
Similarity-based Android Malware Detection Using Hamming
Distance of Static Binary Features

Rahim Taheria, Meysam Ghahramania, Reza Javidana, Mohammad Shojafarb,∗, Zahra Pooranianb, Mauro Contib

aDepartment of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
bDepartment of Mathematics,University of Padua, Via Trieste 63, 35131, Padua, Italy

Abstract

In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are
first nearest neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN), and k-medoid based nearest
neighbors (KMNN). In our proposed methods, we can trigger the alarm if we detect an Android app is malicious. Hence, our
solutions help us to avoid the spread of detected malware on a broader scale. We provide a detailed description of the proposed
detection methods and related algorithms. We include an extensive analysis to asses the suitability of our proposed similarity-
based detection methods. In this way, we perform our experiments on three datasets, including benign and malware Android
apps like Drebin, Contagio, and Genome. Thus, to corroborate the actual effectiveness of our classifier, we carry out performance
comparisons with some state-of-the-art classification and malware detection algorithms, namely Mixed and Separated solutions,
the program dissimilarity measure based on entropy (PDME) and the FalDroid algorithms. We test our experiments in a different
type of features: API, intent, and permission features on these three datasets. The results confirm that accuracy rates of proposed
algorithms are more than 90% and in some cases (i.e., considering API features) are more than 99%, and are comparable with
existing state-of-the-art solutions.

1. Introduction

Nowadays, the widespread use of mobile devices in com-
parison with personal computers has begun a new era of in-
formation exchange. Besides, the increased power of mobile
devices, coupled with the portability of user attention has at-
tracted. Smartphones and tablets are prevalent in recent years.
By the end of 2014, the number of active mobile devices around
the world was about 7 billion, and in developed countries, the
proportion of mobile devices and people are estimated to be
120.8%, respectively. Due to their widespread distribution and
their abilities, mobile devices have become the main target of
the attackers in recent years [1]. Android is currently the most
widely used mobile smartphone platform in the world, which
occupies 85% of the market share. Recent reports indicate an
increase in the number of Android programs in recent years.
As the number of Android applications on Google Play in De-
cember 2009 was 16,000, in July 2013 one million, in February
2016 it was about 2 million and in December 2017 it was five
million. [2, 3].

∗Corresponding author
Email addresses: r.taheri@sutech.ac.ir (Rahim Taheri),

m.ghahramani@sutech.ac.ir (Meysam Ghahramani),
javidan@sutech.ac.ir (Reza Javidan), mohammad.shojafar@unipd.it
(Mohammad Shojafar), zahra@math.unipd.it (Zahra Pooranian),
conti@math.unipd.it (Mauro Conti)

1.1. General Definition

Android app is in two categories: Benign and Malware.
Samples that are safe and do not show malicious behaviors are
called benign samples. In contrast, examples of software that
create a security threat are named malware samples. In recent
years, the variety of malware in Android mobile networks is
continuously increasing and thus causes a risk to users’ privacy.
Furthermore, the popularity of Android with cyber-criminals is
also high and creates a lot of malicious programs to steal sen-
sitive information and compromise mobile systems, and these
conditions represent the need for security in the mobile app.
Unlike other smartphone platforms like iOS, Android users can
install their apps from unverified sources, such as file sharing
websites. In Android apps, the issue of malware infection is
very serious, and recent reports show that 97% of the attacks
on mobile malware came from Android devices. In 2016 alone,
more than 3.25 million Android malicious apps were detected.
That means almost every 10 seconds a new malicious Android
application is created [4, 5?]. Malware term is created by
combining the words “malicious” and “software”. Malware is
a serious threat to the computer world, and this threat is in-
creasing and complicated. When malicious software finds its
way into the system, it scans the OS’s vulnerabilities, performs
unwanted actions on the system, and ultimately reduces system
performance [6]. Hence, an important problem with cyber-
security is malware analysis [7?].

In addition to accurate precision and the precision recog-
nition rates, a malware detection system could generalize to

Preprint submitted to Future Generation Computer Systems November 28, 2019

ar
X

iv
:1

90
8.

05
75

9v
2

 [
cs

.C
R

]
 2

7
N

ov
 2

01
9

new malicious families. For Android malware detection, two
types of solutions, namely Static and Dynamic, have been pro-
posed. Features like APIs, permissions, intent, URLs are ana-
lyzed in static solutions. In another category of malware, mali-
cious components are downloaded at run-time, which requires
dynamic analysis to detect these malwares [8]. For instance,
the authors [9] have provided a method for detecting malware
concerning the correlation between static and dynamic features.
Also, the authors [10] have come up with a way to detect mal-
ware in Android applications, by combining static analysis and
outlier detection.

Another important point is that the system does not need
to compute too much to deploy on mobile devices. Hence, the
system should adopt models (e.g., machine learning models) to
estimate the malicious behavior in a short time [11]. Machine
learning (ML) methods are part of the artificial intelligence-
based system in which solutions are provided to improve the
decision-making process [12]. An ML method is widely used
for specific decision-making tasks such as detecting malware,
network penetration detection, and general pattern recognition
issues. This method is very effective in identifying well-known
and unknown malware families with high accuracy. In various
studies, they design ML-based classification methods to catego-
rize different types of samples (for example, static-based, logic-
based, perception-based and sample-based types samples) and
detect traffic networks on Android mobile devices [13].

An advantage of using the ML method is its ability to iden-
tify different types of malware [14]. In ML methods, complex
pattern recognition and optimization of parameters are well in-
vestigated [15]. The current study indicates that the damage
caused by malware programs, hidden among millions of mobile
applications, is increasing, and this has been a visible motiva-
tion for researchers to deal with more complex applications.

Some Android software analyzes the malware behaviors at
the API level. For example, the authors [16] give a precise
analysis of an opcode-based Android software based on find-
ing the similarity measurements inspired by simple substitution
distance of the features. They indicate that their technique pro-
vides a useful means of classifying metamorphic malware.

Some ML solutions adopt several distance calculation mech-
anisms to find similar samples to a specific sample. For ex-
ample, the authors in [17] add new distance measure using en-
tropy for two computer programs which are called program dis-
similarity measure or PDME. PDME introduces a measure for
the degree of metamorphism for samples. Also, the authors
in [18] elicit several types of behavior static features from An-
droid apps and apply Support Vector Machine (SVM), K Near-
est Neighbor (KNN), Naive Bayes (NB), Classification and Re-
gression Tree (CART) and Random Forest (RF) classifiers to
detect malware from benign apps. KNN algorithm is classified
as a supervised ML algorithm that could solve the classifica-
tion and regression problems. KNN is easy to implement, no
need to build a model, tune several parameters, or make ad-
ditional assumptions. However, it is a slow method for large
datasets. KNN algorithm can find the k nearest samples to a
specific query which have distances between a query and all
the samples in the dataset. Then, it votes for the most frequent

label or averages the labels.
Among different methods to calculate the distance, the Ham-

ming distance applies between two vectors with the same length
and indicates the number of entries where injected elements are
different. In other words, the Hamming distance achieves the
minimum number of errors while converting one vector to an-
other one. Suppose x , (x1, x2, . . . , xn) is a sample vector and
y , (y1, y2, . . . , yn) is a corresponding label of vector x on n di-
mensional space, the Manhattan distance is the sum of the peer
to peer distances between same indexes (see equation (1)).

d1(X,Y) =

n∑
i=1

|xi − yi|, (1)

And Minkowski distance presents by equation (2):

d2(X,Y) = p

√√
n∑

i=1

|xi − yi|
p, (2)

where p ≥ 1.
In this paper, using replacement method we prove that with

the binary representation of the data, we calculate the Hamming
distance, and the distance calculated by this method is the same
as the distance used by other methods like Euclidean distance
and Manhattan distance.

1.2. Motivation and open issues
As we described earlier, ML has been widely used in the

classification of various types of Android OS like API, permis-
sion, intent and Android malware detection. For example, the
paper [19] applies API system call and shapes the API graph,
the reference [20] utilizes a score function to the extracted per-
mission feature set, and finally, the paper [21] adopts weighted
mutual information to select prominent features. All of these
research papers used the KNN algorithm to detect malware;
however, due to the lack of binary representation of data, they
need several calculations to extract malware vectors from be-
nign samples.

Finding a threshold for k in the KNN algorithm has been
considered in many studies which are important in the malware
detection methods [22]. Another category of studies has sug-
gested methods using ensemble learning that employ other al-
gorithms such as decision tree, SVM and RF for malware de-
tection. However, due to the simultaneous using of multiple
algorithms, these methods have a high time complexity [11].
In some studies, a framework for detecting malware has been
presented, which different classification methods such as SVM
are applied in them [23]. In [23], the authors propose a struc-
ture that uses the KNN algorithm based on Hamming distance
for malware detection system. It used a fixed k value for KNN
which limits their structure.

The purpose of this paper is to investigate the effect of the
distance between samples to classify into malware and benign.
Due to the sparse feature vectors, the Hamming distance is an
appropriate measure for the discrimination of samples. We pro-
pose a modified supervised KNN Algorithm using the Ham-
ming distance to classify the samples. Then, we combine it with
an unsupervised K-Medoids algorithm to detect malware based

2

on static features. In the proposed framework of this paper,
we use the Hamming distance to apply proposed classification
methods which are the modified form of the KNN method.

1.3. Problem Definition

Due to the widespread use of Android apps, finding a way of
identifying malicious files is a critical problem that needs to be
solved instantly. This paper use static analysis technology and
propose four detection methods based on similarity for Android
malware by calculating distance of samples using a Hamming
distance measure. The proposed methods are flexible solutions
for the problem. It means, the generated model by each scenario
learns the patterns in the features and can be used to classify the
samples into malware and benign. Our proposed methods well
generalize the patterns even for new samples. To do so, first, we
find the related set of features from the manifest part of apk file.
Then, we use the RF regressor as a feature selection algorithm
and rank the features. The main reason behind selecting the
RF as a feature selection algorithm is that we could have better
control over the results using RF when we consider different
random subsamples of the original dataset [24]. Finally, we use
the proposed methods based on the nearest neighbors of each
sample and classify them.

1.4. Contribution

In this research, we deploy several methods that applied on
APIs, Permissions, and Intents used by Android applications
to identify malware samples or apps. We carry out extensive
experiments to compare proposed solutions with existing solu-
tions and examine the validity of the proposed detection model.
To sum up, we make the following contributions:

• We prove that the result of using the Hamming distance with
other methods is the same for the binary vectors and apply the
Hamming distance in the distance-based malware detection
methods.

• We propose four scenarios for malware detection based on
the nearest neighbor approach in which we use Hamming
distance to find neighbors.

• We obtain the maximum achievable accuracy with the Ham-
ming distance method as a threshold. We present the accu-
racy threshold calculation strategy in Section 5.2.

• We evaluate the proposed malware detection methods using
three standard datasets: Drebin, Contagio, and Genome. Be-
sides, by analyzing the time and space complexity, we per-
formed a theoretical analysis to realize the scalability of our
approach.

• We compare the proposed malware detection methods against
the state-of-the-art methods applied for malware detection.
At first, the proposed methods are compared to [22], which is
Android malware detection based on a combination of clus-
tering and classification. The next comparison solution in
literature uses an entropy-based distance measure to detect
malware [17]. In the third comparison method [19], malware

samples classify into different families, making it possible
for each family to share the features of the samples in a bet-
ter way. The main reason behind selecting such schemes for
comparison is that our proposed methods and these cutting-
edge solutions using similarity-based metrics for detecting
malware. Moreover, the papers [19] and [22] carry out their
numerical validations in Drebin dataset in which we adapt
our results on the same dataset.

1.5. Roadmap

The remainder of the paper organizes as follows: We dis-
cuss related work in Section 2. In Section 3 we study the pre-
liminary essential malware analysis. Section 4 describes the
distance calculation measures in binary representation, explore
the detection strategies, our defined scenarios, designs our pro-
posed architecture for malware detection systems and provides
a toy scenario and delineates the proposed algorithms, while
Section 5 presents the experimental results of our proposed sce-
narios. Section Section 6 reports the achievement of the ex-
periment and provide some discussions regarding our method.
Finally, in Section 7 we summarize our research and provides
future directions.

2. Related Work

Machine learning techniques use static, dynamic, and hy-
brid analysis methods to classify Android applications. In the
following subsections, we introduce them. Also, we study some
important researches in malware analysis and malware detec-
tion.

2.1. Static analysis

Some techniques using static permission features, such as
Drebin [25], StormDroid [26], and DroidSIFT [27] which are
applied on Android apps [28].

The authors in [29] propose a new detection system called
ANASTASIA to identify malicious samples using intents, per-
missions, system commands, and API calls features. ANASTA-
SIA uses several classifiers by applying deep learning method
and can extract several feature types from Android applica-
tions using the conditions of the app. Additionally, The authors
in [30] investigate Android apps to describe their resource us-
age and leverage the profiles to detect Android malware.

The authors in [31] present an automatic signature genera-
tion approach called AndroSimilar in which to detect malware
for the static syntactic features in Android apps. Also, An-
droSimilar can detect unintelligible malware with techniques
such as junk method insertion, renaming method, string encryp-
tion, and changing control flow that can be used to evade fixed
signatures working against malware. Besides, AndroSimilar
can detect unknown types of existing malware. Also, the au-
thors build an AndroSimilar generation approach based on dig-
ital forensics Similarity Digest Hash (SDHash) to distinguish
similar documents. In SDHash, unrelated apps receive a lower
probability of having standard features. Also, it helps to con-
trol false positive rates for two separate apps that share some

3

features. Another method [32] applies the same strategy to ex-
tract fixed-size byte-sequence features using their entropy val-
ues and searches for popular features and selects some of them
using KNN strategy.

2.2. Dynamic analysis

Dynamic solutions could run an Android app in a protected
environment and provide all the required emulated resources to
identify malicious activities. In literature, we find some imple-
mented dynamic analysis methods – however, they suffer from
resource constraints of a smartphone. In another group, some
papers concentrate on the behavioral class of the malware de-
tection solutions. For example, in [23], the authors define the
malware types based on their behavioral class. They propose a
new scheme which identifies the misbehavior classes modified
by each malware type by correlating the features extracted at
four different levels: kernel level, application level, user level,
and package level. At the kernel level, their solution could mon-
itor the system calls and hijacks them if any app triggers them.
At the application level, it controls the critical APIs to detect
the malicious behaviors posed by the apps such as the installa-
tion of new applications, requests for administrative privileges,
generating too many processes, constant app monitoring on the
active application. At the user level, they monitor user activities
and detect malicious events when the user is idle or not inter-
acting with the device. At the package level, they propose a
new system to identify the risky applications under observation
based on permissions requested by the app and market informa-
tion.

The fatal limitation of dynamic approaches is if they trigger
with some non-trivial events, then they can miss some mali-
cious execution path. For example, anti-emulation techniques
such as Sandbox [33] and reference [34] detection mechanism
are unable to timely analyze the environment and lead to de-
laying the identifying malware and raise the evasion of the dy-
namic analysis methods.

2.3. Hybrid analysis

We can generate hybrid solutions when we apply static and
dynamic approaches in the same time. Hybrid solutions can
borrow the characteristics of static and dynamic solutions to
improve malware detection strategies like DroidDetector [35].
DroidDetector could apply static and dynamic analysis usign
deep learning to distinguish malicious software from normal
applications. It uses permissions and sensitive API for static
analysis. These static behaviors extract the features using TinyXml
[36], 7-zip [37], and Baksmali tools [38]. After that DroidDe-
tector dynamic features analysis using DroidBox tool.

Furthermore, Shanmugam [16] propose an alternative dis-
tance for metamorphic malware. Their distance measurement
solution is based on the opcode-based similarity method and
simple encryption reported in [39]. They use this distance
measurement to classify malicious programs. The application,
which is sufficiently similar to the metamorphic malware is
classified as malicious. Some malware detection methods use
Euclidean histogram distance metrics to compare two program

files – for example, Rad et al. [40] suggest that a histogram of
opcodes can be used to detect metamorphic viruses. Some stud-
ies apply statistical methods to detect malware. For example,
Toderici [41] use an analytical approach based on a chi-squared
test to improve the hidden markov models Based malware de-
tection. In another work, Ambra Demontis et al. [42] elaborate
a solution to mitigate evasion attacks like malware data manip-
ulation. In that paper, their method utilizes a secure SVM al-
gorithm that can enforce its features to have evenly-distributed
weight.

3. Preliminaries

In this section, we review some of the essentials for mal-
ware analysis and how to model malware. In applied mathemat-
ics and computer science, a sparse matrix is a matrix in which
most of the elements are zero. In Fig. 1, we use sparse matrix
representation which contains important information related to
Android app features such as APIs, permissions and intents.

Figure 1: State transition diagram for converting samples to sparse
matrix.

In this study, we follow the general setting for designing a
malware detection system that contains the benign B and mal-
ware samples M. To do so, we select the performance evalua-
tion settings and store a dataset that includes the labeled exam-
ples (i.e., with n samples) and the m elements for each sample.
Hence, in equation (3) we have

D = {(xi, yi) | ∀i = 1, . . . , n}, (3)

where xi is the i-th malware sample vector of each component
presents the selected feature; yi ∈ {0, 1} is the corresponding
label of the features; xi j is the binary value of the j-th feature
in i-th sample where {∀ j = 1, . . . ,m}. Also, we can set xi j = 1
if xi has the j-th component and xi j = 0 otherwise; n is the
total number of samples, and X ⊆ {0, 1}m is an m-dimensional
feature space.

4

4. Proposed Approaches for Malware Detection System

In this section, we first apply replacement method and prove
that in the binary representation, Manhattan distance, Minkowski
distance, and Hamming distance are the same. Then, due to
the simplicity of computation, we use the Hamming distance
method in the proposed detection algorithms. After that, we
present our proposed architecture. The main notations and sym-
bols used in this paper are listed in Table 1.

Table 1: Notation and symbols used in this paper.

Notations Description
n Number of Samples in Input Dataset
m Number of Features in Each Sample
X Input data , | X |= n
x A Sample from Input data , x ∈ {0, 1}m

Y Label of class in the classification problem, y ∈ {0, 1}
f ML model, f : X → Y

4.1. Equivalence of distance calculation measures in binary
representation

In our paper, we introduce methods to identify malware
samples from benign samples using the distance measure. Given
the fact that the samples are binary vectors, the existence of a
feature means a value of 1 and the absence of a feature means
zero. The proposed method for computing the distance between
the samples is to use the Hamming distance of the two vec-
tors. On the other hand, it can easily be shown that in the
binary mode of vectors, the result of using different criteria
is to calculate the same distance. Suppose the binary vector
Y = [y1, ..., yn] is the most similar vector to X = [x1, ..., xn]. It
means, d(X,Y) ≤ d(X,Z), ∀Z. Several distance formulas apply
to find the most similar vector to vector X. We list some of them
as follows.

• Taxicab distance which is also called the Manhattan distance
presents in the equation (1):

• Minkowski distance presents as equation (2).
Since we need the most similar vector so we have equa-
tion (4):

d1(X,Y) ≤ d1(X,Z), ∀Z (4)

which is equivalent to:

n∑
i=1

|xi − yi|) ≤
n∑

i=1

|xi − zi|). (5)

On the other hand, since our vectors are binary, so we have:

|xi − zi|= (|xi − zi|)p. (6)

Different values of p determine the application of this equa-
tion. For p ≥ 1, the Minkowski distance is a metric as a
result of the Minkowski inequality. Minkowski distance is
typically used with p being 1 or 2, which corresponds to the
Manhattan distance and the Euclidean distance, respectively.

We can rewrite equation (4) using equation (6) as

p∑
i=1

∣∣∣xi − yi

∣∣∣ ≤ p∑
i=1

∣∣∣xi − yi

∣∣∣p . (7)

Then, we have:

p

√√
n∑

i=1

(
∣∣∣xi − yi

∣∣∣)p ≤ p

√√
n∑

i=1

(|xi − zi|)p. (8)

and we can conclude

d2(X,Y) ≤ d2(X,Z), (9)

The last equation imposes that the X and Y vectors result
from each other. Formally speaking, we show that using the
d2 measure, vector Y is the most similar vector to the binary
vector X.

4.2. Proposed architecture

Figure 2: Architecture overview of proposed method. ML= machine
learning. n= number of features in each sample

In Fig. 2, we introduce our proposed architecture. In this
figure, we select the static features of data samples (out of N
samples) in the dataset (see the rectangular feature selection
component in Fig. 2). Then, using the Random Forest fea-
ture selection algorithm, we select the α percentage of features–
n/n′ = α. The α value will be in the following set.

α ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} (10)

For example, if α = 10, it means we select 10% of features from
feature selection component. After that, we convert the selected
features of the samples to a vector. Then, we generate a binary
vector for each sample by placing the value of 1 for each feature
that exists in the sample and the value of 0 for each non-existent
feature (see the Binary Vectors component in Fig. 2). Then, we
generate our ML model using each of our proposed detection
algorithms as classification algorithms based on Hamming dis-
tance similarities between the samples and use the ML model
to detect malware among benign samples.

4.3. Detection strategy and scenarios

Measuring the similarity between samples is a significant
operation in the classification algorithms. Classifiers which use
similarity strategy can estimate the label of a sample in test set
based on the similarities between that sample and label of sam-
ples in a training set, and the pairwise similarities between the

5

Algorithm 1 Methods 1-4: FNN, ANN, WANN, KMNN.
Input: testset X
Output: Y

1: for ∀x ∈ X do
FNN:

2: MinX ← The first nearest sample from trainset to X
3: y← Label of MinX

ANN:

4: NN ← All nearest samples from trainset to X
5: y← The most repeated label of samples in NN

WANN:

6: W ←Weight of each feature in trainset X
7: WX ←Weight of trainset samples considering W
8: WNN ← All weighted nearest samples from trainset considering WX
9: y← The most repeated label of samples in WNN

KMNN:

10: NN ← All nearest samples from trainset to x
11: C ← Run clustering on NN and find two CHs
12: d ← Compute sum of distance between each samples in NN and CH
13: D← Sorted d
14: D′ ← Remove 10% of the last samples in D
15: y← Votes on the samples which are in D′

Add y to the Y
16: end for
17: return Y

training samples. In the following, there are several ways to de-
tect malware, which, despite the simplicity, represents a good
result. Suppose that we want to find the most similar members
(i.e., find the most similar vectors) of the train set to the vector
x which belongs to the test set. From the mathematical point
of view, the element y is the most similar to x if we have equa-
tion (11):

d(x, y) ≤ d(x, z) ∀z ∈ trainset (11)

In which, d(x, y) represents the difference between x and y,
which is also called distance. There are several methods to cal-
culate the distance such as the Hamming distance, Minkowski
distance and so on, which discussed earlier. Due to the binary
nature of the elements (samples), we will show that the distance
results of all these methods are similar, and therefore there is
no ambiguity in selecting the specific method. For malware de-
tection, we introduce several scenarios and present the results.
To this end, we summarize each proposed malware detection
method as follows:

FNN : First Nearest Neighbors– In FNN, the first member of
the training dataset is considered as the most similar member of
the input data, and if a member is found to be more similar, the
new member is considered as the most similar. The pseudocode
of this method is shown Alg. 1.

ANN: All Nearest Neighbors – ANN is similar to the FNN,
with the difference that at each stage all similar neighbors are
stored and all of these elements are involved in the conclusion
process. The pseudocode of this method is as Alg. 1. Note that
in this method, the voting process is based on the population of
the labels, and the features of the malware will have no effect
on the decision-making process. This issue is discussed further.

WANN: Weighted All Nearest Neighbors – In WANN, the

importance of features is examined. For this purpose, first, a
variable W is defined, each element of which holds the per-
centage of the frequency of its corresponding feature. Similar
to the previous method, in this method, all the neighbors are
firstly calculated with the input element x and among them, we
store elements whose features are close to x according to the
frequency of the features. In this case, if we find several similar
elements, we will take the voting process. In this method, the
probability of the features is also effective in the voting process.

KMNN: K-Medoid based Nearest Neighbors – K-Medoid
clustering method is a type of K-means that can be more robust
to noises and outliers. Medoid is the central point of the clus-
ter, which is an actual point of the cluster and has the minimum
distance to other points s [43]. This scenario is a combination
of KNN and K-medoids. It is similar to previous scenarios,
with the difference that the label recognition process is based
on the closest nearest neighbor. First, the most similar neigh-
bors are calculated using the second scenario (i.e., the scenario
is based on finding all the same neighbors with the same sim-
ilarity). Then, the neighboring set is divided into two clusters.
In each cluster, one of the samples, which has the smallest dis-
tance with other samples, is selected as the cluster head. Then,
the distance to each of the samples is calculated from the cluster
heads and sort in terms of distance. In the last step, ten percent
of the samples, which have more distance than the clusters, are
ignored and voted between the rest of the remaining samples to
obtain the label for the sample x. The reason for this clustering
is that one of the clusters is likely to represent malware and an-
other to represent benign software. After that, a cluster head is
calculated for each of these clusters and used to determine the
probable unrelated neighbors (outlier data). To do this, we con-
sider k percent of the neighbors with the most distance to these
clusters as the outlier data, and remove them from the list of
neighbors. In this paper, we consider k = 10. Finally, similar to
the previous scenarios, the voting process is performed, and the
test data label is determined. The process is presented as Alg. 1.

To better understand the proposed methods, we use a toy
example presented in appendix A that clearly outlines the algo-
rithms.

4.4. Time complexity of the detection algorithms

In following section, we conduct time complexity analysis
on the presented detection methods. Hence, we detail the time
complexity of our proposed methods as follows:

• FNN. In FNN, we first obtain the distance between each sam-
ple and other samples in the training dataset. Then, we aim to
select the first nearest sample. Assuming that in the training
dataset we have n samples and each sample has m features,
the time complexity of finding the first similar sample in the
worst case will be O(n × m).

• ANN. In ANN, similar to FNN, we first obtain the distance
between each sample and other samples in the training dataset.
The time complexity of finding the most similar samples in

6

the worst case is O(n × m). The next step in the ANN algo-
rithm is voting on all similar samples. Suppose that we have
k similar samples. The time complexity of this step also is
O(n × k), where k < n. As a result, the time complexity of
ANN algorithms is equivalent O(n×m) +O(n× k)=O(n×m).

• WANN. The first step in the WANN algorithm is finding the
vector W, which indicates the weight of the features. To com-
pute the weight of the features, we calculate the abundance
of features in the training dataset and divide it to the number
of samples. Assuming that there are n samples in the training
dataset, and each sample contains m features. The duration
takes to find the vector W in training dataset is in the order of
O(n × m). The next step in this method is similar to the pre-
vious methods and includes finding all similar instances and
voting between them. In this way, the time complexity of the
WANN method is O(n×m)+O(n×m)+O(n×k) = O(n×m).

• KMNN. In KMNN method, K-Medoid is used with the near-
est neighbor method. Assuming that k is the number of clus-
ters which anyone has ci elements, the time complexity for
this algorithm is about O(n×m) +O(i× k × ci

2 ×m), that i is
the number of algorithmic repetitions to achieve the optimal
answer. Given that only two clusters are chosen, k is equal to
2, and we set i = 10. Therefore, the time complexity of this
part is O(n2 × m). In the second part of this algorithm, the
distance of the selected samples with the CHs are calculated
and these distances are sorted. The time complexity of this
part is O(n × log(n)). Therefore, the time complexity of the
KMNN algorithm is O(n2 × m).

In calculating the time complexities of proposed methods, we
estimate duration takes for finding the distance between two ar-
bitrary vectors X and Y with m features. In worse case, we
consider the samples X and Y as binary vectors with length m
and compare the elements of them by computing Hamming dis-
tance between the similar entry of vectors. In implementation,
we present examples in the form of sparse collections. In this
case, we can apply the following mathematical equation to cal-
culate the distance between two sets of X and Y vectors as fol-
lows:

D(X,Y) = #((X ∪ Y) − (X ∩ Y)) (12)

In this regard,the symbol (#) presents the number of members
for each set. We confirm that this mathematical equation pro-
vide more accurate results. For example, In the tested dataset in
this paper, in the worst case, we have m = 21, 492 features per
sample, while using the above equation, the distance will be at
most the order of 925 simple calculations.

5. Experimental Evaluation

In this section, we report an experimental evaluation of the
proposed clustering algorithms by testing them under different
scenarios.

5.1. Simulation setup
In the following, we describe the datasets, mobile applica-

tion static features, test metrics, and comparison solutions’ tun-
ing.

5.1.1. Datasets
We conduct our experiments on three datasets which are

explained below:

• Drebin dataset: The Drebin dataset is a Android example
collection that we can apply directly. The Drebin dataset in-
cludes 118,505 applications/samples from various Android
sources [25].

• Genome dataset: The genome project is supported by the Na-
tional Science Foundation (NSF) of the United States. From
August 2010 to October 2011, the authors collected about
1,200 samples of Android malware from different categories
as a genome dataset [44].

• Contagio dataset: it consists of 11,960 mobile malware sam-
ples and 16,800 benign samples [45].

5.1.2. Static features
In this paper, we consider various malicious sample features

like permissions, APIs and intents. We summarize them as fol-
lows:

• Permission: permission is a essential profile of an Android
application (apk) file that includes information about the ap-
plication. The Android operating system processes these per-
mission files before installation.

• API: API feature monitors various calls to APIs on an An-
droid OS, such as sending SMS or accessing a user’s location
or device ID.

• Intent: Intent feature applies to represent the communication
between different components which is known as a medium.

5.1.3. Parameter setting
Due to a large number of features, we first ranked the fea-

tures using the RandomForestRegressor algorithm. Then, we
repeat our experiments for {10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, 100%} of the manifest features with higher
ranks to determine the optimal number of features for modifi-
cation in each method. The evaluation of a model skill on the
training dataset would result in a biased score. Therefore the
model is evaluated on the held-out sample to give an unbiased
estimate of model skill. This is typically called a train-test split
approach to algorithm evaluation. In this paper, at each test, we
randomly consider 60% of the dataset as training samples, 20%
as validation samples and 20% as testing samples. We repeated
this operation ten times for each algorithm and averaged the
results.Each of these 10 sets of train, validation and test were
generated using non-duplicate seed. Table 2 shows the accu-
racy of the proposed methods in this paper on train, validation
and test data. We run our experiments on an eight-core Intel
Core i7 with speed 4 GHz, 16 GB RAM, OS Win10 64-bit.

7

Table 2: Comparing accuracy of Algorithms without feature selection
on train-validation and test data.

train-validation-test
Drebin Dataset Contagio Dataset Genome Dataset

Algor.. train valid. test train valid. test train valid. test
FNN 99.35 99.29 99.36 99.06 99.05 99.06 99.87 99.84 99.88
ANN 99.43 99.47 99.48 99.26 99.27 99.27 99.88 99.86 99.88

WANN 99.33 99.35 99.33 99.08 99.08 99.06 99.83 99.81 99.82
KMNN 99.26 99.25 99.26 99.17 99.11 99.18 99.69 99.68 99.70
PDME 99.31 99.28 99.28 98.95 98.92 98.92 99.55 99.54 99.55

FalDroid 94.54 94.49 94.54 93.58 93.58 93.58 98.38 98.37 98.38
MAA 99.75 99.72 99.74 99.42 99.42 99.41 99.88 99.87 99.88

A
PI

RF 99.23 99.03 99.17 98.93 98.92 98.82 99.67 99.66 99.67
SVM 98.89 99.01 98.95 98.31 98.3 98.3 99.6 99.6 99.61
DT 98.16 98.11 98.14 98.38 98.39 98.39 99.26 99.25 99.25
NN 91.29 91.19 91.20 98.36 98.35 98.36 99.78 99.76 99.79

FNN 96.91 96.72 96.83 98.94 98.68 98.77 99.69 99.46 99.43
ANN 98.12 98.03 98.02 99.28 99.01 99 99.54 99.48 99.49

WANN 98.74 98.51 98.45 98.97 98.76 98.80 99.56 99.39 99.37
KMNN 97.99 97.86 97.88 99.03 98.83 98.83 99.61 99.43 99.43
PDME 98.05 97.91 97.92 98.97 98.78 98.77 98.98 98.88 98.89

FalDroid 70.23 70.09 70.03 88.81 88.43 88.44 92.18 91.82 91.81
MAA 99.64 99.45 99.48 99.64 99.51 99.53 99.91 99.85 99.85

Pe
rm

is
si

on
s

RF% 85.91 85.76 85.78 98.39 98.16 98.07 95.41 95.09 95.10
SVM 87.59 87.46 87.45 97.14 97.02 97.05 94.65 94.56 94.57
DT 86.48 86.31 86.33 99.75 97.67 97.66 95.13 94.95 94.96
NN 82.51 82.32 82.38 97.43 97.16 97.16 94.97 94.71 94.72

FNN 90.41 90.29 90.29 98.93 98.79 98.77 99.17 89.99 99.01
ANN 99.91 91.78 91.79 99.29 99.11 99.09 99.41 99.23 99.22

WANN 99.39 92.21 92.19 99.18 99.06 99.06 99.32 99.16 99.16
KMNN 92.09 91.92 91.91 99.11 98.9 98.89 99.21 99.13 99.13
PDME 91.97 91.79 91.82 99.04 98.82 98.83 99.04 98.86 98.89

FalDroid 91.24 91.15 91.15 88.91 88.61 88.62 85.22 85.09 85.11
MAA 99.69 99.52 99.52 99.82 99.64 99.62 99.91 99.93 99.91in

te
nt

s

RF% 99.19 92.04 92.03 98.75 98.56 98.57 96.97 96.82 99.82
SVM 91.21 91.07 91.08 99.01 98.91 98.89 97.71 97.44 99.45
DT 91.23 91.16 91.17 98.94 98.83 98.80 97.31 97.18 97.12
NN 88.89 88.81 88.81 88.89 98.75 98.74 95.82 95.68 95.68

5.1.4. Comparison of solutions
We compare our proposed algorithms against the correspond-

ing ones of some state-of-the-art classification and malware de-
tection algorithms, namely joint solution [22], the program dis-
similarity measure based on entropy (PDME) [17] and the Fal-
Droid [19] algorithms. In detail, two detection approaches are
proposed in [22]. In the first method, we consider a random
member called k from train set as a CH and divide the train
set into k clusters. Then, we calculate the distance between all
the elements of each cluster and consider the element that min-
imizes the total distance from all members as a new CH. All
members are re-clustered using a new cluster. We repeat this
process and change the elements of the clusters in each step.
Once the end cluster has been identified in the last replication,
these clusters are used to identify the label. The label of the
element (test element) is considered to be the label of the clus-
ter label that has the smallest distance with the desired element.
In the event that several clusters are found with this feature,
they will be voted on. The second method presented in [22] is
very similar to the first method. The only difference between
the first and second methods is that we divide the train set into
two parts: malware and benign. We now run the first method
for both malware and benign separately. Therefore, the entire
train set in the second method is divided into 2k clusters. In
the following, similar to the first method, the test element spac-
ing is calculated with all the clusters of the malware and benign
sets. Finally, the labels are select by voting between the nearest
clusters of malware and benign sets.

In [17], the proposed method is based on entropy. First, all
neighbors with the least distance from the sample are calculated
and voted between them. The only difference in this method is
calculating distance. In this method, using the concept of en-
tropy, which is one of the most famous concepts of information
theory, the distance between the two samples S 1 and S 2 is cal-
culated as equation (13):

dEn(S 1, S 2) = 1 − S im(S 1, S 2) (13)

In which, the S im(S 1, S 2) is a similarity measure for two sam-
ples and is computed by (14):

S im(S 1, S 2) =
En(S 1) + En(S 2) − En(S 1 ∪ S 2)

max
(
En(S 1), En(S 2), En(S 1 ∪ S 2)

) (14)

In this definition, En(S 1) represents an entropy that indicates
the probability of the random variable S 1. In this paper, S 1
is considered as an j-th binary vector with a maximum of m
features. The entropy is calculated as equation (15), in which
p(S i) is the probability of i-th feature occurrence of the vector
S 1:

En(S 1) = −

m∑
i=1

p(S i) log(p(S i))) (15)

In our paper, we use FalDroid as a method for classify-
ing the samples and compare their results against our proposed
methods. Obviously, other innovations expressed in [19] are
not recovered.

5.2. Test metrics

In the ML-based malware detection methods the confusion
matrix is compute and then performance metrics are calculated
using the confusion matrix. The confusion matrix contains the
following parts:

• True Positive (τ): the number of correctly classified samples
that belongs to the class.

• True Negative (δ): the number of correctly classified samples
that do not belong to the class.

• False Positive (ρ): the number of samples which were incor-
rectly classified as belonging to the class.

• False Negative (µ): the number of samples which were not
classified as class samples.

• Accuracy: This metric is described as equation (16):

Accuracy =
τ + δ

τ + δ + ρ + µ
(16)

• Precision: This is the fraction of relevant samples between
the retrieved samples. Equation (17) shows how to calculate
this metric:

Precision =
τ

τ + ρ
(17)

• Recall: This Recall is defined as equation (18):

Recall =
τ

τ + µ
(18)

8

• f1-Score: The harmonic mean of precision and recall defines
as F1-score which we describe it in equation (19):

f 1 − S core =
1

1
Recall + 1

Precision

= 2 ∗
Precision ∗ Recall
Precision + Recall

(19)

• False Positive Rate (FPR): The FPR is computed as the ratio
between the number of negative events incorrectly classified
as positive (false positives) and the total number of actual
negative events. This metric is described as equation (20):

FPR =
ρ

τ + δ
(20)

• Area Under Curve (AUC): This metric is a method for de-
termining the best model for predicting the class of samples
using all thresholds. That is, AUC measures the trade off

between misclassification rate and FPR. This metrics can be
calculated as (21):

AUC =
1
2

(
τ

τ + ρ
+

δ

δ + ρ

)
(21)

• Receiver Operating characteristic Curve (ROC): ROC a graph-
ical plot that illustrates the detection ability of a binary clas-
sifier system as its discrimination threshold is varied.

In the similarity-based methods which are proposed in this pa-
per, for each sample in the test set, we opt the samples that are
the most similar to the test sample. Afterward, we determine
the label of each sample using the labels of samples in the most
relevant neighbors. We determine it when the main label of the
test sample is not the same as the neighboring set. As an exam-
ple, let us assume that the test element has a label of 1, and all
the elements in the nearest neighbors are labeled 0. If we select
the first element that is located in the nearest neighbor or se-
lect it based on polling which is conducted between neighbors,
then, in both cases the 0 labels will suggest for the sample in-
correctly. We can use this strategy to calculate the upper-bound
and the lower-bound for accuracy in a similarity-based method.
Therefore, we consider this ranges in calculating the maximum
accuracy of similarity methods and add them to the Tables 3-5
as the last three columns. Formally speaking, suppose that we
want to calculate the maximum value of F , x

x+y , hence, we
have

F =
x

x + y
=

x
x(1 +

y
x)

=
1

1 + (y
x)

(22)

To maximize the expression x
x+y , we just need to minimize 1 +

y
x . Therefore, by calculating the minimum y and the maximum
x we can obtain the maximum x

x+y expression. Regarding the
method of calculating the accuracy presented in equation (16),
the following substitution defines as below:

τ + δ −→ x (23)

ρ + µ −→ y (24)

Where maximizing the value of accuracy depends on minimi-
zing the summation of µ and ρ and maximizing the summation
of the value of τ and δ. Therefore, in the case of the maximum

value for τ+δ and minimum value for ρ+µ, the accuracy maxi-
mizes. To obtain the maximum value of τ+ δ and the minimum
ρ + µ value, we can write

MAX(τ + δ) =
#X ∈ testset

#testset
where Real Label(x) ∈ ANN(X) (25)

MIN(ρ + µ) =
#X ∈ testset

#testset
where Real Label(x) /∈ ANN(X) (26)

Similarly, the minimum FPR and the maximum AUC can be
calculated. As recall it, we report these cases in Tables 3-5 as
MAA.

5.3. Experimental results
In this section, we apply the proposed methods for detecting

malware on three datasets, Drebin, Contagio and Genome, and
compare the results with three of the state-of-art researches.

5.3.1. Fixed value for k in KNN-based algorithm
In the reference [22], the authors propose two different meth-

ods based on the KNN algorithm. Hence, they consider fixed
values for k for two different methods called Mixed and Sepa-
rated ones. In Fig. 3, we test them on different k methods (i.e.,
k = {30, 40, 120, 240}) for the Drebin, Contagio, and Genome
datasets. From this figure, we can draw three conclusions. Firstly,
we understand that our methods (i.e., FNN algorithm as the
worst method and WANN as the best method) have the high-
est accuracy rate compared to the methods presented in [22]:
Mixed and Separated algorithms. Secondly, as we present in
the three sets of comparison plots (Figs. 3a-3c, Figs. 3d-3f,
and Figs. 3g-3i) the Mixed algorithm provides higher accuracy
rather than the Separated algorithm (i.e., for each of four se-
lected samples). This means that the average rate of accuracy
(i.e., detecting malware from API, intent, and permission fea-
tures) for the Separated method applied to all type of datasets is
less than 90% and for the Mixed algorithm less than 98%. Fi-
nally, if we increase the k value in KNN algorithm, the accuracy
of both Separated and Mixed methods increase. The solutions
presented in [22] depending on the optimal k value. Hence, they
require optimization algorithms or trial and error methods to
find the appropriate k value to approach current accuracy ratios
which raise the complexity of their methods. While in the meth-
ods proposed in this paper, we try to find the nearest neighbors
regardless of the value of k and compare the proposed methods
with the modification in the number of features.

5.3.2. Comparing methods based of precision, recall and f1-
Score

In Fig. 4, we provide the precision and recall values for
the different algorithms. Both recall (sensitivity) and precision
(specificity) measures to use to determine generated errors. The
recall is a measure that could show the rate of total detected
malware. That is, the proportion of those correctly identified is
the sum of all malware (i.e., those that are correctly identified
by the malware plus those that are incorrectly detected by be-
nign). Our goal in this section is to design a model with high
recall that is more appropriate to identify malware. In this way,
the set of Figs. 4a- 4c, Figs. 4d- 4f, and Figs. 4g- 4i show the

9

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(a) Drebin-API

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(b) Drebin-permission

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(c) Drebin-intent

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(d) Contagio-API

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(e) Contagio-permission

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(f) Contagio-intent

 30

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(g) Genome-API

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(h) Genome-permission

 30

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50 60 70 80 90 100

A
cc

 (
%

)

Ratio of Used Features

Mixed, k=30
Mixed, k=70

Mixed, k=240
Seprt, k=30

Seprt, k=70
Seprt, k=120
FNN (worst)

WANN (best)

(i) Genome-intent

Figure 3: Comparison accuracy value between Mixed algorithm against Separated (or Seprt) algorithm reported in [22] and our best (FNN) and
worst (WANN) algorithms for API, intent and permission features for various datasets.

aforementioned values for the permission, API and intent data
for the Drebin, Contagio, and Genome datasets, respectively.
The precision measure shows the same concept for benign sam-
ples. It means, how many benign samples can we detect from
all benign samples. Precision model is the proportion of sam-
ples that are not malware to the total benign samples (i.e., those
that are detected as benign and those that are incorrectly con-
sidered as malware). With these explanations, the recall and
precision metrics use instead of the accuracy metric and have
a wider application in machine learning. In most cases, these
two metrics do not improve together. Sometimes we compute
the precision of the model with more precise algorithms, that
is, the ones we announce malware is most likely malware. Ex-
amples that are incorrectly classified as malware are very few,
which means the precision of our algorithm is very high. But
we may not consider the particular aspect of the data, and the
total number of malware samples is much more than our de-
clared examples, that is, we have a very low recall. On the

other hand, it is possible to simplify our detection algorithm
to increase the number of detected malware. In this case, the
number of our incorrectly classified samples is increased, the
precision value of the algorithm is low, and the recall value is
high. On the other hand, if we can find a combination of both
recall and precision values to measure the classification algo-
rithms, the focus on that measure will be more appropriate than
the simultaneous review of recall and precision. For example,
we use the average of these two metrics as a new benchmark
and try to raise the average of these two metrics. For this pur-
pose, the mean harmonic is the two recall and precision criteria,
which is called the f1-Score. In this criterion, if the two values
of recall and precision are small or even zero, the result will be
small or zero.

Hence, in Fig. 4, as we can see, the FalDroid method has
fewer values for precision and recall compared to other meth-
ods. The high precision measurements in the FNN algorithm on
API features from the Drebin dataset shows that this algorithm

10

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

(%
)

Drebin

Precision Recall F1-Score

(a) Drebin-API

 70

 75

 80

 85

 90

 95

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

(%
)

Drebin

Precision Recall F1-Score

(b) Drebin-permission

 40

 50

 60

 70

 80

 90

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

(%
)

Drebin

Precision Recall F1-Score

(c) Drebin-intent

 30

 40

 50

 60

 70

 80

 90

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

(%
)

Contagio

Precision Recall F1-Score

(d) Contagio-API

 30

 40

 50

 60

 70

 80

 90

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

(%
)

Contagio

Precision Recall F1-Score

(e) Contagio-permission

 30

 40

 50

 60

 70

 80

 90

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
alD

ro
id

(%
)

Contagio

Precision Recall F1-Score

(f) Contagio-intent

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

(%
)

Gnome

Precision Recall F1-Score

(g) Genome-API

 40

 50

 60

 70

 80

 90

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

(%
)

Gnome

Precision Recall F1-Score

(h) Genome-permission

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

F
N

N
A

N
N

W
A

N
N

K
M

N
N

P
D

M
E

F
a
lD

ro
id

(%
)

Gnome

Precision Recall F1-Score

(i) Genome-intent

Figure 4: Comparison between algorithms with reference to precision, recall, and f1-Score for API, intent and permission features in various
datasets.

is able to identify the more benign samples compared to other
methods correctly. On the opposite side, the ANN, WANN, and
KMNN algorithms have higher recall values. It indicates that
these methods accurately detect malware samples more than
other methods, and the higher accuracy of these algorithms are
confirmed the result. Concerning the permission features of the
WANN algorithm, it has a higher recall value and can detect
more malware samples. While on these features, the KMNN
algorithm has a higher precision value and therefore can detect
more benign samples. The third group of features is intents. In
these features, PDME [17] and ANN algorithms have the high-
est recall value and can better identify malware samples. While
in this feature group, the FNN algorithm has a higher precision
value and can detect more benign samples correctly.

5.3.3. Comparing methods based of different f1-Score values
In this part, we aim to present the different f1-Score for dif-

ferent feature types in different datasets. To do so, we rely our

results on the equation (19) which shows the f1-Score formula.
In this equation, we use two criteria: recall and precision. These
criteria can be between zero and one. f1-Score is calculated
based on multiple of these two criteria values. Thus, the fi-
nal result tends to be smaller than each of these criteria values.
If both of them are large numbers (approach to one), the final
result will be near to one. With this explanation, the higher
value for the f1-Score means that the algorithm could detect
more malware and benign. In Fig. 5, we present the f1-Score
for the API, permission, and intent features of different algo-
rithm for different datasets. To be precise, the f1-Score for API
and intent features of the Drebin dataset has the highest value
and especially this rate is higher for the ANN algorithm. Af-
ter that, the f1-Score for the FNN and WANN algorithms are
the second and third biggest f1-Score which can present more
malware and benign detection. Interestingly, in the three types
of API, permission, and intent features the three ANN, WANN
and KMNN algorithms have a higher f1-Score and this value

11

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(a) Drebin-API

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(b) Drebin-permission

 50

 55

 60

 65

 70

 75

 80

 85

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(c) Drebin-intent

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(d) Contagio-API

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(e) Contagio-permission

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(f) Contagio-intent

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(g) Genome-API

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(h) Genome-permission

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
1

-S
c
o

re
 (

%
)

Ratio of Used Features

FNN
ANN

WANN

KMNN
PDME

FalDroid

(i) Genome-intent

Figure 5: Comparison f1-score value between algorithms for API, intent and permission features for various datasets.

for the PDME method [17] is placed in the next rank. FalDroid
algorithm always has the lowest f1-Score. In Fig. 5, we no-
tice that the f1-Score value increases with increasing number
of features. The best results of the three datasets, are from the
Contagio dataset. By examining Fig. 5, it can be concluded that
f1-Score value for the API features has the highest rate.

5.3.4. Comparing methods based on Accuracy, FPR and AUC
In this section, we compare algorithms based on Accuracy,

FPR and, AUC metrics with both PDME [17] and FalDroid [19]
algorithms which we present them in Tables 3-5. To be precise,
in Table 3 for Drebin dataset, for each algorithm, increasing
the number of features increases the accuracy and AUC values,
and decreases the FPR values. Specifically, focusing on FNN
algorithm by considering all API features and 10% API fea-
tures, the value of Acc and AUC increase about 15% and 21%,
respectively while the FPR value decreases exponentially ap-
proximately 95% and approaches to 0.004. Focusing on ANN
algorithm, by considering all API features, the AUC value is

98.96%, FPR value is 0.004, and Acc value is 99.33% which is
about 0.02% above algorithm. The WANN and KMNN algo-
rithms also achieve FPR value about 0.004 for both methods;
their AUC values are 98.90% and 98.84%, and their accuracy
values are 99.31% and 99.28%, respectively. Focusing on the
state-of-the art method like PDME algorithm [17], the highest
accuracy is 99.21%, which is obtained for 90% of the API fea-
tures with the FPR value of 0.005 and the AUC 98.96%, while
the FalDroid algorithm [19] has the best accuracy by consider-
ing 60% of the API features, which is about 90.89% with AUC
value 96.17% and with FPR of 0.099, and this method has the
worst results (in all metrics presented in Table 3) than the pro-
posed methods. By considering the results of the API features,
the accuracy of FNN, ANN, WANN, KMNN, and PDME [17]
methods are more than 99% with 80% of the features, and the
FalDroid method [19] has no accuracy of more than 90.89%.
As a result, focusing on Tables 3-5, we can understand five con-
clusions. First, by examining the permissions and intent fea-
tures of the Drebin dataset in Table 3 and the API, permission,

12

Table 3: Accuracy, FPR, AUC values for API, permission, intent data of the Drebin dataset (Acc= accuracy; FPR= false positive rate; AUC=

area under cover; FR= feature length; MAA= maximum available accuracy).
Drebin Dataset

FNN ANN WANN KMNN PDME [17] FalDroid [19] MAA
FR Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC
10% 84.76 11.81 78.93 90.36 5.74 88.79 90.36 5.74 88.79 90.31 5.71 88.82 84.97 4.09 89.36 76.74 12.46 72.53 99.48 0.29 99.45
20% 95.01 3.18 93.95 96.09 2.92 94.55 95.85 3.21 94.03 95.94 2.95 94.47 90.53 2.27 94.77 78.94 3.38 86.39 99.21 0.45 99.14
30% 97.47 2.24 95.86 97.81 1.98 96.34 97.54 2.17 95.98 97.69 2.08 96.16 94.54 1.56 96.77 84.83 1.17 96.13 99.45 0.42 99.21
40% 98.26 1.75 96.77 98.35 1.62 97.00 98.23 1.79 96.71 98.14 1.79 96.70 98.14 1.43 97.32 86.52 1.49 95.65 99.33 0.55 98.96
50% 98.71 1.14 97.88 98.74 1.04 98.05 98.69 1.10 97.94 98.76 0.97 98.17 98.43 0.84 98.39 90.79 1.75 95.88 99.50 0.42 99.21
60% 98.71 1.30 97.59 98.78 1.23 97.71 98.78 1.17 97.83 98.81 1.23 97.71 98.69 1.04 98.05 90.89 1.62 96.17 99.50 0.42 99.21
70% 98.95 1.14 97.89 98.97 1.10 97.95 98.93 1.14 97.89 98.97 1.14 97.89 98.81 1.01 98.12 88.50 1.33 96.45 99.59 0.32 99.39

A
PI

80% 99.21 0.75 98.60 99.24 0.65 98.78 99.14 0.78 98.54 99.24 0.65 98.78 99.17 0.58 98.90 89.00 0.84 97.73 99.62 0.19 99.63
90% 99.26 0.62 98.84 99.19 0.68 98.72 99.19 0.68 98.72 99.19 0.68 98.72 99.21 0.55 98.96 89.24 0.75 98.00 99.55 0.26 99.51

100% 99.31 0.52 99.02 99.33 0.55 98.96 99.31 0.58 98.90 99.28 0.62 98.84 99.19 0.62 98.84 88.07 0.84 97.62 99.57 0.29 99.45

10% 91.58 6.36 88.58 93.27 2.69 94.65 93.13 2.76 94.52 93.13 3.02 94.06 92.75 3.08 93.88 80.24 1.71 92.94 99.40 0.59 98.92
20% 92.72 5.64 89.90 93.89 2.46 95.15 93.84 2.53 95.03 93.80 2.56 94.97 93.63 2.59 94.88 85.33 2.95 92.17 99.31 0.72 98.69
30% 92.75 5.58 90.00 93.92 2.40 95.27 93.87 2.46 95.15 93.87 2.46 95.15 93.70 2.49 95.07 85.35 3.02 92.04 99.36 0.66 98.81
40% 92.65 5.71 89.79 93.89 2.43 95.21 93.84 2.49 95.09 93.75 2.53 95.02 93.70 2.49 95.07 85.11 3.15 91.67 99.33 0.69 98.75
50% 92.58 5.81 89.63 93.87 2.46 95.15 93.82 2.49 95.09 93.82 2.53 95.03 93.70 2.49 95.07 84.73 3.31 91.18 99.36 0.69 98.75
60% 92.60 5.77 89.69 93.87 2.46 95.15 93.82 2.49 95.09 93.75 2.59 94.90 93.68 2.53 95.01 84.75 3.77 90.28 99.36 0.69 98.75
70% 92.60 5.77 89.69 93.80 2.56 94.97 93.82 2.49 95.09 93.75 2.66 94.79 93.72 2.49 95.07 83.73 5.02 87.52 99.36 0.69 98.75Pe

rm
is

si
on

80% 92.91 5.64 89.95 94.49 3.64 93.28 94.44 3.61 93.33 94.46 3.67 93.23 94.56 3.44 93.61 83.13 9.84 80.60 99.36 0.59 98.92
90% 96.80 3.12 94.48 98.00 1.41 97.42 98.09 1.31 97.59 97.85 1.28 97.64 97.73 1.41 97.11 88.33 10.83 82.03 99.48 0.56 98.99

100% 96.64 3.35 94.10 97.92 1.51 97.24 98.04 1.44 97.36 97.76 1.38 97.46 97.76 1.41 97.40 87.57 10.86 81.68 99.36 0.72 98.69

10% 84.20 1.21 96.06 84.35 1.02 96.67 84.32 1.05 96.57 84.35 1.02 96.67 83.92 0.62 97.81 63.21 42.39 49.24 99.88 0.07 99.88
20% 84.32 1.38 95.63 84.51 0.98 96.80 84.49 1.02 96.70 84.51 0.98 96.80 84.11 0.59 97.95 64.71 40.32 50.88 99.81 0.10 99.82
30% 84.35 3.44 90.75 85.47 0.98 96.98 85.47 0.98 96.98 85.45 1.02 96.89 85.04 0.59 98.07 65.86 40.39 51.49 99.81 0.10 99.82
40% 84.56 3.44 90.84 85.61 0.98 97.01 85.66 0.95 97.11 85.59 1.02 96.91 85.21 0.56 98.20 65.81 40.45 51.44 99.83 0.07 99.88
50% 86.33 1.28 96.35 86.47 1.05 96.98 86.54 0.98 97.16 86.47 1.05 96.98 86.09 0.59 98.19 71.10 32.91 57.67 99.83 0.07 99.88
60% 86.69 1.28 96.42 86.83 1.05 97.03 86.81 1.08 96.94 86.81 1.08 96.94 86.52 0.59 98.24 71.10 32.91 57.67 99.83 0.07 99.88
70% 90.07 4.07 91.61 90.36 3.25 93.09 90.43 2.95 93.64 90.43 2.95 93.64 90.48 2.99 93.59 59.68 53.74 43.12 99.43 0.52 99.04

In
te

nt

80% 90.07 1.51 96.44 91.67 2.43 94.86 91.55 2.56 94.59 91.60 2.49 94.72 91.65 2.49 94.73 67.10 43.83 50.66 99.31 0.56 98.98
90% 90.26 1.35 96.82 91.82 2.30 95.13 91.70 2.43 94.86 91.70 2.43 94.86 91.74 2.43 94.87 67.07 43.77 50.68 99.40 0.43 99.22

100% 90.05 1.25 97.01 91.77 2.33 95.06 91.72 2.39 94.92 91.70 2.40 94.92 91.67 2.53 94.68 66.55 43.04 50.74 99.26 0.39 99.27

and intent features from the two Contagio and Genome datasets
reported in Tables 4 and 5, we realize that the described ML
metric results for all algorithms are roughly the same. Second,
focusing on our proposed algorithms, interestingly, the highest
accuracy is usually achieved with the use of 70% or 80% or
90% of the features, and we do not have to choose all the fea-
tures. Third, if the highest accuracy of different algorithms is
ranked with respect to intent, permission, API features and their
average ratings, the WANN algorithm has the highest accuracy
value compared to others and the ANN, KMNN algorithms are
in the next rank, and the PDME algorithm proposed in [17] is
in third place. The FalDroid algorithm [19] has the least accu-
racy in all cases. Fourth, in all of the proposed methods, the
accuracy of the API features are highest. Finally, the presented
results of the Genome dataset are better than the Drebin and
Contagio datasets.

Some other remarks for Table 3 are in order. We under-
stand that increasing the number of features increases the accu-
racy and AUC, and decreases the FPR. Increasing the amount
of AUC means that algorithms with higher precision can sepa-
rate malware and benign samples. It is also observed that the
four proposed methods and the PDME algorithm [17] with ac-
curacy more than 99% have a high AUC. This process has also
been repeated for other features, namely permission and intent,
as well as Contagio and Genome datasets. Hence, in best case,
accuracy and AUC rates are not 100% and the FPR value is not
even zero.

5.3.5. Comparing methods based on ROC
In this section, we compare algorithms based on false pos-

itive rate (FPR) and true positive rate (TPR) metrics with both
PDME [17] and FalDroid [19] algorithms which we present
them in Figs. 6-8. Given that FPR and TPR are both numbers
between zero and one, the area under the ROC obtained on the
basis of these two measures, in the ideal case, represents the
number one and in the random mode, the number is 0.5, and
in most cases, the number between them will be closer to each
other, indicating the greater accuracy of the proposed model in
detecting malware samples. This area, which is shown by the
ROC measure, is another yardstick for measuring the perfor-
mance of a model. The TPR with a value close to one (i.e.,
100%) means that the model is more precise, and the fact that
it is close to zero means the poor performance of the model in
specifying the samples.

Fig. 6 plots the TPR of different algorithms over their FPR
values. We can see that for Drebin with API features, over
around 90% of our designed learning model can correctly find
malware samples even just below 20% of FPR and the WANN
and KMNN show the best rate among other methods. Focusing
on the Drebin permission features, with over 90% TPR rate and
lower FPR around 20% we can have the best performance of
our ML model for FNN approach and this rate follow the same
for other datasets. In all methods, FalDroid [19] algorithm does
not have acceptable performance for high Low FPR and high
TPR.

5.3.6. Comparing methods based on various ML algorithms
In this study, we also investigate the application of popu-

13

Table 4: Accuracy, FPR, AUC values for API, permission, intent data of the Contagio dataset (Acc= accuracy; FPR= false positive rate; AUC=

area under cover; FR= feature length; MAA= maximum available accuracy).
Contagio Dataset

FNN ANN WANN KMNN PDME [17] FalDroid [19] MAA
FR Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC
10% 93.35 4.14 81.04 96.34 0.91 94.54 96.31 0.95 94.37 96.28 0.95 94.35 96.43 0.82 95.08 90.48 4.58 77.94 99.62 0.07 99.67
20% 97.36 1.83 91.54 97.42 0.36 97.88 97.39 0.42 97.52 97.39 0.36 97.87 97.22 0.62 96.44 89.22 9.47 50.14 99.38 0.23 98.86
30% 98.48 0.85 95.85 98.56 0.23 98.77 98.51 0.29 98.43 98.51 0.26 98.60 98.39 0.29 98.41 91.85 7.30 62.25 99.33 0.10 99.50
40% 98.56 0.69 96.59 98.62 0.33 98.28 98.71 0.20 98.96 98.56 0.39 97.95 98.59 0.29 98.44 92.15 7.43 61.33 99.38 0.13 99.34
50% 98.56 0.69 96.59 98.65 0.36 98.13 98.59 0.42 97.80 98.62 0.39 97.96 98.65 0.42 97.81 92.53 7.40 61.34 99.30 0.23 98.85
60% 98.68 0.49 97.51 98.71 0.26 98.62 98.65 0.33 98.29 98.71 0.26 98.62 98.42 0.55 97.14 92.76 7.10 63.07 99.36 0.13 99.34
70% 98.74 0.52 97.37 98.71 0.26 98.62 98.65 0.33 98.29 98.65 0.33 98.29 98.59 0.49 97.49 92.44 7.59 60.25 99.36 0.16 99.18

A
PI

80% 98.83 0.62 96.95 98.89 0.52 97.41 98.92 0.52 97.41 98.89 0.52 97.41 98.80 0.33 97.54 92.56 7.21 60.88 99.33 0.07 99.50
90% 98.92 0.55 97.27 98.95 0.49 97.57 99.03 0.42 97.89 99.00 0.42 97.88 99.03 0.33 98.35 92.65 7.21 62.44 99.38 0.07 99.67

100% 98.95 0.52 97.42 99.00 0.46 97.73 99.00 0.42 97.88 99.03 0.42 97.89 98.86 0.39 98.01 92.24 7.55 60.55 99.33 0.10 99.50

10% 98.33 0.65 96.51 98.57 0.39 97.86 98.48 0.32 98.18 98.57 0.39 97.86 98.24 0.58 96.80 92.48 5.42 71.46 99.77 0.13 99.33
20% 98.33 0.68 96.36 98.60 0.39 97.86 98.51 0.32 98.18 98.60 0.39 97.86 98.27 0.58 96.81 92.19 5.41 71.62 99.77 0.16 99.17
30% 98.42 0.62 96.70 98.60 0.39 97.86 98.62 0.29 98.37 98.60 0.39 97.86 98.27 0.62 96.65 91.95 5.40 71.78 99.80 0.13 99.34
40% 98.42 0.62 96.70 98.62 0.36 98.04 98.62 0.29 98.37 98.62 0.36 98.04 98.24 0.62 96.48 91.66 5.39 71.93 99.80 0.13 99.34
50% 98.48 0.62 96.71 98.68 0.36 98.05 98.68 0.29 98.38 98.68 0.36 98.05 98.22 0.65 96.16 91.63 5.39 71.93 99.77 0.16 99.17
60% 98.39 0.71 96.23 98.68 0.36 98.05 98.68 0.29 98.38 98.68 0.36 98.05 98.22 0.71 96.16 91.43 5.40 71.92 99.80 0.16 99.17
70% 98.54 0.52 97.20 98.48 0.42 97.67 98.57 0.32 98.19 98.48 0.42 97.67 98.39 0.45 97.49 92.33 5.37 71.79 99.65 0.26 98.68Pe

rm
is

si
on

80% 98.71 0.55 97.09 98.80 0.42 97.75 98.80 0.42 97.75 98.83 0.39 97.91 98.54 0.55 97.04 87.30 6.53 66.86 99.50 0.23 98.83
90% 98.68 0.58 96.93 98.77 0.45 97.58 98.83 0.39 97.91 98.80 0.45 97.59 98.54 0.55 97.04 87.30 6.53 66.86 99.50 0.23 98.83

100% 98.62 0.65 96.61 98.71 0.52 97.25 98.74 0.49 97.41 98.71 0.52 97.25 98.54 0.55 97.04 86.98 6.55 66.84 99.44 0.29 98.50

10% 96.64 1.23 92.92 97.31 0.84 95.14 97.28 0.88 94.97 97.34 0.81 95.31 97.28 0.88 94.97 45.41 2.49 93.95 99.91 0.03 99.83
20% 97.05 0.97 94.38 97.43 0.75 95.68 97.54 0.62 96.38 97.43 0.75 95.68 97.45 0.71 95.85 45.23 2.51 93.94 99.88 0.06 99.67
30% 96.90 0.71 95.58 97.54 0.68 96.05 97.54 0.68 96.05 97.51 0.68 96.04 97.48 0.75 95.70 45.23 2.58 93.75 99.85 0.10 99.50
40% 96.99 0.75 95.46 97.60 0.75 95.76 97.72 0.65 96.29 97.57 0.75 95.74 97.66 0.71 95.94 45.06 2.96 92.81 99.85 0.10 99.50
50% 97.02 0.71 95.64 97.63 0.71 95.93 97.66 0.71 95.94 97.57 0.75 95.74 97.69 0.71 96.11 44.97 2.97 92.81 99.91 0.03 99.83
60% 97.57 0.58 96.56 98.04 0.32 98.09 98.04 0.36 97.91 98.01 0.32 98.08 98.01 0.39 97.73 45.47 2.71 93.39 99.91 0.03 99.83
70% 98.10 0.88 95.37 98.54 0.45 97.52 98.51 0.45 97.52 98.51 0.45 97.52 98.42 0.55 97.01 78.29 1.53 93.68 99.77 0.10 99.50

In
te

nt

80% 98.19 0.78 95.85 98.51 0.49 97.35 98.57 0.39 97.85 98.54 0.45 97.52 98.45 0.52 97.18 79.93 1.54 93.53 99.74 0.13 99.33
90% 98.16 0.97 94.97 98.60 0.39 97.86 98.62 0.32 98.20 98.62 0.32 98.20 98.48 0.45 97.51 82.33 1.49 93.55 99.68 0.13 99.33

100% 98.10 1.00 94.80 98.54 0.45 97.52 98.62 0.36 98.03 98.51 0.45 97.52 98.57 0.36 98.02 82.83 1.48 93.56 99.68 0.13 99.33

Table 5: Accuracy, FPR, AUC values for API, permission, intent data of the Genome dataset (Acc= accuracy; FPR= false positive rate; AUC=

area under cover; FR= feature length; MAA= maximum available accuracy).
Genome Dataset

FNN ANN WANN KMNN PDME [17] FalDroid [19] MAA
FR Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC Acc FPR AUC

10% 96.37 2.84 83.56 96.58 2.52 84.81 96.34 2.78 83.68 96.46 2.65 84.24 96.49 2.62 84.38 55.73 4.70 32.50 99.43 0.35 97.54
20% 98.65 0.81 94.45 98.74 0.74 94.88 98.86 0.68 95.32 98.71 0.78 94.67 98.80 0.45 96.68 86.19 4.24 57.31 99.28 0.42 97.08
30% 99.34 0.36 97.51 99.37 0.32 97.73 99.34 0.36 97.51 99.37 0.32 97.73 99.19 0.48 96.65 90.19 1.47 65.77 99.43 0.32 97.75
40% 99.46 0.23 98.39 99.55 0.16 98.85 99.40 0.29 97.95 99.49 0.19 98.62 99.34 0.26 98.15 95.41 2.02 81.49 99.67 0.12 99.08
50% 99.58 0.23 98.85 99.61 0.16 99.08 99.67 0.29 98.86 99.58 0.19 99.07 99.52 0.23 98.40 96.85 1.84 88.74 99.79 0.06 99.54
60% 99.79 0.06 99.54 99.70 0.13 99.09 99.70 0.16 98.87 99.70 0.10 99.31 99.49 0.36 97.56 96.25 2.74 89.16 99.82 0.06 99.54
70% 99.76 0.10 99.32 99.82 0.06 99.54 99.85 0.06 99.55 99.79 0.06 99.54 99.70 0.19 98.65 96.94 2.11 90.76 99.85 0.06 99.55

A
PI

80% 99.73 0.13 99.09 99.79 0.10 99.32 99.79 0.10 99.32 99.76 0.10 99.32 99.79 0.16 98.88 97.21 1.67 90.31 99.82 0.06 99.54
90% 99.76 0.06 99.54 99.76 0.06 99.54 99.76 0.06 99.54 99.73 0.06 99.54 99.76 0.10 99.32 98.11 1.10 93.31 99.82 0.03 99.77
100% 99.82 0.03 99.77 99.79 0.03 99.77 99.79 0.06 99.54 99.76 0.06 99.54 99.76 0.10 99.32 98.05 1.29 93.99 99.85 0.03 99.77

10% 90.85 7.05 66.94 96.85 0.42 95.70 96.79 0.32 96.53 96.79 0.52 94.83 96.76 0.32 96.51 93.04 2.71 74.50 99.73 0.19 98.66
20% 90.85 7.05 66.94 96.79 0.55 94.57 96.73 0.45 95.32 96.73 0.61 94.00 96.73 0.42 95.60 90.85 5.49 66.12 99.70 0.23 98.44
30% 90.37 7.56 65.83 96.82 0.52 94.86 96.76 0.42 95.62 96.76 0.61 94.04 96.73 0.42 95.60 89.83 6.98 63.88 99.73 0.19 98.66
40% 90.37 7.63 65.85 96.79 0.55 94.57 96.73 0.45 95.32 96.76 0.61 94.04 96.70 0.45 95.29 89.02 7.53 61.77 99.73 0.19 98.66
50% 90.46 7.63 66.08 96.79 0.55 94.57 96.73 0.45 95.32 96.73 0.65 93.76 96.70 0.45 95.29 88.60 8.76 61.75 99.73 0.19 98.66
60% 99.40 0.42 97.13 99.40 0.39 97.33 99.52 0.23 98.40 99.37 0.42 97.12 98.89 0.55 96.11 87.91 12.61 61.99 99.79 0.10 99.32
70% 99.37 0.48 96.72 99.49 0.32 97.76 99.46 0.32 97.76 99.46 0.36 97.55 98.80 0.68 95.29 91.00 9.08 67.36 99.76 0.16 98.88Pe

rm
is

si
on

80% 99.37 0.48 96.72 99.43 0.39 97.34 99.49 0.29 97.97 99.40 0.42 97.13 98.86 0.68 95.32 91.33 9.02 67.98 99.73 0.19 98.66
90% 99.40 0.48 96.73 99.43 0.39 97.34 99.46 0.32 97.76 99.46 0.39 97.35 98.86 0.68 95.32 90.91 9.47 67.15 99.73 0.19 98.66
100% 99.37 0.52 96.53 99.43 0.39 97.34 99.46 0.32 97.76 99.43 0.42 97.14 98.86 0.68 95.32 90.97 9.41 67.26 99.73 0.19 98.66

10% 97.87 0.32 97.16 98.02 0.55 95.60 97.87 0.58 95.28 98.02 0.55 95.60 97.99 0.58 95.36 96.01 2.26 84.58 99.91 0.00 100.00
20% 98.17 0.32 97.30 98.23 0.32 97.33 98.11 0.32 97.27 98.23 0.32 97.33 98.23 0.32 97.33 96.76 1.55 88.60 99.94 0.00 100.00
30% 98.17 0.36 97.06 98.23 0.36 97.09 98.11 0.36 97.03 98.23 0.36 97.09 98.23 0.36 97.09 96.82 1.55 88.70 99.94 0.00 100.00
40% 98.17 0.36 97.06 98.23 0.36 97.09 98.11 0.36 97.03 98.23 0.36 97.09 98.23 0.36 97.09 96.82 1.55 88.70 99.94 0.00 100.00
50% 98.23 0.36 97.09 98.26 0.36 97.10 98.14 0.36 97.04 98.26 0.36 97.10 98.26 0.36 97.10 96.64 1.81 87.33 99.94 0.00 100.00
60% 98.23 0.36 97.09 98.23 0.39 96.85 98.14 0.36 97.04 98.23 0.39 96.85 98.26 0.36 97.10 96.70 1.75 87.69 99.94 0.00 100.00
70% 98.74 0.55 96.03 99.01 0.19 98.52 98.95 0.23 98.27 99.01 0.19 98.52 98.95 0.16 98.75 83.37 17.39 55.91 99.94 0.06 99.55

In
te

nt

80% 98.74 0.42 96.86 98.83 0.42 96.90 98.80 0.42 96.89 98.80 0.42 96.89 98.56 0.48 96.35 86.49 14.03 59.91 99.91 0.03 99.77
90% 98.68 0.45 96.62 98.89 0.36 97.36 98.86 0.36 97.34 98.83 0.42 96.90 98.62 0.42 96.81 85.98 14.61 59.21 99.91 0.03 99.77
100% 98.95 0.16 98.75 99.07 0.16 98.77 99.07 0.13 99.01 99.04 0.19 98.53 98.83 0.19 98.48 80.61 20.39 52.86 99.91 0.03 99.77

lar ML algorithms like SVM, Decision Tree, RF, and neural
network. Using a random forest feature selection algorithm,
we selected 300 important features. Then we implemented the
above algorithms for 10%, 20%, 30%, 40%, 50%, 60%, 70%,

80%, 90%, 100% of the selected features. Examination of the
results, according to Table 6 shows that the proposed methods
in this paper have higher accuracy than these algorithms.

14

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(a) Drebin-API

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(b) Drebin-intent

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(c) Drebin-permission

Figure 6: Comparison of algorithms in Drebin dataset with reference to ROC. (TPR= true positive rate; FPR= false positive rate).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(a) Contagio-API

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(b) Contagio-intent

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(c) Contagio-permission

Figure 7: Comparison of algorithms in Contagio dataset with reference to ROC. (TPR= true positive rate; FPR= false positive rate).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(a) Genome-API

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(b) Genome-intent

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

FPR (%)

FNN
ANN

WANN

KMNN
PDME

FalDroid

(c) Genome-permission

Figure 8: Comparison of algorithms in Genome dataset with reference to ROC. (TPR= true positive rate; FPR= false positive rate).

5.3.7. Comparing methods for without feature selection strate-
gies

In this study, we aim to compare our proposed methods con-
sidering various popular ML algorithms, e.g., SVM, Decision
Tree, RF, and neural network (NN). Using a RandomForestRe-
gressor feature selection algorithm, we selected 300 important
features. Then we implemented the above algorithms for 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% of the se-
lected features. Examination of the results, according to Table 7
shows that the proposed methods in this paper have higher ac-
curacy than these algorithms. To be precise, random forest (RF)
is a meta estimator that fits a number of decision tree classifiers
on various sub-samples of the dataset and uses averaging to im-
prove the predictive accuracy and control over-fitting. We ap-
ply Neural Network (NN) as a multi-layer Perceptron classifier.
This model optimizes the log-loss function using stochastic gra-

dient descent. Additionally, we run the algorithm 200 epochs,
and the learning rate is 0.01. It controls the step-size in updating
the weights. The solver is ’adam’ and hidden layer sizes=(5, 2).
Focusing on SVM, we use the C-Support vector classification.
The implementation is based on libsvm. The fit time scales at
least juridically with the number of samples and maybe imprac-
tical beyond tens of thousands of samples. Decision Trees are a
non-parametric supervised learning method used for classifica-
tion and regression. The goal is to create a model that predicts
the value of a target variable by learning simple decision rules
inferred from the data features.

6. Discussion and Limitations

In the following, we explain the constraints on our similar-
ity based detection algorithms and give some of our ongoing re-

15

Table 6: Accuracy and FPR values for API, permission, intent data of the Drebin, Contagio and Genome datasets (Acc= accuracy; FPR= false
positive rate; FR= feature length; RF= Random Forest; SVM=Support Vector Machine; DT=Decision Tree; NN=Neural Network).

features Drebin Dataset Contagio Dataset Genome Dataset
RF SVM DT NN RF SVM DT NN RF SVM DT NN

FR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR
10% 84.61 11.89 90.24 5.96 89.17 6.13 82.32 31.49 93.20 4.74 95.43 1.82 95.58 1.31 95.49 1.73 96.16 3.16 96.34 2.72 95.89 2.95 96.25 2.85
20% 94.87 3.25 95.97 3.14 94.66 3.57 87.95 23.80 97.22 2.44 96.51 1.27 96.66 0.79 96.60 1.14 98.44 1.13 98.50 0.94 98.41 0.84 98.50 0.97
30% 97.33 2.31 97.69 2.20 96.35 2.53 89.69 21.36 98.33 1.46 97.66 1.14 97.76 0.65 97.71 1.04 99.13 0.68 99.13 0.52 98.89 0.52 99.16 0.52
40% 98.12 1.82 98.23 1.85 97.04 2.13 90.15 20.54 98.42 1.30 97.71 1.24 97.98 0.56 97.77 1.17 99.25 0.55 99.31 0.36 98.95 0.45 99.28 0.39
50% 98.57 1.20 98.40 1.26 97.50 1.44 90.77 18.28 98.42 1.30 97.74 1.27 97.86 0.79 97.83 1.17 99.37 0.48 99.37 0.32 99.22 0.32 99.37 0.32
60% 98.57 1.36 98.59 1.46 97.59 1.51 90.82 19.00 98.54 1.10 97.80 1.17 97.92 0.69 97.92 1.04 99.58 0.39 99.46 0.32 99.25 0.32 99.43 0.29
70% 98.81 1.20 98.64 1.33 97.73 1.48 90.98 18.73 98.59 1.14 97.80 1.17 97.92 0.69 97.86 1.11 9.55 0.42 99.58 0.26 99.40 0.23 99.46 0.26

A
PI

80% 99.07 0.81 98.62 1.26 97.95 1.12 91.25 17.38 98.48 1.24 97.98 1.43 98.18 0.88 98.10 1.30 99.52 0.45 99.55 0.29 99.34 0.26 99.49 0.29
90% 99.12 0.68 98.66 1.46 98.01 1.02 91.20 17.47 98.59 1.17 98.04 1.40 98.30 0.79 98.21 1.21 99.55 0.39 99.52 0.26 99.31 0.23 99.52 0.26

100% 99.09 0.58 98.83 0.78 98.07 0.95 91.34 17.01 98.74 1.10 98.21 1.30 98.45 0.72 98.27 1.14 99.64 0.29 99.64 0.16 99.40 0.19 99.73 0.16

10% 78.02 18.87 77.59 17.64 78.19 16.77 76.04 18.27 97.48 2.17 96.46 2.56 97.45 1.82 96.28 3.03 86.16 10.36 91.75 5.69 92.05 3.77 91.90 4.54
20% 79.17 18.23 78.22 17.44 78.91 16.57 76.71 17.86 97.48 2.20 96.49 2.56 97.48 1.82 96.31 3.03 86.16 10.36 91.69 5.81 91.99 3.90 91.84 4.63
30% 79.19 18.17 78.24 17.38 78.93 16.52 76.78 17.77 97.57 2.14 96.49 2.56 97.60 1.79 96.31 3.03 85.68 10.87 91.72 5.78 92.02 3.87 91.87 4.63
40% 79.10 18.29 78.22 17.41 78.91 16.54 76.66 17.83 95.57 2.14 96.52 2.52 97.60 1.79 96.34 3.00 85.68 10.93 91.69 5.81 91.99 3.90 91.87 4.63
50% 79.03 18.38 78.19 17.44 78.88 16.54 76.74 17.83 97.63 2.14 96.58 2.52 97.66 1.79 96.40 3.00 85.77 10.93 91.69 5.81 91.99 3.90 91.84 4.66
60% 79.05 18.35 78.19 17.44 78.88 16.54 76.66 17.88 97.54 2.23 96.58 2.52 97.66 1.79 96.40 3.00 94.72 3.89 94.30 5.54 94.78 3.68 94.48 4.45
70% 79.05 18.35 78.12 17.52 78.88 16.54 76.66 17.94 97.69 2.04 96.37 2.59 97.54 1.82 96.20 3.07 94.69 3.95 94.39 5.49 94.72 3.77 94.57 4.38Pe

rm
is

si
on

80% 79.36 18.23 78.81 18.48 79.50 17.51 77.38 18.87 97.86 2.07 96.58 2.59 97.69 1.92 99.65 3.03 94.69 3.95 94.33 5.56 94.75 3.74 94.51 4.45
90% 83.25 16.00 82.32 16.51 83.15 15.52 80.77 16.70 97.83 2.11 96.61 2.62 97.78 1.88 96.52 3.10 94.72 3.95 94.33 5.57 94.72 3.77 94.57 4.41

100% 83.37 15.92 82.30 16.48 83.20 15.91 80.86 16.64 97.92 2.07 96.66 2.59 97.69 1.98 96.52 3.10 94.81 3.88 94.42 5.54 94.72 3.83 94.63 4.44

10% 85.09 3.47 83.20 2.17 83.23 2.92 81.65 2.85 96.78 1.45 97.31 1.59 97.22 1.49 97.48 1.26 95.53 2.90 96.55 2.58 96.10 2.65 94.99 3.51
20% 85.21 3.65 83.37 2.13 83.39 2.89 81.82 2.82 97.19 1.19 97.43 1.49 97.48 1.23 97.57 1.20 95.83 2.90 96.76 2.36 96.34 2.40 95.20 3.29
30% 85.23 5.83 84.32 2.13 84.37 2.85 82.75 2.85 97.05 0.94 97.54 1.42 97.48 1.29 97.66 1.13 95.83 2.93 96.76 2.39 96.34 2.43 95.20 3.32
40% 85.45 5.83 84.47 2.13 84.56 2.82 82.89 2.85 97.13 0.97 97.60 1.49 97.66 1.26 97.72 1.20 95.83 2.93 97.76 2.39 96.34 2.43 95.20 3.32
50% 87.21 3.54 85.33 2.20 84.45 2.85 83.77 2.89 97.16 0.94 97.63 1.46 97.60 1.32 97.72 1.20 95.89 2.93 96.79 2.39 96.37 2.43 95.23 3.32
60% 87.57 3.54 85.68 2.20 85.71 2.96 84.11 2.92 97.72 0.81 97.81 1.33 97.98 0.97 98.16 0.78 95.89 2.93 96.76 2.42 96.37 2.43 995.20 3.35
70% 90.96 6.49 89.21 4.54 89.33 4.91 87.74 4.93 98.24 1.10 98.30 1.26 98.45 1.07 98.65 0.91 96.40 3.12 97.54 2.23 97.18 2.30 95.75 3.40

In
te

nt

80% 90.96 3.77 90.53 3.67 90.46 4.49 88.90 4.42 98.33 1.00 98.30 1.23 98.54 1.00 98.68 0.91 96.40 3.00 97.36 2.46 97.03 2.49 95.74 3.38
90% 91.15 3.61 90.67 3.53 90.60 4.35 89.05 4.29 98.30 1.19 98.60 1.13 98.57 0.94 98.77 0.78 96.34 3.03 97.42 2.39 97.09 2.43 95.71 3.38

100% 91.48 3.49 90.93 3.38 90.69 4.49 88.93 4.41 98.45 1.10 98.62 1.17 98.68 0.87 98.80 0.78 96.34 3.12 97.36 2.49 97.09 2.49 95.74 3.38

Table 7: Accuracy and FPR values for API, permission, intent data of the Drebin, Contagio, and Genome datasets- Comparing Between “Using
300 features” and ”Using All Features” (Acc= accuracy; FPR= false positive rate).

Algorithm Drebin Dataset Contagio Dataset Genome Dataset
API Permission Intents API Permission Intents API Permission Intents

FR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR
FNN-300 99.31 0.52 96.64 3.35 90.05 1.25 98.95 0.52 98.62 0.65 98.10 1.00 99.82 0.03 99.37 0.52 98.95 0.16
FNN-All 99.36 0.52 96.83 3.25 90.29 1.18 99.06 0.52 98.77 0.62 98.77 0.62 99.88 0.01 99.43 0.45 99.01 0.13

ANN-300 99.33 0.55 97.92 1.51 91.77 2.33 99.00 0.46 98.71 0.52 98.54 0.45 99.79 0.03 99.43 0.39 99.07 0.16
ANN-All 99.48 0.55 98.02 1.48 91.79 2.23 99.27 0.59 99.00 0.42 99.09 0.29 99.88 0.03 99.49 0.42 99.22 0.03

WANN-300 99.31 0.58 98.04 1.44 91.72 2.39 99.00 0.42 98.74 0.49 98.62 0.36 99.79 0.06 99.46 0.32 99.07 0.13
WANN-All 99.33 0.62 98.45 1.21 92.19 2.63 99.06 0.42 98.80 0.39 99.06 0.23 99.82 0.06 99.37 0.36 99.16 0.16

KMNN-300 99.28 0.62 97.76 1.38 91.70 2.40 99.03 0.42 98.71 0.52 98.51 0.45 99.76 0.06 99.43 0.42 99.04 0.19
KMNN-All 99.26 0.65 97.88 1.54 91.91 2.36 99.18 0.46 98.83 0.52 98.89 0.36 99.70 0.10 99.43 0.29 99.13 0.39

PDME-300 99.19 0.62 97.76 1.41 91.67 2.53 98.86 0.39 98.54 0.55 98.57 0.36 99.76 0.1 98.86 0.68 98.83 0.19
PDME-All 99.28 0.52 97.92 1.28 91.82 2.27 998.92 0.59 98.77 0.61 98.83 0.29 99.55 0.26 98.89 0.55 98.89 0.35

FalDroid-300 88.07 0.84 87.57 10.86 66.55 43.04 92.24 7.55 86.98 6.55 82.83 1.48 98.05 1.29 90.97 9.41 80.61 20.39
FalDroid-All 94.54 0.84 70.03 39.44 91.15 6.66 93.58 6.34 8.44 5.87 88.62 1.62 98.38 0.84 91.81 8.60 85.11 15.60

MAA-300 99.57 0.29 99.36 0.72 99.26 0.39 99.33 0.10 99.44 0.29 93.56 0.13 99.85 0.03 99.73 0.19 99.91 0.03
MAA-All 99.74 0.23 99.48 0.53 9.52 0.36 99.41 0.10 99.53 0.23 99.62 0.16 99.88 0.01 99.85 0.13 99.91 0.03

RF-300 99.09 0.58 83.37 15.92 91.48 3.49 98.74 1.10 97.92 2.07 98.45 1.10 99.46 0.29 94.81 3.88 96.34 3.12
RF-All 99.17 0.58 85.78 14.36 92.03 3.14 98.92 0.94 98.07 2.00 98.57 1.03 99.67 0.29 95.10 3.67 96.82 2.87

SVM-300 98.83 0.78 82.20 16.48 90.93 3.382 98.21 1.30 96.66 2.59 98.62 1.17 99.64 0.16 94.42 5.54 97.36 2.49
SVM-All 97.84 0.78 87.45 12.70 91.08 3.34 98.30 1.27 97.05 2.30 98.89 0.94 99.61 0.29 94.57 5.25 97.45 2.25

DT-300 98.07 0.95 83.20 15.91 90.69 4.49 98.45 0.72 97.69 1.98 98.68 0.87 99.40 0.19 97.42 3.83 97.09 2.49
DT-All 98.14 1.05 86.33 13.02 91.17 3.76 98.39 0.85 97.66 1.67 98.80 0.84 99.25 0.26 94.96 3.83 97.12 2.52

NN-300 98.81 0.49 8.86 16.64 88.93 4.41 98.27 1.14 96.52 3.10 98.80 0.78 97.90 0.16 94.63 4.44 95.74 3.38
NN-All 91.20 17.01 82.37 14.89 88.81 4.52 98.36 0.98 97.16 2.41 98.74 0.87 99.79 0.16 94.72 4.34 95.68 3.80

search directions. One of the limitations of our methods is that
the Hamming distance measure calculates the distance between
two programs based on the static features. The presented meth-
ods are similar to most of the other malware detection methods
which can find two similar programs if they have similar fea-
tures. For example, if we have two malware programs that have
the same functionality with quite different features most of our
methods are unable to find that these two programs are similar.

Despite the effectiveness of the proposed methods, several
issues are remaining to be solved. First, time complexity re-
lated to three of the proposed algorithms is o(n×m), and its rate
for the KMNN algorithm is o(n2×m). However, a large amount
of data in the smartphones that come with Android software
rarely happens, but with a o(n × m) time complexity it needs a
lot of time to run when the volume of data is enormous. Be-
sides, as stated, static analysis usually separates and analyzes

16

the various sources of the binary file without executing it. This
analysis finds available features of malware at a decent speed.
Dynamic analysis, also called behavioral analysis, is performed
by observing malware behavior while running on the host sys-
tem. Compared to static analysis, dynamic analysis is more
effective as there is no need to disassemble the infected file to
analyze it. In addition, dynamic analysis can detect known and
unknown malware. So, we can design the ML model and de-
tect malicious apps faster using static features compared with
dynamic features. However, we can not recognize some un-
known behavior malware in many cases. Therefore, we need
to enhance our method and use static and dynamic features to-
gether as hybrid features in which improve our accuracy in se-
lecting the various type of malware based on similarity-based
strategies. Hybrid analysis gathers information about malware
from static analysis and dynamic analysis. By using hybrid
analysis, security researchers gain the benefits of both analyses,
static and dynamic. Therefore, increasing the ability to detect
malicious programs correctly. Third, to increase the efficiency
of the similarity-based detection mechanism we can corporate
deep learning, but it raises the time complexity of our methods.
Hence, we should manage the convergence speed (i.e., detec-
tion speed) and accuracy rate which is another aspect of our
future direction. Fourth, to provide robust detection algorithm,
it is important to train our ML model using some adversarial
examples and design new methods such as generative adversar-
ial networks (GAN) to understand the simulated samples and
detect compromised samples (i.e., malware samples in which
change their behavior to fool the classifier). Finally, in this pa-
per, we test our ML model on the three types of features (intent,
permission, and API), some other features are existing in such
datasets like URL-based Android services which are important
for future ML model generation. Note Unlike two other used
papers as a comparison, [17] and [22], which are accurately
implemented, the FalDroid [19] method originally is suggested
for detecting malware families. In this paper, we re-code the
ideas mentioned in the FalDroid paper to detect malware. It is
the main reason for the inefficiency of FalDroid compared to
other methods.

7. Conclusions and Future Work

In this paper, we consider the Hamming distance as the
benchmark for the similarity of samples and present four meth-
ods for detecting malware based on the nearest neighborhoods.
To identify and analyze Android malware, and by using the
binary features of Android applications, we provide machine
learning-based methods to detect new malicious software with
high precision and recall rates. Our approaches complement ex-
isting KNN-based solutions and validate our algorithms using
three public datasets, namely the Drebin, Genome, and Conta-
gio datasets, and applying API, intent and permission file types.
Specifically, we demonstrate that the permission and intent-
based method can classify malware from goodware inappro-
priate percent of cases. By considering API features of Drebin
dataset, the accuracy of ANN, FNN, WANN, and KMNN meth-
ods are 99.31%, 99.33%, 99.31%, 99.28%, respectively, which

are improved than PDME(99.19%) and FalDroid(88.07%). Sim-
ilarly, with respect to the Permission features of the Drebin
dataset, the accuracy of ANN, FNN WANN, and KMNN meth-
ods are 96.64%, 97.92%, 98.04%, 97.76%, respectively, while
they are comparable with PDME with accuracy rate 97.76%
and have better accuracy than FalDroid with accuracy rate 87.57%.
Finally, about the Intents features of this dataset, the accuracy of
ANN, FNN, WANN, and KMNN methods are 90.05%, 91.77%,
91.72%, 91.70%, respectively. In this type of features, the ac-
curacy of PDME is 91.67% and FalDroid is 66.55%. Similar
enhancements have been made about the different type of fea-
tures in the Contagio and Genome datasets. The results showed
that there is a superiority of proposed methods to the newest
researches. The results of the proposed methods showed that
the WANN algorithm has the highest accuracy in terms of per-
missions and intents and the ANN algorithm is in the next rank.
Also, with API features, KMNN and ANN algorithms can pro-
vide higher accuracy. By comparing the accuracy obtained in
the proposed methods for the different features of the three used
datasets, we always consider that the accuracy of these methods
is higher than the PDME and FalDroid methods.

For the future works, it is possible to define other (distance)
similarity measures between programs that consider some other
features of the program instead of just using features frequen-
cies. One idea is to utilize the correlation between features.
Thus, using several other features of two applications such as
the correlation between them may be useful to detect the simi-
larity between two malware programs.

Acknowledgment

Mohammad Shojafar is supported by Marie Curie Global
Fellowship (MSCA-IF-GF) funded by European Commission
agreement grant number MSCA-IF-GF-839255 and Mauro Conti
is supported by a Marie Curie Fellowship funded by the Euro-
pean Commission (agreement PCIG11-GA-2012-321980).

References

[1] Global mobile statistics 2014, [Online; accessed 10-June-2019] (2019).
URL https://mobiforge.com/research-analysis/global-mobile-statistics-
2014 - part - a - mobile - subscribers - handset - market - share - mobile -
operators

[2] Sophos mobile security threat reports, [Online; accessed 10-June-2019]
(2019).
URL https://news.sophos.com/en- us/2014/02/24/sophoslabs- report-
explores- mobile- security- threat- trends- reveals- explosive- growth- in-
android-malware

[3] D. Vicente, Kaspersky security bulletin 2018, [Online; accessed 10-June-
2019] (2018).
URL https : / / securelist . com / kaspersky - security - bulletin - threat -
predictions-for-2019/88878

[4] Google play store statistics 2009, [Online; accessed 10-June-2019]
(2009).
URL https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store

[5] Gdata, [Online; accessed 10-June-2019] (2017).
URL https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-
android-malware-samples-every-day

[6] P. Vinod, R. Jaipur, V. Laxmi, M. Gaur, Survey on malware detection
methods, in: Proceedings of the 3rd Hackers Workshop on computer and
internet security (IITKHACK09), 2009, pp. 74–79.

17

https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://news.sophos.com/en-us/2014/02/24/sophoslabs-report-explores-mobile-security-threat-trends-reveals-explosive-growth-in-android-malware
https://news.sophos.com/en-us/2014/02/24/sophoslabs-report-explores-mobile-security-threat-trends-reveals-explosive-growth-in-android-malware
https://news.sophos.com/en-us/2014/02/24/sophoslabs-report-explores-mobile-security-threat-trends-reveals-explosive-growth-in-android-malware
https://news.sophos.com/en-us/2014/02/24/sophoslabs-report-explores-mobile-security-threat-trends-reveals-explosive-growth-in-android-malware
https://securelist.com/kaspersky-security-bulletin-threat-predictions-for-2019/88878
https://securelist.com/kaspersky-security-bulletin-threat-predictions-for-2019/88878
https://securelist.com/kaspersky-security-bulletin-threat-predictions-for-2019/88878
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day

[7] W. Wang, Y. Li, X. Wang, J. Liu, X. Zhang, Detecting android malicious
apps and categorizing benign apps with ensemble of classifiers, Future
Generation Computer Systems 78 (2018) 987–994.

[8] H. Cai, N. Meng, B. Ryder, D. Yao, Droidcat: Effective android malware
detection and categorization via app-level profiling, IEEE Transactions
on Information Forensics and Security 14 (6) (2019) 1455–1470.

[9] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, L. Mao, Maldae: Detect-
ing and explaining malware based on correlation and fusion of static and
dynamic characteristics, Computers & Security 83 (2019) 208–233.

[10] Z. Meng, Y. Xiong, W. Huang, L. Qin, X. Jin, H. Yan, Appscalpel: Com-
bining static analysis and outlier detection to identify and prune undesir-
able usage of sensitive data in android applications, Neurocomputing 341
(2019) 10–25.

[11] P. Feng, J. Ma, C. Sun, X. Xu, Y. Ma, A novel dynamic android malware
detection system with ensemble learning, IEEE Access 6 (2018) 30996–
31011.

[12] Z. Ma, H. Ge, Y. Liu, M. Zhao, J. Ma, A combination method for android
malware detection based on control flow graphs and machine learning
algorithms, IEEE Access 7 (2019) 21235–21245.

[13] I. Martı́n, J. A. Hernández, S. de los Santos, Machine-learning based anal-
ysis and classification of android malware signatures, Future Generation
Computer Systems.

[14] A. Kumar, K. Kuppusamy, G. Aghila, Famous: Forensic analysis of mo-
bile devices using scoring of application permissions, Future Generation
Computer Systems 83 (2018) 158–172.

[15] B. B. Rad, M. Masrom, S. Ibrahim, S. Ibrahim, Morphed virus fam-
ily classification based on opcodes statistical feature using decision tree,
in: International Conference on Informatics Engineering and Information
Science, Springer, 2011, pp. 123–131.

[16] G. Shanmugam, R. M. Low, M. Stamp, Simple substitution distance and
metamorphic detection, Journal of Computer Virology and Hacking Tech-
niques 9 (3) (2013) 159–170.

[17] E. Radkani, S. Hashemi, A. Keshavarz-Haddad, M. A. Haeri, An entropy-
based distance measure for analyzing and detecting metamorphic mal-
ware, Applied Intelligence (2018) 1–11.

[18] W. Wang, Y. Li, X. Wang, J. Liu, X. Zhang, Detecting android malicious
apps and categorizing benign apps with ensemble of classifiers, Future
Generation Computer Systems 78 (2018) 987–994.

[19] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, T. Liu, Android
malware familial classification and representative sample selection via
frequent subgraph analysis, IEEE Transactions on Information Forensics
and Security 13 (8) (2018) 1890–1905.

[20] A. Kumar, K. Kuppusamy, G. Aghila, Famous: Forensic analysis of mo-
bile devices using scoring of application permissions, Future Generation
Computer Systems 83 (2018) 158–172.

[21] M. Varsha, P. Vinod, K. Dhanya, Identification of malicious android app
using manifest and opcode features, Journal of Computer Virology and
Hacking Techniques 13 (2) (2017) 125–138.

[22] Z. Xiong, et al., Android malware detection methods based on the com-
bination of clustering and classification, in: International Conference on
Network and System Security, springer, 2018, pp. 411–422.

[23] A. Saracino, et al., Madam: Effective and efficient behavior-based android
malware detection and prevention, IEEE Transactions on Dependable and
Secure Computing.

[24] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, Variable selection using ran-
dom forests, Pattern Recognition Letters 31 (14) (2010) 2225–2236.

[25] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens,
Drebin: Effective and explainable detection of android malware in your
pocket., in: Ndss, Vol. 14, 2014, pp. 23–26.

[26] S. Chen, M. Xue, Z. Tang, L. Xu, H. Zhu, Stormdroid: A streaminglized
machine learning-based system for detecting android malware, in: Pro-
ceedings of the 11th ACM on Asia Conference on Computer and Com-
munications Security, ACM, 2016, pp. 377–388.

[27] M. Zhang, et al., Drebin: Effective and explainable detection of android
malware in your pocket, in: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS, 2014, pp.
1105–1116.

[28] android developer dashboard, http : / / developer. android . com / about /

dashboards/index.html/, [Online; accessed 10-June-2019] (2018).
[29] H. Fereidooni, M. Conti, D. Yao, A. Sperduti, Anastasia: Android mal-

ware detection using static analysis of applications, in: 2016 8th IFIP

International Conference on New Technologies, Mobility and Security
(NTMS), IEEE, 2016, pp. 1–5.

[30] G. Canfora, E. Medvet, F. Mercaldo, C. A. Visaggio, Acquiring and an-
alyzing app metrics for effective mobile malware detection, in: Proceed-
ings of the 2016 ACM on International Workshop on Security And Pri-
vacy Analytics, ACM, 2016, pp. 50–57.

[31] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, A. Bharmal, Androsimilar:
robust statistical feature signature for android malware detection, in: Pro-
ceedings of the 6th International Conference on Security of Information
and Networks, ACM, 2013, pp. 152–159.

[32] V. Roussev, Building a better similarity trap with statistically improba-
ble features, in: 2009 42nd Hawaii International Conference on System
Sciences, IEEE, 2009, pp. 1–10.

[33] T. Vidas, N. Christin, Evading android runtime analysis via sandbox de-
tection, in: Proceedings of the 9th ACM symposium on Information, com-
puter and communications security, ACM, 2014, pp. 447–458.

[34] W. Enck, M. Ongtang, P. McDaniel, Understanding android security,
IEEE security & privacy 7 (1) (2009) 50–57.

[35] Z. Yuan, Y. Lu, Y. Xue, Droiddetector: android malware characteriza-
tion and detection using deep learning, Tsinghua Science and Technology
21 (1) (2016) 114–123.

[36] Tinyxml, [Online; accessed 10-June-2019] (2019).
URL https://sourceforge.net/projects/tinyxml/

[37] 7-zip, [Online; accessed 10-June-2019] (2019).
URL https//www.7-zip.org

[38] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, S. Albayrak, An
android application sandbox system for suspicious software detection, in:
2010 5th International Conference on Malicious and Unwanted Software,
IEEE, 2010, pp. 55–62.

[39] T. Jakobsen, A fast method for cryptanalysis of substitution ciphers, Cryp-
tologia 19 (3) (1995) 265–274.

[40] B. B. Rad, M. Masrom, Metamorphic virus variants classification using
opcode frequency histogram, arXiv preprint arXiv:1104.3228.

[41] A. H. Toderici, M. Stamp, Chi-squared distance and metamorphic virus
detection, Journal of Computer Virology and Hacking Techniques 9 (1)
(2013) 1–14.

[42] A. Demontis, et al., Yes, machine learning can be more secure! a case
study on android malware detection, IEEE Transactions on Dependable
and Secure Computing PP (99).

[43] H.-S. Park, C.-H. Jun, A simple and fast algorithm for k-medoids cluster-
ing, Expert systems with applications 36 (2) (2009) 3336–3341.

[44] X. Jiang, Y. Zhou, Dissecting android malware: Characterization and evo-
lution, in: Proc. of IEEE S&P, 2012, pp. 95–109.

[45] Contagio dataset, https://droidbox.co.uk/, [Online; accessed 10-June-
2019].

18

http://developer.android.com/about/dashboards/index.html/
http://developer.android.com/about/dashboards/index.html/
https://sourceforge.net/projects/tinyxml/
https://sourceforge.net/projects/tinyxml/
https//www.7-zip.org
https//www.7-zip.org
https://droidbox.co.uk/

Biographies
Rahim Taheri received his B.Sc. degree of Computer engineering from Bahonar Technical College of Shiraz
and M.Sc. degree of computer networks at the Shiraz University of Technology in 2007 and 2015, respectively.
Now he is a Ph.D. candidate on Computer Networks at the Shiraz University of Technology. In February 2018,
he joined to SPRITZ Security & Privacy Research Group at the University of Padua as a visiting Ph.D. student.
His main research interests include machine learning, data mining, network securities and heuristic algorithms.
His main research interests are in an adversarial machine and deep learning as a new trend in computer security.

Meysam Ghahramani graduated from BSc degree in mathematics and its applications, in 2014. He won the
first rank at the ACM programming competitions of the university in 2013. He was admitted to the postgraduate
in the field of cryptography. In 2016, he graduated with the first rank and received the award of a distinguished
university student. Mr. Ghahramani is currently a Ph.D. student in the Department of Computer Engineering
and Information Technology at the Shiraz University of Technology. His primary fields of interest are Post-
Quantum Cryptography, Cryptographic Protocol Analysis, Applied Mathematics, and Information Security.

Reza Javidan received M.Sc. Degree in Computer Engineering (Machine Intelligence and Robotics) from
Shiraz University in 1996. He received a Ph.D. degree in Computer Engineering (Artificial Intelligence) from
Shiraz University in 2007. Dr. Javidan has many publications in international conferences and journals re-
garding Image Processing, Underwater Wireless Sensor Networks (UWSNs) and Software Defined Networks
(SDNs). His major fields of interest are Network security, Underwater Wireless Sensor Networks (UWSNs),
Software Defined Networks (SDNs), Internet of Things, artificial intelligence, image processing, and SONAR
systems. Dr. Javidan is an associate professor in the Department of Computer Engineering and Information
Technology at the Shiraz University of Technology.

Mohammad Shojafar is a Marie Curie Fellow, Intel Innovator, and Senior Researcher in SPRITZ Security
and Privacy Research group at the University of Padua, Italy in since Jan. 2018. Also, he was CNIT Se-
nior Researcher at the University of Rome Tor Vergata contributed on European H2020 “SUPERFLUIDITY”
project. He received the Ph.D. degree from Sapienza University of Rome, Italy, in 2016 with an “Excellent”
degree. His main research interest is in the area of Network and network security and privacy. In this area,
he published more than 99 papers in top-most international peer-reviewed journals and conference, e.g., IEEE
TCC, IEEE TNSM, IEEE TGCN, and IEEE ICC/GLOBECOM (h-index=25, 2.3k+ citations). He is an Asso-
ciate Editor in IEEE Transactions on Consumer Electronics, IET Communication, Cluster Computing, and Ad
Hoc & Sensor Wireless Networks Journals. He is a Senior Member of the IEEE. For additional information:
http://mshojafar.com

Zahra Pooranian is currently a Postdoc in the SPRITZ Security and Privacy Research group at the University
of Padua, Italy, since April 2017. She received her Ph.D. degree in Computer Science Sapienza University
of Rome, Italy, in February 2017. She is a (co)author of several peer-reviewed publications (h-index=15,
citations=650+) in well-known conferences and journals. She is an Editor of KSSI transaction on internet and
information systems and Future Internet. Her current research focuses on Machine Learning, Smart Grid, and
Cloud/Fog Computing. She was a programmer in several companies in Iran from 2009-2014, respectively.
She is a member of IEEE. For additional information: https://www.math.unipd.it/∼zahra/

Mauro Conti received his MSc and his PhD in Computer Science from Sapienza University of Rome, Italy,
in 2005 and 2009. He has been Visiting Researcher at GMU (2008, 2016), UCLA (2010), UCI (2012, 2013,
2014), TU Darmstadt (2013), UF (2015), and FIU (2015, 2016). In 2015 he became Associate Professor,
and Full Professor in 2018. He has been awarded with a Marie Curie Fellowship (2012) by the European
Commission, and with a Fellowship by the German DAAD (2013). His main research interest is in the area of
security and privacy. In this area, he published more than 300 papers in topmost international peer-reviewed
journals and conference. He is Associate Editor for several journals, including IEEE Communications Surveys
& Tutorials, IEEE Transactions on Network and Service Management, and IEEE Transactions on Information
Forensics and Security. He is Senior Member of the IEEE. For additional information: http://www.math.unipd.
it/∼conti/

19

http://mshojafar.com
https://www.math.unipd.it/~zahra/
 http://www.math.unipd.it/~conti/
 http://www.math.unipd.it/~conti/

Appendices
A. Toy example of presented methods

In this section, we aim to give a simple example how our
proposed similarity-based algorithms adopt to detect Android
malware in a binary dataset.

Definition 1. Suppose X is the sample that we want to predict
its label. As an example, vector X can be defined as following:

X =
[
0 0 0 1 0 0 0 1 0 0

]
Also, this vector can be written as follows. The numbers of this
vector are the sample locations that have a value of 1. So, we
have:
X =

[
4 8

]
Definition 2. Suppose the training set namely S is used as fol-
lows. Given the fact that this matrix is sparse, it is possible to
write the matrix only by storing the features of the value of 1.
Hence, we have:

S =

Sample f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Label

S 1 0 1 0 0 0 0 1 1 0 0 0
S 2 0 0 0 1 0 0 0 0 1 0 0
S 3 1 1 0 0 0 0 0 0 0 0 1
S 4 0 0 1 0 0 0 0 1 0 0 1
S 5 0 1 0 0 0 0 0 0 1 0 1
S 6 0 0 0 0 1 0 0 0 0 1 0
S 7 1 0 0 0 0 0 0 1 0 0 1
S 8 0 0 0 1 0 0 1 0 0 0 1
S 9 0 0 1 0 0 1 0 0 0 0 0
S 10 1 0 0 1 0 0 0 0 1 0 0

Sparse form
−−−−−−−−−−→

{2, 7, 8}
{4, 9}
{1, 2}
{3, 8}
{2, 9}
{5, 10}
{1, 8}
{4, 7}
{3, 6}
{1, 4, 9}

Because, in all proposed algorithms, the distance of sample

X is used from all samples in training datasets. In Table 8, we
show the distance between each sample of the training set with
the sample X, which is computed by the Hamming distance.

Table 8: Distance of X from each vector in sample dataset.

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10
3 2 4 2 4 4 2 2 4 3

Considering the presented definitions, in the following we
examine our methods for the defined samples.

Applying FNN Algorithm: In Table 8, the first nearest sample
to X, which is selected by the FNN algorithm, is S 2. Since the
label of sample S 2 is 0, the value of 0 is assigned to the sample
X.

Applying ANN Algorithm: Focusing on ANN algorithm, we
select all similar samples. In this example, S 2, S 4, S 7, and S 8
have been selected according to Table 8 (i.e., see lower values;
we select four vectors with value 2). By voting between labels
of these samples, the value of 1 is assigned to the sample X.

Applying WANN Algorithm: Focusing on WANN algorithm,
we first count the number of features in the training samples

Table 9: Weight of each feature in dataset

W f1 W f2 W f3 W f4 W f5 W f6 W f7 W f8 W f9 W f10
3 3 2 3 1 1 2 3 3 1

Table 10: Weight of each sample in sample dataset

WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 WS 7 WS 8 WS 9 WS 10
8 6 6 5 6 2 6 5 3 9

to find the vector w (see Table 9 which includes the weight of
each feature). Now, we compute the weight of each sample.
The weight of each sample is the total weight of the features of
that sample, which is 1. Given that the weight of sample X is
equal to 6 and as we can see from the Table 10, samples S 2,
S 3, S 5, and S 7 are similar to X and by voting between them the
label of sample X is will be 1.

Applying KMNN Algorithm: Focusing on KMNN method,
we first select the same sample X as the ANN method and then
select S 2, S 4, S 7 and S 8 samples. Now, we create two clusters
by placing similar samples in the same cluster. The similarity
measure will be the distance between samples in each cluster.
For this purpose, we determine the matrix of the intervals be-
tween these samples namely I as follows:

I =

S 2 S 4 S 7 S 8

S 2 0 4 4 2
S 4 4 0 2 4
S 7 4 2 0 4
S 8 2 4 4 0

Each entry of a matrix I represents the distance between the
two samples, which is obtained by comparing peer to peer ele-
ments of corresponding vectors. Focusing on matrix I, the dis-
tance between the S 2 and S 8 samples is the smallest distance, so
we can place them in a cluster. Similarly, the samples of S 4 and
S 7 are near each other and we can place them in another cluster.
Now, in each cluster, we select one of the samples which has a
minimum distance from other samples as a cluster head (CH).
In this example, since we have only two samples per cluster,
we can consider each cluster sample as a CH. Hence, we define
S 2 as the CH in the first cluster and S 4 as the CH in the sec-
ond cluster. Then, we compute the total distance (i.e., d) of all
the samples from two CHs as (See Table 11). In the last step,
we should leave a k percentage of the most distant samples and
vote among the other samples. In the proposed method, we con-
sider k = 10, but for more clarity in these examples, we define
k = 25, and we do not consider just the last sample. After that,
we vote among the rest of the samples. As a result, the result of
the voting obtains the value of 1 for the label of the sample X.

Table 11: Sum of distances from CHs for the selected samples.

∑
dS 2

∑
dS 4

∑
dS 7

∑
dS 8

4 4 6 6

20

	1 Introduction
	1.1 General Definition
	1.2 Motivation and open issues
	1.3 Problem Definition
	1.4 Contribution
	1.5 Roadmap

	2 Related Work
	2.1 Static analysis
	2.2 Dynamic analysis
	2.3 Hybrid analysis

	3 Preliminaries
	4 Proposed Approaches for Malware Detection System
	4.1 Equivalence of distance calculation measures in binary representation
	4.2 Proposed architecture
	4.3 Detection strategy and scenarios
	4.4 Time complexity of the detection algorithms

	5 Experimental Evaluation
	5.1 Simulation setup
	5.1.1 Datasets
	5.1.2 Static features
	5.1.3 Parameter setting
	5.1.4 Comparison of solutions

	5.2 Test metrics
	5.3 Experimental results
	5.3.1 Fixed value for k in KNN-based algorithm
	5.3.2 Comparing methods based of precision, recall and f1-Score
	5.3.3 Comparing methods based of different f1-Score values
	5.3.4 Comparing methods based on Accuracy, FPR and AUC
	5.3.5 Comparing methods based on ROC
	5.3.6 Comparing methods based on various ML algorithms
	5.3.7 Comparing methods for without feature selection strategies

	6 Discussion and Limitations
	7 Conclusions and Future Work
	Appendices
	Appendix A Toy example of presented methods

