
A Non-Canonical Hybrid Metaheuristic Approach to
Adaptive Data Stream Classification

Hossein Ghomeshia, Mohamed Medhat Gabera, Yevgeniya Kovalchuka

aSchool of Computing and Digital Technology, Birmingham City University, Birmingham,
United Kingdom

Abstract

Data stream classification techniques have been playing an important role in big

data analytics recently due to their diverse applications (e.g. fraud and intru-

sion detection, forecasting and healthcare monitoring systems) and the growing

number of real-world data stream generators (e.g. IoT devices and sensors,

websites and social network feeds). Streaming data is often prone to evolu-

tion over time. In this context, the main challenge for computational models

is to adapt to changes, known as concept drifts, using data mining and opti-

misation techniques. We present a novel ensemble technique called RED-PSO

that seamlessly adapts to different concept drifts in non-stationary data stream

classification tasks. RED-PSO is based on a three-layer architecture to produce

classification types of different size, each created by randomly selecting a certain

percentage of features from a pool of features of the target data stream. An evo-

lutionary algorithm, namely, Replicator Dynamics (RD), is used to seamlessly

adapt to different concept drifts; it allows good performing types to grow and

poor performing ones to shrink in size. In addition, the selected feature combi-

nations in all classification types are optimised using a non-canonical version of

the Particle Swarm Optimisation (PSO) technique for each layer individually.

PSO allows the types in each layer to go towards local (within the same type)

IFully documented templates are available in the elsarticle package on CTAN.
Email addresses: Hossein.ghomeshi@mail.bcu.ac.uk (Hossein Ghomeshi),

Mohamed.Gaber@bcu.ac.uk (Mohamed Medhat Gaber), Yevgeniya.Kovalchuk@bcu.ac.uk
(Yevgeniya Kovalchuk)

Preprint submitted to Journal of LATEX Templates July 28, 2019

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle

and global (in all types) optimums with a specified velocity. A set of experi-

ments are conducted to compare the performance of the proposed method to

state-of-the-art algorithms using real-world and synthetic data streams in imme-

diate and delayed prequential evaluation settings. The results show a favourable

performance of our method in different environments.

Keywords: Ensemble Learning, Data Stream Mining, Concept Drifts,

Bio-Inspired Algorithms, Non-stationary Environments, Particle Swarm

Optimisation, Replicator Dynamics.

1. Introduction

As the digital world advances, the number of data streams produced by var-

ious sources such as IoT devices and sensors and social media networks grows

rapidly. Such streams are usually characterised by high velocity and changes

in data distributions over time. Therefore, a significant number of recent re-5

search are concentrated on data stream classification challenges specially in

non-stationary data streams [1]. The main challenge in this context is adapta-

tion to different concept drifts; that is, when the data distribution evolve over

time in unforeseen ways.

Various forms of concept drifts can be categorised into four generic groups10

of sudden (abrupt), incremental, gradual and recurrent. In sudden concept

drifts, the distribution of data is suddenly replaced with a new distribution.

An incremental concept drift is a drift to the distribution of data when it goes

through various, unstable distributions before being stable at a specific data

distribution. In the gradual concept drifts, the ratio of a new distribution of15

incoming data raises, and the ratio of the data from the former distribution

drops over time. In a recurrent concept drift, the same old distribution of data

reappears after passing some time with different distribution/s.

Ensemble learning technique is a machine learning approach, where multiple

classifiers are created and combined using a voting mechanism to establish a20

single class as the output of a data instance. Ensemble techniques have demon-

2

strated superiority over other classification techniques for stream classification

tasks in non-stationary environments [2][3]. This is due to their flexibility in

training and updating classifiers. Furthermore, ensemble techniques offer a solu-

tion to keep the effects of old and new instances using multiple classifiers since25

each instance in a data stream is processed only once on the arrival in most

cases.

An ideal approach to non-stationary data stream classification should satisfy

the following objective with a multifold features: having the least possible mis-

classification rate while minimising the computational complexity and quickly30

adapting to possible concept drifts. However, there is a lack of comprehensive

approaches offering these features in a single framework; the majority of the ex-

isting ensemble methods are focused on either one or two of them, or a specific

type of data streams.

The aim of this study is to propose a novel method using a modified bio-35

inspired algorithm, namely, Particle Swarm Optimisation (PSO), to comply with

the aforementioned characteristics of an ideal approach to cope with evolving

data streams in classification challenges. The proposed technique comprises a

three-layer architecture. Each layer is initially assigned some predefined classi-

fication types that randomly created from a pool of features of the target data40

stream. We used an evolutionary algorithm called Replicator Dynamics (RD)

to seamlessly cope with smooth (i.e. gradual or incremental) concept drifts; it

allows the classification types with good performance to grow and those with

poor performance to shrink in size. The combination of features in all types is

then optimised using a modified version of PSO for each layer individually. This45

helps the method to cope with more sudden (i.e. recurring or abrupt) concept

drifts. PSO allows the types in each layer to go towards local (within the same

type) and global (in all types) optimums with a specified velocity.

The proposed method in this paper is evaluated over 5 real-world data

streams and 4 synthetic (artificial) data stream generators. Different types50

of concept drifts are added to synthetic datasets in order to examine how the

proposed method adapts to different concept drifts compared to state-of-the-art

3

methods. As the process of labelling instances in the real-world datasets is dif-

ferent depending on the application, real-world data streams can be categorised

into two different labelling mechanisms of complete labelling and partial la-55

belling. Complete labelling is done where the true labels of respective instances

are completely accessible either instantly or after a delay with no/small extra

overhead to the system. This is the case in most of the forecasting tasks such

as weather forecasting, stock market analysis, forest monitoring, airline predic-

tions, and bill estimation. Partial labelling is done where the real labels are ac-60

cessible with an extra overhead to the system via a third party (usually human).

This is the case where the real labels are retrieved after an analysis of related

data in the stream (e.g. medical diagnosis in health data, anomaly/fraud detec-

tion in credit card transactions, etc.). The main goal of the proposed framework

is to deal with complete labelling data streams. Hence in the experiments part65

of this paper, it is assumed that the true labels of instances are completely ac-

cessible either instantly or after a specified delay. In this regards, each data-set

in the experiments are processed twice; once in the delayed setting (where the

actual labels of instances are accessible after a specified time) as well as once in

the immediate setting (where the actual labels are accessible instantly).70

The rest of this paper is organised as follows: Section 2 overviews related

research; Section 3 details our proposed method; Section 4 outlines the exper-

imental setup and results, and compares the presented RED-PSO method to

other state-of-the-art methods; Section 5 overviews conclusion and outlines the

possible future work.75

2. Related Work

A majority of the existing data stream classification algorithms for evolving

environments use ensemble learning techniques [1][2][3][4] due to their flexibility

in updating the classification model (i.e. adding, removing and retraining their

constituent classifiers), and consequently the fact that such methods are more80

trustworthy than single-classifier methods, especially in non-stationary environ-

4

ments, thanks to their experimentally validated higher accuracy.

In general, many of the stat-of-the-art ensemble learning algorithms are

adapted versions of bagging [5] and boosting [6] methods. OzaBag [7] is an on-

line version of the standard bagging, that every classifier in the pool is trained85

with k copies of the data that has received recently. OzaBoost [7] is the online

version of the standard boosting algorithm. In OzaBoost method, each incom-

ing instance is used to train all experts sequentially: highest possible weight

is assigned to the first decision tree and the weights calculated for the next

decision trees are based on the evaluation of the older ones. OSBoost [8] is a90

method based on online boosting. This method combines hypotheses from weak

learners in order to obtain an effective online boosting.

Dynamic Weighted Majority (DWM) [9] maintains an ensemble of classifiers

using a weighted-majority vote mechanism. DWM creates and deletes classifiers

dynamically in order to response to concept drifts. In case of a classifier miss-95

classifying an instance, its weight is decreased by a specific value disregarding to

the ensemble’s output. The classifiers that have the weights less than a specified

threshold are then eliminated from the ensemble. In this method, a new classi-

fier will be created and added to the ensemble once the ensemble misclassifies an

instance. Accuracy Updated Ensemble (AUE) [10] is an approach that extends100

Accuracy Weighted Ensemble (AWE) [11] method which is a block based en-

semble approach with classifiers weighted based on their expected classification

accuracy. AUE method incrementally trains old classifiers using Hoeffding trees

[12] and weights them regarding to their error rate. The online version of this

method is later proposed called Online Accuracy Updated Ensemble (OAUE)105

[13]. Anticipative Dynamic Adaptation to Concept Changes (ADACC) [14] aims

to optimise the stability of the ensemble by identifying incoming concept drifts

using an enhanced forgetting mechanism.

Adaptable Diversity-based Online Boosting (ADOB) [15] is a modied ver-

sion of the online boosting [7] aims to speed up the recovery of classifiers after110

concept drifts. It uses ADaptive WINdowing (ADWIN) [16] change detector

as its concept drift detector. This algorithm changes the Poisson distribution

5

parameter from a fixed value of 1 to an adjusted value of λ according to the

accuracy of its base classifiers – so that the samples can be distributed efficiently

among its base classifiers.115

The aforementioned methods can be categorised as implicit methods as they

implicitly cope with concept drifts, while no concept drift detection mechanism

is used. This is opposed to explicit methods that use a mechanism to detect

concept drifts and react to them immediately (e.g. by resetting the pool of

classifiers). The main issue with the implicit methods is that adaptation to a120

new concept may take a long time in most cases due to their implicit behaviour.

Furthermore, concept drifts are not identified immediately in such approaches.

The following algorithms are some of the established explicit methods in the

literature. Adaptive Boosting (Aboost) [17] algorithm updates all classifiers’

weights regarding to whether or not an instance is classified correctly. Once125

the concept drift detector alarms, the weight of all classifiers in the ensemble

is reset to one. Adwin Bagging (AdwinBag) [18] is an explicit approach based

on Oza’s online bagging algorithm [7]. It uses the same learning mechanism as

OzaBagging method and a concept drift detector called ADaptive WINdowing

(ADWIN) [16] to identify when a new classifier is needed. This algorithm is130

further improved in Leveraging Bagging (LevBag) [19] that aims to increase the

amount of re-sampling in the bagging technique.

Adaptive Random Forest (ARF) [20] is another explicit technique that adapts

the classical Random Forest algorithm [21]. It grows decision trees by training

them on re-sampled versions of the original data and by randomly selecting a135

small number of features that can be inspected at each node for split.

The main disadvantage of the explicit methods is that such algorithms are

sensitive to false alarms (noise), which leads to a reduced accuracy due to

wrongly detected concept drifts. Moreover, choosing a proper concept drift

detector is a difficult task. To address it, RD is employed in our proposed140

method offering a seamless yet effective approach to improve the performance

by growing and shrinking classification types. On the other hand, the main dis-

advantage of the implicit algorithms is their slow reaction to concept drifts. We

6

tackle this issue by using a bio-inspired mechanism to optimise the combination

of classification types in each layer of the presented framework.145

3. RED-PSO Framework

In this section, we present RED-PSO, a novel ensemble learning framework

for non-stationary classification using the RD and PSO techniques. We train

an ensemble of classifiers comprising three categories (layers) of different clas-

sification types generated by randomly selecting features (subspaces) from the150

set of attributes of the target dataset. For each layer of the proposed ensemble,

the number of classification types and features in each one of them is chosen so

that the higher the number of features in each classification type in a layer, the

lower the number of classification types is necessary for this layer. As a result,

the first layer consists of a smaller number of classification types and a bigger155

number of features in each classification type, whereas the third layer contains a

bigger number of classification types with a smaller number of features in each

one of them.

To make the proposed method effective specially in evolving environments

and to a seamless adaptation to the most recent types of data distribution, we160

apply RD to all layers of the ensemble to grow the well-performing types and

shrink the poor-performing ones in size. As the original RD is designed specif-

ically for static datasets, we modify it to be compatible with streaming data.

In addition, the randomly drawn classification types (subspaces) are optimised

using a modified version of PSO, which is applied to each layer individually to165

ensure fast adaptation to different concept drifts.

3.1. Replicator Dynamics: Overview

RD is a simple model of evolution and prestige-biased learning in game

theory [22][23]. This model is a solution for selecting suitable types to grow

and unsuitable types to shrink among a population of diverse types. The act of

selection in this model happens at discrete times and “the population of each

7

type in the next selection is given by the replicator equation as a function of

the type’s payoff and its current proportion in the population” [24]. In general

format of this methods, types performing better than average payoff increase in

size, whereas those that perform worse than the average payoff decrease in size.

The Replicator Equation is represented by the following formula:

ẋi = xi[(Wx)i − xTWx], (1)

where (Wx)i denotes the expected payoff for an individual and xTWx denotes

the average payoff in the population state x.

In the presented method, a classification type is a random subspace of the170

total number of features of the target data stream. A type’s payoff is the average

accuracy of the classifiers inside the same type, and the expected payoff is the

average accuracy of all existing classifiers.

3.2. Particle Swarm Optimisation: Overview

PSO is a metaheuristic algorithm [25] inspired by the social behaviour of175

the movement of organisms in a bird flock or fish school. The main target of

the PSO algorithm is finding the global minimum of a function. While PSO

does not guarantee an optimal solution, it is shown to have promising results in

various applications [26].

A typical PSO algorithm is initialised by creating an initial random popula-

tion (swarm) of candidate solutions (particles). The particles then move around

the search space with a dynamic velocity (according to a specific formulae) to

find the best possible solution. The movement of the particles is directed by

two factors called ‘previous best’ (pbest) and ‘global best’ (gbest) positions and

being updated from one iteration to another. The pbest position is a particle’s

best position throughout the history, while the gbest position is the best po-

sition achieved by all particles in the swarm. This process is repeated at each

iteration – so that a satisfactory solution is discovered. The velocity (V) and

position (P) of particles are updated according to the following formulas:

Vi(t+ 1) = ωVi(t) + r1(pbest(i, t)− Pi(t)) + r2(gbest(t)− Pi(t)), (2)

8

Pi(t+ 1) = Pi(t) + Vi(t+ 1), (3)

where ω denotes the inertia weight used to balance the global and local ex-180

ploitation, and r1 and r2 denote positive constant parameters called acceleration

coefficients.

A canonical PSO algorithm is designed to iterate over a static data, where

there is only one possible optimal solution. In contract, in data stream classi-

fication tasks, data comes in an online manner and optimal solution is subject185

to change with time. Therefore, a non-canonical version of PSO is proposed in

Section 3.3 to make PSO able to work in a streaming environment.

In the presented RED-PSO method, the initial population is drawn randomly

as different subspace of features (types), and each layer is optimised individually

using the modified version of PSO.190

3.3. RED-PSO System

First, we create three different layers in a way that each layer contains a

specific amount of types and each classification type covers a specific percentage

of features from a predefined pool of features. There is a negative linear corre-

lation between the percentage of features in each type and the number of types

in each layer. In other words, the bigger the number of types inside each layer

is, the smaller the number of features each type is required to cover in the same

layer, which can be represented as

m

f
= 1− n

f
, (4)

where m denotes the total number of types, n denotes the total number of

features that are to be selected for each type and f denotes the total number of

features of the target data stream.

Once the parameters of each layer are specified, nl features (attributes) are195

randomly selected from the set of all attributes, where nl is nth parameter for

layer number l (l=1, 2, or 3). This step is repeated ml times for each layer,

9

where ml is mth parameter for the layer number l. As a result, we have ml

independent types for each layer at the end of this step.

When all layers are created using a random subspace of features in each200

layer, the ensemble starts the training phase using RD (see Section 3.1). In the

original RD, the number of trees that need to be added to a subspace is specified

dynamically as

Ta(i) = b(a(ti)−
∑m

i=1 a(ti)

m
)× Tn(i)c (5)

Tr(i) = b(
∑m

i=1 a(ti)

m
− a(ti))× Tn(i)c (6)

where Ta(i) denotes the number of trees to add, Tr(i) denotes the number of

trees to remove, a(ti) denotes the accuracy of subspace i being processed, m205

denotes the total number of types and Tn(i) denotes the total number of trees

currently inside subspace i. When the number of trees to be added to a subspace

is more than one, different trees are created using the bootstrap aggregating

(bagging) model. However, prequential evaluation is impossible in this case (i.e.

when incoming data are used for testing and then training) since only one tree210

can be created at each time step. Hence, instead of creating different trees in

a subspace at each time step, only one tree is created but with a higher weight

assigned to it for the voting purpose. Therefore, a tree with weight = 2 has

two votes in the voting mechanism (i.e. higher impact) instead of only one.

The removing mechanism in this strategy is based on the performance of the215

classifiers; e.g. when the number of trees to remove is 2, two least accurate trees

(in the last data block) are eliminated from the ensemble.

Once the first data block is collected by the ensemble, a classifier will be

built for every type (subspace) inside all the layers. Given max as the maximum

number of decision trees for each type, this step is repeated for the first max
2

blocks of data to shape the types and allow them to reach a specific maturity

level. This phase is called initial training and is performed to build an average

number of classifiers for every type in the ensemble. Note that for every data

10

block that is received by the ensemble, all decision trees classify the instances,

and the majority voting is applied to determine each layer’s output. Then the

ensemble’s output is determined by combining the output of each layer using

their weights obtained according to Equation 7. This phase is called the voting

step.

Wi = Wi−1 + α(Pi−1 −Ai−1), (7)

where Wi−1 denotes the weight of a layer at (i− 1)th data block, Pi−1 denotes

the accuracy of the same layer over (i−1)th data block, Ai−1 denotes the average

accuracy of all layers over (i− 1)th data block and α denotes the coefficient of220

recent data, which is an arbitrary parameter of the proposed algorithm (α > 1).

Once the initial training phase is completed, each decision tree in a type is

evaluated after classifying incoming instances by calculating its accuracy:

ai =
ci
db
, (8)

where ci denotes the number of correctly classified instances in ith data block

and db denotes the total number of instances in each data block. Accuracy of

each type is the average accuracy of its constituent decision trees. Accuracy of

the whole ensemble can be determined similarly to Equation 8. This phase is225

called evaluation.

Next, the RD step is applied (see Algorithm 1), where each type’s accuracy

is taken into consideration and assessed with the expected payoff (as explained

in Section 3.1) calculated for each layer individually:


a(ti) ≥

∑m
i=1 a(ti)

m ⇒ grow

a(ti) <
∑m

i=1 a(ti)

m ⇒ shrink

, (9)

where a(ti) denotes the accuracy of ith type and m denotes the total number of230

types.

The expected payoff in this study is set to the average accuracy of all types

in each layer. Algorithm 1 shows how the RD step works. In this algorithm, tj

11

denotes the jth type of the ensemble (1 ≤ j ≤ m) and a(tj) denotes the accuracy

of this type. The following functions are used in the presented algorithm:235

• Classify(): classifying data using the majority voting;

• Evaluate(): evaluating the accuracy of classifiers/types in the ensemble

using Equation 8;

• Grow(): adding a new classifier (decision tree) to the specified type (if

Equation 9 stands);240

• Shrink(): removing the worst performing one classifier (decision tree) from

the specified classification type (if Equation 9 stands); if this type has only

one classifier, then do nothing;

• Train(): training all classifiers of the ensemble by the newly received.

To set a boundary for the number of classifiers (decision trees) inside the245

framework, an arbitrary upper bound of max = 10 has been set for all the types

in the ensemble. Hence, once the number of classifiers of a type is exceeded,

the weakest performing decision tree of the same type is removed in order to

make room for the newly built classifier. Furthermore, to prevent the types from

complete removal, a lower bound of min = 1 is assigned to all types.250

3.3.1. PSO Optimisation

We use a non-canonical version of PSO algorithm to optimise the combina-

tion of features of the types inside each layer. Initially, PSO takes all randomly

drawn types as its input and tries to move them towards the global best (gbest)

and local best (pbest) solution types with a specified velocity in each iteration255

(when a new data block is received). In this method, by term ‘moving a par-

ticle to a specific space with a velocity’, we mean to reform the combination

of features of a particle (classification type) to resemble a specific subspace of

features with a defined proportion (velocity).

Let the gbest subspace include a set of features G, pbest include a set of260

features L, and the current subspace include a set of features T . Then, the

12

Algorithm 1: Modified RD Algorithm

Input: Continuous block of data DB ={db1,db2,..,dbn}

n: number of features to be selected in each type

m: total number of types

tl: types inside lth layer

max: maximum number of classifiers in each type.

Output: Updated state of classification types

1 l := 1

2 for tl := 1 to tl := m do

3 Randomly select n features

4 i := 1

5 while data stream is not empty do

6 if i ≤ max
2 then

7 Classify(dbi)

8 Grow(T) for all types

9 else

10 Classify(dbi)

11 Evaluate()

12 if a(tj) ≥
∑n

j=1 a(tj)

m then

13 Grow(tj) /* As in Equation 5 */

14 else

15 Shrink(tj) /* As in Equation 6 */

16 Train()

17 i := i+ 1

13

space that a type can move to can be in S = [(G − T) ∩ (L − T)]. This set

will have the features in both good types that are not in the current one (i.e.

S is the set of features the current particle can add to resemble (1) the best

performing previous location of the same particle, and (2) the best performing265

particle in the whole swarm at the present). If the space is empty, the particle

will move to space S = [(G−T)∪ (L−T)]. To compensate for any newly added

features from S, the algorithm removes set B = [T − (G ∩ L)] of features in T

that are not among the good particles and may have contributed to the lower

performance (i.e. B is the set of features that are not in both well performing270

particles, and thus may be irrelevant to the current concept). Using the average

of the differences in accuracy between the two good particles and the current

one, we apply the move as the velocity – so that if the difference (distance) is

greater than x%, we can move β × 100%, where β(0 < β ≤ 1) is a constant

value (coefficient) that is different for each layer and has been specified to add275

more diversity, especially to higher layers. If the distance is less than x%, we

move according to how far the distance (the proportion) is from the x% (β× d
x),

where d is the distance of each particle and the average of gbest and its pbest

(global best and previous best) particles. If |S| > |B|, we use only |B| out of |S|,

just to maintain the same number of features in a type (i.e. when the number280

of features that can be added |S| is greater than the number of features that

can be removed |B|, |B| is set to be the upper bound on the number of features

to be added, maintaining the same number of features from one iteration to the

next). In this study, the values for constant β are arbitrarily assigned as 1, 0.7

and 0.4 for layers 3, 2 and 1, respectively. Hence, the maximum velocity in layer285

3 that has the lowest number of features in each type is set to 100%. Similarly,

the maximum velocities for layers 2 and 1 are set to 70% and 40%, respectively.

Algorithm 2 shows how the modified PSO stage works. The following func-

tions are used in this algorithm along with the ones previously introduced in

this section:290

• Update(): update the weight of each layer according to Equation 7;

14

• Update-optimal(): update the layer’s global optimal gbest and each type’s

previous optimal (pbest) using the evaluated accuracy for each of the types;

• Move(): moving each type inside the layer towards its gbest and pbest

with a specified velocity based on its distance (in accuracy) of each type295

to the average accuracy of optima (as explained earlier in this section);

PSO is performed in each layer of the proposed algorithm individually and is

iterated in every data block received by the ensemble. As a result, the particles

(types) inside each layer of the ensemble move towards gbest and pbest of the

same layer with the specified velocity that is calculated based on their perfor-300

mance over the last data block, in which their true labels are known. Note that

each iteration in Algorithm 2 starts only after the same data block is processed

by Algorithm 1.

General ideas of RED-PSO are illustrated in Figure 1. The left triangle in

the figure shows types (closed curves) in each layer and features (dots) in each305

type. The right triangle shows their corresponding types (particles) that move

towards a specific particle (gbest∩ pbest) with a specific velocity (arrows). The

smaller the classification types are (less features), the faster they move towards

optimums (higher velocity).

The proposed method uses an evolutionary method (RD) to seamlessly adapt310

to the concept drifts that are more smooth in nature (such as gradual and

incremental concept drifts) by increasing the size of good performing types and

reducing the number of trees of poor performing types. At the same time, it

uses a modified version of PSO to optimise the combination of features in each

layer of the proposed algorithm individually, which is suitable to cope with315

more immediate concept drifts (such as abrupt and recurring concept drifts)

that usually take longer to adapt to using the state-of-the-art methods. Finally,

having three different layers of different types built using different parameters,

such as the number of types (m) and number of features (n) in each type, can

help the algorithm to be less sensitive to drifting features by minimising their320

effects on each layer.

15

3.4. Computational Complexity

Assuming the number of classes c, the number of features in each classifica-

tion type p, the maximum number of values per feature v, and the maximum

number of trees in the ensemble k, no more than p features are considered in325

a single Hoeffding tree [12]. Each feature at a node requires computing v val-

ues. Since calculating information gain requires c arithmetic operations, the

cost of k Hoeffding trees at each time-step (iteration) in the worst case scenario

is O(kcpv). Given the number of all classification types in the ensemble m and

the fact that RD uses m arithmetic operations to calculate payoffs, the cost of330

applying RD to the ensemble is only O(m). Hence, the computational complex-

ity of RED1 and RED2 variations (deploying Hoeffding trees along with RD in

the proposed framework) is O(m + (kcvp)). Furthermore, assuming that the

number of classification types in each layer of the ensemble is mi (1 ≤ i ≤ 3)

and the number of iterations for each data block is 1, the PSO optimisation pro-335

cedure uses m1 + m2 + m3 arithmetic operations in each time-step. Therefore

the computational complexity RED-PSO variations of the proposed framework

is O(m+ (kcvp) +m1 +m2 +m3).

In summary, the procedure of reading, processing and classifying data in

RED-PSO is as follows. Once a new block of data has been filled up to its340

full capacity (d = 1, 000 instances in this case), the system starts reading and

classifying the instances in a synchronous manner using all current classifiers

inside the framework. Since each processing layer of this method has a specific

weight assigned to its classifiers, the majority voting takes place to determine

the predicted class of each instance. Once the real labels of all instances in a345

data block are received, the classifiers inside each layer start moving based on

the local and global optimum values according to the optimisation procedure

described above. Finally, in the evaluation step, the weights of all layers are

updated based on their performance over the last data block.

16

Algorithm 2: Modified PSO Optimisation

Input: Continuous block of data DB ={db1,db2,..,dbn}

Randomly drawn subspaces (types) for each layer, Tl ={t1,t2,..,tm}

W ={w1,w2,w3} /* initial weight for each layer*/

Output: New set of types, Tl′ ={t1′,t2′,..,tm′}

1 i := 1 while data stream is not empty do

2 Classify(dbi)

3 for l := 1 to l := 3 do

4 Evaluate(Tl)

5 Update-optimal(gbest)

6 for j := 1 to j := m do

7 Evaluate(tj)

8 Update-optimal(pbest)

9 Move(tj) /*move to gbest/pbest according to its velocity */

10 Update(wl) /*update the weight of each layer*/

17

Figure 1: Illustration of the RED-PSO algorithm using three layers. The left triangle refers to

the extent of classification types and the features they cover in each layer. The right triangle

refers to how fast each classification type would move towards global and local optimums.

The smaller the classification types are (less features), the faster they move towards optimums

(higher velocity).

4. Experimental Study350

A collection of experiments is conducted using five real-world data streams

and four synthetic data stream generators to evaluate the proposed RED-PSO

framework and compare it with the existing state-of-the-art methods that have

shown good performance and liable results [13][20], including Dynamic Weighted

Majority (DWM) [9], Online Accuracy Updated Ensemble (OAUE) [13], OS-355

Boost [8], Leveraging Bag (LevBag) [19], Adaptive Random Forest (ARF) [20],

Learn++.NSE [27] and Adaptable Diversity-based Online Boosting (ADOB)

[15].

The proposed algorithms are developed in Java programming language, while

18

all algorithms are executed using the Massive Online Analysis (MOA) framework360

[28]. When running LevBag, ARF, DWM, OAUE, OSBoost, Learn++ and

ADOB, their default parameters as implemented in MOA are used, while the

parameters of our proposed algorithms are listed in Section 4.2. In order to

have a thorough set of experiments, 10 different variants (seeds) are generated

for every synthetic data stream and each method is tested on all variants. The365

variants are generated by changing different parameters in all synthetic streams,

as specified in Section 4.1. For every real world-data stream, each experiment

is repeated 10 times over the same data stream.

As mentioned in Section 1, there are two different settings for evaluating

methods over each dataset used in the set of experiments. The first setting370

involves passing one of the chosen datasets through a specific method using the

prequential evaluation technique with immediate access to the real labels of the

instances. This setting is called immediate setting. In the second setting, the

real labels of the instances are revealed to the ensemble after a specified delay.

This evaluation technique called delayed setting. In this setting, the parameter375

of delay is set to an arbitrary value of 1, 000; therefore, the actual label of each

instance is revealed to the system after passing 1,000 instances.

For both immediate and delayed settings, the window size (width) is set to

1,000. The experiments were performed on a machine equipped with an Intel

Core i7-4702MQ CPU @ 2.20GHz and 8.00 GB of installed memory (RAM).380

4.1. Datasets

4.1.1. Synthetic Data Streams

SEA Generator is a synthetic data stream generator that simulates con-

cept drifts over time [29]. It generates random points in a three-dimensional

feature space, however, only the first two features are relevant to the labels.385

Ten different variants of SEA concepts are generated for our experiments, each

including one million instances. Different concept drifts are manually added

throughout the data stream. For the first five variants, two abrupt concept

drifts with the width (of the concept drift change) of 1 are added at instance

19

numbers 200K and 400K, and two recurrent concept drifts with the same width390

are added at instance numbers 600K and 800K. For the rest five variants, two

gradual concept drifts with the width of 10,000 are added at instance numbers

200K and 400K, and two recurrent concept drifts with the same width are added

at instance numbers 600K and 800K.

Hyperplane Generator is a synthetic data stream with drifting con-395

cepts based on the location of a rotating hyperplane [30]. A hyperplane in

d -dimensional space is the set of points that satisfy

d∑
i=1

wixi = w0, where xi is

the i th coordinator of point x. concept drifts in this data generator are simu-

lated by changing the location of the hyperplane. The smoothness of drifting

data can be changed by adjusting the magnitude of the changes. In this ex-400

periment, the number of classes and features are set to 2 and 10, respectively;

the number of drifting features is changed from 2 to 6; and the magnitude of

changes is set to 0.01 or 0.02 in each variant.

Random Tree Generator (RTG) builds a decision tree by randomly se-

lecting features as split nodes and assigning random classes to them [31]. RTG405

allows customising the number of nominal and numeric features, and classes.

In our experiments, the number of classes varies from 2 to 6, the number of

features ranges from 10 to 18, and the random seed number is chosen to be

either 1 or 2.

LED Generator is a data generator that aims to predict the digits shown410

on a LED display [32]. It contains 24 Boolean features, 17 of which are irrelevant

and the remaining 7 correspond to each segment of a seven-segment LED display.

The LED generator used in this paper simulates concept drifts by swapping its

features. For our experiments, ten different variants are selected with different

parameters. For the first five variants, the number of drifting features are set to415

1, 2, 3, 4 and 5, respectively. For the next five variants, only the random seed

is changed and the drifting features are the same as in the first five variants.

20

4.1.2. Real-World Data Streams

Forest Cover-type Data Stream is a real-world dataset from the UCI

Machine Learning Repository1 containing the forest cover type of 30 × 30 meter420

cells obtained from the US Forest Service (USFS) [33]. It consists of 581,012

instances and 54 features with the goal to predict the forest cover type from

cartographic variables.

Electricity is a widely used dataset by [34] collected from the Australian

New South Wales electricity market, where prices are not fixed but affected by425

demand and supply. It contains 45,312 instances with 8 features each. The

target class specifies the change of the price (going up or down) according to

the moving average of the last 24 hours.

Airlines is a dataset2 with the task to predict whether a flight will be

delayed given the scheduled departure information. It contains 539,383 records430

with 7 features (3 numeric and 4 nominal).

KDDcup99 is a dataset used in the “Third International Knowledge Dis-

covery and Data Mining Tools Competition”, which includes a wide variety of

intrusions simulated in a military network environment and contains 41 features

and 23 classes [35]. The competition task was to build a network intrusion detec-435

tor and a predictive model capable of distinguishing between “bad” connections

(intrusions or attacks) and “good” (normal) connections.

Poker-Hand dataset from the UCI Machine Learning Repository3 consists

of 1,000,000 instances and 11 features. Each record of this data stream is an

example of a hand consisting of five playing cards drawn from a standard deck440

of 52.

4.2. RED-PSO Variations and Parameter Tuning

The general parameters for all variations of the RED-PSO framework used in

the experiments are listed in Table 1, where D is the number of instances in each

1http://archive.ics.uci.edu/ml
2http : //kt.ijs.si/elenaikonomovska/data.html
3https : //archive.ics.uci.edu/ml/datasets/Poker +Hand

21

Table 1: General parameters used for all variations of RED-PSO framework.

D min max β1 β2 β3 W1 W2 W3

1000 1 10 1.0 0.7 0.4 1 2 4

data block, min/max is the minimum/maximum number of classifiers (trees)445

in each classification type, βi is the diversity coefficient used for ith layer and

wi is the initial weight assigned for ith layer. Note that any special parameters

designated for each variation are specified separately later in this section.

We compare five different variations of our proposed framework to evaluate

the effect of its different characteristics and discuss the impact of employing450

different parameters.

RED1 uses the proposed three-layer architecture only with RD to grow well-

performing types and shrink poor-performing ones; it does not use PSO. The

following parameters are employed for each layer in this variation:

Layer1⇒ m = 0.3× f and n = 0.7× f ;455

Layer2⇒ m = 0.5× f and n = 0.5× f ;

Layer3⇒ m = 0.7× f and n = 0.3× f .

RED2 uses the proposed three-layer architecture only with RD to grow well-

performing types and shrink poor-performing ones; it does not use PSO optimi-460

sation. The following parameters are employed for each layer in this variation:

Layer1⇒ m = 0.5× f and n = 0.5× f ;

Layer2⇒ m = 0.3× f and n = 0.7× f ;

Layer3⇒ m = 0.1× f and n = 0.9× f .

465

RED-PSO1 uses PSO in addition to RD in RED1 variation with the following

additional parameters for the threshold of the maximum velocity (x):

x = 2%.

RED-PSO2 uses PSO in addition to RD in RED2 variation with the following

additional parameter for the threshold of the maximum velocity (x):470

22

x = 4%.

RED-PSO3 uses PSO in addition to RD in RED2 variation with the following

additional parameter for the threshold of the maximum velocity (x):

x = 2%.

4.3. Results and Discussion475

All algorithms in our set of experiments are compared using standard cri-

teria, including the prequential accuracy in immediate and delayed settings,

Kappa M (a comparison with a majority-class classifier) and overall evaluation

time (classification time and training/updating time). The first part of our set of

experiments is related to comparing different variations of the proposed frame-480

work to understand the effects of using different mechanisms and parameters

(such as modified versions of RD and PSO) in the RED-PSO framework.

4.3.1. Comparison of the different variations of RED-PSO

Figures 2 and 3 illustrate the average accuracy for all variations of the pro-

posed RED-PSO framework over the nine datasets in the immediate and delayed485

settings using bar charts. It is clear that the PSO-optimised variations (RED-

PSO1, RED-PSO2 and RED-PSO3) perform better than the RD-only variations

(RED1 and RED2). This is because the former variations include an additional

optimisation technique to move all types in each layer towards the best possible

spaces (gbest and pbest) in the same layer. This enables the system to optimise490

the combination of features in every type according to the time and most recent

data received by the system, especially upon concept drifts. RED-PSO3 has the

best average accuracy over the Hyperplane, RTG, SEA, KDDcup, Airlines and

Forest Cover-type datasets, and the best overall average accuracy in both the

immediate and delayed settings.495

Table 2 shows the overall evaluation time of different RED-PSO variations in

the immediate setting (the variation of the evaluation times between the imme-

diate and delayed settings is negligible). It is clear that the variations without

PSO optimisation are faster than the ones with it due to the time complexity of

23

Figure 2: Average accuracy in the immediate setting for the different variations of the RED-

PSO framework.

PSO being added to the ensemble. RED2 variation has the shortest evaluation500

time over seven out of nine datasets compared to the other variations used in

the experiments, while RED-PSO2 and RED-PSO3 have the longest evaluation

time for the majority of the datasets.

4.3.2. Comparison with other methods

The second part of our set of experiments involves comparing seven differ-505

ent state-of-the-art methods to the best performing variation of our proposed

framework, namely, RED-PSO3. Figures 4 and 5 illustrate the average accuracy

of RED-PSO3 compared to that of the considered state-of-the-art methods over

all datasets using bar charts. It can be noticed that RED-PSO3 has the best av-

erage accuracy over the Hyperplane, LED, Airlines, Electricity and Poker-hand510

datasets in both the immediate and delayed settings.

Figure 6 demonstrates the overall average accuracy of the state-of-the-art

methods compared to that of RED-PSO3 in both the immediate and delayed

settings over all datasets. It is evident that RED-PSO3 has the best average

24

Figure 3: Average accuracy in the delayed setting for the different variations of the RED-PSO

framework.

accuracy in both settings. Therefore, it can be concluded that RED-PSO3 has515

the most consistent performance compared to that of the other methods for

different data streams. This is opposed to the ADOB algorithm that has a

drastically weak performance over the LED and Forest Cover-type datasets,

whereas it has the best performance over the KDDcup99 dataset. One possible

explanation for the more stable performance of the proposed method is that in520

the RED-PSO3 framework, there are different strategies adopted for different

environments and concept drifts using different layers of PSO optimisation and

their dynamic weights.

The next step in our comparison is the evaluation of the classification perfor-

mance according to KappaM statistic, which is a robust inter-rater agreement525

for qualitative items. Table 3 lists the average KappaM values for RED-PSO3

and the other compared methods in the delayed setting. The proposed RED-

PSO3 variation has the best performance over the Hyperplane, SEA, Airline and

Poker-hand datasets and the highest average KappaM value. Taken together,

these results demonstrate that the majority of the agreements in the ensemble530

25

Table 2: Overall evaluation time (in seconds) of executing RED-PSO variations in the imme-

diate setting. Bold values indicate the best performance for each dataset.

Dataset RED1 RED2 RED-

PSO1

RED-

PSO2

RED-

PSO3

Hyper. 184 172 279 230 253

LED 204 189 400 379 388

RTG 281 243 405 358 379

SEA 163 176 296 320 308

Airlines 398 365 528 494 543

Elec. 9.3 8.9 17.8 16.1 16.4

Forest 741 722 10871 1167 1334

KDDcup 269 229 349 301 308

Poker 152 159 201 228 210

did not occur by chance.

Furthermore, Table 4 lists the evaluation time of the proposed method com-

pared to that of the other state-of-the-art methods in the immediate setting.

Since the evaluation time values in the delayed setting are similar to those in

the immediate setting, respectively, we only show the results for the immediate535

setting. According to the experimental results, DWM and OSBoost algorithms

have the shortest evaluation time by far for the majority of the datasets (DWM

over the SEA, Airlines, Electricity and Poker-Hand datasets, and OSBoost over

the Hyperplane and LED datasets), while the ADOB method has the longest

evaluation time over four out of nine datasets (RTG, Airlines, Electricity, For-540

est Cover-type and Poker-Hand). According to the overall evaluation times of

different methods listed in Table 4, ADOB and Learn++ are the most time

consuming methods by far comparing to the other six methods (by more than

10,000 seconds). Apart from the high evaluation times of Learn++ and ADOB,

the proposed method (RED-PSO3) has the longest overall evaluation time com-545

pared to that of the other methods (by about 1,000 seconds compared to the

26

Figure 4: Average accuracy of RED-PSO3 and other state-of-the-art methods in the immediate

setting.

ARF method which is the next slowest method). It seems possible that this

is due to having three different layers of optimisation that run in parallel in

the proposed framework. It is worth noting that given the design of our pro-

posed classification system, the three optimisation layers can greatly benefit550

from parallel processing, as they operate independently when optimising the

classification types. This can potentially provide a multifold speed-up of the

system.

4.3.3. Performance over different types of concept drifts

We added different types of concept drifts to the datasets generated by the555

SEA data stream generator and compared the prequential performance of the

considered algorithms in each case. Details on how different concept drifts were

added to the data streams are discussed in Section 4.1. The reason for choosing

a synthetic dataset for these experiments is that the exact time and actual type

of concept drifts present in real-world data streams often remain unknown.560

27

Table 3: Kappa M Statistic of different methods in the delayed setting. Bold values indicate

the best performance for each dataset.

Dataset ARF DWM Lev-

Bag

OAUE OS-

Boost

Learn-

++

ADOB RED-

PSO3

Hyper. 75.45 78.24 81.03 81.7 70.69 72.63 -4.87 81.19

LED 71.03 70.85 70.86 70.76 70.84 64.71 -2.06 70.99

RTG 66.89 35.84 85.10 81.98 76.87 40.52 82.89 80.98

SEA 72.01 68.57 70.81 71.95 60.55 43.78 36.61 73.11

Airlines 13.14 9.06 4.4 13.96 11.91 -13.60 -24.27 15.80

Elec. 67.44 30.19 60.38 57.60 55.03 7.06 26.77 65.21

Forest 46.92 0.58 35.68 65.51 6.72 32.25 -341.3 32.49

KDDcup 99.45 97.99 99.59 99.50 99.41 -57.12 99.72 99.43

Poker 24.63 -7.06 51.15 36.47 54.38 5.99 -11.77 57.3

Table 4: Overall evaluation time (in seconds) of executing RED-PSO3 compared to the state-

of-the-art methods in the immediate setting.

Dataset ARF DWM Lev-

Bag

OAUE OS-

Boost

Learn-

++

ADOB RED-

PSO3

Hyper. 208 130 144 107 93 239 298 253

LED 188 851 246 227 174 301 340 388

RTG 394 195 207 148 1141 531 1261 379

SEA 751 98 409 139 162 240 284 308

Airlines 495 66 531 366 74 977 2140 543

Elec. 7.73 1.48 5.12 3.05 2.06 5.9 221 16.4

Forest 153 148 206 180 114 67 2292 1334

KDDcup. 56 581 130 204 138 9819 5979 308

Poker 167 46 81 66 64 1720 2006 210

Overall 2419 2116 1959 1440 1942 13899 14821 3409

28

Figure 5: Average accuracy of RED-PSO3 and other state-of-the-art methods in the delayed

setting

Figure 7(a) illustrates how different methods adapt to an abrupt drift with a

width of 1 at an instance number of 200K. It is evident that RED-PSO3 has the

highest accuracy value right after the concept drift happens. Furthermore, RED-

PSO3 recovers from the introduced concept drift faster than the other methods,

whereas Leverage Bagging and OSBoost fail to recover from the concept drift565

in a timely manner. Figure 7(b) illustrates the case when a gradual drift was

added with a width of 10K. It can be noticed from the figure that all methods

except OSBoost fully recovered right after the drift is over. This result suggests

that in the case of gradual concept drifts, OSBoost may take a long time to

have a full recovery. Figure 7(c) illustrates the behaviour of the methods upon570

a recurrent drift with a width of 1. Again, RED-PSO3 has the lowest accuracy

drop among all other methods. At the same time, it struggles to fully recover

from the drift initially. In this case, the ARF method adapts to the introduced

concept drift faster than the other methods. Furthermore, ADOB and Learn++

demonstrate a drastic decrease in accuracy and fail to recover from the drift in575

29

Figure 6: Average accuracy of RED-PSO3 and other state-of-the-art methods in the immediate

(blue bars) and delayed (orange bars) settings over all the datasets.

a timely manner. Finally, Figure 7(d) illustrates the case when a recurrent drift

was added with a width of 10K at an instance number of 795K. It is evident

that the accuracy of all algorithms did not change drastically upon the drift. It

is worth noting that both ADOB and Learn++ still struggled to adapt to the

previous concept drift introduced at an instance number of 600K. A possible580

explanation may be that their concept drift detectors fail to detect the drift.

In summary, according to the experimental results, the main advantage of

RED-PSO3 is its accuracy and robust performance. In particular, the pro-

posed method demonstrated the best average rank and consistent perfor-

mance compared to other state-of-the-art methods in both the immediate and585

delayed settings and upon introducing different types of concept drifts. The

main drawback of RED-PSO3 is its evaluation time. While the overall evalua-

tion time of the proposed method is not the longest among the other considered

state-of-the-art methods, it is relatively long, especially over the datasets with

a high number of features such as Forest Cover-type. This is due to the fact590

that the number of classifiers in the ensemble increases with the number of fea-

30

Figure 7: Classification accuracy of the considered algorithms over the SEA dataset upon

different types of drifts in the delayed prequential setting. The red boxes indicate the length

and location of the added concept drifts.

31

Table 5: Average rank of the methods considered in the experiments.

Dataset ARF DWM Lev-

Bag

OAUE OS-

Boost

Learn-

++

ADOB RED-

PSO3

Rj 3.833 5.333 3.167 3.528 4.889 6.722 6.500 2.028

R2
j 14.694 28.444 10.028 12.445 23.901 45.188 42.250 4.111

tures in the target data stream. Furthermore, the adoption of an evolutionary

algorithms (RD) along with a bio-inspired optimisation algorithm (PSO) in the

proposed framework lead to a high computational complexity to the system. To

overcome these limitations, other variations of the RED-PSO framework such595

as RED1 and RED2 can be used in case of high-dimensional and time-restricted

applications, and also parallel processing can be applied, as aforementioned.

4.4. Statistical Analysis

The Friedman test [36] is a popular non-parametric statistical test that can

be used to detect differences across several algorithms in multiple test attempts600

(e.g. datasets).

Table 5 shows the average rank of each algorithm considered in our experi-

ments and their squared values with k = 8 and N = 18 since the total number

of methods is eight and the total number of datasets in both the immediate

and delayed setting is 18 (9 + 9). Providing that the value of the Friedman test605

statistic is χ2
F = 57.18 with 7 (k − 1) degrees of freedom, and the critical value

for the Friedman test given k = 8 and N = 18 is 18.48 at a significance level of

α = 0.01, we can conclude that the accuracy values of the studied methods are

significantly different (57.18 is greater than 14.63).

Now that the Null-hypothesis is rejected, we can proceed with a post-hoc610

test. The Nemenyi test [37] can be used when all classifiers are compared to

each other [38].

The critical value in our experiments with k = 8 and α = 0.10 is CD0.10 =

1.805. As a result, the accuracy of the proposed RED-PSO3 method is sig-

32

nificantly different from the DWM, OSBoost, Learn++ and ADOB methods,615

while it is not significantly different from the LevBag, OAUE and ARF meth-

ods. Figure 8 illustrates the statistical comparison of the methods considered

in our experiments based on the Nemenyi test.

Figure 8: Comparison of all methods using Nemenyi test at α = 0.10.

5. Conclusion and Future Work

We proposed a novel ensemble learning framework called RED-PSO to seam-620

lessly adapt to different concept drifts in non-stationary data stream classifica-

tion tasks. RED-PSO framework is based on a three-layer architecture to pro-

duce classification types of different size that are created by randomly selecting

features from a pool of features of the target data stream. An evolutionary

algorithm, Replicator Dynamics (RD), is used to seamlessly adapt to different625

concept drifts. Furthermore, a modified version of a bio-inspired optimisation

algorithm, Particle Swarm Optimisation (PSO), is applied to optimise the com-

bination of each type in all layers.

A set of experiments were conducted to compare the performance of the

different variations of the proposed method, as well as the best-performing one630

to some state-of-the-art algorithms over five real-world and four synthetic data

33

streams using the immediate and delayed prequential evaluation methods. Ac-

cording to the experimental results, RED-PSO3 has the lowest rank and highest

average accuracy compared to that of the other RED-PSO variations and con-

sidered state-of-the-art methods. Using the Friedman statistical test, it was635

shown that the accuracy values of the studied methods were significantly differ-

ent. Furthermore, according to the Nemenyi test, the accuracy of RED-PSO3

was significantly different from four out of seven compared methods (DWM,

Learn++, ADOB and OSBoost), while it was not significantly different from

the other three methods (LevBag, OAUE and ARF). The main drawback of640

the proposed framework is its long overall evaluation time in the case when the

target data stream has a high number of features, which can be addressed in

the future, applying parallelisation of the optimisation layers that are operating

independently.

Our future plans also include analysing theoretically and testing practically645

the following: (1) applying other evolutionary and bio-inspired algorithms to

seamlessly cope with different concept drifts; (2) introducing a new concept drift

detection system based on analysing the behaviour (growing and shrinking) of

the classification types; and (3) proposing an approach to choose the parameter

for the threshold of employing the maximum allowed velocity (x) dynamically.650

References

[1] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on

concept drift adaptation, ACM Computing Surveys (CSUR) 46 (4) (2014)

44.

[2] H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, A survey on ensemble655

learning for data stream classification, ACM Computing Surveys (CSUR)

50 (2) (2017) 23.

[3] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, M. Woźniak, Ensemble

learning for data stream analysis: a survey, Information Fusion 37 (2017)

132–156.660

34

[4] F. Chu, C. Zaniolo, Fast and light boosting for adaptive mining of data

streams, in: Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Springer, 2004, pp. 282–292.

[5] L. Breiman, Bagging predictors, Machine learning 24 (2) (1996) 123–140.

[6] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line665

learning and an application to boosting, Journal of computer and system

sciences 55 (1) (1997) 119–139.

[7] N. C. Oza, Online bagging and boosting, in: Systems, man and cybernetics,

2005 IEEE international conference on, Vol. 3, IEEE, 2005, pp. 2340–2345.

[8] S.-T. Chen, H.-T. Lin, C.-J. Lu, An online boosting algorithm with theo-670

retical justifications, arXiv preprint arXiv:1206.6422.

[9] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority: An ensemble

method for drifting concepts, Journal of Machine Learning Research 8 (Dec)

(2007) 2755–2790.

[10] D. Brzezinski, J. Stefanowski, Reacting to different types of concept drift:675

The accuracy updated ensemble algorithm, IEEE Transactions on Neural

Networks and Learning Systems 25 (1) (2014) 81–94.

[11] H. Wang, W. Fan, P. S. Yu, J. Han, Mining concept-drifting data streams

using ensemble classifiers, in: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, AcM,680

2003, pp. 226–235.

[12] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2000, pp. 71–80.

[13] D. Brzezinski, J. Stefanowski, Combining block-based and online meth-685

ods in learning ensembles from concept drifting data streams, Information

Sciences 265 (2014) 50–67.

35

[14] G. Jaber, An approach for online learning in the presence of concept change,

Ph.D. thesis, Citeseer (2013).

[15] S. G. T. de Carvalho Santos, P. M. G. Júnior, G. D. dos Santos Silva,690

R. S. M. de Barros, Speeding up recovery from concept drifts, in: Joint

European Conference on Machine Learning and Knowledge Discovery in

Databases, Springer, 2014, pp. 179–194.

[16] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive

windowing, in: Proceedings of the 2007 SIAM International Conference on695

Data Mining, SIAM, 2007, pp. 443–448.

[17] F. Chu, C. Zaniolo, Fast and light boosting for adaptive mining of data

streams, in: Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Springer, 2004, pp. 282–292.

[18] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensem-700

ble methods for evolving data streams, in: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, ACM, 2009, pp. 139–148.

[19] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data

streams, Machine Learning and Knowledge Discovery in Databases (2010)705

135–150.

[20] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,

B. Pfharinger, G. Holmes, T. Abdessalem, Adaptive random forests for

evolving data stream classification, Machine Learning (2017) 1–27.

[21] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.710

[22] I. M. Bomze, Lotka-volterra equation and replicator dynamics: a two-

dimensional classification, Biological cybernetics 48 (3) (1983) 201–211.

[23] J. Hofbauer, K. Sigmund, Evolutionary game dynamics, Bulletin of the

American Mathematical Society 40 (4) (2003) 479–519.

36

[24] K. Fawgreh, M. M. Gaber, E. Elyan, A replicator dynamics approach to715

collective feature engineering in random forests, in: Research and Develop-

ment in Intelligent Systems XXXII, Springer, 2015, pp. 25–41.

[25] J. Kennedy, R. Eberhart, Particle swarm optimization, proceedings of ieee

international conference on neural networks (icnn95) in (1995).

[26] R. Poli, An analysis of publications on particle swarm optimization appli-720

cations, Essex, UK: Department of Computer Science, University of Essex.

[27] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary

environments, IEEE Transactions on Neural Networks 22 (10) (2011) 1517–

1531.

[28] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: Massive online anal-725

ysis, Journal of Machine Learning Research 11 (May) (2010) 1601–1604.

[29] W. N. Street, Y. Kim, A streaming ensemble algorithm (sea) for large-scale

classification, in: Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, ACM, 2001, pp. 377–

382.730

[30] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams,

in: Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM, 2001, pp. 97–106.

[31] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge735

discovery and data mining, ACM, 2000, pp. 71–80.

[32] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and

regression trees, CRC press, 1984.

[33] J. A. Blackard, D. J. Dean, Comparative accuracies of artificial neural net-

works and discriminant analysis in predicting forest cover types from car-740

tographic variables, Computers and electronics in agriculture 24 (3) (1999)

131–151.

37

[34] M. Harries, N. S. Wales, Splice-2 comparative evaluation: Electricity pric-

ing.

[35] K. Cup, Data (1999), URL: http://kdd. ics. uci.745

edu/databases/kddcup99/kddcup99. html.

[36] M. Friedman, A comparison of alternative tests of significance for the prob-

lem of m rankings, The Annals of Mathematical Statistics 11 (1) (1940)

86–92.

[37] P. Nemenyi, Distribution-free multiple comparisons, in: Biometrics,750

Vol. 18, INTERNATIONAL BIOMETRIC SOC 1441 I ST, NW, SUITE

700, WASHINGTON, DC 20005-2210, 1962, p. 263.

[38] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine learning research 7 (Jan) (2006) 1–30.

38

Supplementary Materials755

Table S1: Average accuracy (%) of RED-PSO variations in the immediate setting. Bold values

indicate the best performance for each dataset.

Dataset RED1 RED2 RED-PSO1 RED-PSO2 RED-PSO3

Hyperplane 87.83 87.94 90.43 91.92 92.54

LED 75.41 75.88 76.01 76.54 76.29

RTG 87.06 88.32 89.44 89.98 91.09

SEA 87.30 86.78 88.01 88.34 88.50

Airlines 62.85 65.06 63.49 65.34 66.68

Electricity 90.61 89.34 93.56 92.43 92.86

Forest 87.56 91.01 88.42 92.99 93.71

KDDcup99 99.63 99.70 99.62 99.79 99.80

Poker 85.89 87.34 88.56 90.10 89.89

Overall

Average

84.90 85.71 86.39 87.49 87.93

39

Table S2: Average accuracy (%) of RED-PSO variations in the delayed setting. Bold values

indicate the best performance for each dataset.

Dataset RED1 RED2 RED-PSO1 RED-PSO2 RED-PSO3

Hyperplane 87.74 88.14 91.32 91.18 91.48

LED 70.29 75.12 73.61 76.03 75.91

RTG 86.89 87.90 88.16 89.26 89.81

SEA 86.66 86.14 88.14 88.34 88.80

Airlines 60.01 62.76 61.29 63.87 64.04

Electricity 82.45 81.90 85.51 84.00 84.18

Forest 80.34 84.43 82.42 87.32 88.19

KDDcup99 99.73 99.70 99.60 99.76 99.77

Poker 78.54 79.05 80.56 82.06 81.98

Overall

Average

81.40 82.79 83.40 84.62 84.91

40

Table S3: Accuracy (%) of the methods compared in the immediate setting. Bold values

indicate the best performance for each dataset.

Dataset Criteria ARF DWM Lev-

Bag

OAUE OS-

Boost

Learn-

++

ADOB RED-

PSO3

Hyper.
Ave. 88.17 89.64 91.03 91.42 85.85 87.20 49.54 92.54

σ 1.90 0.83 1.60 1.46 3.01 2.31 5.34 3.00

LED
Ave. 74.05 75.05 74.22 73.99 74.15 68.28 11.70 76.29

σ 0.31 3.10 0.31 0.10 0.11 1.98 2.64 2.21

RTG
Ave. 78.35 59.35 90.78 88.88 93.40 56.68 92.4 91.09

σ 8.12 8.87 2.26 3.26 1.45 5.32 1.36 3.36

SEA
Ave. 88.67 87.72 87.59 88.69 85.56 74.90 71.75 88.50

σ 0.58 0.57 1.67 0.58 0.35 1.29 1.33 0.64

Airlines
Ave. 63.53 63.97 59.42 64.02 61.98 60.51 46.98 66.68

σ 1.23 0 0.73 0 0 0 0 2.67

Elec.
Ave. 92.17 75.73 92.09 91.60 88.02 71.53 72.76 92.96

σ 0.94 0 1.48 0 0 0 0 3.87

Forest
Ave. 93.57 83.75 92.73 90.70 84.45 89.69 21.59 93.71

σ 1.58 0 2.10 0 0 0 0 2.67

KDDcup
Ave. 99.81 99.04 99.82 99.80 99.74 27.55 99.88 99.80

σ 0.06 0 0.01 0 0 0 0 0.08

Poker
Ave. 84.19 74.37 88.52 80.74 84.31 63.41 69.64 89.89

σ 4.55 0 3.34 0 0 0 0 4.35

41

Table S4: Accuracy (%) of the methods compared in the delayed setting. Bold values indicate

the best performance for each dataset.

Dataset Criteria ARF DWM Lev-

Bag

OAUE OS-

Boost

Learn-

++

ADOB RED-

PSO3

Hyper.
Ave. 88.05 89.41 90.77 91.10 85.74 86.84 49.54 91.48

σ 2.02 0.95 1.71 1.59 3.06 2.42 5.56 2.92

LED
Ave. 74.00 74.14 74.21 74.06 74.13 67.80 10.10 75.91

σ 0.40 0.16 0.15 0.14 0.04 1.25 3.20 2.32

RTG
Ave. 78.24 59.49 90.91 88.72 85.53 56.28 87.88 89.81

σ 8.06 8.67 2.48 5.13 2.90 4.69 1.21 3.79

SEA
Ave. 88.94 87.48 88.70 88.54 85.31 74.75 70.75 88.80

σ 0.59 1.02 1.45 0.70 0.42 1.85 1.56 0.82

Airlines
Ave. 61.42 60.57 58.49 62.73 61.80 50.58 46.98 64.04

σ 1.12 0 0.89 0 0 0 0 3.35

Elec.
Ave. 83.51 67.43 81.78 80.20% 79.04 56.60 65.81 84.18

σ 1.19 0 0.88 0 0 0 0 2.81

Forest
Ave. 85.65 74.93 86.22 86.84 74.47 87.42 16.59 88.19

σ 02.60 0 2.72 0 0 0 0 2.31

KDDcup
Ave. 99.80 99.12 99.81 99.78 99.74 31.68 99.88 99.77

σ 0.07 0 0.01 0 0 0 0 0.08

Poker
Ave. 67.95 59.31 76.78 73.81 81.23 63.87 55.11 81.98

σ 2.92 0 3.72 0 0 0 0 3.81

42

	Introduction
	Related Work
	RED-PSO Framework
	Replicator Dynamics: Overview
	Particle Swarm Optimisation: Overview
	RED-PSO System
	PSO Optimisation

	Computational Complexity

	Experimental Study
	Datasets
	Synthetic Data Streams
	Real-World Data Streams

	RED-PSO Variations and Parameter Tuning
	Results and Discussion
	Comparison of the different variations of RED-PSO
	Comparison with other methods
	Performance over different types of concept drifts

	Statistical Analysis

	Conclusion and Future Work

