
LoC - A New Financial Loan Management System

based on Smart Contracts

Hao Wanga,∗, Chaonian Guob, Shuhan Chengb

aDepartment of Computer Science, NTNU, Gjøvik, Norway
bFujian Rural Credit Union, Wusi Road 517, Fuzhou, Fujian, China

Abstract

Current financial loan management systems are usually deployed in a single-
service mode, also the transactions are not transparent and traceable to most
of the roles participating in the process. Their data privacy protection mech-
anisms are not robust enough facing various cyber attacks. To overcome
these challenges, we propose loan on blockchain (LoC), a novel financial loan
management system based on smart contracts over permissioned blockchain
Hyperledger Fabric. We use the Chinese poverty alleviation loan as the case
study. We design a digital account model for the transfer of assets between
centralized and decentralized ledgers; and propose locking and unlocking al-
gorithms for smart contracts. We introduce digital signature and oracle to
protect the data privacy. Performance evaluations on chaincode and un-
locking codes show that our system is applicable in the real financial loan
setting.

Keywords: Blockchain, financial loan, smart contracts, decentralized ledger
technology

1. Introduction

Information technology has played a key role in the development of mod-
ern financial and banking services [1]. To maintain the efficiency and conve-
nience of financial services, banks rely on large and complicated information

∗Corresponding author
Email addresses: hawa@ntnu.no (Hao Wang), guochaonian@fjnx.com.cn

(Chaonian Guo), chengshuhan@fjnx.com.cn (Shuhan Cheng)

Preprint submitted to Future Generation Computer Systems March 13, 2019

systems and databases to conduct their business today. With the accelerat-
ing pace of developments in the fields of mobile devices, the modern analysis
methods of big data, the shifting of data into the cloud, the application of
AI and blockchain technology, more and more banks begin to apply Fintech
[2] to their information and business systems.

China has announced the continuous poverty alleviation program for its
rural areas [3], and more than CNU246 billion is issued for poverty allevia-
tion loan in the end of 2016 [4]. There are few varieties of poverty alleviation
loan in the financial industry. Because the service is in single service mode,
the loan amount is small for each customer, and the risk management mech-
anism is not robust, the cost of loan services of financial institutions is higher
than other loan products in support of the customer groups. The develop-
ment of the business requires more investments from all aspects of the local
government, financial institution, guarantee agency and regulator. More im-
portantly, there should be a transparent and secure management system
providing full services, especially for the rural areas which lack wholesome
financial infrastructure.

Also, the poverty alleviation loan is one of the product portfolios of Fu-
jian Rural Credit Union (FRCU) for this program. Poverty alleviation loan,
is a special loan product of FRCU set up for poor people lived in rural areas.
The roles participated in the loan include bank, customer, financial depart-
ment of government, civil affairs department of government and regulator of
government. The application procedure of this loan should walk through all
these roles, and the auditing terms of different roles vary a lot. It is a long
time for the applier to get the refund for loan interest. Currently, this loan
is maintained in the ordinary loan process management system. However,
existing systems are suffering from some limitations that prevent customers
from achieving most out of the value of poverty alleviation loan. The major
issues are: (i) the management system is centralized and deployed in single
service mode, which slows down the efficiency of information exchanges for
the loan; (ii) there is not an easy way to trace the data updating process and
prevent data tampering (especially for the supervisor), since there are many
roles in poverty alleviation loan and the business process is long; (iii) there is
not an effective protection for the customer data privacy facing cyber attacks
(man-in-the-middle attack [5], DoS attack, fraud, etc.).

The major contributions of this paper are summarized as follows:

• We propose a novel design of poverty alleviation loan management

2

system LoC based on smart contracts over permissioned blockchain;

• We design the digital account model for LoC to ensure asset transfer
between traditional bank and LoC;

• Based on the permissioned blockchain we introduce the semantical
smart contracts (chaincode) locking and unlocking mechanism for the
automatic evaluation/execution of transactions for LoC;

• Event, oracle and signature are introduced for smart contracts to keep
the validity of poverty alleviation loan and data privacy.

In section 2, we introduce the related work. Subsequently, in section 3,
we describe the overview of LoC, including components, roles and chaincode
locking, unlocking process. Section 4 discusses the detailed digital account
design, implementation of locking and unlocking process of chaincode, con-
struction of event oracle and the data privacy in LoC. Evaluation on the
performance of chaincode and unlocking code is carried out in section 5.
Section 6 concludes the paper with an extensive research agenda.

2. Related Work

Blockchain technology is first introduced by Bitcoin as a distributed book-
keeping system to prevent double-spending [6]. Blockchain is an encrypted,
distributed database/transaction system where all the peers share informa-
tion in a decentralized, trusted and secure manner. The ledger holds a com-
plete, and all-agreed transaction record. It has led to an increasing interest
in the technical community for using the underlying decentralized ledger of
transactions to solve other interesting problems, such as the fairness in in-
formation exchange [7, 8]. A number of large industrial companies, such
as IBM, Microsoft, Intel and Tencent are currently investing in exploiting
blockchain technology in order to enrich their product portfolios. In recent
years, there have been a number of blockchain frameworks proposals ap-
pearing, such as Ripple [9], Ethereum [10], Corda [11], Hyperledger [12] and
Hyperledger Fabric [13], among others.

There are two types of blockchains, one is public or permissionless blockchain
(such as Bitcoin) and the other is permissioned blockchain [14, 15] (such as
Hyperledger Fabric). The main differences between them are the privacy and
consensus algorithms.

3

In a permissionless blockchain anyone can participate without a specific
identity in the process of block verification to create consensus and also
create smart contracts. Permissionless blockchains typically involve a native
cryptocurrency and often use consensus based on “proof of work” (PoW)
and economic incentives. One major issue of permissionless blockchain is
the high latency of block generation, which is caused by the expensive PoW
process. To make the block generation faster, two different strategies are
proposed: “proof of stake” (PoS) and permissioned blockchain. Permissioned
blockchain restricts the actors who can contribute to the consensus of the
system state. So, it provides a way to secure the interactions among a group
of entities that have a common goal but which do not fully trust each other,
such as businesses that exchange funds (finance), goods (supply chain), or
information (public service). By relying on the identities of the peers, a
permissioned blockchain can use traditional Byzantine-fault tolerant (BFT),
RAFT, or Paxos consensus.

Table 1 summarizes most of the application scenarios of DLT. In poverty
alleviation loan, there may be participants who can only send and receive
assets, some others who have (exclusive) rights to validate transactions, and
a third group (such as regulator) which has the rights to read only. There-
fore, we did not choose the complex and resource-intensive PoW consensus
mechanism of permissionless DLT systems. On the contrary, we selected the
permissioned blockchain Hyperledger Fabric for the design and implementa-
tion of LoC.

Table 1: The application scenarios of DLT

Industry Scenarios

Finance
Payments, Clearing and Settlements, Insurance,
Crowdfunding

Supply Chain Supply Chain Finance, Supply Chain Traceability

Public Service
Intellectual Property Protection, Sharing Economy,
File Management

IoT
Traceability,
Anti-counterfeiting and Identification of Goods

Public Charity
Public Donation System,
Tracking and Management of Money

Core components of decentralized ledger technology (DLT) are widely

4

used in information technology for payments, clearing and settlement for
central banks. The world’s leading financial institutions are stepping up
to explore the blockchain of landing applications: the Bank of Canada has
launched project Jasper to evaluate domestic interbank payments settlement
and released CAD-coin [16]. In Europe, the European Central Bank and
the Bank of Japan have launched a joint research project on DLT [17]. The
Monetary Authority of Singapore has announced the successful conclusion
of a proof-of-concept project to conduct domestic inter-bank payments using
DLT [18]. The People’s Bank of China has begun to carry out research on
DLT and digital currency [19].

Smart contracts enabled in DLT are virtual agreements encoded on the
network that are automatically executed based on logical conditions [20].
The automatic execution is an important attribute for smart contracts [21].
Institutions also focus on the data security and privacy of smart contracts
in DLT [22, 23, 24, 25]. Platforms running user-defined smart contracts and
executing user-supplied transactions on their objects are also carried out
[26]. In recent years, the financial industry is also moving towards expressing
financial agreements via financial smart contracts [27], which serves as precise
notations for expressing financial agreements among parties.

Efforts are made to handle identity, transaction, debt information and
non-performing loans [28, 29, 30, 31, 32]. For poverty alleviation loan, there
is no much related work. To address these shortcomings, we propose LoC, a
novel poverty alleviation loan management system based on smart contracts
leverages the DLT. LoC uses the locking and unlocking of smart contracts
to deal with transactions semantically. In LoC, the digital account is used,
which makes asset transfer between decentralized ledger and traditional bank
possible. Moreover, digital signature and oracle mechanism are introduced
to ensure the data privacy and loan assets security. The DLT also makes
supervision much easier.

3. Overview of LoC and Locking & Unlocking of Chaincode

In this section, we describe the overview of LoC, and discuss the locking
and unlocking of chaincode.

3.1. Components in LoC

There are several components in LoC as shown in Fig. 1:

5

• Peer – A peer runs smart contracts called chaincode, receives ordered
state updates in the form of blocks from the ordering service, and main-
tains the world state and the ledger. Many peers could be deployed for
a single role, and each peer can join in different channels.

• Fabric SDK Node – The roles communicate with a peer through Fabric
SDK Node.

• Channels – The system provides channels to roles and peers, offering a
broadcast service for messages containing transactions.

• Ordering Service – Ordering Services generate blocks and order the
transactions in sequence.

• Membership Service – It provides the membership enrolling service for
all roles.

• Roles – Each participant in the system has one role.

• Blockchain – Each block typically contains a cryptographic hash of the
previous block, a timestamp and transaction data.

Channels

Blockchain

Peer

Chaincode
 {
 11111001010;
 }

Peer

Chaincode
 {
 010111111010;
 }

Peer

Chaincode
 {
 010111000011;
 }

State State State

Fabric SDK
Node

Query&Invoke
chaincode

Membership
Service

Ordering
Service

Financial
Department

Bank

Customer

Civil Affairs
Department

 Regulator

Roles

Figure 1: Overview of LoC

3.2. Roles in LoC

In the poverty alleviation loan management system, LoC needs to support
all the different types of roles that participate in the process:

6

• Financial Department – FD. The financial department is the user who
represents the government in the poverty alleviation program. Role of
financial department in the system is to check the auditing result of
identity and application information of the customer for poverty loan
from the civil affairs department, and to provide the fund for subsidy
of interest to customer via bank according to the governmental poverty
alleviation program.

• Bank – B. The bank is the most important part in the system which
provides loan to customer. Role of bank is the issuance of loan, in-
cluding the verification of the identity and application information of
the customer for loan, the provision of loan funds to customer, the
calculation and collection of loan interests.

• Customer – C. Customer is the issuance target of the poverty allevia-
tion loan. He provides identity and other information to the civil affairs
department, and makes an application for the loan to bank.

• Civil Affairs Department – CAD. The civil affairs department audits
the identity from the customer and loan application of the customer,
then transfers the auditing result to financial department.

• Regulator – R. The regulator is responsible for the monitoring of fund
flow among each role and the risk during the loan business. He can
inspect the ledger to get a full picture of the system, and challenge
any party and transaction if he finds something wrong during the loan
business.

3.3. The Locking and Unlocking of Chaincode

3.3.1. Digital signature

A digital signature is a mathematical scheme for demonstrating the au-
thenticity of digital messages or documents [33]. A valid digital signature
gives a recipient reason to believe that the message was created by a known
sender (authentication), that the sender cannot deny having sent the message
(non-repudiation), and that the message was not altered in transit (integrity).
Digital signature is a standard element of most cryptographic protocol suites,
and are commonly used for software distribution, financial transactions, con-
tract management software, and in other cases where it is important to detect
forgery or tampering. In this work, we sign the event and oracle result of the

7

event in the poverty alleviation loan business with a digital signature, which
can guarantee the integrity of transactions and prevent any repudiation be-
tween applicant and auditor.

3.3.2. The locking and unlocking of chaincode

Transactions of LoC relies on two types of codes: a chaincode and an
unlocking code. The chaincode is a type of smart contracts, in which it
specifies the requisite conditions that must be met to do some operations. We
call the generation procedure of chaincode a locking process. The unlocking
code is a piece of code that “solves,” or satisfies, the conditions placed on
the chaincode and allows the transaction to be executed, which is called the
unlocking process.

We define the chaincode space as CS, and let the object o ∈ CS like,
“A applies to do something with the grant of B”, where “do something”
is the atomic Operations (such as transfer money, repayment and account
query) for object o, the whole object is called event, A and B denote roles
r ∈ RO = {FD, B, C, CAD, R} that participates in the event. Then, the
locking process is to translate the object o into chaincode cc semantically. In
the loan issuance process, the chaincode locking process could be combined
with business flow pre-configured to the LoC system. We construct a 3-
tuple (Operations, event, Public Keys) to represent the chaincode cc, where
event should be appended with all the signatures of roles in A for event, and
Public Keys are the keys of all roles in B who grant the event. The chaincode
will be in effect only when the 3-tuple is valid and complete.

The forming of unlocking code for the chaincode can also be pre-configured
in LoC within the loan issuance business. After B receives the event, he will
give an oracle result to the event. The oracle result from any role in B could
be Pass or Failed according to the information he receives. Hence, the
unlocking code cc should be a 2-tuple (event, Signaturesora) in unlocking
code space US, where event is from A, and Signaturesora are the digital
signatures of oracle results for event. It makes sense when this happens in
poverty alleviation loan of real finance business, especially in which there are
multiple players participating in the scenario.

Currently, we have shown how to generate chaincode and the correspond-
ing unlocking code. For the unlocking process, we design a dual-stack evalu-
ation mechanism for chaincode transactions by reduction, in which the trans-
action in chaincode will be executed automatically triggered by the unlocking
code. To illustrate the mechanism, we present an informal walkthrough for

8

unlocking process of one chaincode example. Assume that we have generated
a chaincode cc like this:

cc = ((OP1, OP2), event, (P1, P2, P3)), (1)

and the corresponding unlocking code uc:

uc = (event, (Sigora1 , Sigora2 , Sigora3)). (2)

All the items of the codes in (1) and (2) are pushed into respective stacks
from left to right, and the unlocking process of the chaincode cc is described
in Fig. 2.

event

stack of chaincode cc

+P3

P2

P1

event
OP2

OP1

Sig2
ora

Sig1
ora

event

Sig3
oraP3 Sig3

ora

Public keys and
Signatures

verify oracle result in Sig3
ora with key P3

stack of unlocking code ucOperations

Figure 2: Dual-stack unlocking of chaincode cc via uc: in the process, all the items are
popped out from the stacks in sequence. Then we use the public key in chaincode to verify
the signature in the unlocking code and get the oracle results of the event. In case all the
oracle results are Pass and the event in both stack equals, the Operations in chaincode
is popped out and executed. Thus, the unlocking process of chaincode cc completes.

The dual-stack evaluation mechanism guarantees the automatic execu-
tion of chaincode and the integrity of transactions, and also prevents the
repudiation and man-in-the-middle attack. We summarize this process as
event-driven locking and unlocking of chaincode.

4. Design and Implementation of LoC

We now describe in detail the design of digital account for LoC, the imple-
mentation of algorithms for chaincode generation, unlocking code generation
and the corresponding unlocking process based on business flow. Also, the
construction of event oracle and the data privacy for LoC is analyzed.

9

4.1. Account Design for LoC

In traditional banks, there is an account for every customer keeping the
assets of real-world value. These assets are often issued by real world entities.
For LoC, we need to cope with this and design the digital account carefully.
We record the existence and exchanges of digital assets without issuing them
in LoC. The asset value of LoC come from the traditional accounts. LoC
targets for non-public settings, in which roles in RO spin up a network to
manage the poverty alleviation loan and trade assets among each other. If
other banks or users that are not in RO want to join in the network, they
should get authenticated.

centralized ledger

…

digital account

traditional account

account no.

issue date

CIF no.

�

digital account
address

account of
bank2

account of
bankn

asset1bank1

asset2bank2

assetnbankn

1J7mdg5rbQyUHENYdx39WVWK7fsLpE
oXZy

digital assetissue bank

account address /
account ID

sig1

signature�account no.

�����	���

	����
��	

�����	���

…

sig2

sign

�

�

�

decentralized ledger

connector

Figure 3: Digital account design of LoC (CIF – customer information)

Fig. 3 shows the digital account structure for LoC. We add an account
address (or account ID, the account ID of digital account is the public key of
the account owner) link to traditional account and add account number link
back in digital account of each asset issued by different banks (In a traditional
account, there is usually an account number). They will set up the connection
between these two types of accounts, thus making the asset transfer between
these two types of accounts possible. The client or customer of banks can
have a global digital account da ∈ DA and many traditional accounts tas
∈ T A. For digital accounts, the assets might come from different banks, and
the signature of bank is appended to the asset issued by the bank. Hence,
the digital assets could be differentiated from each other. For traditional
accounts, all the transactions are in centralized ledger. On the other hand,

10

in a decentralized ledger, all the transactions are in peers and each peer
keeps the same copy. A connector can be set up between these two ledgers
by higher institutions, such as the central bank or government (It is not the
focus of this paper). In LoC, the customer can transfer funds between these
two accounts.

Hereinafter, we discuss the poverty alleviation loan for the customer who
has at least one traditional account ta and one digital account da, with a
connection set up between ta and da. If not explicitly stated otherwise, the
term “transaction” stands for the transaction inside system LoC.

4.2. Implementation of Chaincode for LoC

As mentioned in the previous section, all roles might propose an event
∈ ES with related atomic operation in poverty alleviation loan, such as the
events shown in Table 2 (not all the events are listed).

Table 2: Events and operations in LoC

Role Events Operations

C applies for the poverty alleviation loan transfer
FD repays interest for customer when loan expires repay
R inspects the fund flow of transaction inspect
B queries account query
CAD queries the information of the customer query

Algorithm 1 shows the generation/locking process of chaincode. Given the
Roles RO1, RO2, Operations and event, it returns corresponding chaincode
cc. The atomic Operations and Signatures of the event will be pushed into
the chaincode in order, and finally the public keys of RO2 are pushed into
the chaincode.

In the generation process of unlocking code, the Signatures in the end of
event will be verified and checked. If the signature verification passes, roles
in RO2 will judge the event they receive from RO1 and give the oracle results
of the event. The entire process can be described in Algorithm 2.

For the dual-stack unlocking process of chaincode, the chaincode stack
Scc and unlocking code stack Suc are combined together. All the Signatures
in Suc and Public Keys in Scc are popped out, then Signatures are verified
with the keys in sequence and we get event oracle results. When the event

11

Algorithm 1: The chaincode generation algorithm
Input: RO1 ⊆ RO, Operations, RO2 ⊆ RO, event ∈ ES
Output: Chaincode cc ∈ CS for o = (RO1, Operations, RO2, event) ∈ ES

1 cc ← φ
2 Assert(Operations is valid)
3 Assert(event is valid)
4 cc.append(Operations)
5 for r ∈ RO1 do
6 Sigeventr ← sign event with private key of r
7 event.append(Sigeventr)

8 cc.append(event)
9 for r ∈ RO2 do

10 cc.append(public key of r)

11 return cc I locking success

is popped out, the Signatures of event and event itself will be checked in
both stacks. After the oracle result and event verification pass, Operations
are popped out and executed. The unlocking process could be summarized
in Algorithm 3. It could be derived that the complexity of each Algorithm
is Θ(n), where n is the stack depth of the chaincode.

B
C

CAD FD

ea
(ea, {SigB

ora})
(ea, {SigB

ora, SigCAD
ora, SigFD

ora})

R Blockchain Storage

install chaincode cc for ea

(ea, {SigB
ora, SigCAD

ora})

unlocking code uc

trigger and execute
update

Algorithm 1

Algorithm 2

Algorithm 3

generate chaincode cc (transfer(l, ta1, ta2), ea, {PB, PCAD, PFD})

Figure 4: Business flow for chaincode, unlocking code generation and execution

To model the locking and unlocking process for loan application business
event, we define the event from customer c ∈ C as ea = (idc, l, d, other info,
Sigc), where idc denotes identity of the customer c, l denotes the loan amount
he applies, d denotes the loan duration, other info denotes other customer
information (such as income, asset, debt, etc.) and Sigc is the signature of the
event. Let cc = (transfer(l, ta1, ta2), ea, (PB, PCAD, PFD)) be the chain-
code for the loan application event, where transfer(l, ta1, ta2) means the
operation of transferring money from digital account ta1 to ta2 with amount

12

Algorithm 2: The unlocking code generation algorithm
Input: RO1 ⊆ RO, event ∈ ES, RO2 ⊆ RO
Output: Unlocking code uc ∈ UC for chaincode of event

1 uc ← φ
2 Sigs ← φ
3 Assert(event is valid)
4 for item ∈ event do
5 if typeof(item) is Signature then
6 Sigs.append(item)

7 for s ∈ Sigs, r ∈ RO1 do
8 Assert(verify s with public key of r)

9 uc.append(event)
10 for r ∈ RO2 do
11 result ← oracle(event) of r
12 s ← sign result with private key of r
13 uc.append(s)

14 return uc I unlocking code successfully generated

l, PB, PCAD and PFD are the public keys of bank, civil affairs department
and financial department (the poverty alleviation loan application should be
passed to bank, civil affairs and financial department and audited by them).
And the unlocking code is also constructed according to the business flow
semantically. Let uc = (ea, (SigoraB , SigoraCAD, SigoraFD)) denotes the unlock-
ing code, where SigoraB , SigoraCAD and SigoraFD represent the oracle results for the
loan application event ea with signatures. As shown in Fig. 4, the generation
of chaincode and unlocking code could be configured to LoC. After chaincode
is installed to the peer, it will be triggered and evaluated when the unlocking
code is generated and proposed to peer. Thus, the operation results in the
digital asset value of the customer increasing by l. Finally, the world state
is updated in peers.

Other events in Table 2 or not shown in the table also follow these three
algorithms. One difference between the events is that the business flow is spe-
cific for each event. For example, event “FD repays interest for customer”
will execute a query to the loan information issued by the bank before, then
FD gives an oracle result, finally the bank repays fund from digital account of
FD to the account of B, and the chaincode should be ({query(loan), repay(
interest, tFD, tb)}, er, PFD). The other difference is that some of their
operations will trigger the update of world state (such as transfer, repay)

13

Algorithm 3: Dual-stack unlocking algorithm for chaincode
Input: Chaincode stack Scc, unlocking code stack Suc, R ⊆ RO
Output: Return code of evaluation result for chaincode cc ∈ CS

1 Sigscc ← φ
2 Sigsuc ← φ
3 while Scc is not Null and Suc is not Null do
4 itemc ← Scc.pop()
5 itemu ← Suc.pop()
6 switch typeof(itemc) do
7 case Public Key do
8 oracle(itemu)← verify itemu with key itemc

9 if oracle(itemu) is Pass then
10 oracle check pass
11 else
12 return 1− oracle check failed I unlocking failed

13 case event do
14 for ic ∈ itemc, iu ∈ itemu do
15 if typeof(ic) is Signature && typeof(ic) is Signature then
16 Sigscc.append(ic)
17 Sigsuc.append(iu)

18 for sc ∈ Sigscc, su ∈ Sigcuc, r ∈ R do
19 Assert(verify sc with public key of r)
20 Assert(verify su with public key of r)

21 if itemc equals itemu then
22 event check pass
23 else
24 return 2− event check failed I unlocking failed

25 otherwise do
26 return 3− type error I unlocking failed

27 while Scc is not Null do
28 op ← Scc.pop()
29 if typeof(op) is Operation then
30 execute the operation op
31 else
32 return 3− type error I unlocking failed

33 return 0− success I unlocking success

14

while others will not (such as query, inspect).

4.3. The Oracle of Event

In cryptography, oracle is used to make arguments for the security of
cryptographic protocols. For oracle, there will be an input and an output.
If an input is submitted repeatedly to the oracle, the outputs are always the
same. We introduce oracle mechanism with signature for event auditing in
LoC to prevent the counterfeit auditing.

Let function f denotes the oracle process:

f : event → result (3)

The roles in ROora ∈ {FD, B, CAD} will give oracle results independently
for specific event in LoC. The oracle function for ROora is {fFD, fB, fCAD}.
For e ∈ event, we define function f as:

f(e) =

{
Pass if (� t(i)) × ex = 1, ∀ i ∈ e

Failed otherwise,
(4)

where, t(i) is:

t(i) =

{
1 if i meets termi

0 otherwise.
(5)

The operation “�” in equation (4) indicates multiplication mod 2, ex indi-
cates the exception to the event e of role in ROora. Exception ex always
should be 1, and sometimes be 0 if the grant role finds some evidence shows
that the loan should not be issued (such as the customer in the blacklist).
Some of the terms for role in ROora of event loan application ea could be
shown in Table 3. All the loan terms could be combined into the oracle
functions in this form.

After oracle result f(e) of event e is calculated, role in ROora will sign
the result. Then, the final result will be passed to next role for auditing.

4.4. Data Privacy of LoC

In LoC, users have higher levels of privacy and security compared to the
traditional poverty alleviation loan management system. First, we design
the LoC system based on permissioned blockchain Hyperledger Fabric, who
contains the “Membership Service” and “Ordering Service”. The authen-
tication mechanism of the services and other security characteristics makes

15

Table 3: Terms of the loan for different roles

ea B CAD FD

idc == identity == identity == identity
l <= loanlimit NA NA
d <= monthmax NA NA
income >= incomemin <= incomemax NA
asset >= assetmin <= assetmax NA
debt <= debtmax NA NA

issue
0 issued before
1 otherwise

0 issued before
1 otherwise

0 issued before
1 otherwise

the untrusted access and non-deterministic execution from untrusted chain-
code DoS attacks impossible in order-execute architectures [13]. Secondly,
the messages and events are all appended with signatures, which makes the
man-in-the-middle attack easier to happen. Thirdly, all events will be au-
dited and given the oracle results, which means even if the event is tampered,
the oracle result will be Failed.

With this design, untrusted entities would not be able to get useful in-
formation by observing the ledger because they would not have the access of
“Membership Service”. LoC would be deployed in the Internet zone, always
with DMZ (demilitarized zone), of whole banking system. Various of secu-
rity infrastructure are always deployed in this zone, to keep data away from
attack, fraud and virus. These infrastructure include IDS (Intrusion Detect
System), firewall, anti-virus, anti-fraud and content filtering system.

5. Evaluation

In this section, we evaluate the generation, execution of three events
for chaincode and unlocking code in docker. Also, the scalability of the
system is evaluted. The first event is the application for the loan, the second
one is the application for the refund, and the final is query of the loan.
Table 4 shows the detailed information for the evaluation. These scenarios
will trigger the API of Hyperledger Fabric SDK: Invoke, Invoke and Query
respectively. The operation Transfer will transfer money from one digital
account to another. The operation Query will query the loan information
from bank. There are 5 peers on behalf of C, B, CAD, FD, R and 1 orderer

16

in the container docker. Orderer provides ordering service, who provides
a shared communication channel to peers, offering a broadcast service for
messages containing transactions.

Table 4: Detailed information of three events

Operation Event Business flow API

Transfer 1: Application of loan C → B → CAD → FD Invoke
Transfer 2: Application of refund C → B → FD Invoke
Query 3: Query of loan C → B Query

After the channel has been created, all the peers join in the channel
and listen to the messages broadcasted from the orderer. The chaincode and
unlocking code described by go language, which are the output of Algorithms
1 and 2, for all events are installed to these peers in advance. There is no
unlocking code for event 3 Query. Then we use fabric-go-sdk and Beego,
an open source framework for web application, to send request: Invoke and
Query to Fabric. Invoke is the interface for account transfer transaction, and
Query is for result querying transaction. Figure 5 shows the installing time
for each event (the unit is second). It could be seen from the figure that all
the chaincode and unlocking code could be installed within 0.25 second.

Figure 5: The installing time of chaincode and unlocking code for each event

For the evaluation of chaincode execution, the request of all transactions
is increased by 10. We compose all the transactions by the percentages of
40%, 40%, 20% respectively for event 1, event 2 and event 3. It can be
derived from Figure 6 that as the load of request rises, the consumption of

17

Figure 6: The evaluation results of locking code execution

Figure 7: The scalability for large number of peers

CPU and memory for smart contract clearing is increasing too. The total
TPS – transaction per second, which is calculated by request/response, is
growing up gradually and reaching the maximum value 50.676 at request 30.
After that, the value drops down to 45.872 at request 40 because of the CPU
resource is almost exhausted at 98.001%. When the request is 50, the TPS
continues to drop down because of the bottleneck from CPU. At request of
30, the TPS for Transfer of event 1 is 8.2; the TPS for Transfer of event 2
is 10.782; and the TPS for Query of event 3 is 31.694. It shows that event 3
has highest value because it just reads the value state from blockchain, while
the other two try to update the state.

For the scalability, we consider three scenarios: 1 orderer, 2 orderers and
4 orderers. Then the number of peers for customer increases gradually. We
set the number of peers to 1, 2, 4, 8, 64, 128 respectively. For each set of
peers, we could get the final highest TPS (for example, 50.676 is highest
TPS for one peer). Figure 7 depicts the results for different number of peers,

18

which shows the total TPS increases fast within 10 peers, and finally the
curves get flattening. As the number of peers is large than 200 or more,
we find out that the TPS will become to drop and there appears a lot of
error or timeout requests. Also, we could see that it takes more time to
synchronize the messages and get consensus as the number of order increases.
Comparing to current poverty alleviation loan management system, which
could reach 200 TPS in FRCU, LoC still need some careful optimization
for scalability and performance. For the fault tolerance of LoC, research [34]
shows that to tolerate f faulty orderers, the network should consist of at least
n = 3f + 1 orderers. And this means the network requires 2f + 1 orderers
to get consensus. Also, the authorities for roles FD, B, C, CAD, R should
always be trusted in the network.

The evaluation is carried out on a single server, while more distributed
servers could be deployed to pursue higher TPS. The results indicate that
our proposed scheme is extendable and applicable for LoC, therefore enabling
the transaction management of poverty alleviation loan among different en-
tities. Moreover, in the beginning phase of production, the business volumn
of poverty alleviation loan of FRCU is not very large.

6. Conclusion and Future Work

Poverty alleviation loan is an important program for the poverty allevi-
ation strategy. It is urgent to build a management system for this loan to
improve the transparency, security and traceability for the business. LoC is
introduced in this paper to handle this issue. We design LoC based on the
permissioned blockchain, and uses locking and unlocking of smart contracts
to execute the transactions automatically. In addition, event, oracle and dig-
ital signature are introduced to validate the loan business and provide data
privacy. Performance evaluations on chaincode and unlocking code genera-
tion, installation and execution show that our system is applicable in the real
financial loan setting.

For the future work, we plan to further elaborate on the connector be-
tween centralized and decentralized legers. This is also the main limitation
of the proposed scheme, that is there is no generally accepted connector
between centralized and decentralized ledgers in the market currently. Cur-
rently, FRCU is working on the PoC (proof of conception) of the project for
poverty alleviation loan. There is a Fintech team consisted of three persons
carrying out this project for about one year. Next step, we will deploy this

19

design to the production system and analyze more experimental results in
details.

Acknowledgment

The work described in this paper was partially supported by the National
Natural Science Foundation of China under Grant No. 61672170 and No.
61871313 and the Science and Technology Planning Project of Guangdong
Province under Grant No. 2017A050501035. Also, this work is partially
funded by the Fujian Fumin Foundation.

[1] R. J. Shiller, The new financial order: Risk in the 21st century, Princeton
University Press, 2009.

[2] P. Schueffel, Taming the beast: a scientific definition of fintech.

[3] L. Meng, Evaluating china’s poverty alleviation program: a regression
discontinuity approach, Journal of Public Economics 101 (2013) 1–11.

[4] C. B. Association, China banking social responsibility report,
http://www.china-cba.net/do/bencandy.php?fid=43&id=16595 (ac-
cessed 2 Jan, 2019).

[5] G. N. Nayak, S. G. Samaddar, Different flavours of man-in-the-middle
attack, consequences and feasible solutions, in: Computer Science and
Information Technology (ICCSIT), 2010 3rd IEEE International Con-
ference on, Vol. 5, IEEE, 2010, pp. 491–495.

[6] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system.

[7] H. Wang, H. Guo, M. Lin, J. Yin, Q. He, J. Zhang, A new dependable ex-
change protocol, Computer communications 29 (15) (2006) 2770–2780.

[8] H. Wang, H. Guo, Achieving fairness in wireless environment, in: Emerg-
ing Technologies: Frontiers of Mobile and Wireless Communication,
2004. Proceedings of the IEEE 6th Circuits and Systems Symposium
on, Vol. 1, IEEE, 2004, pp. 117–120.

[9] Ripple, accessed 2 Jan, 2019.
URL https://ripple.com/

20

[10] G. Wood, Ethereum: A secure decentralised generalised transaction
ledger, ethereum Project Yellow Paper.

[11] M. Hearn, Corda - a distributed ledger, corda Technical White Paper.

[12] Hyperledger, https://www.hyperledger.org/ (Accessed 2 Jan, 2019).

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.,
Hyperledger fabric: a distributed operating system for permissioned
blockchains, in: Proceedings of the Thirteenth EuroSys Conference,
ACM, 2018, p. 30.

[14] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, J. Wang, Untan-
gling blockchain: A data processing view of blockchain systems, IEEE
Transactions on Knowledge and Data Engineering 30 (7) (2018) 1366–
1385.

[15] M. Vukolić, Rethinking permissioned blockchains, in: Proceedings of the
ACM Workshop on Blockchain, Cryptocurrencies and Contracts, ACM,
2017, pp. 3–7.

[16] R. Garratt, Cad-coin versus fedcoin, http://www.r3cev.com/s/cad-coin-
versus.pdf (accessed 2 Jan, 2019).

[17] Bank of Japan, ECB and the bank of Japan launch a
joint research project on distributed ledger technology,
http://www.boj.or.jp/en/announcements/release 2016/rel161207a.htm/
(accessed 2 Jan, 2019).

[18] Monetary Authority of Singapore, MAS working with industry to apply
distributed ledger technology in securities settlement and cross border
payments, http://www.mas.gov.sg/News-and-Publications/Media-
Releases/2017/MAS-working-with-industry-to-apply-Distributed-
Ledger-Technology.aspx (accessed 2 Jan, 2019).

[19] Z. Xu, Q. Yao, The proposal of the digital bill trading system, China
Finance 17 (2016) 31–33.

[20] A. Savelyev, Contract law 2.0: Smart contracts as the beginning of the
end of classic contract law, Information & Communications Technology
Law 26 (2) (2017) 116–134.

21

[21] B. Egelund-Müller, M. Elsman, F. Henglein, O. Ross, Automated ex-
ecution of financial contracts on blockchains, Business & Information
Systems Engineering 59 (6) (2017) 457–467.

[22] J. Liang, W. Han, Z. Guo, Y. Chen, C. Cao, X. S. Wang, F. Li, DESC:
enabling secure data exchange based on smart contracts, Science China
Information Sciences 61 (4) (2018) 049102.

[23] G. Zyskind, O. Nathan, et al., Decentralizing privacy: Using blockchain
to protect personal data, in: Security and Privacy Workshops (SPW),
2015 IEEE, IEEE, 2015, pp. 180–184.

[24] M. Corrales, P. Jurcys, G. Kousiouris, Smart contracts and smart dis-
closure: Coding a gdpr compliance framework.

[25] H. Halpin, M. Piekarska, Introduction to security and privacy on the
blockchain, in: Security and Privacy Workshops (EuroS&PW), 2017
IEEE European Symposium on, IEEE, 2017, pp. 1–3.

[26] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, G. Danezis,
Chainspace: A sharded smart contracts platform, arXiv preprint
arXiv:1708.03778.

[27] G. W. Peters, E. Panayi, Understanding modern banking ledgers
through blockchain technologies: Future of transaction processing and
smart contracts on the internet of money, in: Banking Beyond Banks
and Money, Springer, 2016, pp. 239–278.

[28] C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, Z. Xiang, Time series
anomaly detection for trustworthy services in cloud computing systems,
IEEE Transaction on Big Data, DOI: 10.1109/TBDATA.2017.2711039.

[29] M. Mainelli, M. Smith, Sharing ledgers for sharing economies: an explo-
ration of mutual distributed ledgers (aka blockchain technology).

[30] S. DHAR, I. BOSE, Smarter banking: Blockchain technology in the
indian banking system.

[31] Y. Ma, Y. Wu, J. Ge, J. Li, An architecture for accountable anonymous
access in the internet-of-things network, IEEE Access 6 (2018) 14451–
14461.

22

[32] X. K. Wang, L. T. Yang, X. Xie, J. Jin, M. J. Deen, A cloud-edge
computing framework for cyber-physical-social services, IEEE Commu-
nications Magazine 55 (11) (2017) 80–85.

[33] W. Diffie, M. Hellman, New directions in cryptography, IEEE transac-
tions on Information Theory 22 (6) (1976) 644–654.

[34] H. Sukhwani, J. M. Mart́ınez, X. Chang, K. S. Trivedi, A. Rindos,
Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric), in: Reliable Distributed Sys-
tems (SRDS), 2017 IEEE 36th Symposium on, IEEE, 2017, pp. 253–255.

23

