gateway. Collected data is storc | in the Graphite Database. Data
is sent to the Graphite Database ti-o.~h a Monitoring Adapter. Sending
data this way is more efficient b -~m<e 't uses a simple protocol and a more
scalable sampling. Data stored in “‘raphite is easily displayed in Grafana
dashboards. When exception#! scenarios occur, the Data Collector sends a
HTTP request to the Alert r for . otifying the end-users. When the Session
Initiation Protocol (SIP) No. 5er - eceives a request from the Alerter it sends
it to the Asterisk softwr re v hich handles request and sends the notification
through PABX.

Table 3: Qo ‘n elastic disaster early warning system.

Component Graphite SIP Notifier IP Gateway
Delay (ms) 10 10 500

Jitter (ms) 1 1 N/A
Bandwidth (. ™hr,) | 40 400 >1

Loss Rate ™) 0.5 0.5 1.5

Error rat : (%) 0.1 0.1 0.5

T. ble 3 ¢ ontains the relevant metrics for the early warning system. Due
to the n..ure of the system the SIP Notifier requires much higher bandwidth
(4.9 N bps) since it communicates with call centres, while Graphite requires

24

less (40 Mbps) since it only stores the data from IP Gateway.

Dispatching the alerts to the final agents (e.g. citizens, “utn. -ities) is
a time-critical component of this use case. Its elasticit: ~ost,, depends
on the ability of the Notification System to handle a si nifi _an. amount of
call events. Each notification worker sends several applica.. ~n-level metrics
(including the number of outgoing calls and the memc ry use ve) to the ASAP
subsystem through the Monitoring Adapter for an ei stic p ovisioning level
to be offered by DRIP by increasing/decreasing *.ic nnmper of workers. In
order to meet these requirements the system mu 't '.e d scribed in concrete
terms, specifying the values of the monitoring . etri-~ and the actions that
need to take place in order for the adaptation to ‘ccur so that it can be
adapted when the number of final agents chang ~s.

5.4. Switch cloud studio for directing ar. ~ i vuucusting live events

For the production of live TV events. a di.“ributed cloud application has
been developed within the SWITCH p.nje v, supported by the transmission
of video over IP. Through a Web Ay it ai.»ws the director to perform actions
such as changing the camera, select’ng *he number of input streams and
choosing the output feed [37]. L o ** = cloud studio is expected to be an
event-based service, i.e. it is starte. when it is needed and stopped when
the broadcast stops, the pre-..™m and the architecture that can service the
system needs to be descrit :d, so vhat the deployment of the system can be
done quickly with differe»t st *ti» g parameters.

This is a prime exe npl. of the co-programming concept, as it enables
the modification of the . stera - serving more cameras - and testing and
maintaining performr nce for che system during run time.

Ta le 4: QoS metrics in Switch Cloud Studio.

Component Tmput Distributor | Proxy Video Switcher
Transcoder

Delay (ms) | 30 30 30

Jitter (me) 05 0.5 0.5

Bandwic th (Mby 3) | 130 130 130

Loss Rate ‘%) >0.1 >0.1 >0.1

Errc . rate ‘%) >0.1 >0.1 >0.1

Taie 4, presents QoS metrics related to the MOG Use case. Jitter,

25

and Loss and Error rates are of the greatest importance, whi.. D :lay is less
important, as video can arrive late, as long as it arrives at t..> san. rate.

Each Input Distributor node is responsible for receivin-, . 1 inp it stream,
decompressing and delivering it, by multicast, generating che .esu.ting media
flows. In this case, the relevant nodes are the Video Switcrn.~ and the Proxy
Transcoder. Each Proxy Transcoder is responsible fr r trai rcoding the pair
of media flows it has subscribed to, generating a proxy versic a and making it
available externally, for example for a Web Applic..uon. 1 nhe Video Switcher
must subscribe to the multicast addresses that “hs Inj ut Distributors are
providing, store the data it receives, and serve ‘* by -.ulticasting the Flow
that the Business Logic determines [37].

Dnnkar"fg

g%kl) llsecase |
| Metrics

I8 De, loyr io..i
¥ /
Monitoring| |
Adaptor
_ I
| ____l Switcher |

IMulticast

==~

Video
Stream

Input ||

~

Figure 10. ™ ive multi-stream switching in the cloud.

Each Outpu ncde receives, by multicast, video flow from the Video
Switcher and lelive. - it abroad in a single stream. This means that there
may be mul’.ple Ou*puts, including, for example, an Output that delivers
a stream with .2 <ame Input characteristics. Each component has specific
propertie . that an be configured. The necessary connections and complexity
can be ac ded tc build the desired scenario. The monitoring system (mon-
itorinc, adapwer and server) is added automatically if at least one of the
comy Hnents ‘ndicates that it has a monitoring agent attached.

26

6. Evaluation

Although our evaluation briefly tackles productivity, in th. section we
aim only to show that SWITCH IDE is capable of suppor ing . “ware devel-
opment of cloud-native applications with co-programming . % ciently through-
out their entire life-cycle. On the other hand, more ev auation, on real-world
tasks and with control groups, would be needed in c der to prove that pro-
ductivity is improved by using SWITCH [38]. Most ~f ..~ “uctivity measure-
ments focus on Lines of Code, which cannot be 1sed .1 »ur case, as SIDE is
closely related to graphic programming languares |39].

For the purpose of evaluation, we chose six a.~demic researchers from
the field of distributed cloud computing and .~ ~vOps engineering. For all the
participants, we provided detailed instructics explaining how to create all
three use cases with and without SWIT '™ ™___icipants were aware of our
work and as experts in the field they are i miliar with composing Docker-
based cloud applications. Time was i 'ca. 1 in minutes using stop watch
and we were present the entire time of 1. » experiment.

The participants were provided wv.. inscructions on how to use SIDE and
on creating the TOSCA and Do~%er ccpose files. The instructions on how
to create an application were provic~d to the test subjects, so that they only
had to worry about how to describe the use case and not spend time on the
use case architecture.

A clean install of SWI1 ""H w .s used so that components could not be
reused, but the participe ats vere told that they are free to reuse components
they create if they wish. ™ rine the creation of the application, time was kept
for each stage of app icatiown _reation (e.g. component creation, component
modification (optior.al), ~pplication composition, and create the TOSCA and
Docker compose f'.-).

In the first st «ge - f the experiment, participants were asked to describe all
the containers {Fig..~e 12) used in the application and the application itself.
They were gizen all the information about the properties of the components
(ports, docker . nag : locations, volumes, variables etc.) and how they should
be linked o on~ another. According to the time needed (measured in min-
utes) for softwa e components description using SWITCH and creation of
writine, lesciipeion of those components directly into TOSCA, we have cal-
culat d disti ‘bution (see Figure 12) that has revealed more consistency (a lot
of use. - ha- e similar times) when using SWITCH since it application logic
ai '« v. flow are mapped into TOSCA fast and automatically.

27

Phases in the life cycle of three use cases with/without ~WI" CH

60

BEIA MOG WT l
mmm BEIA SWITCH MOG SWITCH WT SV ~H ‘

50 1 — 4

551

45 A

Time [min]
N w w
[0, o (6]

15

5

i
1o.=
| T | R

‘ation e ~ation
desc"‘pu odifice®)
nt (an n C
comPO™ T pon®™ T pticat

0

,on o file f\oW
om® <0-"A PP wer O™ > gnaire work
Doc

Figure 11: This bar chart illustrates the times (in minutes) needed to undertake various
phases that are part of cloud apr icav. *n’s life cycle using SWITCH and no SWITCH for
all three beforehand described * \dustria. use cases.

In the second phas:, t'e rarticipants were told to describe the same
applications by creati ig 1.~ TOSCA and Docker Compose file for all three
applications in Vis' «. Studio Code. They were, again, provided with an
example of the descriptions and expected to use code completion and copy
paste to achieve .hei goals as fast as possible. At the end, the descriptions
were checked in o. er to ascertain if they meet the TOSCA standards and
that all the r :fer nces were correct, but the descriptions were not used to
deploy actua. 27 plic stions. The times needed to complete each phase in the
life cycle <7 all tn. :e applications are presented in Figure 11. Values on the
y axis prisent a1 average of all participants for each of the phases and for all
three use ¢ ~ee

A cordi. ¢ to the results, SWITCH IDE has obviously speeded up the
imple nenta’.on of all phases (and for all three use cases) that are part of the
ar ~lieation’s life cycle in comparison to the creation of components, TOSCA

28

Time needed to describe one containerised component with/withouu "WITCA IDE
7.5 1 =

7.0 T
6.5 '
6.0 |
5.5
5.0
'€ 4.5
Eol
£ 3.5
3.0 1
2.5 1
2.0 1
1.5 1
1.0 1
0.5 1

T

SWITCH N\ SWITCH (Manual TOSCA creation)

Figure 12: The plot presents th- distrib. tion of time it takes to describe software compo-
nent in SIDE and its mapping in. TO® CA vs. providing TOSCA description manually.
Each red point on the chart presents ..verage time needed to design each component for
all three applications.

and Docker compos ¢ fiic - manually. When comparing creation with/without
SWITCH, it is cle .. that there exists significant decrease of the time needed
for creation of < ny shase using SWITCH. Moreover, the most substantial
difference can be sccn with TOSCA and Docker compose file creation that
is approxime .ely move that 50 times faster on the average for all three use
cases due to au. ms ¢cic TOSCA mapping and Docker compose file generation.
The most relev: nt characteristic is the Entire Workflow, as it represents the
actual tin e neec >d to create an application which is on average almost twice
as fast .. as uicating workflow manually.

29

7. Conclusion

In this paper, we have presented a new concept for engi. ~ring com-
plex adaptable cloud systems with time-critical constrair s: t'.. application-
infrastructure co-programming model. It offers programm.* ity and control-
lability and reconfiguration of application logic com ousition and workflow
and virtual environment and therefore offers applic \tion s alability, avail-
ability, resilience and self-adaptation. These are tho assc “"ul QoS properties
that are crucial for the QoE and present partici lar _ue'lenges specially for
time-critical cloud applications.

According to the analysis of functional and no. functional requirements
of three time-critical industrial applications, we he se discovered that pro-
grammable and controllable features can be v ~st supported by having unique
three-part SWITCH architecture. SWIT'T" T _ractive development Envi-
ronment (SIDE) that provides a GUI with .~rvice modelling tools of docker
compose files for the creation of softv :uc ~mponents and the composition
of an application’s logic and workflow; Jynamic Real-time Infrastructure
Planner (DRIP) is responsible for ti = frustructure planning, provisioning,
deployment and execution of a—~nlicai'ons to the virtual cloud infrastruc-
ture; Autonomous System Adapta. ~n Platform (ASAP) provides monitor-
ing services and deals with the scaling of applications, Alarm trigger and
self-adaptation. In order to :xcha. ge data within all three subsystems appli-
cation logic with all its consu. ~ints QoS parameters and application workflow
are mapped into the OA 5IS TO_CA.

The novelty of the S VI". CF system is the way that QoS parameters, such
as NFR and networ} -, intr.. .ructure- and application-level metrics can be
visually presented, na. oed and linked to the components (e.g. containers)
using graphical . 'elling. Furthermore, QoS parameters etc. are mapped
into TOSCA an . ex hanged between the three subsystems.

As a result of ti.. evaluation, using SWITCH for the creation of all three
industrial ap lics ciors with time-critical constraints through various phases
in the life cycic of 1oud-native applications (e.g. components and applica-
tion crea’.on, Nocker compose file creation and TOSCA mapping) signifi-
cantly de reases time due to the SWITCH co-programming properties. On
the co __ary, .uanually creating components and application, generating and
mapj ing the entire application logic into TOSCA has proven to be consid-
erably “ime consuming and process. The most significant difference among
us ug - "MTTCH and manual creation was achieved in the process of TOSCA

30

and Docker compose file generation for all three use cases anc. in Jhe favour
of SWITCH.

In addition to developing and demonstrating the ef’_ “iven.ss of the
SWITCH architecture, we went beyond the project’s ob”:cti- es «nd also de-
veloped an Multi-Objective Optimisation approach for the . ade off between
conflicting Non-Functional Requirements in order tc assur enhanced QoS.
However, details of this latter approach are out of sco, e of t'.e present paper
and can be found elsewhere [16].

One thing that is still missing is a larger-scale ‘ri . w1 h applications dur-
ing their whole life-cycle, changing and updatiin, the =~ .tware in an iterative
manner. This is only possible with a longer runnin, successful application,
something that will probably only be availabic in t.e next couple of years.
During this time, SWITCH will not be abanu med. On the contrary, since
graphical modelling of software compone. *s proved to be time saving for the
creation of applications and reasonablv easy .~ process. We are planning to
create so called (1) Dynamic Metadate Dr cuments Generating System that
would be able to generate various © mes . f documents, such as .yaml, .xml,
Docker compose and similar based 0. a, nlication’s QoS properties and (2)
Applications Offline and Runti.. -~ C*~ > Snapshot Versioning System that
would create and store a snapshot . created application’s logic and work-
flow of a running state in the * -*ual infrastructure and be available from the
internal SWITCH reposite v and -eusable in other cloud environments. In
general, we will follow stete-o. “hr -art trends and strive towards novel ideas.
Furthermore, extending I'C 5CA in order to support orchestration of appli-
cations that sent an eror.. »us amount of (Big) data and run towards the fog
and edge of the netv ~rk will certainly be a challenge as well.

Acknowledgen ent

Funding: " nis wo. '~ was supported by the European Union’s Horizon 2020
research anc in’.ova'ion program [grant agreement No 643963 (SWITCH
project)].

Referenc. <

[1] '". Binz U. Breitenbiicher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wegner, OpenTOSCA — A Runtime for TOSCA-Based Cloud

31

Applications, in: Proceedings of the 11th Interna..~n<1 Confer-
ence on Service-Oriented Computing — Volume 8274, TCSCC 2013,
Springer-Verlag, Berlin, Heidelberg, 2013, pp. 692-6°,. do1.10.1007/
978-3-642-45005-1_62.

N. Koutsouris, A. Voulkidis, K. Tsagkaris, A Fromew. k to Support
Interoperability in [oT and Facilitate the Develo ment nd Deployment
of Highly Distributed Cloud Applications, in: N. Mitts n, H. Chaouchi,
T. Noel, T. Watteyne, A. Gabillon, P. Capols.ni (Fs.), Interoperability,
Safety and Security in IoT, Springer Intern +onal Publishing, Cham,
2017, pp. 41-48. doi:10.1007/978-3-319- ~27=,~7_6.

K. Baxley, J. de la Rosa, M. Wenning, Deployi 1g workloads with Juju
and MAAS in Ubuntu 14.04 LTS, Tec.. rep. Lnay 2014).

URL https://linux.dell.com/file« ‘vhitepapers/Deploying_
Workloads_With_Juju_And_MAAS.pa.

E. D. Nitto, M. A. A. d. Silva .. * G., Casale, C. D. Craciun,
N. Ferry, V. Muntes, A. Solberg, Si. porting the Development and Op-
eration of Multi-cloud Applicavo. == The MODAClouds Approach, in:
15th International Symposir™ on ymbolic and Numeric Algorithms for
Scientific Computing, IEEE, Timisoara, Romania, 2013, pp. 417-423.
doi:10.1109/SYNASC.2013.61.

D. Bruneo, T. Fritz, . Keia r-Barner, P. Leitner, F. Longo, C. Mar-
quezan, A. Metzger, K. 2’~hl A. Puliafito, D. Raz, A. Roth, E. Salant,
I. Segall, M. Villari Y. Woltsthal, C. Woods, CloudWave: Where adap-
tive cloud managen.~.t 1 2ets DevOps, in: IEEE Symposium on Com-
puters and Con nunicav.ons (ISCC), Vol. Workshops, IEEE, 2014, pp.
1-6. doi:10.1109,SCC.2014.6912638.

M. Handley. C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, M. W ic'g, Re-architecting Datacenter Networks and Stacks for
Low Lat'ncv an! High Performance, in: Proceedings of the Confer-
ence of he ACD}. Special Interest Group on Data Communication, SIG-
COMM 1., #CM, New York, USA, 2017, pp. 29-42. doi:10.1145/
309¢ 322.5.98825.

E. Dec'm= K. Vahi, M. Rynge, G. Juve, R. Mayani, R. F. da Silva,
T egast.” in the Cloud: Science Automation through Workflow Technolo-
g'es, IF OE Internet Computing 20 (1) (2016) 70-76. doi:10.1109/MIC.
2010.15.

32

8]

[10]

[11]

[12]

[13]

[14]

[15]

S. Marru, L. Gunathilake, C. Herath, P. Tangchaisi. ".[. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chintha.~ k. Gardler,
A. Slominski, A. Douma, S. Perera, S. Weerawarana ..>achc Airavata:
A Framework for Distributed Applications and Ccnpr cav.onal Work-
flows, in: Proceedings of the 2011 ACM Workshon o.. GGateway Com-
puting Environments, GCE 11, ACM, New York USA, 2011, pp. 21-28.
doi:10.1145/2110486.2110490.

T. Kiss, P. Kacsuk, J. Kovacs, B. Rakoc., A Hajnal, A. Farkas,
G. Gesmier, G. Terstyanszky, Micado = .cros rvice-based cloud
application-level dynamic orchestrator, k. re eneration computer
Systems (2017) 1-10.

W. T. Tsai, Y.-H. Lee, Z. Cao, Y. “‘hen, 3. Xiao, RTSOA: Real-
Time Service-Oriented Architecture in- 06 Second IEEE Interna-
tional Symposium on Service-Orientel System Engineering (SOSE’06),
Shanghai, China, 2006, pp. 49-5¢ '~+-10.1109/S0SE.2006.27.

D. Meyer, The Software-Defined-N¢ ™ vorking Research Group, IEEE In-
ternet Computing 17 (6) (2013, o'-8:. doi:10.1109/MIC.2013.122.

M. Chiosi, D. Clarke, P. W= A Reid, Network Functions Virtualisa-
tion, Tech. rep., Darmstadt-Ge. many (oct 2012).
URL http://portal.et-i.org/NFV/NFV_White_Paper.pdfurl

R. Cohen, L. Lewin-E- tan, J. S. Naor, D. Raz, Near optimal placement
of virtual network frncticns in: 2015 IEEE Conference on Computer
Communications ("NF/OCOM), IEEE, 2015, pp. 1346-1354. doi:10.
1109/INFOCOM. 2" 1y . 721,611,

Z. Zhao, P. M «tin, C. de Laat, K. Jeffery, A. Jones, I. Taylor,
A. Hardisty, M. Atki..son, A. Zuiderwijk, Y. Yin, Y. Chen, Time criti-
cal requiren ents and technical considerations for advanced support en-
vironments 1.~ data-intensive research, in: 2nd International workshop
on Interr perable infrastructures for interdisciplinary big data sciences
(IT4RIs '¢), i. the context of IEEE Real-time System Symposium
(RTS), Porv., Portugal, 2016, pp. 1-10. doi:10.5281/zenodo.204756.
A.F Antor sscu, A.-M. Oprescu, Y. Demchenko, C. de Laat, T. Braun,
Drman..- _ptimization of SLA-based services scaling rules, in: IEEE 5th
"nterna ional Conference on Cloud Computing Technology and Science
(<Toud”om), , Vol. 1, IEEE, Bristol, UK, 2013, pp. 282-289. doi:
‘N 1109/CloudCom.2013.44.

33

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

P. Stefani¢, D. Kimovski, G. Suciu, V. Stankovski, Non “r tional re-
quirements optimisation for multi-tier cloud applicat..ns: *n early
warning system case study, in: 2017 IEEE SmartV.C-ld, biquitous
Intelligence Computing, Advanced Trusted Compt.ed. Scaiable Com-
puting Communications, Cloud Big Data Computing, 1. *ernet of People
and Smart City Innovation (SmartWorld/SCALCOM/"'IC/ATC/CBD-
Com/IOP/SCI), 2017, pp. 1-8. doi:10.1109/UL"-ATC 2017.8397637.

C. Miiller, M. Oriol, X. Franch, J. Marco, V. Re~nas, A. Ruiz-Cortés,
M. Rodriguez, Comprehensive Explanation . ¥ 5LA Violations at Run-
time, IEEE Transactions on Services Comp. *ing « (2) (2014) 168-183.
doi:10.1109/TSC.2013.45.

J. Wang, A. Taal, P. Martin, Y. Hu, Y. ».l.a, J. Pang, C. de Laat,
7. Zhao, Planning virtual infrastructnres ». = time critical applications
with multiple deadline constraints, r.*ure Generation Computer Sys-
tems 75 (2017) 365-375. doi:10 .7*'&/4i . future.2017.02.001.

H. Zhou, Y. Hu, J. Wang, P. Mar."a, C. D. Laat, Z. Zhao, Fast and
Dynamic Resource Provisioning *¢. Ouality Critical Cloud Applications,
in: 2016 IEEE 19th International vmposium on Real-Time Distributed
Computing (ISORC), IEEE, 2016, pp. 92-99. doi:10.1109/ISORC.
2016.22.

L. M. Vaquero, A. Ce'orio, b Cuadrado, R. Cuevas, Deploying Large-
Scale Datasets on-Deme~d i1 the Cloud: Treats and Tricks on Data
Distribution, IEEE [ra isactions on Cloud Computing 3 (2) (2015) 132
144. doi:10.1109, 77 ..2/,14.2360376.

Y. Hu, J. Wan , H. Zhou, P. Martin, T. Arie, C. De Laat, Z. Zhao,
Deadline-aware Dep. vment for Time Critical Applications in Clouds,
in: Proceed’ags of Euro-Par 2017: Parallel Processing: 23rd Interna-
tional Conic =r ce on Parallel and Distributed Computing, 2017, 2017,
pp- 345-707. do..10.1007/978-3-319-64203-1_25.

A. N. Tc~s', R. N. Calheiros, R. Buyya, Interconnected Cloud Comput-
ing F-..ironu. nts: Challenges, Taxonomy, and Survey, ACM Comput-
ing { urveys (CSUR) 47 (1) (2014) 7:1-7:47. doi:10.1145/2593512.

O D..7"~Zon, D. K. Hunter, D. Simeonidou, Towards semantic modeling
“ramew wk for future service oriented Networked Media Infrastructures,

ir- 201 . 4th Computer Science and Electronic Engineering Conference
(CEEC), 2012, pp. 200-205. doi:10.1109/CEEC. 2012.6375405.

34

[24]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

M. Ghijsen, J. Van Der Ham, P. Grosso, C. Dumitru, H. “h | Z. Zhao,
C. de Laat, A semantic-web approach for modeling co. nuti. z infras-

tructures, Computers & Electrical Engineering 39 (8) [2713) 2553-2565.
doi:https://doi.org/10.1016/j.compeleceng.?)13 Us.J011.

T. Binz, U. Breitenbiicher, O. Kopp, F. Leymar~ 1 CSCA: Portable
Automated Deployment and Management of (loud . pplications, in:
A. Bouguettaya, Q. Z. Sheng, F. Daniel (Eds.), Al'vanc .d Web Services,
Springer New York, New York, USA, 2014, . 527-549. doi:10.1007/
978-1-4614-7535-4_22.

I. Baldine, Y. Xin, A. Mandal, C. H. Renci, "I.-C. J. Chase, V. Maru-
padi, A. Yumerefendi, D. Irwin, Networ'-ed clot 1 orchestration: A geni
perspective, in: 2010 IEEE Globecon. Wor.._.iops, 2010, pp. 573-578.
doi:10.1109/GLOCOMW.2010.5700385%

A. Llanes, J. M. Cecilia, A. Sanchez, J. ." Garcia, M. Amos, M. Ujaldon,
Dynamic load balancing on heterc e~ clusters for parallel ant colony
optimization, Cluster Computing . (1) (2016) 1-11. doi:10.1007/
s10586-016-0534-4.

P. Jamshidi, C. Pahl, N. C. "f~ndcnca, Managing Uncertainty in Auto-
nomic Cloud Elasticity Controu. s, IEEE Cloud Computing 3 (3) (2016)
50-60. doi:10.1109/MC" 2016.66.

P. Xiong, C. Pu, X. ZF a, R. C -iffith, vPerfGuard: an automated model-
driven framework for app.’~» 1on performance diagnosis in consolidated
cloud environment,, i.: Proceedings of the 4th ACM/SPEC inter-
national confererce .2 I’ cernational conference on performance engi-
neering - ICPE 13, ACM Press, New York, USA, 2013, pp. 271-282.
doi:10.1145/2479571.2479909.

D. Kliazovic'1, J E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan, A. Y.
Zomaya, CA- " AG: Communication-Aware Directed Acyclic Graphs for
Modelins, Cloud Computing Applications, in: 2013 IEEE Sixth Inter-
nationa. <) nfe ence on Cloud Computing, 2013, pp. 277-284. doi:
10.1*23/CLL D.2013.40.

A. Falalaie A. Heydarnoori, P. Jamshidi, Microservices Architecture
Eroble. ™ ovOps: Migration to a Cloud-Native Architecture, IEEE Soft-
vare 3. (3) (2016) 42-52. doi:10.1109/MS.2016.64.

E. Stef nic, M. Cigale, A. Jones, V. Stankovski, Quality of Service Mod-
«. ‘r Microservices and Their Integration into the SWITCH IDE, in:

35

[33]

[34]

[35]

[36]

[37]

2017 TEEE 2nd International Workshops on Foundation. v « Applica-
tions of Self* Systems (FAS*W), Tucson, Arizona, 2017 bpp. 215-218.
doi:10.1109/FAS-W.2017.150.

S. Taherizadeh, 1. Taylor, A. Jones, Z. Zhao, V. Stc 2ke sski, A network
edge monitoring approach for real-time data strea=ing . »vlications, in:
International Conference on the Economics of (rids, ('louds, Systems,
and Services, 2016, Springer International Publis ing. “ham, 2016, pp.
293-303. doi:10.1007/978-3-319-61920-C_21

D. Trihinas, G. Pallis, G. D. Dikaiakos, Jca..scop’a: Monitoring elas-
tically adaptive applications in the cloud, .- zul4 14th IEEE/ACM
International Symposium on Cluster, C2~ud anc Grid Computing (CC-
Grid), 2014, pp. 226-235. doi:10.1102/Clu_.d.2014.41.

P. Stefani¢, M. Cigale, F. Q. Fernan?~~ ™. _.ogers, L. Knight, A. Jones,
I. Taylor, TOSCA-based SWITCH Wc kbench for application compo-
sition and infrastructure plannin, o. ~=-critical applications, in: The
3rd edition in the series of worksh o on Interoperable infrastructures
for interdisciplinary big data sc.>n.=s IT4RIs 18), Amsterdam, Nether-
lands, 2018, pp. 1-9. doi:1" 52&’ /zenodo.1162872.

P. Stefani¢, M. Cigale, A. Jones, T.. Knight, D. Rogers, F. Q. Fernandez,
[. Taylor, Application-Irfrastructure Co-Programming: managing the
entire complex applice Jion 1.2 cycle, in: 10th International Workshop
on Science Gateways (1v'SG 2018), Edinburgh, UK, 2018.

M. Poeira, P. Santos, 1. Tllisses, D. Costa, P. Ferreira, R. Amor, An
architecture for t‘me riti al IP broadcasting in the cloud, in: Proceed-
ings of 2nd Inte ~ationair Workshop on Interoperable infrastructures for
interdisciplinary big 'ata sciences (IT4RIs 16) in the context of IEEE
Real-time S ste n Symposium (RTSS), Porto, Portugal, 2016, pp. 1-4.
doi:10.52¢ /~ enodo.204821.

J. L. Kre'n, A. C. MacLean, C. D. Knutson, D. P. Delorey, D. L. Eggett,
Impact € v ogr unming language fragmentation on developer productiv-
ity: a _curce.. cge empirical study, International Journal of Open Source
Soft 7are a1 1 Processes (IJOSSP) 2 (2) (2010) 41-61.

A Tdri, ™ azzahra Amazal, A. Abran, Analogy-based software develop-

“aent e.ort estimation: A systematic mapping and review, Information
a. 1 So’¢ware Technology 58 (2015) 206—230.

36

Polona Stefani¢ received her B.Sc. degree in computer science frc.> U iiversity of Ljubljana,
Slovenia in 2015. After finishing her studies, she worked as 2 ".2seai .Y Assistant on the
European Horizon2020 project ENTICE at University of Ljubljan ; follov 'ing that post she got
the Research Assistant position at Cardiff University where si.~> wrked on the SWITCH
project. Currently she is Teacher at Cardiff University and is sork’ .. towards her Ph.D. degree
at University of Ljubljana. Her research interests incluac distr outed cloud computing,
software engineering of cloud applications and med-agement of Non-Functional
Requirements within the entire cloud application li.~cycle. ;he works occasionally as a
Freelance Full Stack Developer.

Matej Cigale received his BSc from ' niversi y of Ljubljana, Faculty of Computer Science and
Informatics. He started working in the .Y stry until he enrolled to Ph.D. in 2015 in the field
of Artificial Intelligence. He work .d o (thr European H2020 SWITCH project first at University
of Ljubljana and then at Carcd'ff C ~ive.sity, School of Computer Science and Informatics.
Currently he is employed at Jc . ~f Stefan Institute on the INSENSION and CrowdHEALTH H2020
projects, researching in the smar. algorithms related to health of people where he uses
various machine learning .lgc ‘ithms to provide insight into their state and wellbeing.

Andrew Jo‘. ac is a Senior Lecturer and Director of Learning & Teaching in the School of
Computer Sci nce & Informatics at Cardiff University (UK). Until recently his research has
been mainly in the field of biodiversity informatics, particularly in the areas of scientific

workflows and interoperability using distributed resources, and cross-mapping between
scientific taxonomies. He has participated in a number of EC FP7 and UK Research Councils-
funded projects. More recently he has focused on environments and techniques to support
development of cloud-based software - in particular, in the EC H2020 SWITCH project.

\

Louise Knight received her BSc and PhD degrees in Com' ute’ . ience, both from Cardiff
University, in 2013 and 2018 respectively. Her PhD project cunce’ ned the parallelisation of
Bioinformatics algorithms using CUDA-enabled graphics caru. Since completing her PhD, she
has worked on the H2020 SWITCH project, investigatii.- how ¢ WITCH may support CUDA in
the future, and she currently works as a Teacher at Ca. Yift uinversity. Her research interests
include GPGPUs, Cloud computing, and time-critic>! ~=~'*~__ions.

lan Taylor is a Professor at the Univ. “sity of Notre Dame and a Reader at Cardiff University.
He has a degree in Computing Sci :nce, a "n.D. studying neural networks applied to musical
pitch and he designed/implemer red che .ata acquisition system and Triana workflow system
for the GEO600 gravitational wave = oject. He now specializes in Blockchain, open data
access, Web dashboards/AP!, a. 1 workflows. lan has published over 180 papers (h-index 41),
3 books and has won the N~val Resuarch Lab best paper award in 2010, 2011 and 2015. lan
acts as general chair for t'ie W ORKS Workflow workshop yearly at Supercomputing.

Cristiana Istrate is a student in the 4th year at Electronics, T:lec ... munications and
Information Technology, specialization Technologies and Telecomm..~ cations Systems, UPB
(University “Politehnica” of Bucharest) and a research and de' ciopmert assistant at BEIA
Consult International. The articles in which she actively ccatribut d were: “Real-Time
Telemetry System for Emergency Situations using SWITCH”, ~-ese..._d at the 3rd edition of
IT4RIs, “Integrated Software Platform for Mobile Malware Ar .iys's”, presented at the 3rd
edition of Fabulous. Currently she is involved in the follo'iing pro’acts: E-STAR that requires
the design of a PLM platform, SWITCH and ODSI that dema..s the design of new security

models.

George Suciu holds a PhD in cloud _omu. inications from the University POLITEHNICA of
Bucharest. Also, he holds a MBA in I, ~rmat’ :s Project Management and IPR from the Faculty
of Cybernetics, Statistics and Ec.nomic ..iformatics of the Academy of Economic Studies
Bucharest, and currently, his , 2st doc research work is focused on the field of cloud
communications, blockchain, ',ig daw. und 1oT/M2M. George has experience as coordinator
for over 30 R&D projects (FP", r.2120, Eureka / Eurostars, etc.) and is currently involved in 10
international and 5 nation?' ; vojects. He is the author or co-author of over 150 journal articles
and scientific conferenc pa.ers and holding over 5 patents. He is R&D and Innovation
Manager at BEIA Const'!t Inu.-national.

Alexandre U "sses is currently the Innovation Director of MOG Technologies where he is
coordinating several EU and national R&D projects. He worked for several years as a
researcher in INESCPORTO where he was involved in various projects in broadcasting and

video coding. He is a lecturer on multimedia and audiovisual topics at the Polytechnic Institute
of Viana do Castelo. He was also a project manager at the Portuguese National Innovation
Agency where he managed several innovation oriented projects. He was also chairman of the
ICT Sector Group of the EEN, the largest innovation and technology transfer network
worldwide.

Vlado Stankovski is an Associate Professor of Computer Scie'.ce f~~using on Distributed, Grid,
Cloud and Edge Computing, employed at the Faculty of ~.il ar d Geodetic Engineering,
University of Ljubljana. He has been the technical manager . the 6 DataMiningGrid project,
one of the managers of the FP6 InteliGrid project an~ took prt in the FP7 mOSAIC Cloud
project. He is currently taking part in two H2020 SV.'TCr, ~~.d ENTICE projects in software

engineering for big data and advanced cloud computing.
A 1 "' ;"‘ 7

Salman Taherizadeh has been work'ng ana taking active part in two H2020 projects called
SWITCH (Software Workbench for Inte.~c’.ve, Time Critical and Highly self-adaptive cloud
applications) and ENTICE (dEcer cral’sed repositories for traNsparent and efficienT virtual
maChine opErations). Salman Tahc 'zac'zh is currently employed as PhD researcher at Jozef
Stefan Institute (JSI), and he ‘s currently taking part in the PrEstoCloud (Proactive Cloud
Resources Management at the Eayg ~ for Efficient Real-Time Big Data Processing) project. His
research is focused on hir nly adaptive time-critical cloud and edge computing applications.
He has published works it *h . Computer Journal (Oxford University Press), Journal of Systems
and Software (JSS), Ir erratio..al Journal of Information Science and Management (lJISM),
etc.

Guadalupe Flores Salado received her Master in Telecommunication Engineering in 2011, a
Master in Electronics and Telecommunication in 2013 and her PhD in 2017. She has been
working for 6 years in the Electronic Department in the Superior School of Engineering in
sensors, microfabrication and MEMS. During this time, she developed her expvertise in the
area of microfluidics doing a PhD about Lab on Chips. Since 2017 she is work’ 1g in Wellness
Telecom in the R& D Department where she has been managing H2020 Eurc peai. Projects.

Spiros Koulouzis, has received an M.Sc. degree in Intelliger.- and Multi-Agent Systems
conferred October 2006 by University of Westminster and \V.sc. ir Grid Computing conferred
March 2010 by University of Amsterdam. He received his Pt. D .n C: mputer Science from the
University of Amsterdam in 2016. He is currently pa.” of _ie Systems and Network
Engineering research group and his research interests inci 1de distributed and parallel

systems.

Paul Martin obtained his PhD in Inforr .a.. °< in 2011 from the University of Edinburgh with an
interest in semantic modelling, dis’ sibuted artificial intelligence and argumentation. After
working within the Data Intensiv/ Resc.r.n group at the University of Edinburgh for four
years, he joined the System and Aet' vork Engineering group at the University of Amsterdam
in 2015. Since 2011 he has wr rkev. in 1 number of software and infrastructure-related EU
projects: the FP7 projects #._*1IRE, ENVRI and VERCE, and the H2020 projects SWITCH,
ENVRIplus and VRE4EIC.

Zhiming Z' ..~ ~htained his Ph.D. in computer science in 2004 from University of Amsterdam
(UvA). He is ~ senior researcher in the System and Network Engineering group at UvA. He is
the scientific v sordinator of the European H2020 SWTICH project and leads the Data for
Science theme in the ENVRIPLUS project. He participated in VRE4EIC and several other EU

projects. His research interests include software defined networking, cloud computing, time
critical systems and big data management.

Highlights

The main objective is to address entire lifecycle of .. me-critical cloud applicaitons
SWITCH offers middleware services for infrastructure pi.aning and provisioning
Interactive graphical modeling tools for specifica.'or or cime-critical requirements
Self-adaptation of on-demand resources and ~con. surability of infrastructure

The concept of co-programming model to supp.rt . rogrammability and controllability

	SWITCH workbench: A novel approach for the development and deployment of time-critical microservice-based cloud-native applications

